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Abstract

In game theory, as well as in the semantics of game logics, a strategy can be represented
by any function from states of the game to the agent’s actions. That makes sense from
the mathematical point of view, but not necessarily in the context of human behavior.
This is because humans are quite bad at executing complex plans, and rather unlikely to
come up with such plans in the first place. A similar concern applies to artificial agents
with limited memory and/or computational power. In this paper, we adopt the view of
bounded rationality, and look at “simple” strategies in specification of agents’ abilities.
We formally define what “simple” means, and propose a variant of alternating-time
temporal logic that takes only such strategies into account. We also study the model
checking problem for the resulting semantics of ability.

After that, we turn to the broader issue of natural strategic abilities in concurrent
games with LTL-definable winning conditions, and study a number of decision prob-
lems based on surely winning and Nash equilibrium. We show that, by adopting the
view of bounded rationality based on natural strategies, we significantly decrease the
complexity of rational verification for multi-agent systems.

Keywords: multi-agent systems, strategic ability, alternating-time temporal logic,
bounded rationality, model checking, concurrent games, rational verification.

1. Introduction

More and more systems nowadays involve social as much as technological aspects,
and even those that focus on technology are often based on distributed components ex-
hibiting self-interested, goal-directed behavior. The field of multi-agent systems (MAS)
studies the whole spectrum of phenomena ranging from agent architectures to commu-
nication and coordination in agent groups to agent-oriented software engineering. The
theoretical foundations are mainly based on game theory and formal logic.
Reasoning about strategies. As the systems around us become more complex, and
at the same time more autonomous, the need for unambiguous specification and au-
tomated verification rapidly increases. Many relevant properties of multi-agent sys-
tems refer to strategic abilities of agents and their groups. For example, functionality
requirements can be often understood in terms of the users’ ability to complete the

Preprint submitted to Elsevier August 23, 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/286378994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


selected tasks. Similarly, many security properties boil down to the inability of the
intruder to obtain his goals. Logics of strategic reasoning provide powerful tools to
reason about such aspects of MAS [12, 119, 113, 79, 45, 90]. The logics allow to
express properties of agents’ behavior and its dynamics, driven by individual and col-
lective goals of the agents. An important factor here is interaction between the agents,
which can be cooperative as well as adversarial. Specifications in agent logics can
be then used as input to model checking [47, 103], which makes it possible to ver-
ify the correct behavior of a multi-agent system using recently developed automated
tools [86, 85, 43, 44].

A fundamental contribution in this field is alternating-time temporal logic ATL and
its syntactic extension ATL∗ [12]. Formulas of ATL are usually interpreted over con-
current game structures (CGS) which are labeled state-transition systems that model
synchronous interaction among agents. For example, the ATL formula 〈〈c〉〉Fticket
may be used to express that the customer c can ensure that he will eventually ob-
tain a ticket, regardless of the actions of the other agents. The specification holds
if c has a strategy whose every execution path satisfies Fticket. Clearly, it captures
an important functionality requirement for any ticket vending machine. Similarly,
〈〈v, crc〉〉G(votedv,i ↔ AFpaidcrc,v) says that the voter and the coercer have a col-
lective strategy to ensure that the coercer will pay out the prearranged bribe whenever
v has voted for the indicated candidate i. This is obviously an undesirable property for
most voting systems, as it allows to establish a vote selling/buying scheme between the
coercer and the voter.
Natural strategies. Following the game-theoretic model of multi-step interaction,
strategies in MAS are understood as conditional plans, and play a central role in rea-
soning about purposeful agents. Formally, strategies in ATL (as well as in other logics
of strategic reasoning, such as Strategy Logic [45, 90]) are defined as functions from
sequences of system states (i.e., possible histories of the game) to actions. A simpler
notion of positional a.k.a. memoryless strategies is formally defined by functions from
states to actions. The approach makes sense from the mathematical point of view, and
might be appropriate to reason about strategic abilities of a machine (robot, computer
program) with extensive computational power. We claim, however, that it is unrealistic
for reasoning about human behavior. This is because humans are very bad at handling
combinatorially complex objects. A human strategy should be relatively simple and
intuitive (or “natural”) in order for the person to understand it, memorize it, and ex-
ecute it. This applies even more if the human agent is to come up with the strategy
on his own.1 A similar concern can be raised for strategic abilities of artificial agents
with limited memory and/or computational power, such as simple robots, sensors in an
autonomous sensor network, and components of Internet of Things.

In this paper, we propose that “natural” ability should be based on strategies whose
complexity does not exceed a given bound. To reason about such strategies, we in-
troduce NatATL, a logic that updates ATL by replacing the strategic operator 〈〈A〉〉ϕ
with a bounded version 〈〈A〉〉≤kϕ, where k ∈ N denotes the complexity bound. To

1Paraphrasing the classical usability desiderata of Nielsen [95], it should be easy to obtain, easy to re-
member, efficient to use, preventing errors, and satisfying.
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measure the complexity of strategies, we assume that they are represented by lists of
condition-action rules. For memoryless strategies, conditions are Boolean proposi-
tional formulas. For strategies with recall, conditions are given as regular expressions
over Boolean propositional formulas. We discuss this choice of representation in more
detail in Section 4.5.

Going back to our motivating examples, 〈〈c〉〉Fticket is satisfied in ATL even if the
simplest successful strategy for c includes millions of clauses, each based on a compli-
cated Boolean condition. In contrast, 〈〈c〉〉≤10Fticket in NatATL expresses that the cus-
tomer can obtain a ticket by means of a strategy of complexity at most 10, which seems
much more appropriate as the functionality requirement. Similarly, ¬〈〈v, crc〉〉≤50G(
votedv,i → AFpaidcrc,v) might be enough to prevent vote buying: if the selling strategy
is too complicated, most voters will neither be able to follow it, nor trust the coercer in
this capacity.
Games of natural strategic ability. Besides redefining strategy-based requirements,
natural strategies provide a new, different view of concurrent multi-player games. In
concurrent games, the overall behavior of the system emerges from interaction of in-
dividual behaviors driven by individual goals of agents [116, 128, 63]. In the new
view, the emergence results from simple individual play. We observe that the standard
game-theoretic solution concepts, such as dominant strategies or Nash equilibrium, can
be applied to study the resulting patterns of interaction. Moreover, they can be used
to reason about the properties of interaction between rational agents whose resources
are limited, especially with respect to the plans that they can identify, represent, and
execute. This is somewhat similar to the well-known work on bounded rationality.
However, the bounds in our case are of a different nature than normally considered in
game theory, as they refer to the sophistication of strategies rather than to the compu-
tational hardness of producing a strategy.
Motivation. Our motivation is, first of all, conceptual. We propose a framework that,
in our opinion, is better suited to capture strategic abilities of realistic agents than for-
malisms based on a combinatorial notion of a strategy. The framework can be used to
characterize, reason about, and verify abilities of players whose capability of produc-
ing and handling plans is limited. It also provides a foundation to define metrics for
various functionality, security, and usability properties in multi-agent systems. More-
over, the focus on simple strategies may ultimately make verification of some systems
more feasible. This brings us to the second motivation behind our work.

Several recent papers within AI have studied verification of systems, based on their
bounded characteristics. The starting point was an observation that model checking
is somewhat resistant to practical applications, even when the theoretical (asymptotic)
complexity seems appealing, like the polynomial time results for model checking CTL,
CTLK, and ATL. Still, in realistic scenarios, the space of states, transitions, available
choices, strategies etc. is immensely large. When coupled with the machinery required
to deal with infinite sets of infinite computation paths in the system, this results in
algorithms and tools that do not scale up well enough. As a consequence, a number of
studies have been published, concerned with properties of systems in finite computation
paths, and hence using finite trees as the behavioral model of the system [52, 53, 29].
Similarly, one can look at the properties to be model-checked, and focus only on those
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that can be demonstrated in a finite time horizon [82, 92, 13]. In this paper, we propose
that the scope of verification can be restricted also at the level of strategic choices taken
by agents in the system. For the moment, we offer only theoretical complexity results.
Ultimately, we want to use the resulting variants of model checking and game solving
to analyze realistic interaction scenarios.
Technical contribution. The main contribution of this paper consists of the following
points:

1. We propose the concept of natural strategies, based on an intuitive representation
of conditional plans. We also propose how to measure the sophistication (or
complexity) of such strategies;

2. We define NatATL, a variant of alternating-time temporal logic to reason about
natural strategic ability, and we study the complexity of NatATL model checking.
We consider two main cases here: the abilities of agents playing memoryless
strategies, and agents using strategies with recall of the past;

3. For natural strategies with recall, we show that their relationship to memoryless
strategies is more intricate than normally in ATL. Moreover, we investigate the
relationship of natural strategies with recall to the representation of strategies
based on input/output automata (i.e., finite transducers);

4. Finally, we investigate several decision problems for natural abilities of agents
in concurrent games with LTL-definable winning conditions. We specifically
look at problems related to surely winning and Nash equilibrium. We define the
problems formally and establish their computational complexity.

Structure of the article. We begin by discussing the related work (Section 2) and re-
calling the main concepts behind logical reasoning about strategic ability (Section 3).
Then, in Section 4, we introduce the concept of natural memoryless strategies, show
how to measure their complexity, and define NatATL as a variant of alternating-time
temporal logic for reasoning about existence of such strategies. We study the complex-
ity of model checking for the new logic in Section 5. In Sections 6 and 7, we turn to
natural strategic abilities of agents with recall of the past. We define natural strategies
with memory together with the corresponding variant of NatATL, study their relation-
ship to memoryless strategies and to finite-memory strategies represented by determin-
istic finite transducers, and establish some complexity results for the model checking
problem. The second part of the paper is concerned with natural abilities in concur-
rent games with players’ objectives defined by formulas of linear time logic (LTL).
We focus on two solution concepts: surely winning and Nash equilibrium. Some rele-
vant decision problems are formally defined and discussed in Section 8; we study their
complexity in Section 9. Finally, we conclude in Section 10.
Previous version of the article. Some of the ideas and results discussed here have
been already presented in a preliminary form in the conference paper [78]. Here, we
extend the conference version with a study of natural ability for rational players in con-
current games (Sections 8 and 9, roughly the second half of this article). We also pay
special attention to motivating examples, and make a proper case for the applicability
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of natural strategies in specification of multi-agent systems. Finally, we have added
some new results, as well as expanded and revised a number of proofs in the part on
logical reasoning. Most importantly, we revise the erroneous claim from [78] concern-
ing the relationship between natural strategies with recall and finite transducers, and
characterize the relationship correctly. We also correct some results concerning the
complexity of decision problems for natural strategies with recall.

2. Related Work

Logical reasoning about strategies. Strategic reasoning has been the subject of in-
tensive research within multi-agent systems and AI. Variants of ATL and ATL∗ are
probably the most popular logic-based approaches to formalizing strategic abilities of
agents and coalitions. The research on alternating-time temporal logic can be roughly
divided into the computational and the conceptual strand. The former is focused on
the way in which ATL and its extensions can be used for verification of multi-agent
systems – in particular, what is the complexity of model checking, and how one can
overcome the inherent difficulties. An interested reader is referred to [35] for an
overview, and to [12, 113, 118, 76, 84, 39, 54, 17, 77, 16, 87] for more specific re-
sults. Analogous research have been conducted for the more expressive language of
Strategy Logic [45, 93, 90, 71]. Satisfiability for the perfect information variants of
ATL and SL has been investigated in [59, 126, 109, 89, 91].

The conceptual strand originally emerged in quest of the “right” semantics for abil-
ity under imperfect information, see [3, 40] for an introduction. ATL was combined
with epistemic logic [120, 121, 1, 74], and several semantic variants were defined
that match various possible interpretations of ability [113, 79, 74]. Imperfect infor-
mation strategies have been also studied within the SL framework [18, 21]. More-
over, many conceptual extensions have been considered, e.g., with explicit reasoning
about strategies [117, 127], rationality assumptions and solution concepts [122, 41],
coalition formation and negotiation [34], opponent modeling and action in stochas-
tic environments [73, 38, 112, 111], fairness conditions and prompt temporal oper-
ators [42, 13], reasoning about irrevocable plans and interplay between strategies of
different agents [2, 33], and agents with bounded resources (for the latter, see the ref-
erences mentioned below).
Strategic abilities of resource-bounded agents. The main motivation behind this arti-
cle comes from the second, conceptual strand. Some works that are close in spirit to our
proposal concern modeling, specification, and reasoning about strategies of agents with
bounded mental capabilities. Most importantly, [8, 10, 36, 37, 5, 9] extend temporal
and strategic logics to handle agents with bounded resources, such as time, memory,
money, etc. More specifically, [4] studies strategic properties of agents with limited
memory. Issues related to bounded memory are also investigated in [15, 70, 123, 61].
Still, all those works consider the standard combinatorial notion of a strategy, and are
mostly concerned with the decidability frontier for reasoning about different classes of
resource dynamics.
Representation of strategies. Another relevant group of papers concerns various rep-
resentations of strategies. This category includes extensions of ATL with explicit rea-
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soning about actions and strategies [117, 1, 127, 66], as well as logics that combine
features of temporal and dynamic logic [64, 97]. A variant of STIT logic that enables
reasoning about strategies and their performance in the object language was also inves-
tigated in [55]. A representation of finite-memory strategies by input/output automata
was used in [124]. Moreover, some recent works consider minimization of strategies
represented by decision diagrams, in order to obtain more human-friendly descrip-
tions [30, 31]. Again, the above papers take the standard, combinatorial representation
of strategies as their starting point. In contrast, we start with an intuitive structure for
representing conditional plans, well known in AI, and study how it changes the speci-
fication and verification of agents’ abilities.

In fact, our representations of strategies are very close to conditional plans used
in classical approaches to automated planning [106, 58] and agent-oriented program-
ming [67, 68, 26]. Reasoning about agent programs with formulas of strategic logics
was also investigated in [25, 6, 7, 48, 129]. We will comment in more detail on the
inspiration behind our representations in Section 4.5. At this point we only mention
that, unlike the literature on planning and agent-oriented programs, we do not focus
on practical application-driven languages for specification of plans and their interac-
tion with other mental attitudes. Instead, we study an abstract representation class that
seems to “distill” the most relevant features of the practical solutions.
Bounded rationality. Closer to game theory, our work is related to the general concept
of bounded rationality and to the idea of rational verification. The bounded rational-
ity view [105, 114] assumes that the players have bounded computational power when
reasoning about their choices. In particular, some researchers investigated the impact
of players’ bounded memory in games [81, 70, 22]. However, unlike in our proposal,
the bounds are considered from a purely mathematical point of view, and not in relation
to the practical ease of the underlying mental operations. Finally, rational verification
(also known as equilibrium checking) is an extension of model checking to verify be-
havior of agents limited to rational choices. Typically, this kind of verification is based
on Nash equilibrium, and applied to concurrent games with players’ objectives defined
by formulas of linear time logic [116, 128, 63]. Preliminary approaches to similar
analysis based on other solution concepts were presented in [65, 41, 100, 99]. The
last part of our paper comes close; however, we study the outcome of natural bounded
strategies, and obtain different complexity results.
Bounded approaches to verification. Bounded characteristics of interaction has been
studied for conceptual and computational reasons. We already discussed the conceptual
approaches, focusing on reasoning about bounded agents. The computational strand
concentrates on bounded reasoning about agents, with the hope to obtain algorithms
and tools that scale up well in practical applications. One can trace back the idea to the
concept of bounded model checking [23], later applied also to properties of multi-agent
systems [101, 80]. More recently, a number of papers investigated model checking and
synthesis for LTL and linear dynamic logic in finite computation paths [52, 53, 29, 19].
Similar research considered verification of properties that can be demonstrated in a fi-
nite time horizon [82, 92, 13]. This paper is not directly related to bounded verification,
but can potentially contribute to advancing the field, by considering yet another angle
of bounded search – namely, bounded search through the space of strategies.
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Summary. There has been much research in the last 20 years on the right semantics
of strategic ability. Moreover, bounded rationality is an important topic within game
theory. The two strands come together in so called “rational verification,” where model
checking techniques are adapted to models of rational behavior. Bounded approaches
to verification of multi-agent systems also bear some relevance for our research.

