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Abstract

Model checking of strategic ability under imperfect information is known to be hard.
The complexity results range from NP-completeness to undecidability, depending on
the precise setup of the problem. No less importantly, the usual fixpoint equivalences
do not hold for imperfect information strategies, which seriously hampers incremen-
tal synthesis of winning strategies. In this paper, we propose translations of ATLir

formulae that provide lower and upper bounds for their truth values, and are cheaper
to verify than the original specifications. Most interestingly, the lower approximation
is provided by a fixpoint expression that uses a nonstandard variant of the next-step
ability operator. We show the correctness of the translations, establish their computa-
tional complexity, and validate the approach by experiments with several benchmarks,
including a scalable scenario of Bridge play. We also demonstrate that the approxima-
tions leave much room for optimizations; in particular, optimizing the data structures
can produce a significant speedup. Finally, we show that our fixpoint approximations
of ATLir formulae can be combined with under- and overapproximations of models
in the vein of may/must abstractions, providing very promising experimental results.

Keywords: strategic ability, alternating-time temporal logic, model checking,
imperfect information, alternating µ-calculus, approximate verification

1. Introduction

Multi-agent systems describe interactions of multiple autonomous agents capable
of making rational choices. More and more practical problems are being modeled and
solved under paradigms related to multi-agent systems. Example applications include
space mission planning and air control [26, 37], defense and security [35, 67], logistics
and production planning [38, 41], and many others (cf. [59] for a survey). Some model
checking tools have been created or extended to accept models of multi-agent systems
as input, most notably Mocha [3, 4], MCK [34, 70], and MCMAS [53, 54]. Some tools
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aim at verification of programs specified in multi-agent programming languages (e.g.,
AgentSpeak in Jason [14]).

Many relevant properties of multi-agent systems refer to strategic abilities of agents
and their groups. In particular, most functionality requirements can be specified as the
ability of the authorized users to achieve their legitimate goals, or to complete their
tasks. At the same time, many security properties can be phrased in terms of the in-
ability of the unauthorized users to obtain their goals. Properties of this kind can be
conveniently specified in modal logics of strategic ability, of which alternating-time
temporal logic (ATL) [5, 6] is probably the most popular. In its basic version, the
logic allows to specify strategic properties of agents and their coalitions under the
assumption of perfect information about the current state of affairs. That is, every
agent is able to recognize the global state of the world in its entirety. As the assump-
tion is rather unrealistic, there is a growing number of works that study the syntactic
and semantic variants of ATL for agents with imperfect information, see [2] for an
overview. The contributions are mainly theoretical, and include results concerning
the conceptual soundness of a given semantics [1, 2, 28, 39, 43, 50, 66], meta-logical
properties [19, 40], and the complexity of model checking [17, 31, 40, 45, 46, 66, 68].
However, there is relatively little research on practical algorithms for reasoning and/or
verification in scenarios where agents have a limited view of the world.

This is somewhat easy to understand, since model checking of ATL variants with
imperfect information has been proved ∆P

2 - to PSPACE-complete for agents play-
ing memoryless (a.k.a. positional) strategies [17, 46, 66] and EXPTIME-complete
to undecidable for agents with perfect recall of the past [31, 40]. This concurs with the
results for solving imperfect information games and synthesis of winning strategies,
which are also known to be hard [24, 32, 60]. Moreover, the imperfect information
semantics of ATL does not admit simple fixpoint characterizations based on stan-
dard short-term ability operators [18, 29]. Clearly, that makes incremental synthesis
of strategies impossible, or at least difficult to achieve. Some early attempts at verifi-
cation of ATL with imperfect information made their way into the MCMAS model-
checker [52, 53, 55, 63], but the issue was never at the heart of the tool. More dedicated
attempts began to emerge only recently [21, 22, 23, 42, 61]. Up until now, experimental
results confirm that the initial intuition was right: model checking of strategic modali-
ties for imperfect information is hard, and dealing with it requires innovative algorithms
and verification techniques.

One idea that has not been properly explored is that of alternating-time epistemic
mu-calculus (AEµC) [18]. Verification of AEµC is between P and ∆P

2 for its frag-
ment with no alternation of fixpoint operators, the complexity being relative to the size
of the largest epistemic neighborhood in the model, i.e., the largest cluster of states that
provide the same observations to the players. For ATL with imperfect information,
model checking is at least ∆P

2 -complete with respect to the size of the whole model.
Moreover, for coalitions of up to 2 agents, model checking of AEµC is in P. Thus,
using AEµC specifications instead of ATL formulae can make model checking sig-
nificantly cheaper. Unfortunately, the usual fixpoint equivalences do not hold for ATL
with imperfect information [19]. In fact, as we already mentioned, no truth-preserving
translation to simple fixpoint formulae built on standard modal, epistemic, and short-
term strategic operators can be constructed at all, neither for memoryless agents [18],
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nor for agents with perfect recall [29, 30].
In this paper, we propose that in some instances, instead of the exact model check-

ing, it suffices to provide a lower and an upper bound for the output. In particular,
given a formula ϕ, we want to construct two translations trL(ϕ) and trU (ϕ) such that
trL(ϕ)⇒ ϕ⇒ trU (ϕ). If trL(ϕ) is verified as true, then the original formula ϕ must
also hold in the given model. Conversely, if trU (ϕ) evaluates to false, then ϕ must
also be false. The intuition for the upper bound is straightforward: instead of checking
existence of an imperfect information strategy, we can look for a perfect information
strategy that obtains the same goal. If the latter is false, the former must be false too.
Finding a reasonable lower bound is nontrivial, but we construct one by means of a
fixpoint expression in alternating epistemic mu-calculus. We begin by showing that
the straightforward fixpoint translation does not work. Then, we propose how it can
be modified to obtain guaranteed lower bounds. To this end, we alter the next-step
operator in such a way that traversing the appropriate epistemic neighborhood is seen
as an atomic activity. We show the correctness of the translations, establish their com-
putational complexity, and validate the approach by experiments with some scalable
scenarios.

The idea of approximate verification based on fixpoint translations does not rely
in itself on any kind of optimization in the model checking algorithm. In fact, our
first set of experiments is based on a completely straightforward implementation of the
method. As it turns out, there is plenty of room for improvement, e.g., by optimizing
operations on data structures. We show this by using a more efficient representation of
state spaces, based on disjoint sets, and redoing some of the experiments. Finally, we
observe that our proposal is similar to the idea of may/must abstraction [8, 36, 51], ex-
cept that in our case the approximations are obtained by transforming formulae rather
than models. We show that both kinds of approximation (of formulae and models) can
be smoothly combined, yielding a general framework for model checking via comput-
ing under- and overapproximations.

The structure of the paper is as follows. We begin by introducing the relevant
logics and their models in Section 2. Then, in Section 3, we propose and study fixpoint
translations that produce correct under- and overapproximations of ATL formulae.
Section 4 contains an experimental evaluation of the approximate algorithms for several
benchmarks: a simple voting scenario and two variants of card play in the game of
Bridge. In Section 5, we show that a simple optimization of data structures can lead
to dramatically improved performance of the algorithm, in terms of both running time
and memory consumption. Finally, we propose and study the general framework for
approximate model checking in Section 6, define a may/must abstraction for ATL with
imperfect information over explicit models, and evaluate our algorithms on abstractions
of the Bridge play models. We conclude in Section 7.
Previous version of the article. Some of the ideas and results discussed here have
been already presented in a preliminary form in the conference paper [47]. This article
expands the conference version with revised proofs and new, more systematic exper-
iments. It also introduces the optimizations based on disjoint sets, together with an
experimental evaluation of the idea. Finally, we propose how fixpoint approximation
can be combined with a variant of may/must abstraction for concurrent games, and
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study the performance and accurateness of the resulting algorithms.

2. Verifying Strategic Ability

In this section we provide an overview of the relevant variants of ATL, and the
corresponding complexity results for model checking.

The central operator of ATL is 〈〈A〉〉γ, expressing that coalition A has a strategy
to ensure that the temporal property γ will hold. Many semantic variants of ATL have
been proposed over the last 15 years, differing vastly in their assumptions about the
agents’ memory and observational capabilities, but also in the very concept of what
ability means. This corresponds closely to the rich discourse on the topic in modern
philosophy and AI (cf. [11, 56, 57, 58, 65], to name just a few relevant positions).
Here, we focus on Schobbens’ ATLir as “the” logic of strategic ability under imperfect
information. That is, we address the existence of memoryless conditional plans, and
assume that a plan is successful if it achieves its goals from all the states that the
coalition considers possible in the current state (subjective ability).1

The former choice is driven mainly by the difficulty of verification: model checking
strategic ability with imperfect information and perfect recall ranges from EXPTIME-
complete to undecidable, whereas for memoryless strategies it is “only” between NP
and ∆P

2 .2 It seems prudent to attack the simpler problem first, and then possibly move
on to the harder one. The latter choice is more a matter of focus: both the “subjective”
and the “objective” variants of ability are meaningful, but most authors seem more
interested in the subjective approach, as it formalizes the notion of “knowing how to
play.” We believe that the techniques, developed in this paper, can be adapted (with
reasonable effort) to fit the objective semantics.

We refer the interested reader to [44] for more details and an extensive discussion.

2.1. Models, Strategies, Outcomes

Models. We interpret ATL specifications over a variant of transition systems where
transitions are labeled by combinations of actions, one per agent. Moreover, epistemic
relations are used to indicate states that look the same to a given agent. Formally, an
imperfect information concurrent game structure or iCGS [6, 66, 69] is given by M =
〈Agt, St,Props, V, Act, d, o, {∼a| a ∈ Agt}〉 which includes a nonempty finite set of
all agents Agt = {1, . . . , k}, a nonempty set of states St, a set of atomic propositions
Props and their valuation V : Props → 2St, and a nonempty finite set of (atomic)
actions Act. The protocol function d : Agt × St → 2Act \ {∅} defines nonempty
sets of actions available to agents at each state; we will write da(q) instead of d(a, q),
and define dA(q) =

∏
a∈A da(q) for each A ⊆ Agt, q ∈ St. Furthermore, o is a

(deterministic) transition function that assigns the outcome state q′ = o(q, α1, . . . , αk)
to each state q and tuple of actions 〈α1, . . . , αk〉 such that αi ∈ d(i, q) for i = 1, . . . , k.

1 In contrast, objective ability looks only at the outcome paths starting from the current global state of the
system.

2 ∆P
2 = PNP is the class of problems solvable in polynomial time by a deterministic Turing machine

making adaptive calls to an oracle for problems in NP.
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Figure 1: A simple model of voting and coercion

Every∼a⊆ St×St is an epistemic equivalence relation with the intended meaning
that, whenever q ∼a q′, the states q and q′ are indistinguishable to agent a. The iCGS
is assumed to be uniform, in the sense that q ∼a q′ implies da(q) = da(q′), i.e., the
same choices are available in indistinguishable states. Note that perfect information
can be modeled by assuming each ∼a to be the identity relation.

Example 1. Consider a very simple voting scenario with two agents: the voter v and
the coercer c. The voter casts a vote for a selected candidate i ∈ {1, . . . , n} (action
votei). Upon exit from the polling station, the voter can hand in a proof of how she
voted to the coercer (action give) or refuse to hand in the proof (action ng). The proof
may be a certified receipt from the election authorities, a picture of the ballot taken
with a smartphone, etc.: anything that the coercer will consider believable. After that,
the coercer can either punish the voter (action pun) or not punish (action np).

The iCGSMvote modeling the scenario for n = 2 is shown in Figure 1. Proposition
votei labels states where the voter has already voted for candidate i. Proposition pun
indicates states where the voter has been punished. The indistinguishability relation
for the coercer is depicted by dotted lines.

Strategies. A strategy of agent a ∈ Agt is a conditional plan that specifies what a is
going to do in every possible situation. Formally, a perfect information memoryless
strategy for a can be represented by a function sa : St→ Act satisfying sa(q) ∈ da(q)
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for each q ∈ St. An imperfect information memoryless strategy additionally satisfies
sa(q) = sa(q′) whenever q ∼a q′. Following [66], we refer to the former as Ir-
strategies, and to the latter as ir-strategies.

A collective x-strategy sA, for coalition A ⊆ Agt and strategy type x ∈ {Ir, ir}, is
a tuple of individual x-strategies, one per agent in A. The set of all such strategies is
denoted by ΣxA. By sA|a we denote the strategy of agent a ∈ A selected from sA.

Given two partial functions f, f ′ : X ⇀ Y , we say that f ′ extends f (denoted
f ⊆ f ′) if, whenever f(x) is defined, we have f(x) = f ′(x). A partial function
s′a : St ⇀ Act is called a partial x-strategy for a if s′a is extended by some strategy
sa ∈ Σxa. A collective partial x-strategy sA is a tuple of partial x-strategies, one per
agent in A.
Outcome paths. A path λ = q0q1q2 . . . is an infinite sequence of states such that
there is a transition between each qi, qi+1. We use λ[i] to denote the ith position on
path λ (starting from i = 0) and λ[i, j] to denote the part of λ between positions i and
j. Function out(q, sA) returns the set of all paths that can result from the execution of
a (complete) strategy sA, beginning at state q. For agents not in A, path transitions can
involve any action allowed by the protocol function. Formally:

out(q, sA) = {λ = q0, q1, q2 . . . | q0 = q and for each i = 0, 1, . . . there exists
〈αia1 , . . . , α

i
ak
〉 such that αia ∈ da(qi) for every a ∈ Agt, and αia = sA|a(qi) for

every a ∈ A, and qi+1 = o(qi, α
i
a1 , . . . , α

i
ak

)}.

We will sometimes write outIr(q, sA) instead of out(q, sA). Moreover, the function
outir(q, sA) =

⋃
a∈A

⋃
q∼aq′

out(q′, sA) collects all the outcome paths that start from
states that are indistinguishable from q to at least one agent in A.

