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Abstract8

Probabilistic choice, where each branch of a choice is weighted according to a probability dis-9

tribution, is an established approach for modelling processes, quantifying uncertainty in the10

environment and other sources of randomness. This paper uncovers new insight showing prob-11

abilistic choice has a purely logical interpretation as an operator in an extension of linear logic.12

By forbidding projection and injection, we reveal additive operators between the standard with13

and plus operators of linear logic. We call these operators the sub-additives. The attention of14

the reader is drawn to two sub-additive operators: the first being sound with respect to probab-15

ilistic choice; while the second arises due to the fact that probabilistic choice cannot be self-dual,16

hence has a de Morgan dual counterpart. The proof theoretic justification for the sub-additives17

is a cut elimination result, employing a technique called decomposition. The justification from18

the perspective of modelling probabilistic concurrent processes is that implication is sound with19

respect to established notions of probabilistic refinement, and is fully compositional.20
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1 Introduction26

This paper lays down a novel foundation for a proof theory of formulae modelling concurrent27

processes with mixed probabilistic and non-deterministic choice. Probabilistic choices refine28

non-deterministic choices by indicating the probability with which one action or another29

occurs, and have been introduced in game theory and process calculi to model measurable30

uncertainly in the environment, such as a decision made by tossing a coin.31

It is already well known that, in various processes-as-formulae approaches to modelling32

processes using extensions of linear logic [15], the additive operators can be used to model33

non-deterministic choices. The key novelty of this work is the observation that probabilistic34

choices can also be handled using additive operators, of a more restrictive kind, which we35

call the sub-additives.36

In what follows we clarify the processes-as-formulae approach to modelling processes37

directly as formulae in extensions of linear logic. We highlight key observations leading38

to probabilistic sub-additive operators, and explain why their proof theory is non-trivial.39

Furthermore, for readers for whom the discovery of a novel proof theory is insufficient40

motivation, we highlight that, unlike most semantics previously proposed for probabilistic41

concurrent processes, our model is exceptionally compositional, admitting action refinement.42
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23:2 The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic

1.1 The processes-as-formulae paradigm43

Various approaches to modelling processes by directly embedding them as formulae in an44

extension of linear logic have been floated since the discovery of linear logic (see [22] for a45

comparison). Progress in this processes-as-formulae approach has been accelerated by an46

advance in proof theory — the calculus of structures [17] — a generalisation of the sequent47

calculus. Process models not limited to CCS [3], session types [5], attack trees [21] and the48

π-calculus [23, 24] have been tackled using the processes-as-formulae approach.49

An advantage of the processes-as-formulae paradigm is that formulae modelling processes50

can be directly compared using implication in the logical system. Furthermore, there are51

no design decisions, since the semantics are determined by the principles of cut elimina-52

tion. In every process model this approach always leads us to a preorder over processes53

with appealing properties. The preorder obtained enjoys the following properties: it is a54

congruence; is sound with respect to most commonly-used process preorders, including weak55

simulation [22], and pomset ideals [21]; and respects action refinement — the ability to refine56

atomic actions with larger sub-processes. This makes implication highly compositional.57

In this work, by introducing an operator modelling probabilistic choice, the above prop-58

erties can also be achieved in the probabilistic setting, where preorders are defined with59

respect to probability distributions. To emphasise this point we prove that implication in60

this work is sound with respect to a notion of refinement called weak probabilistic simu-61

lation [37, 2]. A famous result in the theory of probabilistic processes [10], means that,62

equivalently, implication is sound with respect to probabilistic may testing [27, 30]. An63

advantage implication has over simulation/testing semantics is that, as mentioned above,64

implication guarantees a greater degree of compositionality.65

1.2 Motivation: uncovering the probabilistic sub-additive operators66

We explain key observations that uncover the probabilistic sub-additive operators. Sub-67

additive operators are restricted forms of additive conjunction or disjunction, found in linear68

logic. Sub-additives forbid projection and injection, while permitting other properties of the69

additives, notably idempotency.70

Firstly, consider how the standard additives can be used to model non-deterministic71

choice. To be specific, in linear logic, we have with &, which enjoys the following projection72

laws, where ( is linear implication: P &Q( P and P &Q( Q. For example, heads& tails73

can be used to model a process that does not toss a coin but instead chooses on which side74

to lay the coin. This can be refined by process heads that always chooses to lay down heads.75