We have summarized the most important ideas above. However, none of the works
considers directly the subject of this paper, i.e., logic-based reasoning about agents’
abilities in scenarios where natural representation and reasonable complexity of strate-
gies is essential.

3. Preliminaries: What Agents Can Achieve

We begin by recalling the syntax and semantics of alternating-time temporal logic
(ATL) which has been used with great success by the MAS community to formalize
reasoning about strategic abilities of agents and coalitions.

3.1. Expressing Abilities of Agents and Coalitions
Alternating-time temporal logic (ATL, for short) [11, 12] generalizes the branching-

time temporal logic CTL by replacing path quantifiers E,A with strategic modality
〈〈A〉〉. Informally, 〈〈A〉〉γ reads ”there exists a strategy for the coalition A such that, no
matter how the other players act, formula γ is satisfied. The formulas make use of tem-
poral operators: “X ” (“next”), U (“strong until”), and W (“weak until”). Formally,
let Agt be a finite set of agents, and Prop a countable set of atomic propositions. The
language of ATL is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉X ϕ | 〈〈A〉〉ϕU ϕ | 〈〈A〉〉ϕW ϕ.

whereA ⊆ Agt and p ∈ Prop. Derived Boolean connectives and constants (∨,→,>,⊥)
are defined as usual. “Now or sometime in the future” can be defined as Fϕ ≡ >U ϕ,
and “always from now on” as Gϕ ≡ ϕW⊥. The path quantifier “for all paths” can
be defined as Aγ ≡ 〈〈∅〉〉γ. Finally “there is a path” can be defined as dual to A, i.e.,
EϕU ψ ≡ ¬A(¬ψ) W (¬ϕ ∧ ¬ψ) and EϕW ψ ≡ ¬A(¬ψ) U (¬ϕ ∧ ¬ψ).

Example 1 (Ticket machine). The ATL formula 〈〈c〉〉Fticket expresses that the cus-
tomer c is able to eventually obtain the ticket, no matter what anybody else does and
what circumstances arise.

3.2. Models of Multi-Agent Interaction
The semantics of ATL is defined over concurrent game structures, a variant of

synchronous multi-agent transition systems.

Definition 1 (CGS). A concurrent game structure (CGS) is a tupleM = 〈Agt, St, Act,
d, t, Prop, V 〉 which includes nonempty finite sets of: agents (or players) Agt =
{a1, . . . , a|Agt|}, states St, actions Act, atomic propositions Prop, and a proposi-
tional valuation V : St → 2Prop. The function d : Agt × St → 2Act defines the
availability of actions in states. The (deterministic) transition function t assigns a suc-
cessor state q′ = t(q, α1, . . . , α|Agt|) to each state q ∈ St and any tuple of actions
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Figure 1: Mticket : a model of the ticket machine

αi ∈ d(ai, q) that can be executed by Agt in q. In the rest of the paper, we will write
da(q) instead of d(a, q), and we will denote the set of collective choices of group A in
state q by dA(q) =

∏
ai∈A dai(q).

A pointed CGS is a pair (M, q0) where M is a concurrent game structure and q0 a
state in M .

Example 2 (Ticket machine). An example of a CGS for a ticket vending machine is
presented in Figure 1. The model specifies interaction between the customer (c) and
the program of the machine (m). Initially, the customer can make his selection on
the touchscreen (action select, or s for short) or stay idle and do nothing (action
idle or i ). The machine, on the other hand, can be run in two different modes: let
us call them “helpful” (action helpful , or h for short) and “default” (action idle or
i ). When the customer has finished the selection (which is indicated by the atomic
proposition selected), he can proceed to payment (action pay, or p for short) or cancel
the operation (action cancel or c). After the payment, the system duly prints the ticket
(action print), and resets the process to its initial state q0 (action reset).

Due to a flawed implementation, it is possible to execute actions p or c also in
states where it should not be, leading to haphazard results. For example, cancelling
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after payment leads to the error state q10, paying in q2 or q3 (before the selection is
made) leads to the error state, too, and cancelling in q2 leads to q1.

3.3. Strategies and Their Outcomes

A path λ = q0q1q2 . . . in a CGS is an infinite sequence of states such that there is
a transition between each qi, qi+1. λ[i] denotes the ith position on λ, λ[i, j] the part of
λ between positions i and j, and λ[i,∞] the suffix of λ starting with i. By ΛM , we
denote the set of all the paths in M , and by ΛM (q) all the paths in M starting in q.
Similarly, a history h = q0q1q2 . . . qn is a finite sequence of states that can be effected
by subsequent transitions. By last(h) = qn we denote the last element of the sequence.
We denote by HM = St+ the set of all the histories in model M . We will omit the
subscripts whenever they are clear from the context.

A strategy of agent a ∈ Agt is a conditional plan that specifies what a is go-
ing to do in every possible situation. Formally, it can be represented by a function
sa : St→ Act satisfying sa(q) ∈ da(q) for each q ∈ St.2 Note that this is the memo-
ryless (a.k.a. positional) notion of a strategy. We will follow the notation proposed by
Schobbens [113], and refer to such strategies as r-strategies. A collective strategy sA
for coalition A ⊆ Agt is a tuple of individual strategies, one per agent from A. The set
of all such strategies is denoted by Σr

A. A collective strategy of all the agents in Agt is
sometimes called a strategy profile.

Let sA[a] denote the strategy of agent a ∈ A selected from sA. Moreover, function
out(q, sA) returns the set of all the paths that can result from the execution of strategy
sA from state q. Formally:

out(q, sA) = {λ = q0, q1, q2 . . . | q0 = q and for each i = 0, 1, . . . there exists
(αia1 , . . . , α

i
ak

) such that αia ∈ da(qi) for every a ∈ Agt, and αia = sA[a](qi)
for every a ∈ A, and qi+1 = o(qi, α

i
a1 , . . . , α

i
ak

)}.

3.4. Semantics of ATL
Given a CGS M and a state q ∈ St, the semantics of ATL is defined by the follow-

ing clauses:

M, q |=r p iff p ∈ V (q), for p ∈ Prop;
M, q |=r ¬ϕ iff M, q 6|=r ϕ;
M, q |=r ϕ1 ∧ ϕ2 iff M, q |=r ϕ1 and M, q |=r ϕ2;

M, q |=r 〈〈A〉〉X ϕ iff there is a strategy sA ∈ Σr
A such that, for each path λ ∈

out(q, sA), we have M,λ[1] |=r ϕ;
M, q |=r 〈〈A〉〉ϕU ψ iff there is a strategy sA ∈ Σr

A such that, for each path λ ∈
out(q, sA), we have M,λ[i] |=r ψ for some i ≥ 0 and M,λ[j] |=r ϕ for all
0 ≤ j < i.

2Observe that function-based representations of strategies are motivated by mathematical elegance and
generality, rather than similarity to the way humans actually deliberate and act. We will sometimes call such
strategies combinatorial because of that.
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M, q |=r 〈〈A〉〉ϕW ψ iff there is a strategy sA ∈ Σr
A such that, for each path λ ∈

out(q, sA), we have either that M,λ[i] |=r ψ for some i ≥ 0 and M,λ[j] |=r ϕ
for all 0 ≤ j < i, or that M,λ[i] |=r ϕ for all i ≥ 0.

Example 3 (Ticket machine). Consider the ticket machine in Example 2. We will now
demonstrate that Mticket , q0 |= 〈〈c〉〉Fticket. That is, in q0, the customer can ensure
that he will eventually obtain a ticket. An example strategy that demonstrates the ability
is: sc(q0) = s, sc(q1) = s, sc(q2) = c, sc(q3) = s, sc(q4) = p, sc(q5) = p, sc(q6) =
c, sc(q7) = i , sc(q8) = i , sc(q9) = i , sc(q10) = i .

Memoryless vs. memoryful semantics of ATL. ATL was originally introduced with
a semantics based on perfect recall strategies of type sa : St+ → Act, such that
sa(h) ∈ da(last(h)) for every h ∈ H . We will sometimes refer to such strategies as
R-strategies; the set of such strategies for coalition A is denoted by ΣR

A.
The memoryful semantics of ATL, defined by relation |=R, can be obtained from

|=r by replacing all occurrences of Σr
A with ΣR

A. The following result is well-known,
and based on the fact that memoryless strategies suffice for safety and reachability
goals in games of perfect information.

Proposition 1 ([12, 113]). For a model M , state q in M , and ATL formula ϕ, we
have:

M, q |=r ϕ iff M, q |=R ϕ.

4. Reasoning about Natural Ability

In this section we introduce NatATL, a logic for reasoning about natural strategic
ability. We argue that the notion of ability, captured by ATL, misses an important aspect
of how humans reason about the world. As a remedy, we propose a modification of the
logic that allows to take into account the combinatorial limitations of human reasoning.

An important motivation for this work comes from usability concerns in function-
ality requirements. Consider, e.g., a ticket vending machine at a railway station. In-
tuitively, it is not enough that a customer has a strategy to successfully buy the right
ticket. If the strategy is too complex, most people will be unable to follow it, and the
machine will be practically useless. Another application area is gaming, where one
could define the game level by the complexity of the smallest winning strategy. In both
cases, we need to understand what it means for a strategy to be “simple” or “complex,”
and to relate our definition of strategic ability to this complexity measure.

4.1. Natural Strategies and Their Complexity
We start by defining the notion of natural memoryless strategy (or nr-strategy) sa

for agent a. The idea is to use a rule-based representation, with a list of condition-
action rules. The first rule whose condition holds in the current state is selected, and
the corresponding action is executed. Formally, let B(Ξ) be the set of Boolean formu-
las over alphabet Ξ. We represent natural strategies by lists of guarded actions, i.e.,
sequences of pairs (ϕi, αi) such that: (1) ϕi ∈ B(Prop), and (2) αi ∈ da(q) for every
q ∈ St such that q |= ϕi. That is, ϕi is a propositional condition on states of the CGS,
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and αi is an action available to agent a in every state where ϕi holds.3 Moreover, we
assume that the last pair on the list is (>, α) for some α ∈ Act, i.e., the last rule is
guarded by a condition that will always be satisfied.

The set of all natural memoryless strategies of agent a is denoted by Σnr
a . By

length(sa), we denote the number of guarded actions in sa. Moreover, condi(sa)
denotes the ith guard (condition) on the list, and acti(sa) the corresponding action.
Finally, match(q, sa) is the smallest i ≤ length(sa) such that q |= condi(sa) and
acti(sa) ∈ da(q). That is, match(q, sa) matches state q with the first condition in sa
that holds in q, and action available in q. Additionally, dom(ϕ) = {p ∈ Prop | p ∈
ϕ} stands for the set of atomic propositions that appear in condition ϕ, and dom(sa) =⋃
i=1,...,length(sa) dom(condi(sa)) denotes the propositions occurring in sa.

A collective natural strategy for agents A = {a1, . . . , a|A|} is a tuple of individual
natural strategies sA = (sa1 , . . . , sa|A|). The set of such strategies is denoted by Σnr

A.
The “outcome” function out(q, sA) returns the set of all paths that occur when agents
A execute strategy sA from state q onward. Formally, given a state q ∈ St, a subset of
agents A and a collective memoryless strategy sA, we define:

out(q, sA) = {λ ∈ Λ | (λ[0] = q) ∧ ∀i≥0∃α1,...,α|Agt| .

(a ∈ A⇒ αa = actmatch(λ[i],sa)(sa)) ∧
(a /∈ A⇒ αa ∈ da(λ[i])) ∧ (λ[i+ 1] = t(λ[i], α1,..., α|Agt|))}.

We emphasize that the outcome of sA collects all the paths consistent with sA. In
particular, the opponents are not assumed to play a natural strategy; in fact, they are
not assumed to play any strategy at all.

Example 4 (Ticket machine). The strategy in Example 3 guarantees that the cus-
tomer will obtain a ticket, but it is unrealistic to expect human customers that they
follow such a specification, let alone come up with it on their own. Moreover, it un-
necessarily prescribes action cancel in state q2, a fact which is buried in the table-like
description of the strategy function, and therefore very difficult to spot. On the other
hand, consider the following specification in the form of an nr-strategy:

1. (¬ticket ∧ ¬selected ∧ ¬paid ∧ ¬error, select);

2. (selected, pay);

3. (>, idle).

It says that the customer selects a ticket whenever the selection has not been made (nor
actually already got the ticket, or at least made the payment etc.). After making the
selection, he does the payment, and else he stays idle. The strategy, and the transitions
consistent with it, are highlighted in Figure 2. The outcome of the strategy from state
q0 consists of all the paths that start in q0 and can be composed of the highlighted
transitions.

3In fact, it suffices to require that αi ∈ da(q) for every q ∈ St such that q |= ¬ϕ1 ∧ · · · ∧¬ϕi−1 ∧ϕi,
see the operational semantics of natural strategies in the next two paragraphs.
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Figure 2: A strategy for buying a ticket

By compl (sa), we denote the complexity, or equivalently the size, of the strategy
sa. Intuitively, the complexity of a strategy is understood as the level of sophistication
of its representation. Several natural metrics can be used to measure the complexity of
a strategy, given its representation from (B(Prop)×Act)+, e.g.:

Number of used propositions: compl#(sa) = |dom(sa)|;
Largest condition: complmax(sa) = max{|ϕ| | (ϕ, α) ∈ sa};
Total size of the representation: complΣ(sa) =

∑
(ϕ,α)∈sa |ϕ|

with |ϕ| being the number of symbols in ϕ, without parentheses. From now on, we will
focus on the last metric for complexity of strategies, which takes into account the total
size of all the conditions used in the representation. That is, unless explicitly specified,
we will assume compl (sa) = complΣ(sa).

Example 5 (Ticket machine). Consider the nr-strategy sc from Example 4. If we look
at the number of used propositions, we have that compl#(sc) = |{ticket, selected,
paid}, error| = 4. If we consider the largest condition instead, we have complmax(sc) =
11. Finally, if we use the total size of the representation, we get complΣ(sc) = 13.
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Interestingly, an equivalent natural strategy with complΣ(sc) = 5 exists:
( (paid, idle); (ticket, idle); (error, idle); (selected, pay); (>, select) ).

The complexity of a natural collective strategy sA = (sa1 , . . . , sn) can be defined
analogously:

• compl#(sA) = |
⋃
i=1,...,n dom(sai)|,

• complmax(sA) = maxi=1,...,n{complmax(sai)}, and

• complΣ(sA) =
∑
i=1,...,n complΣ(sai).

Unless explicitly specified, we assume compl (sA) = complΣ(sA).