2.2. Alternating-Time Temporal Logic

Syntax. We use a variant of ATL that explicitly distinguishes between perfect and
imperfect information abilities. Formally, the syntax is defined by the following gram-
mar [5]:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉xγ
γ ::= Xϕ | Gϕ | ϕUϕ,

where x ∈ {Ir, ir}, p ∈ Props and A ⊆ Agt. Formulae γ are sometimes called path
subformulae of ATL. We read 〈〈A〉〉

ir
γ as “A can identify and execute a strategy that

enforces γ,” X as “in the next state,” G as “now and always in the future,” and U
as “until.” The perfect information modality 〈〈A〉〉

Ir
γ can be read as “A might be able

to bring about γ if allowed to make lucky guesses whenever uncertain.” We focus on
the kind of ability expressed by 〈〈A〉〉

ir
. The other strategic modality (i.e., 〈〈A〉〉

Ir
) will

prove useful when approximating 〈〈A〉〉
ir

.
Semantics. The semantics of ATL can be defined as follows:

• M, q |= p iff q ∈ V (p),

• M, q |= ¬ϕ iff M, q 6|= ϕ,

• M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ,
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• M, q |= 〈〈A〉〉xXϕ iff there exists sA ∈ ΣxA such that for all λ ∈ outx(q, sA) we
have M,λ[1] |= ϕ,

• M, q |= 〈〈A〉〉xGϕ iff there exists sA ∈ ΣxA such that for all λ ∈ outx(q, sA)
and i ∈ N we have M,λ[i] |= ϕ,

• M, q |= 〈〈A〉〉xψUϕ iff there exists sA ∈ ΣxA such that for all λ ∈ outx(q, sA)
there is i ∈ N for which M,λ[i] |= ϕ and M,λ[j] |= ψ for all 0 ≤ j < i.

The standard boolean operators (logical constants> and⊥, disjunction ∨, and implica-
tion→) are defined as usual. We will often write 〈A〉ϕ instead of 〈〈A〉〉

ir
Xϕ to express

one-step abilities under imperfect information. Additionally, we define “now or some-
time in the future” as Fϕ ≡ >Uϕ. It is easy to see thatM, q |= 〈〈A〉〉xFϕ if, and only
if, there exists a collective strategy sA ∈ ΣxA such that, on each path λ ∈ outx(q, sA),
there is a state satisfying ϕ. In that case, we can also say that ϕ is x-reachable from q.

Example 2. Consider model Mvote from Example 1. The following formula expresses
that the coercer can ensure that the voter will eventually either have voted for candidate
i (presumably chosen by the coercer for the voter to vote for) or be punished: ϕ0 ≡
〈〈c〉〉

ir
F
(
¬votei → pun

)
. We note that it holds in Mvote, q0 for any i = 1, 2. A strategy

for c that witnesses the property is sc(q3) = np, sc(q4) = sc(q5) = sc(q6) = pun for
i = 1, and symmetrically for i = 2.

Consequently, the formula ϕ1 ≡ 〈〈v〉〉irG
(
¬pun∧¬votei

)
saying that the voter can

avoid voting for candidate i and being punished, is false in Mvote, q0 for all i = 1, 2.

We refer to the syntactic fragment containing only 〈〈A〉〉
ir

modalities as ATLir, and
to the one containing only 〈〈A〉〉

Ir
modalities as ATLIr.

Proposition 3 ([6, 66, 46]). Model checking ATLIr is P-complete and can be done in
time O(|M | · |ϕ|) where |M | is the number of transitions in the model and |ϕ| is the
length of the formula. Model checking ATLir is ∆P

2 -complete with respect to |M | and
|ϕ|.

2.3. Reasoning about Knowledge
Having indistinguishability relations in the models, we can interpret knowledge

modalities Ka in the standard way:

• M, q |= Kaϕ iff M, q′ |= ϕ for all q such that q ∼a q′.

Intuitively, the meaning of q |= Kaϕ is that the observational capabilities of agent a
allow the agent to conclude that ϕ holds in each state that is indistinguishable from q
according to a.

The semantics of “everybody knows” (EA) and common knowledge (CA) are de-
fined analogously by assuming the relation ∼EA=

⋃
a∈A ∼a to aggregate individual

uncertainty in A, and ∼CA to be the transitive closure of ∼EA. By convention, we take
∼E∅ and ∼C∅ to be the identity relations. We also use [q]R = {q′ | qRq′} to denote the
image of q wrt relationR.

Example 4. The following formulae hold in Mvote, q0 for any i = 1, 2 by virtue of
strategy sc presented in Example 2:
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• ϕ2 ≡ 〈〈c〉〉irF
(
(¬Kcvotei) → pun

)
: The coercer has a strategy so that, eventu-

ally, the voter is punished unless the coercer has learnt that the voter voted as
instructed;

• ϕ3 ≡ 〈〈c〉〉irG
(
(Kcvotei) → ¬pun

)
: Moreover, the coercer can guarantee that

if he learns that the voter obeyed, then the voter will not be punished.

Note that the property expressed by the first formula reflects a rather strict require-
ment on the expectations of the coercer. Namely, in a system where the formula holds,
the coercer enforces a strategy that punishes the voter at every reached state where he
is not certain that the voter voted for the i–th candidate. As q |= ¬Kcvotei → pun
implies q |= ¬votei → pun, we observe that ϕ2 implies ϕ0 of Example 2.

Remark 5. Note thatKaϕ is definable in ATLir as 〈〈a〉〉
ir
⊥Uϕ. More generally, one

can define “everybody knows” entirely in ATLir by EAϕ ≡ 〈〈A〉〉ir⊥Uϕ.

Remark 6. The semantics of 〈〈A〉〉
ir
γ, presented in Section 2.2, encodes the notion

of “subjective” ability [50, 66]. That is, the agents must have a successful strategy
from all the states that they consider possible when the system is in state q. Then,
they know that the strategy indeed obtains γ. The alternative notion of “objective”
ability [19] requires the existence of a winning strategy from state q alone. We focus on
the subjective interpretation, as it is more standard in game theory and ATL, mostly
because it formalizes the notion of “knowing how to play.”

Note that if [q]∼E
A

= {q} and γ contains no nested strategic modalities, then the
subjective and objective semantics of 〈〈A〉〉

ir
γ at q coincide. Moreover, if ϕ,ϕ1, ϕ2 con-

tain no nested strategic modalities, then model checking 〈〈A〉〉
ir
ϕ1 Uϕ2 and 〈〈A〉〉

ir
Gϕ

in M, q according to the objective semantics can be easily reduced to the subjective
case by adding a spurious initial state q′, with transitions to all states in [q]∼E

A
, con-

trolled by a “dummy” agent outside A. We refer the interested reader to [62] for the
details of the construction.

2.4. Alternating Epistemic Mu-Calculus

It is well known that the modalities in ATLIr have simple fixpoint characteriza-
tions [6], and hence ATLIr can be embedded in a variant of µ-calculus with 〈〈A〉〉

Ir
X

as the basic modality and no alternation of fixpoint operators. At the same time, the
analogous variant of µ-calculus for imperfect information has incomparable expressive
power to ATLir [18]. In this section, we briefly present its syntax and semantics, and
recall the relevant results.

Formally, alternating epistemic µ-calculus (AEµC) takes the next-time fragment
of ATLir, possibly with epistemic modalities, and adds the least fixpoint operator µ.
The greatest fixpoint operator ν is defined as dual to µ. Let Vars be a set of second-
order variables ranging over 2St. The language of AEµC is defined by the following
grammar:

ϕ ::= p | Z | ¬ϕ | ϕ ∧ ϕ | 〈A〉ϕ | µZ(ϕ) | Kaϕ,

where p ∈ Props , Z ∈ Vars , a ∈ Agt,A ⊆ Agt, and the formulae are Z–positive, i.e.,
each free occurrence of Z is in the scope of an even number of negations. We define
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νZ(ϕ(Z)) ≡ ¬µZ(¬ϕ(¬Z)), where ϕ(¬Z) denotes the result of substituting in ϕ
all free occurrences of Z with ¬Z. A formula of AEµC is simple3 if in its negation
normal form4 it contains no occurrences of ν (resp. µ) on any syntactic path from an
occurrence of µZ (resp. νZ) to a bound occurrence of Z. Disallowing the alternation
of fixpoint operators simplifies the semantics of µ-calculus, and usually decreases its
model checking complexity. Thus, similarly to [18], we consider here only the simple
fragment of AEµC, denoted by sAEµC.

We evaluate the formulae of sAEµC with respect to the valuations of Vars , i.e.,
functions V : Vars → 2St. We denote the set of all the valuations of Vars by Vals . If
X ∈ Vars , Z ⊆ St, and V ∈ Vals , then by V[X := Z] we denote the valuation of
Vars such that V[X := Z](Y ) = V(Y ) for Y 6= X and V[X := Z](X) = Z.

The denotational semantics of sAEµC assigns to each formula ϕ the set of states
[[ϕ]]MV where ϕ is true under the valuation V ∈ Vals:

• [[p]]MV = V (p),

• [[Z]]MV = V(Z),

• [[¬ϕ]]MV = St \ [[ϕ]]MV ,

• [[ϕ ∧ ψ]]MV = [[ϕ]]MV ∩ [[ψ]]MV ,

• [[〈A〉ϕ]]MV = {q ∈ St | ∃sA ∈ ΣA ∀λ ∈ out ir
M (q, sA) λ[1] ∈ [[ϕ]]MV },

• [[µZ(ϕ)]]MV =
⋂
{Q ⊆ St | [[ϕ]]MV[Z:=Q] ⊆ Q},

• [[Kaϕ]]MV ={q ∈ St | ∀q′(q∼a q′ implies q′ ∈ [[ϕ]]MV )},

where ϕ ∈ sAEµC, p ∈ Props , Z ∈ Vars , A ⊆ Agt, and a ∈ Agt. If ϕ is a sentence,
i.e., it contains no free variables, then its validity does not depend on the valuation V ,
and we write M, q |= ϕ instead of q ∈ [[ϕ]]MV .

Example 7. Consider the AEµC formula µZ.
(
(¬pun → votei) ∨ 〈c〉Z

)
, i.e., the

“naive” fixpoint translation of the formula 〈〈c〉〉
ir

F
(
¬pun → votei

)
from Example 2.

The fixpoint computation produces the whole set of states St. Thus, in particular,
Mvote, q0 |= µZ.

(
(¬pun→ votei) ∨ 〈c〉Z

)
.

Proposition 8 ([18]). Model checking sAEµC with strategic modalities 〈〈A〉〉 for |A| ≤
2 is P-complete and can be done in timeO(|∼| · |ϕ|), where |∼| is the size of the largest
equivalence class among∼1, . . . ,∼k, and |ϕ| is the length of the formula. For |A| ≥ 3,
the problem is between NP and ∆P

2 with respect to |∼| and |ϕ|.

Thus, simple alternating epistemic µ-calculus can be an attractive alternative to
ATLir from the complexity point of view. Unfortunately, formulae of ATLir admit
no universal translations to sAEµC.

3 Usually, such formulae are called alternation-free to emphasize that they can broken down into state
subformulae containing no alternation of fixpoint operators. We do not use that terminology to avoid confu-
sion with the alternation of strategic quantifiers behind the 〈〈A〉〉 and 〈A〉 operators.

4Negation normal form of an AEµC formula ψ is a logically equivalent formula ψ′ expressed in a
version of the syntax of the logic extended with νZ(ϕ) (instead of deriving this operator from µ) and such
that negations appear only in front of propositions.
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Proposition 9 ([18]). ATLir and sAEµC have incomparable expressive power and
incomparable distinguishing power.

The proof that sAEµC does not cover the expressive power of ATLir uses for-
mulae of type 〈〈a〉〉Fp, but it is easy to construct a similar argument for 〈〈a〉〉Gp. In
consequence, long-term strategic modalities of ATLir do not have simple fixpoint
characterizations in terms of the next-step strategic modalities 〈A〉. We note in passing
that an analogous result was proved in [29, Theorem 11] for ATLiR, i.e., the variant
of ATL with imperfect information and perfect recall strategies. Namely, it is shown
that under these assumptions 〈〈a〉〉Fp cannot be expressed as a formula of epistemic
µ-calculus. Further results [29, 30] confirm that even richer variants of µ-calculus do
not cover the full expressive power of ATLiR.

3. Fixpoint Approximation of Strategic Abilities

The main idea in this paper is that sometimes, instead of the exact model check-
ing, it suffices to provide a lower and an upper bound for the output. In particular,
given a formula ϕ, we want to construct two translations trL(ϕ) and trU (ϕ) such that
trL(ϕ)⇒ ϕ⇒ trU (ϕ). If trL(ϕ) is verified as true, then the original formula ϕ must
also hold in the given model. Conversely, if trU (ϕ) evaluates to false, then ϕmust also
be false. Clearly, such an enterprise only makes sense if the truth values for the trans-
lations are easier to compute than for the original formula. To achieve that, we will
build our approximations of 〈〈A〉〉

ir
on fixpoint-definable properties. That is, we look

for translations that map the formulae of ATLir to an appropriate variant of alternating
µ-calculus.
Notation. In the rest of this section, we use ϕ,ψ to denote arbitrary formulae of
ATLir, and γ to denote arbitrary path subformulae of ATLir. Moreover, we assume
that M is an iCGS, and q is a state in M (unless explicitly stated otherwise).