This does not model tossing a coin, instead modelling a decision the process can make.76

The key observation is, by restricting additives such that projection and injection77

are forbidden, we are able to model probabilistic choice. For example, heads ⊕1/2 tails78

models a fair coin, where heads or tails occurs with probability 1/2. Notice the process79

cannot influence the outcome of the coin toss, therefore such a fair coin cannot be refined to80

heads. The absence of this refinement corresponds to forbidding projection. Furthermore,81

it is standard for probabilistic processes, that a fair coin cannot be refined to an unfair82

coin where the balance of probabilities are different from 1/2 each. Notions of probabilistic83

refinement preserve the balance of probabilities.84

Although projection/injection are forbidden, non-deterministic choice and probabilistic85

choice are related. For example, non-deterministic choice heads & tails can be refined to86

probabilistic choice heads ⊕1/2 tails. This refinement can be established by proving the87
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following using the logical system in the body of this work.88

heads & tails( heads ⊕1/2 tails89

Such a refinement, introducing probabilities, is standard for probabilistic simulation or,90

equivalently, probabilistic may testing [27, 30, 9].91

Note, there are many other modelling capabilities of the logic in this work. For example,92

we can capture probabilistic choice with margins of error, and probabilistic model checking,93

within a bound of probability. Application wise, such models have been used for a wide94

range of problems, e.g., quantifying the degree of anonymity offered by privacy protocols,95

or quantifying risk in attacker models. This work focusses on introducing our new logical96

system ∆MAV and providing clear and simple examples.97

The interplay between the sub-additives and both sequential and parallel composition98

can be non-trivial. For example, we discover, for subtle reasons explained later, in the99

presence of parallel composition, operator ⊕p cannot be self-dual. Thereby we obtain also100

a de Morgan dual operator &p, essential for completing the symmetry demanded by a logic101

satisfying cut elimination. The central result of this paper, cut elimination (Theorem 2),102

ensures these new sub-additive operators co-exist happily with other operators of linear103

logic — a prerequisite for using implication with confidence. Furthermore, the soundness104

of linear implication as a notion of probabilistic refinement (Theorem 4) is verified and105

the merits of this notion of refinement discussed. In particular, we claim that this logical106

approach to modelling processes helps us discover the coarsest notion of refinement, in the107

literature, that can: firstly, handle probabilistic processes; secondly, accommodate parallel108

composition; and, thirdly, permit action refinement [41].109

Outline of the paper. Section 2, provides established background material on probabilistic110

processes. Section 3, recalls MALL in the calculus of structures, and introduces the extended111

system ∆MAV featuring a pair of sub-additive operators. Section 4 provides a series of112

examples illustrating how we can construct, more traditional, probabilistic simulations from113

proofs in ∆MAV. Section 5, outlines the proof of cut elimination, necessary to justify the114

logical system proposed. Section 6 highlights the existence of further sub-additive operators115

between the standard operators of linear logic.116

2 Background: an established notion of probabilistic simulation117

We begin with background on probabilistic simulation. We select a minimal probabilistic118

process calculus and standard notion of probabilistic simulation.119

Note there are numerous probabilistic calculi in the literature mixing non-deterministic120

and probabilistic choice, not limited to probabilistic extensions of CCS [28], CSP [11], and121

the π-calculus [33]. Due to the rich proof calculi developed [23], expressive process models122

can be handled by techniques in this work. For scientific clarity, we select here a minimal123

calculus in order to make a clear comparison with the new logical approach to probabilistic124

refinement introduced in subsequent sections.125

The syntax of our minimal process calculus is drawn from terms in the following grammar,126

where ‘a’ represents actions.127

t ∶∶= ok (successful completion) ∣ a.t (action prefix) ∣ t ∥ t (parallel composition)
∣ t ⊓ t (non-deterministic choice) ∣ t +p t (probabilistic choice)128

Discrete probability distributions are uniquely determined by a probability mass function129

∆ ∶ S → [0,1] over a set S of process terms such that ∑t∈S ∆(t) = 1. A Dirac distribution for130

FSCD 2019



23:4 The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic

process term s, written 1s, is defined by the probability mass function such that ∆(s) = 1.131