4.2. A Logic for Natural Strategies

Natural ATL (NatATL, for short) is obtained by replacing in ATL the modal-
ity 〈〈A〉〉 with the bounded strategic modality 〈〈A〉〉≤k. Intuitively, 〈〈A〉〉≤kγ reads as
“coalition A has a collective strategy of size less or equal than k to enforce the prop-
erty γ.” As in ATL, the formulas of NatATL make use of classical temporal operators:
“X ” (“in the next state”), “G” (“always from now on”), “F” (“now or sometime in the
future”), U (strong “until”), and W (weak “until”). Thus, the language of NatATL
can be definen by the following grammar:

ϕ ::= p |¬ϕ |ϕ ∧ ϕ | 〈〈A〉〉≤kX ϕ | 〈〈A〉〉≤kϕU ϕ | 〈〈A〉〉≤kϕW ϕ.

where A ⊆ Agt, k ∈ N, and p ∈ Prop.
Additionally, 1NatATL will denote the fragment of NatATL that admits only for-

mulas consisting of a single strategic modality, followed by a temporal formula over
Boolean connectives and atomic propositions.

Example 6 (Ticket machine). The ATL specification 〈〈c〉〉Fticket says that the cus-
tomer has a conditional plan such that, no matter what the other agents do, the ticket
will eventually be issued. Does that mean that the customer is able to obtain the ticket?
It has been argued in [79] that the strategic ability to enforce a property should imply
that the agent can identify and execute the right strategy. If the strategy is too complex,
people will not be capable of using it. Thus, instead of 〈〈c〉〉Fticket, one should require
that the ticket machine satisfies 〈〈c〉〉≤kFticket for a reasonably low k.

Example 7 (Gaming). When designing a game, the designer can define the game level
by the complexity of the smallest winning strategy for the player. Using NatATL, we
can say that the level of the game for player a is k iff the game satisfies the formula
〈〈a〉〉≤kFwin ∧ ¬〈〈a〉〉≤k−1Fwin.

Example 8 (Vote buying). Coercion-resistance is an important property of voting sys-
tems [20]. A system is coercion-resistant if the coercer cannot influence the way the
voter votes, even if the voter is willing to cooperate with the coercer. The latter as-
sumption is relevant especially in cases of vote buying. The ATL formula 〈〈v, crc〉〉G(
votedv,i → AFpaidcrc,v) says that the voter and the coercer have a collective strategy
to ensure that, whenever v has voted for the indicated candidate i, the coercer will
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pay out the prearranged bribe. However, the formula does not take into account how
complex is the behavior that the agents must use in order to successfully sell/buy the
vote.

Similarly to Example 7, one can define the level of coercion resistance as the small-
est k such that 〈〈v, crc〉〉≤kG(votedv,i → AFpaidcrc,v) ∧ ¬〈〈v, crc〉〉≤k−1G(votedv,i →
AFpaidcrc,v).

4.3. Semantics of NatATL
Given a CGSM , a state q ∈ St, a path λ ∈ Λ, and k ∈ N, the semantics of NatATL

is defined as follows:

M, q |=nr p iff p ∈ V (q), for p ∈ Prop;
M, q |=nr ¬ϕ iff M, q 6|=nr ϕ;
M, q |=nr ϕ1 ∧ ϕ2 iff M, q |=nr ϕ1 and M, q |=nr ϕ2;

M, q |=nr 〈〈A〉〉≤kX ϕ iff there is a strategy sA ∈ Σnr
A such that compl (sA) ≤ k

and, for each path λ ∈ out(q, sA), we have M,λ[1] |=nr ϕ;
M, q |=nr 〈〈A〉〉≤kϕU ψ iff there is a strategy sA ∈ Σnr

A such that compl (sA) ≤ k
and, for each path λ ∈ out(q, sA), we have M,λ[i] |=nr ψ for some i ≥ 0 and
M,λ[j] |=nr ϕ for all 0 ≤ j < i.

M, q |=nr 〈〈A〉〉≤kϕW ψ iff there is a strategy sA ∈ Σnr
A such that compl (sA) ≤ k

and, for each path λ ∈ out(q, sA), we have either that M,λ[i] |=nr ψ for some
i ≥ 0 and M,λ[j] |=nr ϕ for all 0 ≤ j < i, or that M,λ[i] |=nr ϕ for all i ≥ 0.

Again, we point out that, when evaluating formula 〈〈A〉〉≤kγ we do not assumed the
opponents to play a natural strategy (bounded or otherwise). This corresponds to the
pessimistic approach to evaluation of ability based on “surely winning:” the agents in
A win only if they have a strategy that wins against every – even accidental – behavior
of the rest of the system.

Example 9 (Ticket machine). The strategy in Example 4 can be used to demonstrate
that Mticket , q0 |=nr 〈〈c〉〉≤9Fticket. In fact, as we already remarked, the minimal
natural strategy to obtain the ticket is of size 5. Thus, we also have thatMticket , q0 |=nr

〈〈c〉〉≤5Fticket ∧ ¬〈〈c〉〉≤4Fticket.

We will refer to the logical system (NatATL, |=nr) as NatATLr, and analogously
for 1NatATLr .

4.4. Some Properties
Before moving on to study the computational complexity of verification for natural

strategies, we list several interesting properties of the logic. First, similarly to ATL,
NatATLr is an extension of the branching-time logic CTL. This is because the path
quantifier “for all paths” can be defined in NatATL as Aγ ≡ 〈〈∅〉〉≤0γ, see the following
proposition.

Proposition 2. For every CGS M , state q in M , and NatATL formulas ϕ,ψ, we have
that:
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Figure 3: Schobbens’ robber: a counterexample to composability of strategies

1. M, q |=nr 〈〈∅〉〉≤0X ϕ iff, for every path λ ∈ ΛM (q), we have M,λ[1] |=nr ϕ;

2. M, q |=nr 〈〈∅〉〉≤0ϕU ψ iff, for every path λ ∈ ΛM (q), we have M,λ[i] |=nr ψ
for some i ≥ 0 and M,λ[j] |=nr ϕ for all 0 ≤ j < i;

3. M, q |=nr 〈〈∅〉〉≤0ϕW ψ iff, for every path λ ∈ ΛM (q), we have either that
M,λ[i] |=nr ψ for some i ≥ 0 and M,λ[j] |=nr ϕ for all 0 ≤ j < i, or that
M,λ[i] |=nr ϕ for all i ≥ 0.

Proof. To see this, it suffices to observe that the empty coalition ∅ has only one possible
strategy – the empty strategy s∅ = ( ). Moreover, compl (s∅) = 0, and out(q, s∅) =
ΛM (q). 2

Furthermore, only one direction of the ATL fixpoint equivalences has its counter-
parts in NatATL; the other one is not valid even for arbitrarily large bounds k.

Proposition 3. The following formulas of NatATL are valid, i.e., they hold for every
M , q M , and ϕ:

1. 〈〈A〉〉≤kϕU ψ → ψ ∨ ϕ ∧ 〈〈A〉〉≤kX 〈〈A〉〉≤kϕU ψ;

2. 〈〈A〉〉≤kϕW ψ → ψ ∨ ϕ ∧ 〈〈A〉〉≤kX 〈〈A〉〉≤kϕW ψ.

Proof. Straightforward: the strategy that validates the left hand side of the implication
can be used for both strategic operators on the right hand side. 2

Proposition 4. The following formulas of NatATL are not valid, even if k3 is given as
an arbitrary function of k1, k2:
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1. ψ ∨ ϕ ∧ 〈〈A〉〉≤k1X 〈〈A〉〉≤k2ϕU ψ → 〈〈A〉〉≤k3ϕU ψ;

2. ψ ∨ ϕ ∧ 〈〈A〉〉≤k1X 〈〈A〉〉≤k2ϕW ψ → 〈〈A〉〉≤k3ϕW ψ.

Proof. We show a counterexample to (1) in the special case of F. The other case is
analogous.

Consider model Mrob in Figure 3, which is a variation of the “robber vs. bank”
CGS from [113]. We have that Mrob , q1 |=nr 〈〈1〉〉≤1Faccess, the right strategy be-
ing s2 = ((>, try0)). Similarly, Mrob , q2 |=nr 〈〈1〉〉≤1Faccess due to strategy s′2 =
((>, try1)). But that also means that Mrob , q0 |=nr 〈〈1〉〉≤1X 〈〈1〉〉≤1Faccess. On the
other hand, Mrob , q0 6|=nr 〈〈1〉〉≤kFaccess for all k ∈ N. 2

The counterexample illustrates an important idea behind natural strategies. It is
not intuitive for humans to phrase our plans in terms of states of the system, typically
generated by valuations of dozens (or even hundreds) of variables and attributes. In-
stead, we identify situations by their higher-level properties. In a way, we see the world
through the vocabulary that we can use to describe it. On the technical level, proposi-
tional formulas provide an abstraction of the state space. Strategies assign actions to
the abstract states and their subsets.

4.5. Discussion and Remarks

Which representation is “most natural” for strategies of humans and simple arti-
ficial agents is, to an extent, a matter of opinion and personal preference. Below, we
offer some arguments to justify our choice of representations based on condition-action
rules. The choice can be motivated by four important factors:

1. Conditions based on simple properties of states provide a natural abstraction of
the state space. Typically, the state space of a MAS is huge, and arises from a
combination of state/transition spaces of multiple distributed processes. Such an
approach provides a compositional methodology for modeling, but also results in
structures that suffer from combinatorial explosion. On the other hand, states in a
model are usually labeled by a small number of atomic propositions, selected by
the modeler to map the most relevant properties, and often designed to match the
perception of the agents. Thus, the set of propositions that appear in the model
provides a sparse vocabulary of relevant concepts, that are likely to be used by
the agents when phrasing their plans.

We note that this is consistent with the classical approaches to commonsense
reasoning [49] and automated planning [58].

2. The overall structure of a natural strategy is built on a simple rule-based represen-
tation. Condition-action rules are very well known in knowledge representation
and AI. Their applications include expert systems [72], classical approaches to
AI programming [106], such as Horn clauses in Prolog and condition/action lists
in Lisp, representation of plans in automated planning (sequential plans, hier-
archical plans, and especially conditional plans) [58], and agent plans in agent-
oriented programming [67, 27]. Closely related ideas have been extensively used
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in robotics, cf. e.g. teleo-reactive programs [96] and the well-known subsump-
tion architecture [102].

Other, more abstract representations of complex decisions, such as decision trees
and decision lists [106], are also built on a similar intuition.

3. In order to be operational, plans should be of manageable complexity. This is in
line with game-theoretic approaches to bounded rationality [105, 114], as well
as some works on usability [95] and the psychology of planning [94].

4. Last but not least, our proposal is consistent with the empirircal research on hu-
man concept learning [28]. In particular, the results in [56] showed that the
subjective difficulty of a concept according to human subjects is often directly
proportional to its Boolean complexity, i.e., the length of the shortest logically
equivalent propositional formula. The resulting model was also successfully
used in a recent work on analysis of social norms to explain the impact of norm
complexity on the resulting behavior [108, 107]. This strongly suggests that hu-
mans characterize situations by Boolean combinations of simple, primitive con-
cepts. In consequence, it seems that our choice of representations for strategies,
and the way we measure their complexity, indeed closely corresponds to how
humans perceive the world and reason about it.

An interesting question is how to practically construct natural strategies. In a natu-
ral strategy, the first action whose condition holds is chosen. One possibility is to use
a kind of “defeasible” specification of behavior, starting with the most specific condi-
tions, followed by the “default,” most general option. The opposite approach – most
general conditions first – also makes sense, as it minimizes the number of steps needed
to find the matching precondition, and hence optimizes the execution of the strategy.
Finally, we observe that natural strategies are in fact decision lists, which are a special
class of decision trees. Extending our formalism to full decision trees (or perhaps even
decision DAGs as in Binary Decision Diagrams), and applying information-theoretic
algorithms that construct an optimal tree for a given behavior, seems an interesting
direction for future research, parallel to the work in [31].

5. Model Checking for NatATL

In this section we study algorithms and the complexity of the model checking prob-
lem for NatATL with nr-strategies, i.e., NatATLr. We consider two cases: one in which
the bound k on the size of natural strategies is assumed to be constant, and the more
general case where k is variable and a parameter of the problem. For the former case,
we prove that the problem is polynomial in the size of the model. For the latter, model
checking becomes ∆P

2 -complete.4 Moreover, it is NP-complete for simple formulas

4∆P
2 = PNP is the class of problems solvable in polynomial time by a deterministic Turing machine

making adaptive calls to an oracle for problems in NP.
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with only one strategic operator, i.e., formulas of 1NatATLr. A concise table summa-
rizing all the complexity results for model checking NatATL is presented at the end of
the paper (Section 10, Figure 16).

The results and the proofs proposed in this section have been inspired by [113, 75].

5.1. Model Checking for Small Natural Strategies

We begin by looking at NatATLr model checking under the assumption that the
complexity bounds k used in formulas are constant or bounded. In other words, they
are not a parameter of the model checking problem. Under this restriction, one can
show a polynomial reduction to the model checking problem for CTL formulas. In
consequence, we obtain the following result.

Theorem 5. The model checking problem for NatATLr with fixed k is in P with respect
to the size of the model and the length of the formula.

Proof. First, consider the formula ϕ = 〈〈A〉〉≤kγ, in which A ⊆ Agt and γ is a for-
mula over Boolean connectives and atomic propositions. By assumption, the collective
strategy that we can assign to coalition A, namely sA, is bounded and precisely it
holds that complΣ(sA) ≤ k. Recall that Boolean formulas are combinations of atomic
propositions from the set Prop and Boolean connectives from Bool. Thus, there are
O((|Prop|+ |Bool|)k · |Act|) possible guarded actions of length at most k, and hence
O(((|Prop|+ |Bool|)k · |Act|)k) = O((|Prop|+ |Bool|)k2(|Act|)k) possible strate-
gies. The idea is to check them one by one, in an arbitrary order.

Given a collective strategy sA, we can prune the CGS by removing all the edges
that disagree with sA. This operation costs O(|t|) in the worst case, where t is the
transition relation of the input CGS. So far we have dealt with the strategic operator
in the input formula ϕ, and we are left with a structure S that can be seen as a Kripke
structure. Now, we can reduce our problem to model checking the CTL formula Aγ
(“for all paths γ”) over S by using the standard model checking algorithm for CTL [47],
well-known to have complexity O(|t| · |γ|). The total complexity is thus O((|Prop|+
|Bool|)k2(|Act|)k · (|t|+ (|t| · |γ|))) = O((|Prop|+ |Bool|)k2(|Act|)k · |t| · |γ|), and
hence polynomial in the size of the model and the length of the formula.

To conclude the proof, note that if we have a formula with more strategic operators
then we can use a classic bottom-up procedure. I.e., we start by solving the innermost
subformula with a strategic operator (as we have done above) and, once this is solved,
we update the formula and the structure, and continue with the new innermost subfor-
mula. The procedure ends when we have dealt with the outermost strategic operator in
the input formula. 2

5.2. Model Checking: General Case

We now study the complexity for NatATLr with the bounds in strategic modalities
given as variables. We start by showing NP-completeness for formulas with a single
strategic operator followed by a simple temporal subformula. Then, we adapt the proof
to show ∆P

2 -completeness of model checking for the whole NatATLr.
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Proposition 6. Model checking 1NatATLr is in NP with respect to the size of the
model, the length of the formula, and the value of the bound k.

Proof. Consider ϕ = 〈〈A〉〉≤kγ, in which A ⊆ Agt and γ is a formula over Boolean
connectives and atomic propositions. Now, enumerating all the suitable strategies and
checking them one by one would be too expensive. To overcome this, we nondeter-
ministically guess a collective strategy sA, and proceed using the same reasoning as in
the proof of Theorem 5. Since the size of sA is polynomial in the size of the model,
the complexity of the algorithm is NP. 2

Remark 1. We emphasize that the result is given with respect to the value of k, or
equivalently the size of the unary representation of k. We will employ the same ap-
proach throughout the rest of the paper. The complexity of model checking, relative to
the size of the binary representation of k, is left for future work.