3.1. Lower Bounds for Abilities

The complexity of model checking for sAEµC looks more attractive than that of
ATLir [6]. Unfortunately, the expressivity results cited in Section 2.4 imply that there
is no translation to simple fixpoint formulae based on standard epistemic and short-
term strategic operators, that would capture exactly the meaning of all ATLir modal-
ities. It might be possible, however, to come up with a translation trL that provides a
lower bound of the actual strategic abilities, i.e., such that M, q |= trL(〈〈A〉〉

ir
γ) im-

plies M, q |= 〈〈A〉〉
ir
γ. In other words, a translation which can only reduce, but never

enhance the abilities of the coalition.
We begin by investigating the “naive” fixpoint translation that mimics the one for

ATLIr, and show that it does not work. Then, we propose how to alter the semantics
of the next-time modality so that a general lower bound can be obtained. We focus first
on reachability goals, expressed by formulae 〈〈A〉〉

ir
Fϕ, and then extend the approach

to the other modalities.
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q1
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p

q′1 q′2

1

Figure 2: Counterexamples for trL1 : (A) M1; (B) M2

3.2. Trying It Simple for Reachability Goals

We start with the simplest translation, analogous to that of [6]:

trL1 (〈〈A〉〉
ir

Fϕ) = µZ.(ϕ ∨ 〈A〉Z).

Unfortunately, this translation provides neither a lower nor an upper bound. For the
former, use model M1 in Figure 2A, and observe that M1, q0 |= µZ.(p∨ 〈1〉Z), which
follows from the fact that M, q |= ϕ implies M, q |= µZ.(ϕ∨ 〈A〉Z), for all A ⊆ Agt.
On the other hand M1, q0 6|= 〈〈1〉〉irFp, as the only path starting from q1 loops at the
source, never reaching p. For the latter, take model M2 in Figure 2B, and observe that
M2, q0 |= 〈〈1〉〉irFp via the only possible strategy (note that the sequence q′1q

′
2 is never

visited when starting from q0). However, M2, q0 6|= µZ.(p ∨ 〈1〉Z), as no strategy can
enforce p from [q1]∼1

= {q1, q
′
1}.5 As a consequence, we get the following:

Proposition 10. M, q |= µZ.(ϕ ∨ 〈A〉Z) does not imply M, q |= 〈〈A〉〉
ir

Fϕ. The
converse implication does not hold either.

Let us now consider a slightly stronger fixpoint specification:

trL2 (〈〈A〉〉
ir

Fϕ) = µZ.(EAϕ ∨ 〈A〉Z).

The new translation works for the empty coalition and for single agents, but not for
coalitions of multiple players:

Proposition 11. Let A ⊆ Agt and q ∈ St. The following holds:

1. M, q |= µZ.(E∅ϕ ∨ 〈∅〉Z) iff M, q |= 〈〈∅〉〉
ir

Fϕ;
2. If |A| = 1, then M, q |= µZ.(EAϕ ∨ 〈A〉Z) implies M, q |= 〈〈A〉〉

ir
Fϕ, but the

converse does not universally hold;6

3. If |A| > 1, then M, q |= µZ.(EAϕ ∨ 〈A〉Z) does not imply M, q |= 〈〈A〉〉
ir

Fϕ.
The converse does not hold either.

5 Model M2 is taken from [18] where it was used to prove that sAEµC is not expressive enough to
subsume ATLir.

6 Note that, for A = {a}, EAϕ is equivalent to Kaϕ.
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Figure 3: M3: a counterexample for trL2

Proof. The outline of the proof is as follows. The first case follows from known re-
sults on games with perfect information. The second case is more involved: a strategy
that witnesses M, q |= 〈〈1〉〉

ir
Fϕ is built step-by-step while computing the fixed point

µZ.(EAϕ ∨ 〈1〉Z). The key observation here is that for a single-agent these computa-
tions operate on the epistemic classes of ∼1 which is an equivalence relation. As the
classes are disjoint, there is no possibility of a conflict due to the lack of uniformity,
once a new part of a strategy has been synthesised over a class. The procedure of in-
cremental synthesis cannot be extended to the relation of “everybody knows” for larger
coalitions, as shown in the third case.

Case 1: follows from the fact that for the empty coalition the ir–reachability is
equivalent to the Ir–reachability, which in turn has the standard fixpoint characteriza-
tion in AµC [6].

Case 2: Let us assume that A = {a} for some a ∈ Agt. We define the sequence
{Fj}j∈N of sAEµC formulae such that F0 = Kaϕ and Fj+1 = F0 ∨ 〈a〉Fj , for all
j ≥ 0. From Kleene fixed-point theorem we have [[µZ.(Kaϕ ∨ 〈a〉Z)]] =

⋃∞
j=0[[Fj ]],

and {[[Fj ]]}j∈N is a non-decreasing monotone sequence of subsets of St. Now, we
prove that for each j ∈ N there exists a partial strategy sja such that dom(sja) = [[Fj ]],
∀q ∈ dom(sja) ∀λ ∈ out ir(q, sja) ∃k ≤ j λ[k] |= ϕ, and sja ⊆ sj+1

a . The proof is by
induction on j. We constructively build sj+1

a from sja for each j ∈ N. The base case
is trivial. For the inductive step, firstly observe that for each j ∈ N if q ∈ [[Fj ]], then
[q]∼a

⊆ [[Fj ]]. As ∼a is an equivalence relation, for each q ∈ [[Fj+1]] either [q]∼a
⊆

[[Fj ]] or [q]∼a
⊆ [[Fj+1]] \ [[Fj ]]. In the first case we put sj+1

a (q) = sja(q). In the second
case, we know that there exists a strategy sqa such that ∀λ ∈ out ir(q, sqa) λ[1] ∈ [[Fj ]].
We thus put sj+1

a (q′) = sqa(q′) for all q′ ∈ [q]∼a
, which concludes the inductive proof.

We finally define the partial strategy sa =
⋃
j∈N s

j
a. For each q ∈ St such that

M, q |= µZ.(Kaϕ∨〈a〉Z), eitherM, q |= ϕ or ϕ is reached along each path consistent
with any extension of sa to a full strategy.
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Figure 4: Lower bounds are not tight: (A) M4; (B) M5

For the converse implication, take modelM2 in Figure 2B, and observe thatM2, q0 |=
〈〈1〉〉

ir
Fp but M2, q0 6|= µZ.(K1p ∨ 〈1〉Z).

Case 3: Consider the iCGS M3 presented in Figure 3. We assume that d1(q) =
{a, b} and d2(q) = {x, y}, for q ∈ {q1, q2, q3, q4}. In the remaining states the proto-
cols allow only one action. For clarity, we omit from the figure the transitions leaving
the states q1, q2, q3, and q4, leading to state sink . Assume now ϕ ≡ p. Note that
M3, q0 |= µZ.(E{1,2}ϕ ∨ 〈{1, 2}〉Z) and M3, q0 6|= 〈〈1, 2〉〉irFϕ. For larger coalitions
A, we extend the model with a sufficient number of spurious idle agents.

For the other direction, use the counterexample from Case 2, extended with appro-
priately many spurious agents. This concludes the proof of the case and of the whole
proposition. 2

According to Propositions 10 and 11, translation trL2 provides lower bounds for
ATLir verification only in a limited number of instances. Also, the bound is rather
loose, as the following example demonstrates.

Example 12. Consider the single-agent iCGS M4 presented in Figure 4A. The sole
available strategy, in which agent 1 selects always action a, enforces eventually reach-
ing p, i.e., M4, q0 |= 〈〈1〉〉irFp. On the other hand, M4, q0 6|= µZ.(K1p ∨ 〈1〉Z). This
is because the next-step operator in ATLir requires reaching p simultaneously from all
the states indistinguishable from q0, whereas p is reached from q0, q1 in one and two
steps, respectively.

3.3. Steadfast Next Step Operator
To obtain a tighter lower bound, and one that works universally, we introduce a new

modality. 〈A〉• can be seen as a semantic variant of the next-step ability operator 〈A〉
where: (i) agents in A look for a short-term strategy that succeeds from the “common
knowledge” neighborhood of the current state (rather than from the “everybody knows”
neighborhood), and (ii) they are allowed to “steadfastly” pursue their goal in a variable
number of steps within the indistinguishability class. In this section, we propose the
semantics of 〈A〉• and show how to revise the lower bound. Some additional insights
are provided in Section 3.5.

We begin by defining the auxiliary function Reach so that q ∈ ReachM (sA, Q, ϕ)
collects all q ∈ Q such that all the paths executing sA from q eventually reach ϕ
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without leaving Q, except possibly for the last step:

ReachM (sA, Q, ϕ) = {q ∈ Q | ∀λ ∈ out(q, sA) ∃i . M, λ[i] |= ϕ

and ∀0 ≤ j < i . λ[j] ∈ Q}.

In other words, every outcome path must stay in Q until it reaches ϕ.
The steadfast next-step operator 〈A〉• is defined as follows:

• M, q |= 〈A〉•ϕ iff there is sA ∈ Σir
A such that ReachM (sA, [q]∼C

A
, ϕ) = [q]∼C

A
.

That is, ϕ must be reached this way from every state in [q]∼C
A

. Now we can propose
our ultimate attempt at the lower bound for reachability goals:

trL3 (〈〈A〉〉
ir

Fϕ) = µZ.(EAϕ ∨ 〈A〉•Z),

with the following result.

Proposition 13. IfM, q |= µZ.(EAϕ∨〈A〉•Z), thenM, q |= 〈〈A〉〉
ir

Fϕ. The converse
does not universally hold.

Proof. The proof is similar to the proof of the second case of Proposition 11, namely,
we synthesise a strategy witnessing M, q |= 〈〈A〉〉

ir
Fϕ during iterative computation

of the fixpoint µZ.(EAϕ ∨ 〈A〉•Z). The key observation here is that the operator
〈A〉•Z selects those states for which the entire common knowledge neighborhood for
group A is enforced into Z. Similarly to Proposition 11.2, we utilise the fact that com-
mon knowledge is an equivalence relation, therefore a partial strategy defined over the
neighborhood during a step of the computation will not conflict with partial strategies
created at any further moment.

Formally, we define a sequence {Fj}j∈N of sAEµC formulae such that F0 = EAϕ
and Fj+1 = F0 ∨ 〈A〉•Fj , for all j ≥ 0. We also use a sequence {Hj}j∈N with
Hj = 〈A〉•Fj . From Kleene fixed-point theorem we have [[µZ.(EAϕ ∨ 〈A〉•Z)]] =⋃∞
j=0[[Fj ]] = [[F0]] ∪

⋃∞
j=0[[Hj ]]. Observe that, as ∼CA is an equivalence relation, we

have for each q ∈ St and j ∈ N that if [q]∼C
A
∩ [[Hj ]] 6= ∅, then [q]∼C

A
⊆ [[Hj ]].

We prove that for each j ∈ N there exists a partial strategy sjA such that dom(sjA) =

[[Hj ]], ∀q ∈ dom(sjA) ∀λ ∈ out ir(q, sjA) ∃k ∈ N . λ[k] |= EAϕ, and sjA ⊆ sj+1
A .

The proof is by induction on j. In the base case of H0 = 〈A〉•EAϕ observe that if
q ∈ [[H0]], then there exists a partial strategy s0,q

A with dom(s0,q
A ) = [q]∼C

A
such that

every λ ∈ out ir(q, s0,q
A ) stays in [q]∼C

A
until it reaches a state where EAϕ holds. We

can now define s0
A =

⋃
[q]∼C

A
∈St/∼C

A
s0,q
A which is uniform, and reaches EAϕ on all

execution paths. For the inductive step, we divide the construction of sj+1
A in two cases.

Firstly, if q ∈ [[Hj ]], then we put sj+1
A (q) = sjA(q). Secondly, let q ∈ [[Hj+1]] \ [[Hj ]].

In this case there exists a partial strategy sj+1,q
A with dom(sj+1,q

A ) = [q]∼C
A

such that

each outcome λ ∈ out ir(q, sj+1,q
A ) stays in [q]∼C

A
until it reaches a state q′ such that

either q′ |= EAϕ or q′ ∈ [[Hj ]]. In the latter, from the inductive assumption we know
that following sj+1

A always leads to reaching EAϕ without leaving [[Hj ]]. We thus
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take sj+1
A =

⋃
[q]∼C

A
∈St/∼C

A
sj+1,q
A which, again, is uniform, and reaches EAϕ on all

execution paths. This concludes the inductive part of the proof.
Finally, we build a partial strategy sA =

⋃
j∈N s

j
A, whose any extension is such

that for each q ∈ St, if M, q |= µZ.(EAϕ ∨ 〈A〉•Z), then a state in which EAϕ holds
is eventually reached along each outcome path λ ∈ out ir(q, s′A). This concludes the
proof of the implication.

To see that the converse does not hold, consider model M5 in Figure 4B. We have
that M5, q0 |= 〈〈1〉〉irFp, but M5, q0 6|= µZ.(K1p ∨ 〈1〉•Z). 2

Thus, trL3 indeed provides a lower bound for reachability goals expressed in ATLir.

3.4. Lower Bounds for “Always” and “Until”

So far, we have concentrated on reachability goals, expressed with the strategic
operator 〈〈A〉〉

ir
F. We now extend the translation and the result in Proposition 13 to all

the modalities of ATLir:

trL3 (〈〈A〉〉
ir

Gϕ) = νZ.(CAϕ ∧ 〈A〉•Z),

trL3 (〈〈A〉〉
ir
ψUϕ) = µZ.

(
EAϕ ∨ (CAψ ∧ 〈A〉•Z)

)
.

Theorem 14.

1. If M, q |= νZ.(CAϕ ∧ 〈A〉•Z), then M, q |= 〈〈A〉〉
ir

Gϕ;
2. If M, q |= µZ.

(
EAϕ ∨ (CAψ ∧ 〈A〉•Z)

)
, then M, q |= 〈〈A〉〉

ir
ψUϕ.