We continue by showing a matching lower bound by means of a reduction from
the well-known SAT problem. We first provide the reduction and then show that it
is correct in Proposition 7. In SAT, the main ingredients are a CNF formula ϕ =
C1∧. . .∧Cn andm propositional variables from a setX = {x1, . . . , xm}. Each clause
Ci can be written asCi = x

s(i,1)
1 ∨. . .∨xs(i,m)

m , where s(i, j) ∈ {+,−, 0}; x+
j denotes

a positive occurrence of xj in Ci, x−j denotes an occurrence of ¬xj in Ci, and x0
j

indicates that xj does not occur in Ci. The SAT problem asks if ∃X.ϕ, that is, if there
is a valuation of x1, . . . , xm such that ϕ holds. We construct the corresponding CGS
Mϕ as follows. There are two players: verifier v and refuter r. The state space contains
the initial state q0, a state for each clause Ci in ϕ, a state for each literal in Ci and the
state q>. The set of atomic propositions is Prop = {C1, . . . ,Cn, x1, . . . , xm,win}.
Furthermore, we label each clause/literal state with its proposition, and q> with win.
The flow of the game is defined as follows. The refuter decides at the beginning of the
game which clause Ci will have to be satisfied: it is done by proceeding from the initial
state q0 to a clause state qi. At qi, verifier decides (by proceeding to a literal state qi,j)
which of the literals xs(i,j)j from Ci will be attempted. Finally, at qi,j , verifier attempts
to prove Ci by declaring the underlying propositional variable xj true (action >) or
false (action⊥). If v succeeds (i.e., if it executes> for x+

j , or executes⊥ for x−j ), then
the system proceeds to the winning state q>. Otherwise, the system stays in qi,j . It is
important to note that, by definitions of Prop and V , we know that agent v can use
only one action (i.e. truth value) for each variable. This is due to the fact that we use
as strategies the guarded actions that are determined directly by the atomic proposition
instead of states.

More formally, let 1 ≤ i ≤ n and 1 ≤ j ≤ m. We defineMϕ = (Agt, St, Act, d, t,
Prop, V ), where:

• Agt = {v, r},
• St = {q0} ∪ Stcl ∪ Stprop ∪ {q>}, where Stcl = {q1, . . . , qn}, and Stprop =
{q1,1, . . . , q1,m, . . . , qn,1,
. . . , qn,m};
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Figure 4: A CGS for checking satisfiability of ϕ = (x1 ∨ x3)∧ (x2 ∨¬x3). Action I denotes “idle.” For
simplicity, we omit the states that have no incoming edges.

• Act = {I, C1, . . . , Cn, x1, . . . , xm,>,⊥},
• d(v, q0) = d(v, q>) = {I}, d(v, qi) = {xj | xj or ¬xj is in Ci}, d(v, qi,j) =
{>,⊥}; d(r, q0) = {C1, . . . , Cn} and d(r, q) = {I} with q ∈ St \ {q0};

• t(q0, I, Ci) = qi, t(qi, xj , I) = qi,j , t(qi,j ,>, I) = q> if s(i, j) = +, and qi,j
otherwise, t(qi,j ,⊥, I) = q⊥ if s(i, j) = −, and qi,j otherwise;

• Prop = {C1 . . .Cn, x1, . . . , xm, win};
• V (q0) = ∅, V (qi) = Ci, V (qi,j) = xj, and V (q>) = win;

As an example, modelMϕ for ϕ = (x1∨x3)∧ (x2∨¬x3) is presented in Figure 4.

Proposition 7. SAT (n,m,ϕ) iff Mϕ, q0 |= 〈〈v〉〉≤n+mFwin.

Proof. (⇒)(⇒)(⇒) Firstly, if there is a valuation υ that makes ϕ true, then for every clause
Ci one can choose a literal out of Ci that is made true by the valuation. Now, we can
construct a strategy for v such that: (1) for each clause Ci we define a guarded action
(Ci, α), where α is the action to go at the state literal that satisfy Ci in accordance with
υ; and (2) for each literal xj we define a guarded action (xj, α), where α is the action
to go in q> in accordance with υ.

(⇐)(⇐)(⇐) Conversely, if Mϕ, q0 |= 〈〈v〉〉≤n+mFwin, then there is a strategy sv such that
q> is achieved for all paths from out(q0, sv). But then the valuation, which assigns
propositions x1, . . . , xm with the same values as sv, satisfies ϕ. 2

By Propositions 6 and 7, the following result holds.

Theorem 8. Model checking 1NatATLr is NP-complete with respect to the size of the
model, the length of the formula, and the value of the maximal bound k in the formula.

To establish the model checking complexity for all formulas of NatATLr, we adapt
the above proofs in a similar way to [75]. Since the construction is rather technical, we
present it in the appendix.
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Theorem 9. Model checking NatATLr is ∆P
2 -complete with respect to the size of the

model, the length of the formula, and the maximal bound k in the formula.

Proof. See Appendix A. 2

6. Natural Abilities of Agents with Memory

Agents with memory can base their decisions on the history of the game, i.e., the
sequence of states that has occurred so far. How can we represent conditions on such
sequences? One possibility is to use states in some kind of automaton [124]. Here,
we suggest that it is more intuitive for humans to represent conditions on histories by
regular expressions over propositional formulas.

6.1. Natural Strategies with Recall
LetReg(L) be the set of regular expressions over the language L (with the standard

constructors ·,∪, ∗ representing concatenation, nondeterministic choice, and finite it-
eration). A natural strategy with recall (or nR-strategy) sa for agent a is a sequence of
appropriate pairs from Reg(B(Prop))×Act. That is, it consists of pairs (r, α) where
r is a regular expression over B(Prop), and α is an action available in last(h), i.e.,
α ∈ da(last(h)), for all histories h ∈ H consistent with r. Formally, given a regular
expression r and the language L(r) on words generated by r, a history h = q0 . . . qn
is consistent with r iff ∃ b ∈ L(r) such that |h| = |b| and ∀0≤i≤n h[i] |= b[i]. Simi-
larly to nr-strategies, the last pair on the list is assumed to be simply (>∗, idle). The
set of such strategies is denoted by ΣnR

a . Finally, match(λ[0, i], sa) is the smallest
n ≤ length(sa) such that ∀0≤j≤iλ[j] |= condn(sa)[j] and actn(sa) ∈ da(λ[i]). A
collective natural strategy for agents A = {a1, . . . , a|A|} is a tuple of individual nat-
ural strategies sA = (sa1 , . . . , sa|A|). The set of such strategies is denoted by ΣnR

A .
Again, out(q, sA) returns the set of all paths from q, consistent with strategy sA. For
strategies with recall, we simply replace “match(λ[i], sa)” with “match(λ[0, i], sa)”
in the definition of out(q, sA) that we gave in Section 4.1 for memoryless strategies.

The metrics from Section 4.1 extend to strategies with recall and collective strate-
gies with recall in the straightforward way. Additionally, we define a variant of the
metric complΣ(·) that skips the initial >∗ whenever it appears in a regular expression:

Total size of the significant pattern: complΣ∗(sa) =
∑

(r,α)∈sa ||r||, with ||>∗ ·
r|| = ||r||, ||>∗|| = 1, and ||r|| = |r| otherwise.

From now on, we will focus on the last metric for the complexity of strategies with
recall. That is, unless explicitly specified, we will assume compl (sa) = complΣ∗(sa).

Example 10 (Wild West explorer). Consider the following nR-strategy s for a Wild
West explorer:

1. (safe∗, digGold);

2. (safe∗ · (¬safe ∧ haveGun), shoot);

3. (safe∗ · (¬safe ∧ ¬haveGun), run);
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Figure 5: MRCup : a model of robot soccer

4. (>∗ · (¬safe) · (¬safe), hide);

5. (>∗, idle).

(1) represents the guarded action in which safe has held in all the states of the history.
In that case, the agent should quietly dig for gold. Otherwise, (2) or (3) is used for
each history in which safe held for all states but the last. Then, the agent should
run away or shoot back depending on whether he has a gun. If it doesn’t work (item
(4)), the agent should hide. Otherwise (item (5)), he waits and does nothing. For the
complexity, we have that compl#(s) = 2, complmax(s) = 8, complΣ(s) = 27, and
complΣ∗(s) = 23.

Example 11 (RoboCup). A very simple model of a soccer scenario is depicted in Fig-
ure 5. Robot 1 is running towards the goal with the ball. The goalkeeper (robot 2)
can either stay close to the goal line, move towards the attacker. Then, after one more
step, the attacker can either shoot straight or lob the ball over the goalkeeper. An
nR-strategy for the attacker to score the goal is presented below:

1. (>, run);

2. (> · >, run);

3. (>∗ ·moved · >, lob);

4. (>∗ · stayed · >, shoot);

5. (>∗, idle).

The complexity of the strategy is complΣ∗(s) = 11.

Remark 2. Note that natural strategies with recall are by definition finite. Thus, they
do not exactly correspond to the notion of perfect recall where an agent may specify
different choices for each of the infinitely many finite histories of the game. In this
sense, our representations are similar to finite memory strategies from [124]. We will
look closer at the connection in Section 6.4.
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6.2. NatATL for Strategies with Recall
Now it is easy to define the semantics of natural strategic ability for agents with re-

call. Formally, we construct the semantic relation |=nR by replacing “|=nr” with “|=nR”
and Σnr

A with ΣnR
A in the clauses from Section 4.3, so that the clauses for strategic

modalities become as follows:

M, q |=nR 〈〈A〉〉≤kX ϕ iff there is a strategy sA ∈ ΣnR
A such that compl (sA) ≤ k

and, for each path λ ∈ out(q, sA), we have M,λ[1] |=nR ϕ;
M, q |=nR 〈〈A〉〉≤kϕU ψ iff there is a strategy sA ∈ ΣnR

A such that compl (sA) ≤ k
and, for each path λ ∈ out(q, sA), we have M,λ[i] |=nR ψ for some i ≥ 0 and
M,λ[j] |=nR ϕ for all 0 ≤ j < i.

M, q |=nR 〈〈A〉〉≤kϕW ψ iff there is a strategy sA ∈ ΣnR
A such that compl (sA) ≤ k

and, for each path λ ∈ out(q, sA), we have either that M,λ[i] |=nR ψ for some
i ≥ 0 and M,λ[j] |=nR ϕ for all 0 ≤ j < i, or that M,λ[i] |=nR ϕ for all i ≥ 0.

We will refer to the logical system (NatATL, |=nR) as NatATLR.

Example 12 (RoboCup). For the soccer model in Figure 5, we have MRCup , q0 |=nR

〈〈1〉〉≤11Fgoal. A natural strategy with recall that proves this was shown in Example 11.

We note that the properties of NatATLr, presented in Section 4.4, have their straight-
forward adaptations for natural strategies with recall, and they are proved in the anal-
ogous way. Thus, the CTL path quantifiers can be embedded in NatATLR, and the
fixpoint equivalences in general do not hold. Interestingly, the relationship between
memoryless natural strategies and natural strategies with recall is also more compli-
cated than in standard ATL. We look closer at the issue in the next subsection.

6.3. Relation between Memoryless and Memoryful Semantics of NatATL
It is well known that the semantics of ATL based on memoryless and perfect recall

strategies coincide for agents with perfect information. This follows from the correct-
ness of the model checking algorithm in [12], cf. also [113]. More precisely, there is
a strategy with recall to enforce a given temporal property γ iff there is a memoryless
strategy to enforce γ. We now prove that the same does not hold for natural strategies.

Theorem 10. The following results hold in NatATL:

1. For all M, q, and all formulas ϕ = 〈〈A〉〉≤kγ, it holds that M, q |=nr ϕ implies
M, q |=nR ϕ.

2. There exist M, q, and a formula ϕ = 〈〈A〉〉≤kγ, such that M, q |=nR ϕ and
M, q 6|=nr ϕ.

Proof. (1) Given an nr-strategy s, it is possible to construct an nR-strategy s′ that
has the same behavior as s. In fact, for each guarded action (θ, α) of s with θ ∈
β(2Prop) and α ∈ Act we can write a guarded action (r, α) in s′ such that r = >∗ · θ.

(2) Consider the RoboCup CGS in Figure 5, and the strategy presented in Exam-
ple 11. Clearly, the strategy shows that MRCup , q0 |=nR 〈〈1〉〉≤11Fgoal. On the other
hand, MRCup , q0 6|=nr 〈〈1〉〉≤11Fgoal. In fact, the formula is false for any bound k.
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To see that, recall that conditions in natural memoryless strategies can only refer to
Boolean properties of the current state. So, if there are states with the same valuations
of atomic propositions, then each Boolean condition must have the same truth value in
both states. Therefore, in MRCup , it is impossible to define two different behaviors in
states q3 and q4 within a natural memoryless strategy. In consequence, player 1 has no
natural memoryless strategy to enforce reaching a state labeled with goal. 2

Note that the proof of (2) does not use the bound k to construct the counterexam-
ple. Thus, it is not only the case that a strategy with recall may inflate beyond the given
bound when being transformed to memoryless; it may even be the case that an equiva-
lent natural memoryless strategy does not exist! This is because in NatATL choices in
strategies are based on conditions whose granularity depends on the available Boolean
propositions. In contrast, the semantics of ATL defines memoryless strategies as func-
tions from states to actions, which allows for arbitrary granularity.

To overcome the limitation of natural memoryless strategies, we define a subclass
of models, that we call fully distinguishing models. The idea behind this kind of models
is the one used in [12, 84] to define the distinguishing models. The formal definition
follows.

Definition 2. Given a CGS M , we say that M is fully distinguishing iff, for all S ⊆
St, there exists p ∈ Prop such that M, q |= p iff q ∈ S.

Theorem 11. For every fully distinguishing model M , state q, subset of agents A, and
formula ϕ = 〈〈A〉〉≤kγ, it holds that: M, q |=nr ϕ iff M, q |=nR ϕ.

Proof. (⇒)(⇒)(⇒) By Theorem 10.1.
(⇐)(⇐)(⇐) Assume now that M, q |=nR ϕ. By definition, there is a strategy sA ∈ ΣnR

A

such that compl (sA) ≤ k, and for each path λ ∈ out(q, sA), we have M,λ |=nR γ.
From sA, let us construct a memoryless strategy s′A ∈ ΣnR

A such that the following facts
hold: (1) ∀λ ∈ out(q, s′A), we have M,λ |=nr γ and (2) compl (s′A) ≤ compl (sA).
We start at state q. We know that M is a fully distinguishing model, so the state q is
distinguishable with respect to the other states of M . Consider for simplicity that the
only atomic proposition that is true in q is q. We fix s′A(q) = sA(q), where sA(q)
represents the action in the strategy with recall sA for the regular expression q that is
just an atomic proposition. Consider now the successors of q consistent with sA(q).
∀q′ ∈ out(q, sA(q)) we take the atomic proposition q′ that is true just in q′ and fix
s′A(q′) = sA(q · q′), where q · q′ is the regular expression that is composed by the
atomic propositions q and q′ that are only true in q and q′, respectively. We repeat this
procedure until we get to a fixpoint, i.e. all states are covered, except possibly for some
states that are unreachable when we execute sA. By the definition, we also know that
these states satisfy the guarded action (>, idle). To conclude the proof, we just need
to show that (1) and (2) hold. Item (1) can be proved by induction. For simplicity, we
omit the details. Item (2) follows by the construction of s′A. In fact, we construct s′A
from sA, that is for each guarded action (q, α) of s′A there is a guarded action (r, α)
of sA, where r = r0 · . . . · rn and rn = q, then compl (s′A) ≤ compl (sA). 2
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6.4. Correspondence to Deterministic Finite-State Transduccers

In [124], another useful representation of finite-memory strategies was introduced
by means of finite input-output automata, also known as finite-state transducers.