Proof. The proof exploits techniques similar to the proofs of Propositions 11 and 13.
The main difference concerns the first case, where a strategy witnessing M, q |=
〈〈A〉〉

ir
Gϕ is built decrementally, while computing the fixpoint M, q |= νZ.(CAϕ ∧

〈A〉•Z). Again, we employ the observation that the relation of common knowledge
partitions the state space into disjoint equivalence classes. At the j–th step we preserve
a partial uniform strategy defined over a set-theoretic sum [[Gj ]] of such classes that
enforces ϕ along the first i steps of each of its outcomes. At the (j + 1)–th step we
obtain [[Gj+1]] by selecting those classes that enforce [[Gj ]] from itself.

Case 1: Let us define the sequence {Gj}j∈N of formulae such that G0 = CAϕ
and Gj+1 = G0 ∧ 〈A〉•Gj , for all j ≥ 0. From Kleene fixed-point theorem, we have
[[νZ.(CAϕ ∧ 〈A〉•Z)]] =

⋂∞
j=0[[Gj ]]. It suffices to prove that for each j ∈ N there

exists a strategy sjA such that ∀q ∈ [[Gj ]] ∀λ ∈ out ir(q, sjA) ∀0 ≤ k ≤ j . λ[k] |= ϕ.
The proof is by induction on j, with the trivial base case. Assume that the inductive as-
sumption holds for some j ∈ N. From the definition of the steadfast next-step operator
we can define for each equivalence class [q]∼C

A
∈ [[Gj+1]]/∼CA a partial strategy sq,j+1

A

such that ∀q′ ∈ [q]∼C
A
∀λ ∈ out ir(q, sq,j+1

A ) . λ[1] ∈ [[Gj ]]. We now construct

sj+1
A =

⋃
[q]∼C

A
∈[[Gj+1]]/∼C

A
sq,j+1
A ∪ sjA|[[CAϕ]]\[[Gj ]].

Intuitively, sjA enforces that a path leaving each q ∈ [[Gj+1]] stays within [[CAϕ]] for
at least j steps. Moreover, sjA ⊆ sj+1

A for all j. Thus, sA =
⋃
j∈N s

j
A enforces that a

path leaving each q ∈
⋃
j∈N[[Gj ]] stays within [[CAϕ]] for infinitely many steps, which
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concludes the proof. Note that the correctness of the construction relies the fact that
∼CA is an equivalence relation.

Case 2: The proof is analogous to that of Proposition 13. 2

Remark 15. In fact, a closer inspection of the above proof shows that a stronger result
can be obtained:

• M, q |= trL3 (〈〈A〉〉
ir

Gϕ) implies M, q |= 〈〈A〉〉
ir

GCAϕ;

• M, q |= trL3 (〈〈A〉〉
ir
ψUϕ) implies M, q |= 〈〈A〉〉

ir
(CAψ) U (EAϕ).

3.5. Discussion & Properties
Theorem 14 shows that trL3 (ϕ) provides a correct lower bound of the value of ϕ

for all formulae of ATLir. In this section, we discuss the tightness of the approxima-
tion from the theoretical point of view. In particular, we argue in Section 3.5.1 that
the use of a non-standard next-step ability operator is justified, as it allows to obtain
strictly tighter approximations than the standard one. Moreover, we present a partial
characterization of models for which the lower bound is tight by giving a necessary
condition (Section 3.5.2, Proposition 18). It shows that if the lower bound verification
for 〈〈A〉〉γ returns “true,” then the agents in A must have a recomputable strategy sA
to enforce γ – in the sense that they will keep knowing that sA is winning for γ at any
point of executing sA.

An empirical evaluation will be presented in Section 4.

3.5.1. Comparing trL2 and trL3 for Reachability Goals
Translation trL3 updates trL2 by replacing the standard next-step ability operator

〈A〉 with the “steadfast next-step ability” 〈A〉•. The difference between the semantics
of 〈A〉ϕ and 〈A〉•ϕ is twofold. First, 〈A〉ϕ looks for a winning short-term strategy
in the “everybody knows” neighborhood of a given state (i.e., [q]∼E

A
), whereas 〈A〉•ϕ

looks at the “common knowledge” neighborhood (i.e., [q]∼C
A

). Secondly, 〈A〉• allows
to “zig-zag” across [q]∼C

A
until a state satisfying ϕ is found.

Actually, the first change would suffice to provide a universally correct lower bound
for ATLir. The second update makes it more useful in models where agents may not
see the occurrence of some action, such as M4 of Figure 4A. To see this formally,
we show that trL3 provides a strictly tighter approximation than trL2 on singleton
coalitions:

Proposition 16. If M, q |= µZ.(Kaϕ ∨ 〈a〉Z), then M, q |= µZ.(Kaϕ ∨ 〈a〉•Z). The
converse does not universally hold.

Proof. It suffices to observe that M, q |= 〈a〉p implies M, q |= 〈a〉•p, for any p ∈
Props . Note that this is true only for single-agent coalitions. For the converse, notice
that in the iCGSM4 of Figure 4A we haveM4, q0 |= µZ.(K1p∨〈1〉•Z) andM4, q0 6|=
µZ.(K1p ∨ 〈1〉Z). 2

On the other hand, if agent a always sees whenever an action occurs, then trL2
and trL3 coincide for a’s abilities. Formally, let us call iCGS M lockstep for a if,
whenever there is a transition from q to q′ in M , we have q 6∼a q′. The following is
straightforward.
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Proposition 17. If M is lockstep for a, then M, q |= 〈a〉ϕ iff M, q |= 〈a〉•ϕ. In
consequence, M, q |= trL2 (〈〈a〉〉Fϕ) iff M, q |= trL3 (〈〈a〉〉Fϕ).

3.5.2. When is the Lower Bound Tight?
An interesting question is: what is the subclass of iCGS’s for which trL3 is tight,

i.e., the answer given by the approximation is exact? We address the question only
partially here. In fact, we characterize a subclass of iCGS’s for which trL3 is certainly
not tight, by the necessary condition below.

Let γ ≡ Gψ or γ ≡ ψ1 Uψ2 for some ψ,ψ1, ψ2 ∈ ATLir. We say that strategy
sA ∈ Σir

A is winning for γ from q if it obtains γ for all paths in outir(q, sA). More-
over, for such sA, let RR(q, sA, γ) be the set of relevant reachable states of sA in the
context of γ, defined as follows: RR(q, sA,Gψ) is the set of states that occur any-
where in outir(q, sA); RR(q, sA, ψ1 Uψ2) is the set of states that occur anywhere in
outir(q, sA) before the first occurrence of ψ2.

Proposition 18. Let M be an iCGS, q ∈ StM . Furthermore, suppose that M, q |=
trL3 (〈〈A〉〉

ir
γ), i.e., the lower bound translation of 〈〈A〉〉

ir
γ returns true in M, q. Then,

there is a strategy sA ∈ Σir
A which is winning for γ from every q′ ∈ RR(q, sA, γ).

Proof. Straightforward from the fact that trL3 (ϕ) is a fixpoint formula, and model
checking of trL3 (ϕ) produces a winning strategy for γ from q. 2

Conversely, the approximation is not tight if there are winning strategies, but each
of them reaches an intermediate state q′ from which no winning follow-up strategy
can be computed. This can only happen if some states in the epistemic neighborhood
[q′]∼E

A
are not reachable by sA. In consequence, the agents in A forget relevant in-

formation that comes solely from the fact that they are executing sA. We will use
Proposition 18 in Section 4 to show that the few benchmarks existing in the literature
are not amenable to our approximations. The complete characterization of applicability
for our approximation scheme is left for future work.

3.6. Upper Bound

In a given model, it is always the case that Σir
A ⊆ ΣIr

A. Thus, whatever coalition
A can achieve according to the ir-semantics, they can also achieve it according to the
Ir-semantics. Conversely, if the agents have no perfect information strategy to achieve
γ, they cannot have an imperfect information strategy to obtain the same. We use this
observation to define a simple upper bound for formulae of ATLir:7

Proposition 19. LetM be an iCGS and q ∈ StM a state inM . Then, M, q |= 〈〈A〉〉
ir
γ

implies M, q |= EA〈〈A〉〉Irγ.

Proof. Straightforward from the semantics. 2

7 The same observation was used in [21] to obtain a preliminary pruning of the model before model
checking formulae of ATLir.
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3.7. Approximation Semantics for ATLir

Based on Theorem 14 and Proposition 19, we propose the lower approximation trL
and the upper approximation trU for all the formulae of ATLir as follows:

trL(p) = p,

trL(¬ϕ) = ¬trU (ϕ),

trL(ϕ ∧ ψ) = trL(ϕ) ∧ trL(ψ),

trL(〈A〉ϕ) = 〈A〉trL(ϕ),

trL(〈〈A〉〉
ir

Gϕ) = νZ.(CAtrL(ϕ) ∧ 〈A〉•Z),

trL(〈〈A〉〉
ir
ψUϕ) = µZ.

(
EAtrL(ϕ) ∨ (CAtrL(ψ) ∧ 〈A〉•Z)

)
.

trU (p) = p,

trU (¬ϕ) = ¬trL(ϕ),

trU (ϕ ∧ ψ) = trU (ϕ) ∧ trU (ψ),

trU (〈A〉ϕ) = EA〈〈A〉〉IrXtrU (ϕ),

trU (〈〈A〉〉
ir

Gϕ) = EA〈〈A〉〉IrGtrU (ϕ),

trU (〈〈A〉〉
ir
ψUϕ) = EA〈〈A〉〉Ir trU (ψ) U trU (ϕ).

It should be noted that, in computing the upper approximation, every application of
rules for trL(〈〈A〉〉

ir
Gϕ) and trL(〈〈A〉〉

ir
ψUϕ) selects a fresh variable to be bound by

ν and µ, respectively.

Theorem 20. For any iCGS M , state q in it, and ATLir formula ϕ:
M, q |= trL(ϕ) ⇒ M, q |= ϕ ⇒ M, q |= trU (ϕ).

Proof. Straightforward induction on the structure of ϕ. 2

Theorem 21. If ϕ includes only coalitions of size at most 1, then model checking
trL(ϕ) and trU (ϕ) can be done in time O(|M | · |ϕ|). In the general case, the problem
of model checking trL(ϕ) and trU (ϕ) is between NP and ∆P

2 wrt maxA∈ϕ(| ∼CA |)
and |ϕ|.

Proof. Firstly, note that both translations work in linear time and produce formulae of
size linear in the size of the original. The proof follows by induction on the structure
of ϕ. The interesting cases are trU (〈〈A〉〉

ir
ψ) and trL(〈〈A〉〉

ir
ψ), where ψ contains no

strategic modalities. For the former, recall that model checking of 〈〈A〉〉
Ir
ψ is in P wrt

to the size of the model and the formula [6]. For the latter, it suffices to determine
the model checking complexity for formulae 〈A〉•ψ, where ψ contains no strategic
modalities. The hardness results for 〈A〉•ψ carry over to model checking of arbitrary
formulae. For the upper complexity bounds, observe that the model checking for arbi-
trary formulae can be done by iterative computation of fixpoints, and recursive model
checking of subformulae (bottom-up), with polynomially many iterations and recursive
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calls. Thus, if 〈A〉•ψ can be model-checked in P, the overall procedure is also in P. If
〈A〉•ψ can be model-checked in NP, the overall procedure is in ∆P

2 .
We further divide the proof into subcases, depending on the size of the coalition.
Case |A| = 0: Let M ′ be exactly as M plus an additional fresh proposition p that

holds only in state q. Then, model checking M, q |= 〈∅〉•ψ is equivalent to model
checking the CTL formula A (p Uψ) in M ′, q, which is doable in polynomial time.

Case |A| = 1: Let a ∈ Agt and M ′α be the model M with the actions of agent a
fixed to α inside the epistemic neighborhood [q]∼a , plus an additional fresh proposition
pa that holds in the states of [q]∼a . Then, model checking M, q |= 〈a〉•ψ reduces to
checking if the CTLK formula KaA (pa Uψ) holds in any pointed model (M ′α, q),
which is doable in polynomial time (the number of possible α’s is bounded byO(|M |),
and the cost of verifying a single pointed model is polynomial).

Case |A| ≥ 2: We adapt the proof of [18, Theorem 12]. First, we show that model
checking M, q |= 〈A〉•ψ is in NP. This can be demonstrateed by the following al-
gorithm: (1) label the states in the common knowledge neighborhood [q]∼C

A
by a fresh

proposition pC
A, (2) guess a memoryless strategy for A in [q]∼C

A
, (2) prune M accord-

ing to the strategy, obtaining model M ′, and (3) model-check the CTLK formula
M ′, q |= CAA (pC

A Uψ). Clearly, since model checking CTLK is in P, the algorithm
runs in nondeterministic polynomial time.

For the NP-hardness, we adapt the SAT reduction in [18, Proposition 11]. Given
a Boolean formula Φ in CNF, we construct a 2-agent iCGS MΦ as follows. Each
literal l in clause ξ of Φ is associated with a state qξl . At state qξl , player 1 indicates a
literal from ξ, and player 2 decides on the valuation of the underlying Boolean variable.
If 1 indicated a “wrong” literal l′ 6= l then the system proceeds to state q> where
proposition yes holds. The same happens if 1 indicated the “right” literal (l) and 2
selected the valuation that makes l true. Otherwise the system proceeds to the “sink”
state q⊥. Player 1 must select literals uniformly within clauses, so qξl ∼1 q

ξ′

l′ iff ξ = ξ′.
Player 2 is to select uniform valuations of variables, i.e., qξl ∼2 q

ξ′

l′ iff var(l) = var(l′)
where var(l) is the variable contained in l. An example of the construction is presented
in Figure 5.

Then, Φ is satisfiable iff MΦ, q |= 〈1, 2〉•yes for an arbitrary “literal” state q. 2

Thus, our approximations offer computational advantage over exact ATLir in cases
when the common knowledge neighborhoods for coalition A are significantly smaller
than the whole model. This happens when the members of A have similar knowledge,
and especially when the coalition consists of a single agent. An interested reader may
note the analogy to a number of results for solving multi-player games with imperfect
information and perfect recall, which is undecidable in general but has been proved
decidable for verifying abilities of individual agents [24], coalitions with exactly the
same knowledge [40], hierarchical knowledge [12, 13], and knowledge coming from
publicly visible actions [10].

3.8. Approximation of Abilities under Perfect Recall
In this paper, we focus on approximating abilities based on memoryless strategies.

Approximations might be equally useful for ATLiR (i.e., the variant of ATL using
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Figure 5: Model MΦ for Φ ≡ C1 ∧ C2, C1 ≡ x1 ∨ x2, C2 ≡ ¬x1 ∨ x2. Only transitions leading to q⊥
are labeled; the other combinations of actions lead to q>.

uniform perfect recall strategies). However, the high intractability of ATLiR model
checking suggests that a substantial extension will be needed to come up with satisfac-
tory approximations.

Note, on the other hand, that if A have a successful memoryless strategy, then they
also have a winning perfect recall strategy. In consequence, as long as our lower bounds
are correct for ATLir, they are also correct for ATLiR. Moreover, it is well known
that the semantics of ATLIR and ATLIr coincide [6, 66]. Thus, our upper bound is
also correct for ATLiR.

Finally, we observe that the benchmark in Section 4.2 is a model of perfect recall,
i.e., the states of the model explicitly encode the agents’ full memory of their past
observations. In consequence, the memoryless and perfect recall semantics of ATL
coincide in the model. The experimental results suggest that, for such models, veri-
fication of perfect recall abilities can be much improved by using the approximations
proposed here.

4. Experimental Evaluation

Theorems 20 and 21 validate the approximation semantics theoretically. In this
section, we back up the theoretical results by looking at how well the approximations
work in practice. We address two issues: the performance and the accuracy of the
approximations.

4.1. Existing Benchmarks

The only publicly available tool that provides verification of ATL with imperfect
information is MCMAS [55, 63, 52, 53]. We note, however, that imperfect information
strategies are not really at the heart of the model checker, the focus being on verification
of CTLK and ATLK with perfect information strategies. More dedicated attempts
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produced so far only experimental algorithms, with preliminary performance results
reported in [61, 22, 42, 23, 62, 21]. Because of that, there are few benchmarks for
model checking ATLir, and few experiments have actually been conducted.

The classes of models typically used to estimate the performance of ATLir model
checking are TianJi [63, 22] and Castles [61]. The properties to be verified are usually
reachability properties, saying that Tian Ji can achieve a win over the king (in TianJi),
or that a given coalition of workers can defeat another castle (for Castles). We observe
that both TianJi and Castles do not satisfy the necessary condition in Proposition 18.
This is because the states of the model do not encode some relevant information about
the actions that have been already played by the coalition. Thus, even one step before
winning the game, the players take into account also some (possibly losing) states that
couldn’t be reached by the strategy they are executing.

This means that the sAEµC approximations, proposed in this paper, are not useful
for TianJi and Castles. It also means that the benchmarks arguably do not capture
realistic scenarios. We usually do not want to assume agents to forget their own actions
from a few steps back. In the remainder, we propose several new benchmarks that can
be used to evaluate our approximation scheme.

Finally, we note that most experiments reported in the literature use very simple
input formulae (no nested strategic modalities; singleton coalitions or groups of agents
with identical indistinguishability relations). This is usually a matter of focus: one
cannot verify everything at once, so it seems natural to start with structurally simplest
instances. Here, we follow the trend.

4.2. Verifying the Simple Voting Scenario
For the first benchmark, we adapt the simple voting scenario in Example 1. The

model consists of k + 1 agents (k voters v1, . . . , vk, and 1 coercer c). The module
of voter vi implements the transition structure from Figure 1, with three modifica-
tions. First, the voter can at any state execute the “idle” action wait. In consequence,
synchronous voting as well as interleaving of votes is allowed. Secondly, in states
q3, . . . , q6, the coercer’s action np (“no punishment”) leads to an additional final state
(q′7, . . . , q

′
10), labeled accordingly. Thirdly, the old and new leaves in the structure (i.e.,

q7, . . . , q10, q
′
7, . . . , q

′
10) are labeled with an additional atomic proposition finishi. The

resulting model is the synchronous product of k agent modules, each being an instance
of the structure presented in Figure 6. In the synchronous product, a global state is a
tuple of local states. Two global states are indistinguishable for an agent if they agree
on the agent’s local component, following the standard assumption that the agent can
only observe her local state.

As specifications, we use formulae saying that: (i) the coercer can force the voter to
vote for candidate 1 or else the voter is punished, and (ii) the voter can avoid voting for
candidate 1 and being punished (cf. Example 2). Note, however, that the model used for
the experiments is an unconstrained product of the voter modules. Thus, it includes also
paths that were absent in the CEGS Mvote from Example 1 (in particular, ones where a
voter executes wait all the time). To deal with this, we modify the specifications from
Example 2 so that they discard such paths:

1. ϕ1 ≡ 〈〈c〉〉irG
(
(finishi ∧ ¬puni) → votei,1

)
which always holds in the voting

scenario,
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Figure 6: A voter module for the experiments

2. ϕ2 ≡ 〈〈vi〉〉irF
(
finishi ∧ ¬puni ∧ ¬votei,1

)
which is always false.

The results of the experiments for formula ϕ1 are shown in Table 1, and for ϕ2 in
Table 2. The columns present the following information:

• the parameter of the model (i.e., the number of voters k),

• the size of the state space (#states),

• the generation time for models (tgen),

• the time and output of verification (tverif, result) for model checking of the lower
approximation trL(ϕ),

• ...and similarly for the upper approximation trU (ϕ);

• the percentage of cases where the bounds have matched (Match), and

• the total running time of the exact ATLir model checking for ϕ (tg+tv).

The running times are given in seconds. Timeout indicates that the process did not
terminate in 48 hours (!). Memout shows that the process ran out of RAM, and could
not complete the verification task.
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k #states tgen Lower approx. Upper approx. Match Exact
tverif result tverif result (tg+tv)

1 15 0.001 0.0001 True 0.0001 True 100% 0.006
2 225 0.015 0.001 True 0.0008 True 100% 14.79
3 3375 0.29 0.09 True 0.019 True 100% timeout
4 50625 8.248 14.90 True 0.47 True 100% timeout
5 662529 157.977 5626 True 9.14 True 100% timeout
6 memout timeout

Table 1: Experimental results for simple voting model (formula ϕ1)

k #states tgen Lower approx. Upper approx. Match Exact
tverif result tverif result (tg+tv)

1 15 0.001 0.00005 False 0.00003 False 100% 0.005
2 225 0.015 0.0003 False 0.0002 False 100% 0.02
3 3375 0.29 0.0083 False 0.004 False 100% 0.04
4 50625 8.248 0.522 False 0.084 False 100% 0.12
5 662529 157.977 101.88 False 1.35 False 100% 0.16
6 memout 0.17

Table 2: Experimental results for simple voting (ϕ2)

The computation of the lower and upper approximations was done with a straight-
forward implementation (in Python 3) of the fixpoint model checking algorithm for
sAEµC and ATLIr, respectively. We used the explicit representation of models, and
the algorithms were not optimized in any way. The exact ATLir model checking was
done with MCMAS 1.3.0 in such a way that the underlying CEGS of the ISPL code
was isomorphic to the explicit models used to compute approximations. The subjec-
tive semantics of ATLir was obtained by using the option -atlk 2 and setting the initial
states as the starting indistinguishability class for the proponent. All the tests were
conducted on a computer with an Intel Core i7-6700 CPU with dynamic clock speed
of 2.60 – 3.50 GHz, 32 GB RAM, running 64bit Ubuntu 16.04 Linux.
Discussion of the results. The exact model checking with MCMAS performed well on
the inputs where no winning strategy existed (formula ϕ2), but was very bad at finding
the existing winning strategy for formula ϕ1. In that case, our approximations offered
huge speedup. Moreover, the approximations actually found the winning strategy in all
the tested instances, thus producing fully conclusive output. This might be partly due
to the fact that the indistinguishability relations are rather sparse in the models, and in
consequence the models are relatively close to perfect information.

4.3. Bridge Endplay

To evaluate our scheme on a broader class of structures, we use bridge play scenar-
ios of a type often considered in bridge handbooks and magazines. The task is to find
a winning strategy for the declarer, usually depicted at the South position (S), in the
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Figure 7: Example 6-endplay in bridge

k-endplay of the game, see Figure 7 for an illustration. The deck consists of 4n cards
in total (n in each suit),8 and the initial state captures each player holding k cards in
their hand, after having played n − k cards. This way we obtain a family of models,
parameterized by the possible values of (n, k). A NoTrump contract is being played;
the declarer wins if she takes more than k/2 tricks in the endplay.

The players’ cards are played sequentially (clockwise). S plays first at the begin-
ning of the game. Each next trick (i.e., the set of four played cards, one per player) is
opened by the player who won the latest trick. The declarer handles her own cards and
the ones of the dummy (N). The opponents (W and E) handle their own hands each.
The cards of the dummy are visible to everybody; the other hands are only seen by their
owners. Each player remembers the cards that have already been played, including the
ones that were used up before the initial state of the k-endplay. That is, the local state
of a player contains: the current hand of the player, the current hand of the dummy,
the cards from the deck that were already used up in the previous tricks, the status of
the current trick, i.e., the sequence of pairs (player, card) for the cards already played
within the trick (alternatively, the sequence of cards already played within the trick,
plus who started the trick); and the current score (which team has won how many tricks
so far). The models are described more systematically in Appendix A. Moreover, our
model generators, together with some example generated models, are available online
at https://github.com/blackbat13/ATLFormulaChecker/tree/master/bridge model .

Notice that, since we will only look at the strategic abilities of the declarer (S), the
epistemic relations of the other players (W, E) are irrelevant in our experiments.

We observe the following properties of the model. First, it is turn-based (with the
“idle” action wait that players use when another player is laying down a card). Sec-
ondly, players have imperfect information, since they cannot infer the hands of the other
players. The missing information is relevant: anybody who has ever played bridge or
poker knows how much the limited knowledge of the opponents’ hands decreases one’s
chances of winning the game. Thirdly, this is a model of imperfect recall. The players

8 In real bridge, n = 13, but we keep it variable to study how the model checking algorithms scale up
for different sizes of the input model.
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(n, k) #states tgen Lower approx. Upper approx. Match Exact
tverif %true tverif %false (tg+tv)

(1, 1) 11 0.0007 0.00007 100% 0.00004 0% 100% 0.12
(2, 2) 346 0.011 0.0008 100% 0.0003 0% 100% 2.42 h?

(3, 3) 12953 0.73 0.07 85% 0.01 15% 100% timeout
(4, 4) 617897 35.19 348.37 90% 0.72 10% 100% timeout
(5, 5)? 2443467 132.00 8815.73 100% 4.216 0% 100% timeout

Table 3: Experimental results: solving endplay in bridge

do not remember in which order the cards have been played so far, and who had what
cards.9 For example, after a trick collecting ♣10, ♣ J, ♣A, and ♣8 in the endplay
of Figure 7, the declarer will know that those cards have been played, but not who
played which of them. Finally, the model is lockstep (everybody sees when a transition
happens), and thus trL2 and trL3 coincide on singleton coalitions.

The results of the experiments for formula ϕ ≡ 〈〈S〉〉
ir

Fwin are shown in Table 3.
The columns present the following information:

• the parameters of the model (n, k),

• the size of the state space (#states),

• the generation time for models (tgen),

• the verification time (tverif) and the percentage of instances for which the output
of approximate verification has been conclusive for the lower approximation trL
(%true) and the upper approximation trU (%false);

• the percentage of cases where the bounds have matched (Match), and

• the total running time of the exact ATLir model checking with MCMAS (tg+tv).

The times are given in seconds, except where indicated. The experiments were
implemented and run in the same environment as for the voting scenario in Section 4.2.
Again, we ran the experiments for up to 48h per instance. The results in each row are
averaged over 20 randomly generated instances, except for (?) where only 1 hand-
crafted instance was used.10

Discussion of results. In the experiments, our approximations offered a dramatic
speedup. The exact model checking of ϕ was infeasible except for the simplest models
(hundreds of states), even with an optimized symbolic model checker like MCMAS.
In contrast, our bounds were verified for models up to millions of states. Moreover,
our approximations obtained an astonishing level of accuracy: the bounds matched in
100% of the analyzed instances, thus producing fully conclusive output.

9 This reflects the capabilities of middle-level bridge players: they usually remember what has been
played, but not in which order and by whom. Advanced players remember also who played what, and
masters remember the whole history of the play.

10 In case of the approximate model checking for random (5, 5) models, the program was not even able to
complete model generation due to memout. For the exact model checking of random (2, 2) models, timeout
was obtained in most instances.
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(n, k) #states tgen Lower approx. Upper approx. Match Exact
tverif %true tverif %false (tg+tv)

(1, 1) 19 0.001 0.0001 100% 0.0001 0% 100% 9.68 h?

(2, 2) 713 0.04 0.01 100% 0.004 0% 100% timeout
(3, 3) 52843 5.18 18.61 65% 0.58 15% 80% timeout
(4, 4) memout timeout

Table 4: Experimental results for absent-minded declarer

(n, k) #states tgen Lower approx. Upper approx. Match Exact
tverif %true tverif %false (tg+tv)

(1, 1) 19 0.002 <0.0001 0% <0.0001 0% 0% 14.93 h?