Definition 3 (DFST [69, 124]). A deterministic finite-state transducer (DFST) is a tu-
ple T = (S, s0, In,Out,Fin,Fout), where S is a finite non-empty set of states of the
transducer, s0 is its initial state, In is the input alphabet, Out is the output alphabet,
Fin : S × In → S is the transition function of the transducer, and Fout : S × In →
Out is the output function.

The idea is to have S represent the possible states of agent a’s internal memory
that he uses when executing his strategy. The initial state corresponds to the initial
memory value. In [124], the input and output symbols are the states of the CGS and
the actions of a, respectively. With every step of the CGS, the transducer reads the
current state of the system, and determines the next action of a to be executed, as well
as the next memory state of the agent. Formally, let F+

out : S × In+ → Out be the
extension of the output function to sequences of inputs, defined recursively as follows:
F+
out(s, (i)) = Fout(s, i), and F+

out(s, (i1, . . . , in)) = F+
out(Fin(s, i1), (i2, . . . , in)). A

strategy s : H → Act is a finite-memory strategy in M if there exists a DFST T with
In = StM and Out = ActM such that, for every history h ∈ H in M , we have
s(h) = F+

out(s0, h). In that case, we also say that T implements s.
In our approach, we assume that the agents “see” the world through the Boolean

properties of states that can be formulated. If we want to compare natural strategies to
the automata-based representation, we need to apply the same treatment.

Definition 4 (Natural DFST). Let M = (Agt, St, Act, d, t, Prop, V ) be a concur-
rent game structure. A natural DFST for M is a DFST T = (S, s0, In,Out,Fin,Fout)
with In = 2Prop and Out = Act. That is, the transducer “reads” the atomic proposi-
tions satisfied in the current state, and outputs the next action of the agent.

T defines the agent’s strategy as follows: Let V + : H → 2Prop be the pointwise
extension of the valuation function to histories, i.e., V +(q1 . . . qn) = V (q1) . . . V (qn).
Now, s(h) = F+

out(s0, V
+(h)).

It turns out that finite-memory strategies based on regular expressions and finite
automata are equally expressive. Moreover, some natural strategies with recall are
more succinct than DFST’s.

Theorem 12. Let M be a concurrent game structure, and a an agent in M . For every
memoryful strategy sa : H → Act of a, we have that sa can be implemented by a
natural strategy with recall iff it can be implemented by a natural DFST.

Proof. (⇒)(⇒)(⇒) First, we show that from a natural strategy with recall s one can construct
a DFST T implementing the same strategy as s. Remember that s = ((r1, α1), . . . ,
(rn, αn)), where every ri is a regular expression over B(Prop). Thus, for each ri,
there exists a deterministic finite automaton Di over 2Prop, accepting the same lan-
guage. One can produce it, e.g., by the following procedure:
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1. Take ri, build an equivalent NFA using the classical polynomial construction,
and determinize it by means of the powerset construction [104];

2. Let sat(ϕ) = {X ⊆ Prop | X |= ϕ} be the set of propositional valuations that
satisfy ϕ ∈ B(Prop). For every transition s

ϕ−→ s′ in the DFA obtained in
point 1, replace it with the transitions s X−→ s′, one per X ∈ sat(ϕ).

Now, let D = D1 × · · · × Dn be the product automaton of all D1, . . . , Dn. We
extend it to the transducer T by adding the output function Fout((s1, . . . , sn),X ) = αi
where i is the smallest number such that (s′1, . . . , s

′
n) = Fin((s1, . . . , sn),X ), and s′i

is an accepting state in Di.

(⇐)(⇐)(⇐) Secondly, we show how, from a natural DFST T, one can construct a natural
strategy with recall s implementing the same strategy as T:

1. Take any arbitrary ordering s1, . . . , sn of states in T, and let Di be the deter-
ministic finite automaton obtained from T by setting si as the sole accepting
state (and, of course, removing the output function). Notice that the languages
accepted by D1, . . . , Dn are pairwise disjoint. To see that, suppose that some
sequence ρ ∈ L(Di)∩L(Dj) for some i 6= j. But this means that the execution
of ρ in T can end up in both si and sj , which is impossible, as T is deterministic;

2. For every i, take ri to be a regular expression accepting the same language as Di

(it always exists!);

3. Obtain r̂i from ri by changing the alphabet from 2Prop to B(Prop), and replac-
ing each X in ri by conj(X ) =

∧
p∈X p ∧

∧
p/∈X ¬p, i.e., by the conjunction of

all the literals satisfied by X ;

4. For every X ∈ 2Prop, let r̂Xi = r̂i · conj(X ). Note that the languages accepted
by different r̂Xi are pairwise disjoint. To see this, suppose that some sequence
ρ ∈ L(r̂Xi )∩L(r̂Yj ) for some i 6= j or X 6= Y . However, ρ ∈ L(r̂i · conj(X ))∩
L(r̂j · conj(Y)) implies that X = Y and ρ[0, (|ρ| − 1)] ∈ L(r̂i) ∩ L(r̂j). Thus,
L(Di) and L(Dj) are not disjoint, which is only possible for i = j;

5. Finally, let αXi = Fout(si,X ). We can now take sa to be any ordering of pairs
(r̂Xi , α

X
i ), augmented with (>, idle). Since the languages of r̂Xi are disjoint, the

ordering of the guarded actions in sa is irrelevant.

2

Note that the transformations of natural strategies to DFST in the above proof in-
volved exponential blowup in the size of the representations. We will now show that in
some cases it is unavoidable.

Lemma 13 ([60, Theorem 11]). For infinitely many n, there are regular expressions
rn of alphabetic width5 n over a binary alphabet, such that the minimal DFA accepting
L(rn) has at least 5

42
n
2 states.

5I.e., the length of rn without parentheses and operators.
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Theorem 14. Natural strategies with recall can be exponentially more succinct than
natural DFST’s. More precisely, there exists a CGS M with agent a, and a sequence
of natural strategies with recall sn for a in M , such that all the implementations of sn
by natural DFST’s are at least exponentially larger than sn.

Proof. We use the single-agent CGS M with two states St = {q1, q2}, two actions
Act = {idle,move} available everywhere, and transitions such that idle never changes
the state, andmove changes the state for the other. The sole atomic proposition p holds
in q1 but not in q2.

For m ≥ 1, take the m-th number nm and a regular expression rm that satisfy
Lemma 13. Since the alphabetic width of rm is nm, we know that the length of rm
(counting also the operators) is at most 2nm. Let sm = ((rm,move), (>, idle)). Sup-
pose now that there exists a transducer Tm over alphabet 2{p} with less than exponen-
tially many states wrt |rm| = 2nm, implementing the same strategy. From Tm, we first
construct an equivalent transducer T′m where all the incoming transitions to the same
state have the same input (we simply create two copies of each state s, one for incoming
transitions labeled by {p}, and one for transitions labeled by ∅). Now, we transform
T′m to a DFAD′m by removing the output function and setting s′ as accepting whenever
there is a sequence accepted by rm that ends in s′. Note that, by construction, if there is
a sequence in L(rm) ending in s′, then all the sequences ending in s′ are in L(rm). In
consequence, L(D′m) = L(rm). But D′m has only twice as many states as Tm, which
is still less than exponentially many wrt |rm|. Thus, we have obtained a contradiction.

We note in passing that, even if the DFST corresponding to a natural strategy has
polynomially many states with respect to the size of the strategy, it may have exponen-
tially more transitions, as the shift between alphabets essentially requires conversion
of the Boolean conditions ϕ to their Disjunctive Normal Form, and that often produces
exponentially many disjuncts. 2

We conjecture that the succinctness of natural strategies and that of natural DFST’s
are in fact incomparable. That is, we suspect that there are also scalable classes of
DFST-implemented strategies, for whom all the equivalent natural strategies with recall
are of at least exponential size. This is suggested by results such as [57, Theorem 3.4]
and [60, Theorem 24]. However, proving it would be nontrivial, and is beyond the
scope of this paper.6

7. Model Checking for Natural Strategies with Recall

In this section we investigate the model checking problem for NatATL with nR-
strategies, i.e., NatATLR. We consider both the case in which the bound of the strategies
is a constant and the case when it is a variable. The following lemma allows us to use
bounded tree unfoldings for the outcome sets of strategies with recall.

6The proof would require an in-depth analysis of the comparative succinctness of DFA’s versus regular
expressions with complement, because natural strategies with recall can easily simulate complementation. In
general, regular expressions with complement can be even double-exponentially more succinct than ordinary
regular expressions [57, Theorem 4.2].
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Algorithm mCheckconstNatATLR
(M, q, 〈〈A〉〉≤kγ) :

1 f o r e v e r y sA wi th compl (sA) ≤ k do
2 i f not IsLosing(sA,M, q, p1 U p2) t h e n re turn ( t r u e ) ;
3 re turn ( f a l s e ) ;

Figure 6: Model checking NatATLR for simple goals, i.e., γ ≡ p1 U p2 or γ ≡ p1 W p2. The value of k is
bounded by a constant

Lemma 15. Let M be a CGS, sA = (sa1 , . . . , san) ∈ ΣnR
A a natural strategy with

recall of size k = compl (sA), and γ ≡ p1 U p2 or p1 W p2 a simple objective. In order
to check if sA enforces γ from q ∈ StM , it is enough to consider the prefixes of length
|StM | · 22k2 of paths in out(q, sA).

Proof. Consider the tree of outcome paths of sA in M , starting from q. It can be
obtained by an infinite process, based on the following notion of configuration: C =
(qM , qreg1 , . . . , qregn) where qM is the current state ofM , and every qregi is the current
state of a deterministic finite automaton (DFA) accepting the ith regular expression in
sA. The initial configuration C0 consists of q and the initial states of the DFA’s.

Let C be the current configuration. The process takes, for each agent a ∈ A, the
first DFA for a regular expression in sa that is currently in an accepting state, and se-
lects the corresponding action in sa for execution by a. Then, for every possible tuple
of responses from Agt \ A, a transition is added, leading to the configuration C ′ con-
sisting of the successor state q′ in M and the states of the DFA’s updated accordingly.
Note that, whenever the process revisits a previously encountered configuration, ex-
actly the same transitions as before are added. Thus, whatever reachability objective
γ ≡ p1 U p2 can be validated (resp. safety objective γ ≡ p1 W p2 invalidated), it can
be done on the initial, cycle-free segment of the tree.

Finally, observe that sA contains at most k regular expressions, and each expres-
sion is of length at most k. For every regular expression of length `, there exists an
equivalent nondeterministic finite automaton (NFA) with at most 2` states (Thomp-
son’s construction). Finally, for every NFA with n states, there exists an equivalent
DFA with at most 2n states (powerset construction). Thus, the number of configura-
tions is at most |StM | · (22k)k = |StM | · 22k2 . 2

7.1. Model Checking for Small Strategies
When the bound of the strategies is fixed or bounded by a constant, we can reduce

model checking to checking strategies one by one. For each strategy, we try to guess
a path that invalidates it, verify the objective on the path, and revert the output. This
leads to the following result.

Theorem 16. The model checking problem for NatATLR with fixed or bounded k is in
∆P

2 with respect to the size of the model and the length of the formula.

Proof. Assume for the moment that we have a NatATLR formula ϕ = 〈〈A〉〉≤kγ, where
A ⊆ Agt and γ is a formula with no nested strategic modalities. As for NatATLr,
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Algorithm IsLosing(sA,M, q, p1 U p2) :

1 count := 0 ; state := q ;
2 size := compl (sA) ; limit := 22·size2 ;
3 f o r e v e r y r e g u l a r e x p r e s s i o n ri ∈ sA do
4 i n i t i a l i z e t h e NFA Ai f o r ri ;
5 repeat
6 i f M, state |= p2 t h e n re turn ( f a l s e ) ;
7 i f M, state 6|= p1 t h e n re turn ( t r u e ) ;
8 f o r each a ∈ A do
9 match := minimal i such t h a t ri ∈ sa

10 and Ai i s in an a c c e p t i n g s t a t e ;
11 αa := actmatch(sa) ;
12 f o r each a /∈ A do
13 n o n d e t e r m i n i s t i c a l l y choose αa ∈ d(a, state) ;
14 state := t(state, α1, . . . , α|Agt|) ;
15 f o r e v e r y NFA Ai do
16 n o n d e t e r m i n i s t i c a l l y u p d a t e t h e s t a t e o f Ai ;
17 count := count+ 1 ;
18 until count > limit ;
19 re turn ( t r u e ) ;

Figure 7: Oracle that tries to invalidate strategy sA for a simple reachability goal p1 U p2

we know that the collective strategy sA that can be assigned to A is bounded, and
we have that complΣ(sA) ≤ k. The main difference between nr-strategies and nR-
strategies is in the underlying domains, i.e., we move from Boolean propositional for-
mulas to regular expressions over Boolean propositional formulas (both over atomic
propositions). Recall that regular expressions are combinations of atomic proposi-
tions (Prop), Boolean connectives (Bool), and regular expression constructors (Con).
Thus, in this case, we have O((|Prop| + |Bool| + |Con|)k · |Act|) possible differ-
ent guarded actions and O(((|Prop| + |Bool| + |Con|)k · |Act|)k) = O((|Prop| +
|Bool| + |Con|)k2(|Act|)k) possible strategies. We check the strategies one by one;
for each strategy, we use an oracle IsLosing that returns “true” if it manages to guess
a path invalidating the goal γ, and “false” otherwise. The case of simple reachability
goals is presented in Figure 7; for simple safety goals, the oracle is defined analogously.
It proceeds by nondeterministically unfolding a path consistent with strategy sA from
state q on until it either fulfills the goal, invalidates it, or exceeds the limit determined
in Lemma 15.

Note that it is not possible anymore to obtain the set of outcome paths of sA by
simple pruning of M . To deal with that, we need to consider an unwinding of M , and
then prune the unwinding. Clearly, the standard tree unwinding of M is infinite, and
thus we need to consider a bounded unwinding. Fortunately, we can use Lemma 15 to
obtain a bounded subtree.

The complexity of the procedure is as follows. The oracle runs inO(22k2)+O(k)+

O(|StM | · 22k2 · (k|Agt| + |t| + |St|)) steps. Since k is a constant, this reduces to

29



Algorithm mCheckNatATLR(M, q, 〈〈A〉〉≤kγ) :

1 g u e s s a s t r a t e g y sA ∈ ΣnR
A wi th compl (sA) ≤ k ;

2 re turn ( not IsLosing(sA,M, q, p1 U p2) ) ;

Figure 8: Model checking NatATLR for simple goals; k is a parameter of the problem

O(|StM | · (|Agt|+ |t|+ |St|)). Thus, the oracle runs in nondeterministic polynomial
time with respect to the size of the model. In consequence, the algorithm in Figure 6
runs in time PNP = ∆P

2 .
For nested strategic modalities, we proceed recursively, bottom-up, which yields

the complexity of P∆P
2 = ∆P

2 for the whole problem. 2

7.2. Model Checking: General Case

We now study the model checking complexity for NatATLR in case the bound over
the strategies is a parameter of the problem.