(2, 2) 735 0.05 0.001 0% 0.004 10% 10% timeout
(3, 3) 60563 6.34 0.04 0% 0.58 35% 35% timeout
(4, 4) memout timeout

Table 5: Absent-minded declarer, approximation trL2

We also emphasize that the algorithms computing our bounds have been imple-
mented without any optimizations. This suggests that there is still much room for
improving the performance. A simple optimization of data structures is discussed in
Section 5, with running times improved by several orders of magnitude.

4.4. Bridge Endplay by Absentminded Declarer

In the bridge endplay models, the players always see when a move is made. Thus,
for singleton coalitions, the steadfast next-time operator 〈a〉• coincides with the stan-
dard next-time abilities expressed by 〈a〉. In order to better assess the performance of
our lower bound, we have considered a variant of the scenario where the declarer is
absentminded and does not see the cards being laid on the table until the end of each
trick. Moreover, she can play her and the dummy’s cards at any moment, even in par-
allel with one of the opponents. This results in larger indistinguishability classes for S,
but also in a general increase of the number of states and transitions in the model.11

The results of the experiments are shown in Table 4. Note that, for this class of
models, the bounds do not match as tightly as before. Still, the approximation was
conclusive in an overwhelming majority of instances. Moreover, it grossly outper-
formed the exact model checking which was (barely) possible only in the trivial case
of n = 1.

The models are not turn-based, not lockstep, and not of perfect recall. Since they
are not lockstep, approximations trL2 and trL3 do not have to coincide. In Table 5, we
present the experimental results obtained with trL2 , which show that the improved ap-
proximation trL3 provides tighter lower bounds also from the practical point of view.

11 The model generators and example generated models for the absentminded declarer are also available
at https://github.com/blackbat13/ATLFormulaChecker/tree/master/bridge model .
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5. Optimizations

The experimental results presented in Section 4 were obtained with a straight-
forward implementation of the fixpoint algorithms that compute the lower and upper
bounds. This, potentially, leaves room for various optimizations. In this section, we
show that the space for optimizing the performance of the algorithms is indeed vast.

We propose three possible sources of improvement. First, we observe that the com-
putation of the lower bound operates in fact on epistemic equivalence classes rather
than individual states in the model. In consequence, it suffices to represent which
equivalence classes are connected by which transitions. Secondly, we propose how to
improve operations on sets of states, using the technique of disjoint sets. Finally, we
show how to further optimize the memory consumption for verification of the bridge
model, based on the observation that the iCGS forms a tree where the next “stratum”
depends only on the one that immediately precedes it. Note that, while the last opti-
mization relies on the specific structure of the benchmark, the first two are completely
independent from the application domain.

On top of that, we implemented the optimized algorithm in C++ which offered
better control of the data management than Python.

5.1. Reduction Based on Epistemic Equivalence Classes
Consider the fixpoint algorithm computing the lower bound of M, q |= 〈〈A〉〉

ir
γ.

The crucial part of the algorithm is the computation of the pre-image of the current
set of “candidate” states Q. That is, the algorithm looks for the states q′ such that
M, q′ |= 〈A〉•Q. We observe now that this property is invariant with respect to the
common knowledge relation ∼CA. In other words, either all the states in the common
knowledge neighborhood [q′]∼C

A
are in the pre-image, or none of them. In consequence,

when searching for one-step strategies, it suffices to consider outgoing transitions per
equivalence class of ∼CA, and not for each global state separately.

Our first optimization consists of an abstraction of the transition space to transitions
between equivalence classes of ∼CA, and an abstraction of the action space by available
one-step strategies of the coalition. This means that we keep the information about
individual states only to produce the epistemic classes and transitions between them.
After the model has been generated, all the relevant information is “moved” to the
representative of the class. In particular, the outgoing transitions from any state in
class [q′]∼C

A
are moved to its representative.

The epistemic abstraction allows to obtain a significant speedup of the lower bound
computation, especially for singleton coalitions. This is because we “pre-compile” the
explicit model in a way that reduces the complexity of checking whether all the states
in [q′] are in the pre-image ofQ. The complexity decreases from quadratic with respect
to the size of [q′] in the naive implementation, to constant in the optimized one.

5.2. Optimization of Data Structures Based on Disjoint Sets
The fixpoint algorithms, used for computing the lower and the upper bounds in

Section 4, heavily depend on the representation of sets of states in the model. The
sets naturally arise as epistemic equivalence classes and their unions, cf. the epistemic
abstraction of transitions proposed in Section 5.1. To reduce the memory needed to
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Figure 8: An example use of a merge-find structure while adding an epistemic class to the set of epistemic
classes with a guaranteed winning strategy. The two stages of executing union(q1, p4) (finding the root of
an epistemic class and joining two sets of classes) are shown. Note that an update of the arc labelled by a
(between the pair of structures that contain q1 and p4) is also shown.

store such sets, and speed up the operations of adding elements to a set and merging
two sets, we use the technique of disjoint-set data structures, also known as merge-find
sets [33]. In the approach, each set of states is stored as an arbitrary tree (see Figure 8
for an illustration). The root of the tree serves as the representative.

The three key functions, operating on this data structure, are: make set (to create
singleton sets at the beginning), find (to find the representative of the set where a given
element belongs), and union (to merge two sets). Every member of the set is equipped
with a single pointer indicating its parent and, by transitivity, pointing to the represen-
tative of the set. The root is used not only for identifying the set (by the find operation),
but also to store all the relevant data related to the set of states.

This is especially important for transitions between states. We already mentioned
that it is sufficient to look at the sets of all outgoing transitions for each epistemic
class as a whole. Similarly, for incoming transitions, it matters only whether they
point to the union of epistemic classes whose pre-image is currently being computed.
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Thanks to that, we can take an advantage of the disjoint-set structure and the fact that
every set is represented by one root. The idea is to store information about all the
transitions from (and into) the set only in its root. To further optimize this procedure,
we reassign a transition from an arbitrary state only when the transition is used. Thus,
the reassignment is only made after the algorithm calls function find to ask for the
representative (root) of the endpoint of the transition. Thanks to the postponed update
of transitions, an efficient implementation of the disjoint-set data structure reduces the
complexity of merging two sets to amortized near-constant-time, i.e., the inverse of the
Ackermann function.

Further details:

• Function make set(s) is used during the model generation phase. It takes node s,
and adds two extra fields: one for storing the pointer to the parent, the other to
store an approximate height of the tree rooted in this node (initially 1).

• Function find(s) is implemented together with path compression. That is, while
searching for s, the algorithm updates the parent pointers of every node found
on the path from s to the root r; the new value of each pointer being r. Note that
find(s) returns the representative r, which can be used not only to check whether
two elements are in the same set, but also to update the connection if it initially
pointed to an element different from r.

• The implementation of function union(s1,s2) uses the approximate heights of
the trees rooted in s1 and s2. As the new representative, the node with the larger
value is chosen. In case of equal values, an arbitrary node is selected, and the
algorithm adds 1 to its approximate height. In order to speed up further compu-
tations, we also reassign the starting points of all the outgoing transitions to the
new root. For incoming transitions, we use lazy update. That is, we postpone the
reassignment of the ending points for transitions until the transition is used for
the first time – see the description of function find.

5.3. Dynamic Discarding of Irrelevant Submodels

The optimizations presented in Sections 5.1 and 5.2 can be applied in the approx-
imate verification of any input models. Moreover, they offer an improvement in both
the time and the space complexity of the computation. Unfortunately, preliminary tests
showed that it was not enough to complete experiments for arbitrary (5, 5) models of
bridge endplay due to the memory bottleneck. This is because the size of the tree-like
structure for bridge grows exponentially with the increase of the main parameter. The
epistemic abstraction from Section 5.1 significantly reduces the size of the graph, but
the whole model of global states is being generated before the abstraction is applied.
More precisely, the model generation algorithm (so far) works by simulating the game,
step by step, from the initial states. All the information about the previously generated
states is stored in the memory, and used to generate subsequent states and transitions.
This is needed in order to check, when generating a new state, if it has not been already
added to the model. The question is: can we avoid it, e.g., by “zooming” in and out on
parts of the model that are relevant at a given stage of the computation?
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Figure 9: Intermediate shape of the state space for a bridge game during the model generation

For the bridge endplay benchmark the answer is yes. Observe that the models of
bridge endplay have layered structure, where the states of the next layer have only in-
coming transitions from the previous layer. Moreover, the epistemic indistinguishabil-
ity classes never traverse across layers, see Figure 9 for an illustration. In consequence,
the epistemic abstraction can be done on the fly, and as soon as the states in layer l are
completely generated, the algorithm can discard the explicit representation of states
and transitions from level l − 1, keeping only their epistemic equivalence classes that
will be used in the verification phase. This reduces the memory requirements of model
generation from the size of the explicit state graph to doubled diameter of the graph,
more precisely the maximal aggregate width of two subsequent layers.

5.4. Experimental Results for the Optimised Algorithm

The experiments in Section 4 were conducted using a straightforward, one can even
say naive, implementation of the fixpoint approximation algorithms. Already for that
implementation, the results looked very promising, scaling up to millions of states. In
this section, we show that one can develop and apply various optimization techniques,
both domain-independent and domain-specific, that complement the general approxi-
mation scheme. We have focused on optimizing the data structures and operations on
them. Most likely, other kinds of optimizations can be applied as well; we plan to study
the issue in the future.

The optimized algorithms were implemented in C++ which offered better control
of data management than Python. We ran the experiments in the same way and in the
same environment as before. The results of the experiments with the optimized algo-
rithms are shown in Table 6. When compared to Table 3, one can see further dramatic
speedup and a lower memory usage. The algorithms were able to generate and verify
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(n, k) #states tgen Lower approx. Upper approx. Match Exact
tverif %true tverif %false (tg+tv)

(1, 1) 11 <0.0001 <0.0001 100% <0.0001 0% 100% 0.12
(2, 2) 346 <0.0001 <0.0001 56% <0.0001 44% 100% 2.42 h?

(3, 3) 12953 0.06 <0.0001 62% <0.0001 38% 100% timeout
(4, 4) 617897 4.64 0.56 62% 0.26 38% 100% timeout
(5, 5)? 2443467 34.00 3.0 100% 2.0 0% 100% timeout
(5, 5) 15190971 124.00 8.5 50% 6.0 50% 100% timeout
(6, 6)? 70094091 3779.00 667.0 100% 78.0 0% 100% timeout

Table 6: Results of the optimised algorithm for the bridge model

a model with over 70 million states in less than 75 minutes. Perhaps more importantly,
the verification of the handpicked (5, 5)? model (which marked the limit of our ca-
pability in Section 4) ran almost 3000 times (!) faster than with the straightforward
implementation. This strongly suggests that the potential for further improvement is
still large.

Our optimized algorithms reached their limit with randomly generated (6, 6) mod-
els, facing memout during model generation. A possible way to overcome the limita-
tion is by state abstraction of the model. We discuss the idea in Section 6.
Symbolic verification. It should be noted that the optimizations discussed in this sec-
tion are not based on a symbolic representation of the state space. The symbolic ap-
proach that triggered the success of model checking in verification of large models is
typically based on Binary Decision Diagrams (BDDs) [20, 16] that are also behind the
engine of MCMAS [53]. Our preliminary attempts in this direction have been disap-
pointing. We suspect that the reason lies in the difficulty of ensuring that a selected
one-step strategy is uniform in a given common knowledge neighborhood. This might
have required a finer analysis of the state space than is feasible by means of a com-
pressed representation using BDDs. We leave a more thorough study of the topic for
future work.

6. Combining Fixpoint Approximation and Abstraction

Abstraction [27, 25] is a technique that can significantly reduce the size of the
model, and hence also the time needed to complete the model checking. The idea
is to cluster similar states in the model (called henceforth the concrete model) into
equivalence classes that would serve as states in the new model (the abstract model).
Similarly, we group similar concrete actions into abstract actions. For temporal logic,
may/must abstractions are often used, typically combined with 3-valued semantics [15,
36]. May abstraction potentially adds (but never removes!) paths from the system, so
that it consistently underapproximates universal formulae (“for all paths”) and overap-
proximates existential ones (“there is a path”). Must abstraction does the opposite. If
lucky, they produce the output of the verification, but in general can give inconclusive
answers. Thus, they work in a very similar way to our fixpoint approximations, the
only difference being that abstractions transform models rather than formulae.
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We propose that, in case the verification problem is very hard computationally, it
can be beneficial to combine both kinds of approximations. That is, one can transform
the model and the formula; we only need to take care that both sides of the approx-
imation produce the same kind of bound (either lower or upper one). We begin by
proposing a variant of abstraction for ATLir, that has been strongly inspired by the
three-valued abstraction schemes for strategic ability in concurrent games [8, 7]. Then,
we show how to combine it with the fixpoint approximation from Section 3, and present
an experimental evaluation.

6.1. State and Action Abstraction for ATLir

Here, we semi-formally explain the idea of the abstraction. The technical details
are presented in Appendix B. Similarly to may/must abstractions, we define the lower
abstraction ALA(M) of M with respect to A and the upper abstraction AUA(M) of
M with respect to A. ALA(M) underapproximates A’s abilities in M , and AUA(M)
overapproximates A’s abilities in M . In both cases, the general structure is that of a
nondeterministic iCGS where the opponents of A have been removed from the model.
The actions of the agents in Agt\A are incorporated into the nondeterministic transition
function.

In order to obtain the abstractions, we start with an abstraction generator A =
(AS ,AAc) with the following components: AS that “clusters” concrete states into
abstract states, and AAc that maps concrete actions into abstract actions. The lower
abstraction is obtained as follows:

• We pessimistically fix the valuation of propositions: p holds in the abstract state
q̂ if it holds in every concrete state q′ ∈ q̂.