Theorem 17. Model checking NatATLR is in PSPACE with respect to the size of the
model, the length of the formula, and the maximal bound k in the formula.

Proof. For variable k, the algorithm in Figures 6 and 7 clearly runs in exponential time.
To avoid using exponential time, we slightly change the main procedure, see Figure 8.
Now, the oracle uses only polynomial space. This is because all the NFA’s have at most
2k states. Thus, by using binary representations of variables count and limit, they
must be allocated at most 2 log2(22k2) = 4k2 memory cells. Thus, the complexity of
the algorithm in Figure 8 is NPNPSPACE = NPPSPACE = PSPACE. For nested
strategic modalities, we again proceed recursively, which results in the complexity of
PPSPACE = PSPACE. 2

8. Natural Ability in Concurrent Games

In the previous sections, we introduced the concept of a natural strategy, and stud-
ied how it changes the reasoning about what agents and their groups can achieve in
multi-agent interaction. We used concurrent game structures to model the dynamics of
interaction between agents. It is well known that CGS generalize the extensive form as
well as the repeated normal form of perfect information games.7 In other words, CGS
allow to model all kinds of transition-action structures that occur among standard game
models (plus some more). In this and subsequent sections, we look at games of natural
ability that can be played over such structures.

7See [125, 98, 114] for an introduction to game theory.
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Figure 9: Simple market scenario: (a) concurrent game structure Mmarket ; (b) normal form game

8.1. Concurrent Games
In game theory, a game frame defines the “arena” where players interact. The arena,

together with a notion of a strategy, defines the space of strategic choices available to
the players. This in turn determines the set of possible outcomes (in our case, paths)
that can occur. A game is a frame plus a specification of players’ preferences. In its
most general version, agent ai’s preferences can be represented by a partial preorder
over the possible outcomes in the game. A typical game-theoretic representation uses
a payoff function (or utility function) that maps outcomes to real numbers; this way,
one can represent any total preorder. For agents with qualitative objectives, ordinal
preferences are often used, represented by a list of logical formulas (ϕ1

i , . . . , ϕ
n
i ). The

idea is that the agent is happiest if ϕ1
i is achieved, otherwise would prefer to obtain ϕ2

i ,
and so on [41, 62, 63]. In the simplest case of n = 1, this boils down to specification
of the agent’s winning condition ϕi, i.e., each agent gets a binary payoff: either win or
lose [51, 24].

In this paper, we study concurrent games obtained by endowing the agents in a
CGS with such binary winning conditions. We believe that our results generalize to
concurrent games with finite ordinal preferences, but leave the broader case out to
avoid overcomplicated presentation.

Formally, let M be a CGS with |Agt| = n. The objective of every agent a ∈ Agt
is defined by an LTL formula Φ(a) over Prop. Given a path λ in M , the payoff of
the agent is 1 if λ |= Φ(a), or 0 otherwise. Given the intuition, the formal definition
follows.

Definition 5. A concurrent game is a tupleG = (M, q0,Φ), whereM = 〈Agt, St, Act,
d, t, Prop, V 〉, is a concurrent game structure, q0 ∈ St is a state inM , and Φ : Agt→
LLTL is a mapping that assigns each agent with an LTL formula. We will often write
Φa instead of Φ(a).

Example 13 (Simple market scenario). An established company (EC) and a new com-
pany (NC) have to choose the appearance for a product. Each company can choose
between two different appearances for the product (ap1 and ap2). The established
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producer prefers the two products to look different (so that its customers will not be
tempted to buy the newcomer’s product), while the new company is better off when the
products look alike. We can model the scenario by the concurrent game Gmarket =
(Mmarket , q0,Φ), consisting of the CGS depicted in Figure 9a and objectives ΦEC =
Fwin1, ΦNC = Fwin2.

It is easy to see that the scenario has a similar structure to the well-known matching
pennies game, cf. Figure 9b.

Example 14 (Ticket machine). A concurrent game can be also constructed on top of
the ticket machine CGS. For example, Gticket = (Mticket , q0,Φ) with Φc = Fticket ∧
G¬paid and Φm = ¬GFerror expresses that the customer would like to get a ticket
without ever paying, whereas the goal of the machine is to get to the error state at most
finitely many times.

In game theory, each agent wants to maximize his payoff, assuming some kind
of rational behavior from the other players. In case of binary payoffs, i.e., winning
conditions, the goal of ai is to make Φi true. Rationality assumptions are typically
formalized through so called solution concepts. Formally, a solution concept selects a
subset of strategies (individual, coalitional, or strategy profiles), and designates them as
rational. The best known game-theoretic solution concept is Nash equilibrium, whereas
the one most studied in logical approaches to games is that of surely winning strategy.
We will introduce both concepts, and define some corresponding decision problems, in
the next subsections.

8.2. Decision Problems for Natural Ability in Games: Surely Winning
The most popular solution concept in logical approaches to strategic reasoning is

surely winning. Player a wins if he has a strategy that obtains his goal no matter what
the other players do. In game-theoretic terms, surely winning can be seen as an instance
of maxmin for the special case of games with binary payoffs. The concept extends in a
straightforward way to coalitions, see the formal definition below.

Definition 6. Given a concurrent game G = (M, q0,Φ), a subset of agents A ⊆ Agt,
and a natural number k ∈ N, we say that the natural collective strategy sA of A is
surely winning in G iff for all λ ∈ out(q0, sA) and a ∈ A it holds that λ |= Φa.
Moreover, coalitionA surely wins inG under bound k iff it has a sure winning strategy
of size at most k.

SUREWIN is the decision problem that checks if a given coalition has a surely win-
ning strategy.

Definition 7 (SUREWIN).
Input: a concurrent game G, coalition A, and a natural number k;
Output: true if A surely wins in G under bound k, otherwise false.

Note that the problem comes in fact in two variants, depending on our assumptions
about the agents’ memory. We can ask about surely winning in natural memoryless
strategies, or surely winning in natural strategies with recall. To distinguish between
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those, we will add the subscript nr or nR whenever the variant is not clear from the
context. The same remark applies to all the other decision problems that we define and
study for concurrent games.

Example 15 (Ticket machine). Consider the concurrent gameGticket in Example 14.
It is easy to see that SUREWIN(Gticket , {c}, k) = SUREWIN(Gticket , {c,m}, k) =
false regardless of the bound and the strategy type, because the only paths that obtain
ticket must visit a state that satisfies paid before that. On the other hand, SUREWIN(
Gticket , {m}, k) = true for any k ≥ 3 in both memoryless and memoryful strategies
(winning strategy: print if paid, reset if ticket, otherwise be helpful).

We can also check if a particular strategy is surely winning. We call the problem
“strategy checking,” similar to path checking of LTL formulas [88].

Definition 8 (STRATEGYCHECKING).
Input: a concurrent game G and a natural coalitional strategy sA with bound k;
Output: true if sA is a surely winning strategy, otherwise false.

Note that deciding SUREWIN is closely related to model checking of NatATL. Like
model checking, SUREWIN does not take into account the goals of the agents outside
A. A classical solution concept that assumes rational behavior from all the agents is
Nash equilibrium. We discuss it, and define the corresponding decision problems, in
the next subsection.

8.3. Nash Equilibria in Natural Strategies

Nash equilibria are combinations of individual strategies that are stable under uni-
lateral deviations. Formally, let us define natural strategy profiles as tuples sAgt =
(s1, . . . , s|Agt|) of natural strategies, one per player. Note that every strategy profile
sAgt determines exactly one infinite path in a given concurrent game G. We will de-
note the path by path(sAgt). That is, path(sAgt) = λ such that out(q0, sAgt) = {λ}.
Now, sAgt is a Nash equilibrium in G if each agent’s part of sAgt is a best response to
the collective strategy of the opponents.

Definition 9 (Best response). Given a concurrent game G = (M, q0,Φ), a player i,
and a profile sAgt = (s1, . . . , si, . . . , s|Agt|) of natural strategies under bound k ∈ N,
we say that si is a best response in sAgt under bound k iff path(sAgt) 6|= Φi implies
that, for all s′i ∈ Σnr

i such that compl (s′i) ≤ k, also path((s1, . . . , si−1, s
′
i, si+1, . . . ,

s|Agt|)) 6|= Φi.

Definition 10 (Nash equilibrium). A natural strategy profile sAgt = (s1, . . . , s|Agt|)
is a Nash Equilibrium in concurrent game G under bound k iff, for every i ∈ Agt, si
is a best response in sAgt under bound k.

Example 16 (Simple market scenario). Take the simple market game in Example 13.
It is easy to see, by looking at the payoff table in Figure 9b, that it has no Nash equi-
libria in natural memoryless strategies.
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Remark 3. A more general version of Nash equilibrium in natural strategies could
also be considered, with bounds k1, . . . , k|Agt|. In that case, each player would possi-
bly have a different bound on the complexity of his strategies. We conjecture that the
complexity results follow the same pattern as for the simple case of a single k, but do
not pursue this line in detail here.

We will now define the corresponding decision problems.

Definition 11 (ISNASH).
Input: a concurrent game G and a natural strategy profile sAgt with bound k;
Output: true if sAgt is a Nash equilibrium, otherwise false.

Note that we take into account only pure – that is, non-randomized – strategies
here. Probabilistic strategies would require a different treatment. In particular, we
would have to redefine the models and the notion of a strategy more in the vein of
probabilistic logics for Markov decision processes [83, 46, 50, 73]. This is certainly an
interesting path, and we plan to investigate it in the future.

Since we only consider pure strategies, the existence of Nash equilibria is not guar-
anteed, as demonstrated by Example 16. In consequence, it makes sense to ask if a
given game has at least one stable point.

Definition 12 (EXISTNASH).
Input: a concurrent game G and a natural number k;
Output: true if there exists a strategy profile sAgt which is a Nash equilibrium in G
under bound k, otherwise false.

Even more interestingly, we can ask whether a given player wins in some (or dually,
all) Nash equilibria.

Definition 13 (WINSSOMENASH).
Input: a concurrent game G, player i, and a natural number k;
Output: true if there exists a strategy profile sAgt which is a Nash equilibrium in G
under bound k and path(sAgt) |= Φi, otherwise false.

Definition 14 (WINSALLNASH).
Input: a concurrent game G, player i, and a natural number k;
Output: true if path(sAgt) |= Φi for all strategy profiles sAgt which are Nash equilibria
in G under bound k, otherwise false.

The above decision problems come very close to the recent work on equilibrium
checking by Wooldridge, Gutierrez and colleagues [116, 128, 63]. The difference is that
they look at arbitrary combinatorial strategies with perfect recall, whereas we consider
natural strategies under bound k (both perfect recall and memoryless). We will see
in Section 9 that this reduces the computational complexity: from 2EXPTIME for
combinatorial strategies [128, 63] to EXPSPACE for natural strategies with recall,
and between ΣP

2 and PSPACE for natural memoryless strategies.
We also note that a similar set of decision problems can be defined for many other

solution concepts, such as undominated strategies, Stackelberg equilibrium, subgame-
perfect Nash equilibrium, and so on. We leave a proper exploration of the possibilities
for future work.
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Algorithm SureWin(G,A, k) :

1 sA = GuessStrat(G,A, k) ;
2 Prune M a c c o r d i n g t o sA , o b t a i n i n g model M ′ ;
3 re turn mCheckCTL∗(M

′, q0,A
∧

i∈A Φi) ;

Figure 10: Algorithm to decide SUREWIN.

Algorithm GuessStrat(G,A, k) :

1 size := 0 ;
2 f o r e v e r y i ∈ A do
3 si := ( ) ;
4 r e p e a t
5 Guess (β, α) wi th compl (((β, α))) ≤ max(1, k − size) ;
6 size := size+ compl (((β, α))) ;
7 u n t i l ( (>, idle) or size > k ) ;
8 i f size > k t h e n re turn ( f a l s e ) ;
9 re turn (sA ) ;

Figure 11: Algorithm to guess the natural collective strategy.

9. Complexity Results for Games of Natural Ability

We now study the asymptotic complexity of the decision problems introduced in
the previous section. A table summarizing the results obtained here is presented at the
end of the paper (Section 10, Figure 17).

9.1. Surely Winning in Memoryless Strategies

We start with the decision problem SUREWIN, which concerns checking the exis-
tence of a surely winning strategy. We show that SUREWIN is as difficult as LTL model
checking, namely that it is PSPACE-complete.

Proposition 18. SUREWIN is in PSPACE.

Proof. Consider a concurrent game G = (M, q0,Φ), a coalition of agents A, and a nat-
ural number bound k. In Figure 10 we give an algorithm that decides SUREWIN(G,A, k).
The algorithm is nondeterministic (see line 1) and takes space polynomial in the in-
put (due to procedure mCheckCTL∗ called in line 3). The fact that PSPACE =
NPSPACE concludes the proof. 2

Proposition 19. SUREWIN is PSPACE-hard.

Proof. To prove it, we use a reduction from LTL model checking, known to be
PSPACE-complete [110]. The general idea is as follows: we take an arbitrary Kripke
structure and transform it to a CGS with two players: the “real” agent a who fully con-
trols the next transition of the system, and the “dummy” agent b who has no influence
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on the choice of the next state. Then, the “dummy” can enforce those – and only those
– path properties that hold on all the possible paths in the system.

Formally, given a Kripke structure K and an LTL formula ϕ, LTL model checking
is the decision problem of verifying whether K meets ϕ, i.e., for all paths λ starting
from an initial state of K it holds that λ |= ϕ. A Kripke structure over a set of atomic
proposition AP is a tuple K = (W,w0, R, L), where W = {w0, . . . , wn} is the set
of states, w0 is the initial state, R ⊆ W ×W is the transition relation, and L : W →
2AP is a labeling function. Let us now reduce the LTL model checking problem to
SUREWIN. Given K and ϕ as above, we construct a game G = (M, q0,Φ) with M =
〈Agt, St, Act, d, t, Prop, V 〉, where:

• Agt = {a, b};
• St = W ;

• Act = Acta ∪Actb, where Acta = W and Actb = {idle};
• da(w) = {w′|R(w,w′)} and db(w) = {idle}, for each w ∈ St;

• t(w, (w′, idle)) =

{
w′ if w,w′ ∈ St and (w,w′) ∈ R;

∅ otherwise.

• Prop = AP ∪ {pw|w ∈ St};
• V (w) = L(w) ∪ {pw}, for each w ∈ St;
• q0 = w0;

• Φ = {Φa,Φb}, such that Φa = ¬ϕ and Φb = ϕ.

We now prove that the above reduction is correct by showing thatK |= ϕ iff SUREWIN(
G, b, 1) = true.

(⇒)(⇒)(⇒) Assume that K |= ϕ. By definition, for each path λ in K it holds that λ |= ϕ.
Consider now the game G constructed as above and the strategy ((>, idle)) for b. One
can see that compl (sb) ≤ 1 and for all λ ∈ out(q0, sa) it holds that λ |= Φb. Hence,
SUREWIN(G, a, 1) = true.

(⇐)(⇐)(⇐) Assume now SUREWIN(G, b, 1) = true. Then, by Definition 6 we know
that there is a natural memoryless strategy sa with compl (sa) ≤ 1 such that for all
λ ∈ out(q0, sa) it holds that λ |= Φb. It is easy to see that the only b’s strategy of size
1 is ((>, idle)). This means that out(q0, sa) contains all the possible paths starting in
q0, and each of them satisfies the objective of player b. From this we directly derive
that for each path λ in K it holds that λ |= ϕ. Hence, K |= ϕ. 2

Putting together the results of Proposition 18 and Proposition 19, we obtain the
following result.

Theorem 20. SUREWIN is PSPACE-complete with respect to the size of the game
and the value of the bound k (even for coalitions of size 1).

Somewhat surprisingly, checking whether a given strategy surely wins is not easier.

Theorem 21. STRATEGYCHECKING is PSPACE-complete with respect to the size of
the game and the value of the bound k.
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Algorithm IsNotNash(G, sAgt, k) :

1 f o r e v e r y i ∈ Agt do
2 i f path(sAgt) 6|= Φi t h e n
3 Guess s′i wi th compl (s′i) ≤ k
4 i f path((s1, . . . , si−1, s

′
i, si+1, . . . , s|Agt|)) |= Φi t h e n re turn ( t r u e ) ;

5 re turn ( f a l s e ) ;

Figure 12: Algorithm to decide the complement of ISNASH.

Proof. The upper bound follows from the fact that the problem can be solved by the
algorithm for SureWin without the first step (i.e., without guessing the strategy). For
the lower bound, one can use the same reduction as in the proof of Proposition 19,
asking whether the “idle” strategy of the dummy player surely wins (instead of asking
whether the dummy has a winning strategy). 2

9.2. Nash Equilibria in Memoryless Strategies
Now we examine the complexity of the decision problems related to Nash equilib-

rium.

Proposition 22. ISNASH is in coNP.

Proof. In Figure 12, we introduce an algorithm that uses an NP procedure to
check whether a strategy profile sAgt is not a Nash Equilibrium. In details, starting
with a strategy profile sAgt we check that for each player i, if the path generated by the
strategy profile does not satisfy his own goal Φi, then no unilaterally deviation of the
player i will allow him to satisfy his goal as well. Since coNP is the class of problems
whose complements are in NP, the result immediately follows. 2

Proposition 23. ISNASH is coNP-hard.

Proof. We prove NP-hardness for the complement problem ISNOTNASH. To this
end, we can use an approach similar to the one exploited in Theorem 8. Precisely,
given a formula ϕ in SAT, we construct a game G = (Mϕ, q0,Φ), where Mϕ is
as in Theorem 8, q0 is the initial state of Mϕ and Φ = ϕ[Fpi/¬xi,Fp̄i/xi]. By
using an adaption of Proposition 7, it is easy to check that SAT(ϕ,m) = true iff
ISNOTNASH(G,v,m)) = false. In consequence, we get coNP-hardness for the com-
plement problem, i.e., ISNASH. 2

By putting together Propositions 22 and 23, we obtain the following result.

Theorem 24. ISNASH is coNP-complete with respect to the size of the game and the
value of the bound k.

We now continue with WINSSOMENASH.

Proposition 25. WINSSOMENASH is in ΣP
2 .
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Algorithm WinsSomeNash(G, i, k) :

1 sAgt = GuessStrat(G,Agt, k) ;
2 i f path(sAgt) |= Φi and not IsNotNash(G, sAgt, k) t h e n re turn ( t r u e ) ;
3 re turn ( f a l s e ) ;

Figure 13: Algorithm to decide WINSSOMENASH.

Proof. In Figure 13, we present an algorithm that uses an NP procedure to select
the strategy profile sAgt, calling another NP procedure (depicted in Figure 12) which
checks whether sAgt is a Nash equilibrium. We recall that given a path λ and an LTL
formula ϕ, checking whether λ satisfies ϕ requires polynomial time [88]. Therefore,
the total complexity to decide WINSSOMENASH is ΣP

2 . 2

We will show a tight lower bound by a reduction from QBF2, i.e., the satisfiability
problem for Quantified Boolean Formulas with at most one alternation of quantifiers.
First, we recall the definition of QBF and QBF2. Then, in Proposition 27 we give the
mentioned lower-bound.

Definition 15 ([115]). A (fully) quantified Boolean formula is a formula in quantified
propositional logic where every variable from a finite set is quantified by using either an
existential or a universal quantifier. Formula ϕ = ∃x ∀y ∀z ∃w ((x∧¬y)∨(z∧y)∨¬w
is an example. A quantified Boolean formula is in prenex normal form if it has two basic
parts: a portion containing only quantifiers and a portion containing an unquantified
Boolean formula. By QBFi, we denote the set of QBF formulas in prenex normal form
with at most i types of quantifiers following each other (in other words, at most i − 1
alternations of quantifiers). For instance, ϕ is a formula of QBF3.

Note that it suffices to consider only formulae in negation normal form (i.e., nega-
tions allowed only at the level of literals), as any other formula can be transformed to
an equivalent one in linear time.

Lemma 26 ([115]). For QBFi, checking if formula ϕ holds is ΣP
i -complete with re-

spect to the length of ϕ.8

Proposition 27. WINSSOMENASH is ΣP
2 -hard.

Proof. We adapt the reduction used in Section 5 to prove that 1NatATLr is NP-
hard. Specifically, let ϕ = ∃x1 . . . xn∀xn+1 . . . xm ψ be a QBF2 formula in negation
normal form. We build a game G with two players, the verifier (v) and the refuter
(r), where v tries to show that ϕ is true, while r does the opposite. To this aim,
we use states xi, 1 ≤ i ≤ m, covering all variables in ϕ, as points of choice for v
and r. The verifier controls the existentially quantified variables, and the refuter the
universally quantified ones. Moreover, states pj and p̄j , 1 ≤ i ≤ m, represent whether
the player’s choice for xj has been 0 or 1. More formally, G = (M, q0,Φ) with
M = 〈Agt, St, Act, d, t, Prop, V 〉, where:

8ΣP
i is defined recursively by: ΣP

1 = NP; ΣP
i = NPΣP

i−1 .
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Figure 14: The concurrent game structure corresponding to the QBF2 formula ϕ = ∃x1, x2∀x3 (x1 ∧
¬x2)∨x3 obtained by the construction of Proposition 27. The objectives are: Φv = (Fp1 ∧Fp̄2)∨Fp3,
Φr = ¬((Fp1 ∧ Fp̄2) ∨ Fp3).

• Agt = {v, r};
• St = {x1, . . . , xm} ∪ {p1, . . . , pm} ∪ {p̄1, . . . , p̄m} ∪ {end};
• Act = {>,⊥, I};

• dv(si) =

{
{>,⊥} if si = xi and 1 ≤ i ≤ n;

{I} otherwise.

dr(si) =

{
{>,⊥} if si = xi and n+ 1 ≤ i ≤ m;

{I} otherwise.

• t(xi, (>, I)) = pi, t(xi, (⊥, I)) = p̄i, t(xj , (I,>)) = pj , t(xj , (I,⊥)) = p̄j ,
t(sk, (I, I)) = xk+1, t(s, (I, I)) = end, where sk ∈ {pk, p̄k}, s ∈ {pm, p̄m,
end}, 1 ≤ i ≤ n, n+ 1 ≤ j ≤ m, and 1 ≤ k < m.

• Prop = {x1, . . . , xm} ∪ {p1, . . . , pm} ∪ {p̄1, . . . , p̄m};
• V (xi) = {xi}, V (pi) = {pi}, V (p̄i) = {p̄i}, and V (end) = ∅;
• q0 = x1;

• Φ = {Φv,Φr}, such that Φv = tr(ϕ) and Φr = ¬tr(ϕ), where tr(ϕ) =
ψ[Fp̄i/¬xi,Fpi/xi]. That is, we remove the quantifiers from ϕ, replace every
positive occurrence of xi with Fpi, and every negative occurrence of xi with
Fp̄i.

As an example, Figure 14 presents the game G for the QBF2 formula ϕ = ∃x1x2

∀x3 (x1 ∧ ¬x2) ∨ x3 that comes from our reduction.
We conclude by proving the correctness of our reduction. Formally, we prove that

QBF2(ϕ, n,m) = true iff WINSSOMENASH(G,v,max(n,m− n)) = true.
(⇒)(⇒)(⇒) First, assume that QBF2(ϕ, n,m) = true. By definition, there exists an as-

signment χ for the variables x1, . . . , xn such that for all the assignments for the vari-
ables xn+1, . . . , xm the formula ϕ is true. Now, consider the game G obtained as
described above. We first show that there is a surely winning for the verifier, i.e., a
strategy sv with compl (sv) ≤ n such that for all λ ∈ out(q0, sv) it holds that λ |= Φv.
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We construct sv as follows: for each variable xi, it contains a guarded action (xi, a),
where a = > if xi is true in the assignment χ, else a = ⊥. Consequently, if a = >
(resp., a = ⊥) then every λ ∈ out(q0, sv) eventually visits the state pi (respectively
p̄i) in which the atomic proposition pi (respectively p̄i) holds.

Since, sv is surely winning, it makes Φv true (and hence Φr false) for every strategy
sr of the refuter. Take any arbitrary sr under boundm−n. Clearly, sr is a best response
to sv, and sv is a best response to sr. Thus, (sv, sr) is a Nash equilibrium under bound
max(n,m− n). In consequence, WINSSOMENASH(G,v,max(n,m− n)) = true.

(⇐)(⇐)(⇐) Conversely, assume that WINSSOMENASH(G,v,max(n,m − n)) = true.
Then, by Definition 13, there is a natural memoryless strategy profile (sv, sr) with
compl ((sv, sr)) ≤ max(n,m − n) that is a Nash equilibrium and path((sv, sr)) |=
Φv. This also means that path((sv, sr)) 6|= Φr, and hence Φv holds on every λ ∈
out(q0, sv). This in turn means that, for the assignment of variables xi controlled by v,
formula ψ holds no matter what assignment is chosen by r. Hence, QBF2(ϕ, n,m) =
true. 2

By putting together Propositions 25 and 27, we obtain the following result.

Theorem 28. WINSSOMENASH is ΣP
2 -complete with respect to the size of the game

and the value of the bound k.

The complexity of EXISTNASH can be established by an adaptation of the techniques
that we used for WINSSOMENASH. We state the theorem below; the detailed proofs are
in Appendix B.

Theorem 29. EXISTNASH is ΣP
2 -complete with respect to the size of the game and the

value of the bound k.

Deciding if all the Nash equilibria satisfy a given property is in the dual complexity
class.

Proposition 30. WINSALLNASH is in ΠP
2 .9

Proof. In Figure 15, we present an algorithm to check the complement problem of
WINSALLNASH, i.e LOSESSOMENASH. The algorithm uses an NP procedure to select
the strategy profile sAgt and calls another NP procedure (depicted in Figure 12) to
check whether sAgt is a Nash equilibrium. So, LOSESSOMENASH is in ΣP

2 and thus
WINSALLNASH is in ΠP

2 . 2

Proposition 31. WINALLNASH is ΠP
2 -hard.

Proof. We can use a reduction from the complement problem of WINSSOMENASH.
In particular, given a gameG = (M, q0,Φ), whereM = 〈Agt, St, Act, d, t, Prop, V 〉,
q0 is the initial state, and Φ are the objectives we build a game G? = (M, q0,Φ

?),
where Φ? is the complement function of Φ, i.e. for each agent iwe have that Φ?i = ¬Φi.

9ΠP
2 = co−NPNP is the class of complement problems to ΣP

2 .
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Algorithm LosesSomeNash(G, i, k) :

1 sAgt = GuessStrat(G,Agt, k) ;
2 i f path(sAgt) 6|= Φi and not IsNotNash(G, sAgt, k) t h e n re turn ( t r u e ) ;
3 re turn ( f a l s e ) ;

Figure 15: Algorithm to decide the complement of WINSALLNASH.

The proof of correctness directly follows from the fact that M is the same for both
games. Therefore, the strategies produce the same outcomes. 2

The following is a corollary.

Theorem 32. WINALLNASH is ΠP
2 -complete with respect to the size of the game and

the value of the bound k.

9.3. Complexity Results for Agents with Memory

We conclude this section by studying all the decision problems presented in Sec-
tion 8.2 under the assumption that players’ strategies are memoryful. In most settings,
strategies with memory make the related decision problems more computationally ex-
pensive. Here, we prove that the solution concepts for natural games with memory
share the EXPSPACE upper bound. This comes by applying the following reason-
ing. Take all the problems that we have considered above and the procedures that we
have used to check the satisfaction of the goals. A key step in all these procedures is
to check whether a path satisfies the designed goal. In order to verify if all paths in a
graph satisfy a given LTL formula, it suffices to check their prefixes of length O(2n),
where n is the number of nodes in the graph [110]. Moreover, the unfolding graph of a
given CGS for natural strategies with recall hasO(|StM | ·22k2) nodes (see the proof of
Lemma 15). Thus, to verify if a strategy profile obtains the LTL objective, we need a
counter that checks if a given bound of range O(2|StM |·2

2k2

) has been exceeded. This
can be implemented with O(|StM | · 22k2) memory cells, using a binary representation
of the counter. In consequence, we obtain the NEXPSPACE upper bound for the
problem. By Savitch’s theorem, this is equivalent to EXPSPACE.

Theorem 33. The decision problems SUREWIN, STRATEGYCHECKING, ISNASH, WINS-
SOMENASH, EXISTNASH, and WINALLNASH for natural strategies with recall are in
EXPSPACE with respect to the size of the game and the value of the bound k.

Moreover, for small bounds k, the complexity is much more optimistic.

Theorem 34. If the bound k is constant, then SUREWIN, STRATEGYCHECKING, IS-
NASH, WINSSOMENASH, EXISTNASH, and WINALLNASH for natural strategies with
recall are in PSPACE with respect to the size of the game.
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memoryless with recall
ATL P-complete P-complete

1NatATL, fixed k in P in ∆P
2

NatATL, fixed k in P in ∆P
2

1NatATL, variable k NP-complete in PSPACE

NatATL, variable k ∆P
2 -complete in PSPACE

Figure 16: Summary of complexity results for model checking NatATL

memoryless with recall
SUREWIN PSPACE-complete

STRATEGYCHECKING PSPACE-complete in EXPSPACE
ISNASH coNP-complete

WINSSOMENASH ΣP
2 -complete (in PSPACE

EXISTNASH ΣP
2 -complete for fixed k)

WINSALLNASH ΠP
2 -complete

Figure 17: Summary of complexity results for natural ability in concurrent games

10. Summary and Future Work

In this paper, we propose an alternative take on strategic reasoning, that allows to
reason about agents who can handle only relatively simple strategies. We use a natural
representation of strategies by lists of guarded actions, and assume that only strategies
up to size k can be used. This is formalized by NatATL, a new variant of alternating-
time temporal logic where only such “natural” strategies are allowed as witnesses to
formula 〈〈A〉〉≤kγ. We argue that, in many cases, this is a more accurate view of ability
than the one which admits any function from sequences of states to actions.

In terms of technical results, we show that model checking for NatATL with memo-
ryless strategies is in P when k is fixed, and ∆P

2 -complete when k is a parameter of the
problem. For strategies with recall, the problem is in ∆P

2 when k is fixed, and in ∆P
3

in the general case, see the summary presented in Figure 16. Thus, reasoning about
small natural memoryless strategies is no more difficult than for arbitrary ATL strate-
gies (and in practice we expect it to be much easier). On the other hand, verification
of natural strategies with recall seems distinctly harder. It would be interesting to look
for conditions under which the latter kind of strategies can be synthesized in polyno-
mial time. We also prove an important property that sets NatATL apart from standard
ATL: in NatATL, the memoryless and memoryful semantics do not coincide. More-
over, we show that our representation of memoryful strategies is equally expressive,
and incomparably succinct to deterministic finite-state transducers from [124].