• Two abstract states are indistinguishable if any of their concrete states are.

• Protocols: we look at all the concrete states that appear in all the abstract states
indistinguishable from q̂, and take the actions that appear in all of their protocols,
modulo the renaming of actions with AAc.

• The nondeterministic transition function: q̂2 = ô(q̂1, α̂1, . . . , α̂|A|) in the ab-
stract model ALA(M) if there exists a pair of concrete states q1 ∈ q̂1 and q2 ∈ q̂2

in M with a transition from q1 to q2, labeled accordingly. That is, we aim at the
may abstraction of paths.

The upper abstraction is constructed as follows:

• The valuation of propositions is optimistic, i.e., p holds in the abstract state q̂ if
it holds in at least one concrete state q′ ∈ q̂.

• Two abstract states are indistinguishable if all of their concrete states are.

• Protocols: we look at all the concrete states that appear in at least one abstract
state indistinguishable to q̂, and take the actions that appear in any of the proto-
cols there, modulo the renaming of actions with AAc.
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• Transitions: q̂2 = ô(q̂1, α̂1, . . . , α̂|A|) in the abstract modelAUA(M) if, for every
concrete state q1 ∈ q̂1, there is some q2 ∈ q̂2 with a transition from q1 to q2,
labeled (after renaming) by the tuple of actions (α̂1, . . . , α̂|A|). This way, we
obtain the must abstraction of paths.

Again, the details of the construction, and a formal statement of its correctness, can
be found in Appendix B. We will show an example of the abstraction in Section 6.4.

6.2. Approximation Semantics for ATLir in Abstract Models

The abstractions transform a given iCGS in such a way that one of them under-
approximates, and the other one overapproximates the abilities of a given coalition
A, and hence also the truth value of all the formulae 〈〈A〉〉γ with no nested strategic
modalities. Lifting the scheme to arbitrary formulae of ATLir is straightforward, one
only needs to take care of negation. We do it by tagging the formula recursively with
a superscript, either L or U . Later, the formulae tagged with L will be evaluated in
the lower abstraction of M , and the ones tagged with U will be evaluated in the upper
abstraction of M . For example, the lower abstraction of 〈〈A〉〉

ir
F¬〈〈B〉〉

ir
G(p1 ∧ ¬p2)

should produce the following tags: 〈〈A〉〉L
ir

F¬〈〈B〉〉U
ir

G(pU1 ∧ ¬pL2 ). That is, the first
strategic modality should be interpreted in ALA(M) and the second one in AUB(M).
For the atomic propositions, the set of agents generating the abstraction is irrelevant.
Thus, they can be interpreted e.g. in AU∅ (M) and AL∅ (M), respectively.

Formally, tagging for the lower abstraction is defined recursively by:

TRL(p) = pL, indicating that we will look at the lower abstraction for p;
TRL(〈〈A〉〉

ir
ϕ) = 〈〈A〉〉L

ir
TRL(ϕ): analogously;

TRL(¬ϕ) = ¬TRU (ϕ): negation switches between approximations;
TRL(ϕ ∧ ψ) = TRL(ϕ) ∧ TRL(ψ), TRL(Xϕ) = XTRL(ϕ),

TRL(Gϕ) = GTRL(ϕ), and TRL(ψUϕ) = TRL(ψ) UTRL(ϕ),

i.e., the translation distributes over the other operators.

Similarly for the upper abstraction:

TRU (p) = pU ;

TRU (〈〈A〉〉
ir
ϕ) = 〈〈A〉〉U

ir
TRU (ϕ);

TRU (¬ϕ) = ¬TRL(ϕ);

TRU (ϕ ∧ ψ) = TRU (ϕ) ∧ TRU (ψ), TRU (Xϕ) = XTRU (ϕ),

TRU (Gϕ) = GTRU (ϕ), and TRU (ψUϕ) = TRU (ψ) UTRU (ϕ).

Now, we define the lower and upper approximation semantics |=L and |=U . Given
are: an iCGS M and an abstraction generatorA. We define a family of iCGS’s: Mx

A =
AxA(M), one for every x ∈ {L,U} and A ⊆ Agt. To the semantics in Section 2, we
add the following clauses for the new formulae px, 〈〈B〉〉x

ir
ϕ:

• My
A, q̂ |= px iff Mx

A, q̂ |= p;
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• My
A, q̂ |= 〈〈B〉〉xirϕ iff Mx

B , q̂ |= 〈〈B〉〉irϕ.

Finally, we define:

• M, q |=L ϕ iff ML
∅ ,AS(q) |= TRL(ϕ);

• M, q |=U ϕ iff MU
∅ ,AS(q) |= TRU (ϕ).

Theorem 22. For every formula ϕ of ATLir, we have

M, q |=L ϕ ⇒ M, q |= ϕ ⇒ M, q |=U ϕ.

Proof. Straightforward induction on the structure of the formula, based on Proposi-
tions 24 and 25 (see Appendix B). 2

6.3. Generalized Approximation Semantics: Combining Approximation on Models and
Formulae

We have presented two methods of approximating the output of model checking for
formulae of ATLir. One, proposed and studied in Sections 3–4, transforms formulae
into ones that provide a lower and an upper bound on the truth value of the original
formula. The other one, discussed in the preceding subsections, produces analogous
transformations of models. Here, we point out that both methods can be combined
in a straightforward manner. To this end, we extend the tagging schemes of strategic
modalities to the steadfast next step operator, and make the tagging distribute over
fixpoint operators:

TRL(〈A〉•ϕ) = 〈A〉•LTRL(ϕ);

TRL(Z) = Z;

TRL(µZ.ϕ) = µZ.TRL(ϕ) and TRL(νZ.ϕ) = νZ.TRL(ϕ).

and analogously for TRU . We also add the following clause:

• My
A, q̂ |= 〈B〉•

x
ϕ iff Mx

B , q̂ |= 〈B〉•ϕ.

The extension to AEµC is straightforward. Now, the result of Theorem 22 can be
extended to the combination of abstraction and fixpoint approximation:

Theorem 23. For every formula ϕ of ATLir, we have

M, q |=L trL(ϕ) ⇒ M, q |= ϕ ⇒ M, q |=U trU (ϕ).

Proof. Straightforward induction on the structure of the formula, based on Theorem 14,
Proposition 19, Proposition 24, and Proposition 25. 2

In Section 6.5, we will see to what extent the combined scheme allows to verify
larger instances of the bridge endplay scenario.
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(n, k) AL #states Lower abstraction Upper abstraction Matchtgen tverif %true tgen tverif %false
(5, 5) 1 1328192 258 1.4 0% 330 1.0 0% 0%
(5, 5) 2 2481220 323 2.8 0% 412 3.4 0% 0%
(5, 5) 3 6223840 420 5.4 0% 500 7.6 0% 0%
(5, 5) 4 9124109 490 8.25 50% 612 9.25 25% 75%
(5, 5) 5 15190971 124 8.5 50% 124 6.0 50% 100%

Table 7: Verification with abstraction: results for the bridge model

6.4. Lower and Upper Abstractions for the Bridge Model
In order to perform experimental evaluation of how abstraction combines with the

fixpoint approximation of formulae, we go back to the bridge endplay scenario in Sec-
tion 4.3. A natural abstraction, often used by human players, is to ignore the ranks
of cards below a particular level R. That is, the player registers the rank and the suit
of each card from R up, and only the suit for low cards below R. For example, if
R = J and the hand of the player is ♠AK92 ♦10 ♣J653, then the abstraction pro-
duces♠AKxx♦x♣Jxxx (meaning: the Ace, the King, and two low cards in Spades,
one low card in Diamonds, and the Jack plus three low cards in Clubs). Similarly, an
opponent’s action of playing♦8 will appear as♦x in the abstract model. This way, we
obtain a scalable family of abstractions for every bridge endplay model M , that allows
to “zoom” in and out on the model, depending on the need.

Formally, our abstraction generators are based on a family of deck simplifiers
simplr : Deckn → Deckr, 1 ≤ r ≤ n, defined by:

simplr((rank, suit)) =

{
(rank, suit) if rank > n− r + 1

(n− r + 1, suit) else

That is, the upper r − 1 ranks are kept intact, and all the lower ones are clustered
together. Note that, for r = 1, all the ranks collapse. Conversely, for r = n, the
function does not change the deck, and hence the endplay model is left unchanged.
Now, Ar = (ArS ,ArAc) with:

• ArS((hands, tricks, next, board, lead, history, clock, suit)) = (simplr(hands),
tricks, next, simplr(board), lead, simplr(history), clock, suit),12

• ArAc(c) = simplr(c), and

• ArAc(wait) = wait.

6.5. Experiments: Combining Abstraction and Fixpoint Approximations
We have conducted three series of experiments with abstractions of the bridge end-

play models. First, we re-approached the largest models that we managed to verify in

12 We recall that a detailed description of the bridge model can be found in Appendix A.
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(n, k) AL #states Lower abstraction Upper abstraction Matchtgen tverif %true tgen tverif %false
(6, 6)? 1 272113 680 <1 0% 1203 <1 0% 0%
(6, 6)? 2 408127 714 1 0% 989 1 0% 0%
(6, 6)? 3 1420924 739 2 0% 993 2 0% 0%
(6, 6)? 4 6925594 874 11 100% 1064 9 0% 100%
(6, 6)? 5 13977070 1126 25 100% 1371 21 0% 100%
(6, 6)? 6 70094091 3779 667 100% 3779 78 0% 100%

Table 8: Further results for abstractions of the bridge model

the previous sections. We looked at the balance between accuracy and performance,
obtained by different granularity levels of abstraction. The results are shown in Tables 7
and 8. Table 7 presents the output of experiments for randomly generated models (5, 5),
i.e., models of full play with each player holding initially 5 cards. We studied all pos-
sible levels of abstraction from r = 1 (all ranks of cards removed) up. The results for
r = 5 (full model, no abstraction) form the baseline; we repeat them after Section 5.4.
Table 8 presents an analogous study for the handpicked model (6, 6), the same as in
Section 5.4.

Finally, we model checked existence of winning strategies in k-endplay with the
full deck of cards (n = 13), for a fixed level of abstraction (r = 6) and different
values of k. The results are shown in Table 9. This series of experiments is especially
interesting, as it best captures what happens in reality. Middle-level human players
deal with the complexity of the full deck of cards by discerning between ranks from A
down to 10, and abstracting away from the “low ranks” between 9 and 2.

In all the tables, the columns present the following information:

• the parameters of the model (n, k), i.e., the number of cards per suit in the deck
(n) and the initial number of cards per player (k);

• the level of the abstraction (AL= r);

• the size of the state space after abstraction (#states);

• the generation time for the lower and the upper abstraction of the model (tgen),

• the time and the output of verification (tverif, %true, %false) for model checking
of the lower and the upper abstraction,

• the percentage of cases where the bounds have matched (Match).

The times are given in seconds. The experiments were run in exactly the same environ-
ment as before. We used the optimized version of our fixpoint algorithm, presented in
Section 5. The results in each row are averaged over 20 randomly generated instances,
except for (?) where only 1 hand-crafted instance was used.
Discussion of the results. The first two series of experiments show, unsurprisingly,
that stronger abstraction saves much of the verification time, but also removes from the
model information that can be vital for the verification output. In particular, too strong
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(n, k) AL #states Lower abstraction Upper abstraction Matchtgen tverif %true tgen tverif %false
(13, 1) 6 11 <1 <1 65% <1 <1 15% 80%
(13, 2) 6 243 <1 <1 45% <1 <1 20% 65%
(13, 3) 6 12504 <1 0.1 55% <1 <1 15% 70%
(13, 4) 6 545323 10 0.5 50% 12 0.45 30% 80%
(13, 5) 6 6406684 562 7.2 20% 646 9.2 0% 20%

Table 9: Further results for abstractions of the bridge model

abstraction removes information needed to identify more sophisticated winning strate-
gies. Of course, when combining two approximation techniques, one should expect the
gap between the bounds to be significant. Still, the gap in our experiments was clearly
due to abstraction, and not because of the fixpoint approximation (this is evident from
the baseline results). On a more positive note, the results in Table 8 demonstrate that,
for some models, conclusive model checking with abstraction can be done faster by an
order of magnitude, compared to model checking without abstraction. Note also that
conclusive verification for the (6, 6)? model was possible without discerning half of
the card ranks in the deck (abstraction level r = 4).

The results in the last series are especially hopeful. With abstraction, we were able
to verify models which had been beyond our reach in their full form. The accuracy of
the approximation ranged between 20% and 80%. This means that combining approx-
imation on formulae and approximation on models allows for model checking of some
instances that are too complex for either of the approximation methods alone.

7. Conclusions

Synthesis of winning strategies for imperfect information games is well known
to be hard. Similarly, verification of strategic properties in scenarios with imperfect
information is difficult, both theoretically and in practice. In this paper, we suggest that
model checking of logics like ATLir can be in some cases performed by computing
an under- and an overapproximation of the ATLir specification, and comparing if the
bounds match.

We propose such approximations, prove their correctness, and show that, for single-
ton coalitions, their values can be computed in polynomial time. We also propose novel
benchmarks for experimental validation. No less importantly, we report very promis-
ing experimental results, in performance as well as accuracy of the output. To our best
knowledge, this is the first successful attempt at approximating strategic abilities un-
der imperfect information by means of fixpoint methods. Finally, we demonstrate that
there is much room for improvement, both in the sense of optimizing the algorithms
and enhancing the applicability of the method. For the former, we propose a number
of refinements, most notably an optimization of operations on data structures based
on disjoint sets. For the latter, we show that combining our method with may/must
abstraction allows to verify some instances that are too complex for either of the ap-
proximation methods alone.
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The results open up multiple avenues for future work. On one hand, we plan to look
for even tighter fixpoint approximations of ATLir formulae. Secondly, our approxi-
mation scheme is rather inefficient for abilities of coalitions, especially ones whose
members have largely orthogonal views of the state of the system; this should be im-
proved. As noted in Section 5, the problem of designing specialised data structures for
dealing with the requirement of uniformity of strategies is still open and needs to be
addressed. Another interesting topic is a better approximation of abilities for agents
with perfect recall. Last but not least, we would like to apply the methodology, possibly
combined with model reduction schemes such as in [9, 49], to verify coercion-related
properties of actual e-voting protocols. We have already made the first step in [48]
where the framework of fixpoint approximation is used to verify coercion resistance in
a simplified version of the SELENE voting protocol [64]. The results reported in [48]
empirically confirm that the approach based on fixpoint approximations of strategic
abilities often produces conclusive results (i.e., the approximations are tight). More-
over, a detailed comparison with the state-of-the-art algorithms implemented in the
MCMAS model checker show a consistent superiority of the approximate verification.
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Appendix A. Bridge Model: The Details

Our iCGS for the bridge endplay is constructed as follows.
Agents and states. Let us first define the set of cards used in the play (i.e., the deck).
Recall the main parameters (n, k) of the model, with n being the number of cards per
suit, and k the initial number of cards per hand. The set of possible ranks isRanksn =
{1, . . . , n}, where n represents the Ace, n− 1 stands for the King, etc. The set of suits
is Suits = {1, . . . , 4}, with 1 for the Spades (♠), 2 for the Hearts (♥), and so on. Now,
Deckn = Ranksn × Suits. The four positions at the table are labeled after the four
cardinal directions S,W,N,E, and represented by the set Pos = {0, . . . , 3}. The set
of agents is Agt = {S,W,E}, with the declarer (S) handling the cards at the South and
the North positions, and W,E handling their own hands. The set of global states St of
the iCGS consists of tuples

(hands, tricks, next, board, lead, history, clock, suit),

each representing a different state of the play. The components of the tuple store the
following information:

• hands = (handS, handW, handN, handE), with pairwise disjoint sets handi ⊆
Deckn. Internally, this is represented by four arrays describing cards that each
player holds, where−1 means an already played card. Initially, the cards in each
hand are sorted in the ascending order;

• history ⊆ Deckn: an array containing all the already played cards, sorted in
the ascending order;

• tricks ∈ {0, . . . , k}×{0, . . . , k}: two numbers, describing the current interme-
diate result of the game (how many tricks each team has won);

• suit ∈ Suits ∪ {−1}: the suit of the current round or −1 if yet undetermined;

• lead ∈ Pos: the number of the position from which the current round started;

• next ∈ Pos: the number of the position from which the next card will be played;

• board = (card1, . . . , card4): the cards currently lying on the table, with cardi ∈
Deckn∪{−1}, and−1 denoting that the card on this position has not been played
yet;
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hands: [[A♠], [A♥], [A♦], [A♣]]
history: []
tricks: [0, 0]
suit: −1
lead: 0
next: 0
board: [−1, −1, −1, −1]
clock: 0

(A♠,wait,wait,wait)−−−−−−−−−−−−−−→

hands: [[−1], [A♥], [A♦], [A♣]]
history: [A♠]
tricks: [0, 0]
suit: ♠
lead: 0
next: 1
board: [A♠, −1, −1, −1]
clock: 1

Figure A.10: Example initial state of a (1, 1) bridge model, with an opening transition

hands: [[−1, A♥], [−1, A♠], [K♠, −1], [K♣, A♣]]
history: [K♦, K♥, A♦]
tricks: [0, 0]
suit: ♦
lead: 0
next: 3
board: [K♦, K♥, A♦, −1]
clock: 3

Figure A.11: A state of bridge endplay for n = 2, k = 2

• clock ∈ {0, . . . , 4}: the stage of the current round (0, . . . , 3 for playing the cards
from subsequent positions, 4 for collecting the cards and computing the results
of the round).

Parts of example bridge models (1, 1) and (2, 2) are shown in Figures A.10 and A.11.
Actions and transitions. The actions available to each player are: di(q) = handi(q)
if it is player i’s turn to play a card, and di(q) = {wait} otherwise. An example
transition is depicted in Figure A.10.
Indistinguishability relation. We recall that the only relevant epistemic relation for
the model checking experiments in this paper is ∼S, i.e., the relation for the declarer.
Two states are indistinguishable to S if the values of all variables except for the hands
of the opponents are exactly the same, and the opponents’ hands are of the same size
(contain the same number of cards). For instance, an indistinguishable state to the one
in Figure A.11 can be obtained by swapping the Ace of Spades and the King of Clubs
between the hands of the opponents, i.e., the one with hands: [[−1, A♥], [K♣, −1],
[K♠, −1], [A♣, A♠]].

Appendix B. State and Action Abstraction: The Details

We present the details of the state and action abstraction for ATLir over iCGS. The
idea is to group states (respectively, actions) into abstract states (resp. abstract actions)
according to a given equivalence relation. We begin by defining the equivalence rela-
tions, based on mappings that we call abstraction generators. Then, we propose how to
construct the lower and the upper abstraction of models, that preserve the lower (resp.
upper) bounds of strategic abilities for a given coalition.
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Abstraction Generators
Given are: a countable set of atomic propositions Props , an imperfect information

concurrent game structure M = (Agt, St, Act, d, o, V, {∼a| a ∈ Agt}) satisfying all
the standard requirements, and a coalition A = {a1, . . . , a|A|} ⊆ Agt. Moreover, we
are given the sets AST and AAC from which we will draw abstract states and actions.

In order to obtain the abstraction, we start with an abstraction generator A =
(AS ,AAc) with the following components:

• AS : St → AST “clusters” concrete states into abstract states. Note: AS does
not have to preserve V , i.e., it can cluster together states with different valuations
of propositions;

• AAc : Agt×St×Act→ AAC maps concrete actions into abstract actions. Note
that the way an actual action is mapped may depend on the agent who executes
it, and the state where it is executed.

We also lift the generators to sets in the natural way: AS(Q) = {AS(q) | q ∈ Q},
AAc(a, q,Θ) = {AAc(a, q, α) | α ∈ Θ}, AAc(a,Q,Θ) = {AAc(a, q,Θ) | q ∈ Q},
and so on.

Note that the state and action abstraction generators AS and AAc define equiva-
lence relations on the sets St andAct, respectively. We write [q] = {q′ | AS(q′) = AS(q)}
and [α]a,q = {α′ | AAc(a, q, α′) = AAc(a, q, α)} to denote their abstraction classes.
Moreover, we will sometimes identify the abstract states (resp. actions) with the corre-
sponding abstraction classes. That is, we can e.g. write [q] and AS(q) interchangeably
by a slight abuse of notation.

Lower and Upper Abstractions of Models: General Structure
We will now define the lower abstraction ALA(M) of M with respect to A, as well

as the upper abstractionAUA(M) ofM with respect toA, that approximateA’s abilities
in M . In both cases, the general structure is that of a nondeterministic iCGS:13

M̂ = (Âgt, Ŝt, Âct, d̂, ô, V̂ , {∼̂a | a ∈ Âgt}),
where:

• Âgt = A,

• Ŝt = AS(St), and

• Âct = AAc(Agt, St, Act).

That is, we remove from the model all the opponents, keeping only agents inA. The
actions of the other agents will be “amalgamated” into the nondeterministic transition
function. Secondly, we cluster states according to function AS , and actions according
to function AAc. Note that the way concrete actions are grouped into abstract actions
may depend on who executes the action and where it is executed.

13 We define nondeterministic imperfect information concurrent game structures as a simple extension of
iCGS where: (i) protocols da(q) can be empty, and (ii) the transition function o returns a subset of St rather
than a single state (moreover, the subset can be empty).
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Lower Abstraction: The Specifics

For the lower approximation of A’s abilities, we pessimistically fix the valuation of
propositions: V̂ (q̂) =

⋂
q′∈A−1

S (q̂) V (q′). That is, p holds in the abstract state q̂ iff it
holds in every concrete state q′ ∈ q̂.

The indistinguishability relations are given as follows: q̂1∼̂aq̂2 iff q1 ∼a q2 for
some q1 ∈ q̂1, q2 ∈ q̂2. In other words, two abstract states are indistinguishable if any
of their concrete states are. Moreover, the protocols of the coalition members in the
abstract model are defined as:

d̂a(q̂) =
⋂

q′∈img(q̂, ∼̂a)

AAc(a, q′, da(q′)).

That is, we look at all the concrete states that appear in all the abstract states indis-
tinguishable from q̂, and take the actions that appear in all of their protocols, modulo
the renaming of actions with AAc. Notice that the renaming takes place before the
intersection.

Now, the nondeterministic transition function can be defined as:

ô(q̂, α̂1, . . . , α̂|A|) =
⋃

q′∈A−1
S (q̂)

AS
(
succ(q′,A−1

Ac(a1, q
′, α̂1), . . . ,A−1

Ac(a|A|, q
′, α̂|A|))

)
for every (α̂1, . . . , α̂|A|) ∈ d̂A(q̂). In other words, q̂2 = ô(q̂1, α̂1, . . . , α̂|A|) in the
abstract model ALA(M) iff there exists a pair of concrete states q1 ∈ q̂1 and q2 ∈ q̂2 in
M with a transition from q1 to q2, labeled accordingly.

We observe that:

1. We do not require the state abstraction generatorAS to be consistent with V (i.e.,
it is not required that AS(q) = AS(q′) implies V (q) = V (q′)). Instead, we use
the pessimistic (or skeptical) interpretation of atomic propositions in ALA(M).
That is, making p true in ALA(M) is no easier than in M . In consequence,
achieving 〈〈A〉〉Xp, 〈〈A〉〉Gp, and 〈〈A〉〉p1 U p2 can be only harder in the abstract
model.

2. For every a ∈ A, d̂a is uniform by construction.
3. It may happen that d̂a(q̂) = ∅. Then, the set of A’s collective strategies is also

empty, and in consequence all the formulae 〈〈A〉〉γ are false in ALA(M). This is
not really a problem for us, since we will only useALA(M) to compute the lower
bound of A’s abilities, cf. Proposition 24.

4. The construction consistently: (i) decreases the truth values of atomic proposi-
tions, (ii) increases the uncertainty of the agents in A, (iii) constrains their avail-
able choices, and (iv) applies a “may” abstraction to the transitions consistent
with any remaining strategy.

In consequence, we obtain the following.

Proposition 24. Let γ be an LTL formula containing no negations. Then,
ALA(M),AS(q) |= 〈〈A〉〉γ implies M, q |= 〈〈A〉〉γ.
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Upper Abstraction: The Specifics
The valuation of propositions in AUA(M) is optimistic: V̂ (q̂) =

⋃
q′∈A−1

S (q̂) V (q′).
That is, p holds in the abstract state q̂ iff it holds in at least one concrete state q′ ∈ q̂. The
indistinguishability relations are given as: q̂1∼̂aq̂2 iff q1 ∼a q2 for all q1 ∈ q̂1, q2 ∈ q̂2.
In other words, two abstract states are indistinguishable if all of their concrete states
are. The protocols of the coalition members in the abstract model are defined as:

d̂a(q̂) =
⋃

q′∈img(q̂, ∼̂a)

AAc(a, q′, da(q′)).

That is, we look at all the concrete states that appear in at least one abstract state
indistinguishable to q̂, and take all the actions that appear in any of the protocols there,
modulo the renaming of actions withAAc. Notice, again, that the renaming takes place
before the intersection.

Finally, the nondeterministic transition function is defined as:

ô(q̂, α̂1, . . . , α̂|A|) =
⋂

q′∈A−1
S (q̂)

AS
(
succ(q′,A−1

Ac(a1, q
′, α̂1), . . . ,A−1

Ac(a|A|, q
′, α̂|A|))

)
for every (α̂1, . . . , α̂|A|) ∈ d̂A(q̂). In other words, q̂2 = ô(q̂1, α̂1, . . . , α̂|A|) in the ab-
stract model AUA(M) iff, for every concrete state q1 ∈ q̂1, there is some q2 ∈ q̂2 with a
transition from q1 to q2, labeled (after renaming) by the tuple of actions (α̂1, . . . , α̂|A|).

We observe that:

1. For any atomic proposition p, if it holds in q, then it also holds in AS(q). This
amounts to the optimistic (or credulous) interpretation of atomic propositions in
AUA(M). In consequence, making p true in AUA(M) is no harder than in M .
Achieving 〈〈A〉〉Xp, 〈〈A〉〉Gp, and 〈〈A〉〉p1 U p2 can be only made easier in the
abstract model.

2. For every a ∈ A, d̂a is uniform by construction.
3. It may happen that, at some state q̂, there are no outgoing transitions. A subtler

possibility is that q̂ has no outgoing transitions consistent with a given available
strategy sA of A. Note that this is not a problem as long as our semantics of
〈〈A〉〉γ looks only at the infinite outcome paths of sA (rather than maximal ones).
Then, all the runs going through (and hence ending in) q̂ will not be included
in out(q̂ ′, sA), which can only make 〈〈A〉〉γ easier to achieve from q̂ ′. In the
extreme case, we get out(q̂ ′, sA) = ∅, which means that 〈〈A〉〉γ holds in q̂ ′

regardless of the path formula γ.
4. The construction consistently: (i) increases the truth values of atomic proposi-

tions, (ii) decreases the uncertainty of the agents inA, (iii) expands their choices,
and (iv) applies a “must” abstraction to the transitions consistent with the result-
ing strategies.

In consequence, we obtain the following.

Proposition 25. Let γ be an LTL formula with no negations. Then, M, q |= 〈〈A〉〉γ
implies AUA(M),AS(q) |= 〈〈A〉〉γ.
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