Having investigated the logical reasoning about natural strategies, we turn to the
broader issue of natural strategic abilities in concurrent games with LTL-definable
winning conditions. We study a number of decision problems based on surely win-
ning strategies and Nash equilibrium; our complexity results are summarized in Fig-
ure 17. It turns out that, besides the conceptual advantage, reasoning about bounded
natural strategies significantly decreases the complexity of “rational verification” for
multi-agent systems. More precisely, the complexity goes down from 2EXPTIME
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for arbitrary combinatorial strategies [128, 63] to EXPSPACE for natural strategies
with recall, and between ΣP

2 and PSPACE for natural memoryless strategies.
The research reported here opens up many exciting paths for future work. Most

importantly, we plan to extend the framework to natural strategies with imperfect in-
formation. We would also like to enhance our results on logical strategic reasoning
to the broader language of NatATL∗, and refine them in terms of parameterized com-
plexity. Another interesting path concerns a graded version of the logic with counting
how many successful natural strategies are available. For natural ability in concurrent
games, it seems worthwhile to consider decision problems based on other solution con-
cepts (such as undominated strategies or Stackelberg equilibrium), and apply them to
actual application domains, such as reasoning about coercion-resistance and usability
of some e-voting platforms. We would also like to look at other natural representations
of strategies, including a survey of psychological studies suggesting how people plan
and execute their long-term behaviors. Finally, a more complete account of bounded ra-
tionality may be obtained by combining bounds on conceptual complexity of strategies
(in the spirit of our work here) with their temporal complexity via timing constraints in
the vein of [32, 14].
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Appendix A. Proof of Theorem 9

We start by proving the upper bound.

Proposition 35. Model checking NatATLr is in ∆P
2 with respect to the size of the

model, the length of the formula, and the maximal bound k in the formula.

Proof. We make use of a bottom-up procedure based on the one introduced in the
proof of Theorem 5. Precisely, take an arbitrary formula ϕ of NatATLr and consider
its inner part that is of the kind ψ = 〈〈A〉〉≤kγ, with γ being a formula over Boolean
connectives and atomic propositions. Now, apply over ψ the procedure used in the
proof of Proposition 6 that we know to be NP. Once ψ is solved, use the same NP
procedure to solve ψ′, a formula that contains ψ and a strategic operator, and so on
for each strategic operator in ϕ. This means that we use an oracle over a polynomial
procedure for each strategic operator in ϕ. Summing up, the total complexity to solve
a formula in NatATLr is PNP = ∆P

2 . 2

We now turn to the lower bound and show a reduction from the SNSAT problem,
well-known to be ∆P

2 -complete. We first provide the reduction and then prove that it
is correct.

Definition 16. Given a fixed number r and 1 ≤ i ≤ r, an SNSAT instance is defined
as follows:

• r sets of propositional variables Xi = {x1,i, . . . , xm,i};
• r propositional variables zi;

• r Boolean formulasϕi in CNF involving only on variables inXi∪{z1, . . . , zi−1};

Variable zi is assigned true if there exists an assignment of variables in Xi such
that ϕi is true; otherwise zi is assigned false. By a slight abuse of notation, we can
write it as zi ≡ ∃Xiϕi(z1, . . . , zi−1, Xi). The output of the SNSAT instance is the
truth value of zr.

Let n be the maximal number of clauses in any ϕ1, . . . , ϕr from the given input.
Now, each ϕi can be written as:

ϕi = Ci1 ∧ . . . ∧ Cin, and

Cij = x
si(j,1)
1,i ∨ . . . ∨ xs

i(j,m)
m,i ∨ zs

i(j,m+1)
1 ∨ . . . zs

i(j,m+i−1)
i−1

where 1 ≤ j ≤ n, si(j, k) ∈ {+,−, 0} with 1 ≤ k ≤ m; as before, x+
k,i denotes a

positive occurrence of xk,i in Cij , x
−
k,i denotes an occurrence of ¬xk,i in Cij , and x0

k,i

indicates that xk,i does not occur in Cij , and si(j, k) ∈ {+,−, 0} withm < k < m+ i;
defines the sign of zk−m in Cij .

Given such an instance of SNSAT, we construct a sequence of concurrent game
structures Mi in a similar way to the construction used for the reduction from SAT.
That is, clauses and variables xk,i are handled in exactly the same way as before.
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Moreover, if zh, with 1 ≤ h < i, occurs as a positive literal in ϕi, we embed Mh

in Mi, and add a transition to the initial state qh0 of Mh. If ¬zh occurs in ϕi, we
do almost the same: the only difference is that we split the transition into two steps,
with a state negih (labeled with a proposition neg) added in between. More formally,
Mi = (Agt, Sti, Acti, di, ti, P ropi, V i), where:

• Agt = {v, r},
• Sti = {qi0}∪Stcl∪Stprop∪Stneg ∪{q>}∪Sti−1, where Stcl = {qi1, . . . , qin},
Stprop = {qi1,1, . . . , qi1,m, . . . , qin,1, . . . , qin,m}, and
Stneg = {negi1, . . . , negii−1};

• Acti = {I, C1, . . . , Cn, x1, . . . , xm, z1, . . . , zr,>,⊥};
• di(v, qi0) = di(v, q>) = di(v, negih) = {I}, di(v, qij) = {xk | xk,i or ¬xk,i

is in Cij} ∪ {zh | zh or ¬zh is in Cij}, di(v, qij,k) = {>,⊥}; di(r, qi0) = {C1,

. . . , Cn} and di(r, q) = {I} with q ∈ St \ {qi0}. For q ∈ Sti−1, we simply
include the function from Mi−1: di(a, q) = di−1(a, q);

• ti(qi0, I, Cj) = qij , t
i(qij , xk, I) = qij,k, ti(qij , zh, I) = qh0 if si(j, h) = + and

negih otherwise, ti(negih, I, I) = qh0 , t(qij,k,>, I) = q> if si(j, k) = +, and qij,k
otherwise, t(qij,k,⊥, I) = q> if si(j, k) = −, and qi,j otherwise. For q ∈ Sti−1,
we include the transition function from Mi−1: ti(q, α1, α2) = ti−1(q, α1, α2);

• Propi = {Ci
1, . . . ,C

i
n, x

i
1, . . . , x

i
m,win, neg};

• V (qi0) = ∅, V (qij) = Ci
j, V (qij,k) = xi

k, V (negih) = neg and V (q>) = win.

where 1 ≤ i ≤ r, 1 ≤ j ≤ n, 1 ≤ k ≤ m, and 1 ≤ h < i. An example model is
presented in Figure A.18.

To prove the hardness, we consider the following sequence of formulas.

Ψ1 = 〈〈v〉〉≤n+m(¬neg) U (win),
. . .

Ψi = 〈〈v〉〉≤n+m(¬neg) U (win ∨ (neg ∧ 〈〈∅〉〉≤0X ¬Ψi−1)).10

Before we prove the hardness, we state an important lemma. It says that overlong
formulas Ψi do not introduce new properties of model Ml, with 1 ≤ l ≤ i ≤ r. More
precisely, a formula Ψi that includes more nestings than model Ml can be as well
reduced to Ψi−1 when model checked in Ml, q

l
0.

Lemma 36. ∀1 ≤ l ≤ i ≤ r: Ml, q
l
0 |= Ψi iff Ml, q

l
0 |= Ψi−1.

The proof of the lemma is a straightforward adaptation of [75, Lemma 5].

Proposition 37. ∀1 ≤ i ≤ r : zi is true iff Mi, q
i
0 |= Ψi

10Recall that 〈〈∅〉〉≤0 is equivalent to the CTL path quantifier A (“for all paths”), cf. Proposition 2.
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Figure A.18: CGS M3 for ϕ3 = z2 ∧ ¬z1 ∧ (x1 ∨ x2), ϕ2 = z1 ∧ ¬x2, and ϕ1 = (x1 ∨ x2) ∧ ¬x2.
For simplicity, we omit the states that have no ingoing edges

Proof. Induction on i:
(i) For i = 1, we use the proof of Proposition 7.
(ii) For i > 1, we prove both directions.

(⇒)(⇒)(⇒) Firstly, if zi is true then there is a valuation υ of Xi that makes ϕi true. We
construct sv as in the proof of Proposition 7. In case that some xsk,i has been chosen
in clause Cij then we define the guarded action (Ci

j, xk) and we are done. In case
that some z−h has been chosen in clause Cij , where h < i, we have (by induction) that
Mh, q

h
0 |= ¬Ψh. By Lemma 36, alsoMh, q

h
0 |= ¬Ψi, and henceMi, q

h
0 |= ¬Ψi. So we

can make the same choice (i.e., we define the guarded action (Ci
j, zh)) in sv, and this

will lead to state neqih, in which it holds that neg ∧AX ¬Ψi. In case that some z+
h has

been chosen in clause Cij , we have that Mh, q
h
0 |= Ψh. By Lemma 36, also Mh, q

h
0 |=

Ψi. That is, there is a strategy s′v inMh such that (¬neg) U (win∨ (neg∧AX ¬Ψi−1))
holds for all paths from out(qh0 , s

′
v). Then, we can merge s′v into sv.

(⇐)(⇐)(⇐) Conversely, ifMi, q
i
0 |= Ψi, then there is a strategy sv that enforces (¬neg) U (
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Algorithm ExistNash(G, k) :

1 sAgt = GuessStrat(G,Agt, k) ;
2 re turn ( not IsNotNash(G, sAgt, k) ) ;

Figure A.19: Algorithm to decide EXISTNASH.

win ∨ (neg ∧ AX ¬Ψi−1)). First, we consider the clause Cij with guarded action
(Ci

j, xk), i.e. for which a propositional state is chosen by sv. The strategy defines
a valuation for Xi that satisfies these clauses. For the other clauses, i.e. there is a
guarded action (Ci

j, zh), we have two possibilities:

• sv chooses qh0 in the state corresponding to Cij . Neither win nor neg have been
encountered on this path yet, so we can take sv to demonstrate thatMi, q

h
0 |= Ψi,

and hence Mh, q
h
0 |= Ψi. By Lemma 36, also Mh, q

h
0 |= Ψh. By induction, zh

must be true, and hence clause Cij is satisfied.

• sv chooses negih in the state corresponding toCij . Then, it must be thatMi, neg
i
h

|= AX ¬Ψi−1, and hence Mh, q
h
0 |= ¬Ψi−1. By Lemma 36, also Mh, q

h
0 |=

¬Ψh. By induction, zh must be false, and hence clause Cij (containing ¬zh) is
also satisfied.

2

By Propositions 35 and 37, we get the following result.

Theorem 9. Model checking NatATLr is ∆P
2 -complete with respect to the size of the

model, the length of the formula, and the maximal bound k in the formula.

Appendix B. Proof of Theorem 29

Proposition 38. EXISTNASH is in ΣP
2 .

Proof. A nondeterministic polynomial-time algorithm to decide EXISTNASH is pre-
sented in Figure A.19. The algorithm calls the procedure IsNotNash in Figure 12 as
an oracle. 2

Proposition 39. EXISTNASH is ΣP
2 -hard.

Proof. To prove the hardness, we extend the reduction used in the proof of Proposi-
tion 27. The idea is to add a new agent d (the “decider”) whose sole role is to make
sure that no strategy profile where v loses can be a Nash equilibrium. Then the only
Nash equilibria that are left must involve a surely winning strategy for the verifier. This
is achieved by enhancing the CGS by two additional segments, where the refuter and
the decider play “matching pennies” if tr(ϕ) does not hold. That is, first the refuter
chooses “heads” (w1) or “tails” (¬w1); then, the decider does the same, choosing w2
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or ¬w2. The objectives are set as follows: Φv = tr(ϕ), i.e., v wants to get ψ satisfied;
Φr = ¬tr(ϕ) ∧ (Fw1 ↔ Fw2), i.e., r wants to invalidate ψ and to match the “pen-
nies;” Φd = ¬(Fw1 ↔ Fw2), i.e., d wants to get a mismatch. Clearly, when ¬tr(ϕ)
holds, there is no equilibrium, since for every strategy profile that gives a match (and
win of the refuter), the decider is better off changing his strategy, and vice versa. Thus,
equilibrium can only exist when tr(ϕ) holds, and hence Φv = true and Φr = false.
Conversely, Φv = true, Φr = false, and Φd = true is sufficient for the strategy
profile to be in equilibrium. Analogously to the proof of Proposition 27, we conclude
that QBF2(ψ, n,m) = true iff EXISTNASH(G,max(n,m− n)) = true.

Formally, let ϕ = ∃x1 . . . xn∀xn+1 . . . xmψ be a QBF2 formula in negation normal
form. We construct G = (M, q0,Φ) with M = 〈Agt, St, Act, d, t, Prop, V 〉, where:

• Agt = {v, r,d};
• St = {x1, . . . , xm} ∪ {p1, . . . , pm} ∪ {p̄1, . . . , p̄m} ∪ {w1, w2} ∪ {w̄1, w̄2} ∪
{chkr, chkd} ∪ {end};

• Act = {>,⊥, I};

• dv(si) =

{
{>,⊥} if si = xi and 1 ≤ i ≤ n;

{I} otherwise.

dr(si) =

{
{>,⊥} if si = xi or si = chkr and n+ 1 ≤ i ≤ m;

{I} otherwise.

dd(si) =

{
{>,⊥} if si = chkd;

{I} otherwise.

• t(xi, (>, I, I)) = pi, t(xi, (⊥, I, I)) = p̄i, t(xj , (I,>, I)) = pj , t(xj , (I,⊥, I))
= p̄j , t(sk, (I, I, I)) = xk+1, t(chkr, (I,>, I)) = w1, t(chkr, (I,⊥, I)) = w̄1,
t(chkd, (I, I,>)) = w2, t(chkd, (I, I,⊥)) = w̄2, and t(s, (I, I, I)) = end,
where sk ∈ {pk, p̄k}, s ∈ {w2, w̄2, end}, 1 ≤ i ≤ n, n + 1 ≤ j ≤ m, and
1 ≤ k ≤ m.

• Prop = {x1, . . . , xm} ∪ {p1, . . . , pm} ∪ {p̄1, . . . , p̄m,w1,w2};
• V (xi) = {xi}, V (pi) = {pi}, V (p̄i) = {p̄i}, V (wi) = {wi}, and V (chkr) =
V (chkd) = V (w̄i) = V (end) = ∅;
• q0 = x1;

• Φ = {Φv,Φr,Φd}, such that Φv = tr(ϕ), Φr = ¬tr(ϕ) ∧ (Fw1 ↔ Fw2), and
Φd = ¬(Fw1 ↔ Fw2), where tr(ϕ) = ψ[Fp̄i/¬xi,Fpi/xi].

Figure B.20 presents the game G for the QBF2 formula ϕ = ∃x1x2∀x3 (x1 ∧
¬x2) ∨ x3.

To conclude the proof, it remains to show that the construction is correct, that is
QBF2(ψ, n,m) = true iff EXISTNASH(G,max(n,m− n)) = true. For this, one can
use a reasoning similar to the one in the proof of Proposition 27. 2

By putting together Propositions 38 and 39, we get the following.
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Figure B.20: The concurrent game structure corresponding to the QBF2 formula ϕ = ∃x1x2∀x3 (x1 ∧
¬x2)∨x3 obtained by the construction of Proposition 39. The objectives are: Φv = (Fp1 ∧Fp̄2)∨Fp3,
Φr = ¬((Fp1 ∧ Fp̄2) ∨ Fp3) ∧ (Fw1 ↔ Fw2), Φd = ¬(Fw1 ↔ Fw2).

Theorem 29. EXISTNASH is ΣP
2 -complete with respect to the size of the game and the

value of the bound k.
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