For probability p and distributions, ∆1 and ∆2 linear combination p∆1 + (1− p)∆2, defined132

as (p∆1 + (1− p)∆2)(t) = p∆1(t) + (1− p)∆2(t), is a distribution and dot product ∆1 ⋅∆2 is133

defined such that (∆1 ⋅∆2)(t ∥ u) = ∆1(t)∆2(u) and 0 elsewhere.134

Process terms are mapped to distributions using the following function δ.135

δ(ok) = 1ok δ(a.t) = 1a.t δ(t ⊓ t) = 1t⊓t136

δ(t +p t) = pδ(t) + (1 − p)δ(t) δ(t ∥ t) = δ(t) ⋅ δ(t)137
138

Labelled transitions from process terms to distributions are defined by the following rules,139

where label α ranges over any action a or τ .140

a.t a I δ(t)
i ∈ {1,2}

t1 ⊓ t2 τ I δ(ti)
t1

α I ∆
t1 ∥ t2 α I ∆ ⋅ δ(t2)

t2
α I ∆

t1 ∥ t2 α I δ(t1) ⋅∆
141

142

Labelled transitions lift to weak transitions over distributions, as according to the following143

four clauses, which allow zero or more τ -transitions. Firstly, ∆ τ I ∆; secondly, if for144

all i, si α I ∆i and ∑i∈I pi = 1 then ∑i∈I pi1ti
α I ∑i pi∆i; thirdly, if ∆1

τ I ∆2 then145

p∆1+(1−p)E τ I p∆2+(1−p)E , fourthly, if ∆1
τ I ∆2 and ∆2

α I ∆3, then ∆1
α I ∆3.146

For tighter results, we also employ the predicate ✓ indicating successful termination,147

defined such that ok✓ and if t1✓ and t2✓ then (t1 ∥ t2)✓. Termination extends to distribu-148

tions in the obvious way such that if t✓ then 1t✓ and if ∆✓ and E✓ then (p∆ + (1 − p)E)✓.149

The above labelled transitions and termination predicate are employed in the following150

definition of a weak complete probabilistic simulation. The definition also employs a standard151

lifting of relations from processes to distributions.152

I Definition 1. For a relation R between processes and distributions, its lifting R̂ is such153

that: if, for all i, ti R ∆i and ∑i∈I pi = 1, then ∑i∈I pi1ti R̂ ∑i∈I pi∆i. A relation between154

processes and distributions R is a weak complete probabilistic simulation whenever:155

If sR∆ and s α I E , there exists E ′ such that ∆ α I E ′ and E R̂ E ′.156

If tR∆ and t✓ then there exists E such that ∆ τ I E and E✓.157

If there exists weak complete probabilistic simulation R such that δ(t1) R̂ δ(t2), then we158

say t2 simulates t1.159

We refer to the above notion simply as probabilistic simulation throughout this work.160

Recall this definition is used only as a reference to show the logic we develop is sound with161

respect to such a standard notion of probabilistic refinement, and contains no new concepts.162

We provide examples later in subsequent sections when making such a comparison.163

3 Extending linear logic with probabilistic sub-additive operators164

In this section, we introduce a proof system featuring the probabilistic sub-additives. The165

system is a conservative extension of multiplicative-additive linear logic (MALL). Therefore,166

first we recall a presentation of MALL in the calculus of structures, a generalisation of167

the sequent calculus. We employ the calculus of structures, since it provides additional168

expressive power demanded by our target logic ∆MAV.169

3.1 An established presentation of MALL in the calculus of structures170

The fragment of linear logic MALL was one of the first proof systems studied in the calculus171

of structures [38]. Fig 1 recalls a proof system for multiplicative-additive linear logic MALL172
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in the calculus of structures. Inference rules apply in any context. We assume formulae173

are always in negation-normal-form, where negation is always pushed to atoms, a, by the174

following function, inducing De Morgan dualities.175

P ⊕Q = P &Q P &Q = P ⊕Q a = a P ⊗Q = P `Q P `Q = P ⊗Q ○ = ○176
177

The formulation of MALL in Fig. 1 was employed to prove cut elimination for a non-178

commutative extension of MALL called MAV [20]. The rules are also similar to a version179

used to study focussing in the calculus of structures [4].180

structural congruence:

P `Q ≡ Q ` P (P `Q) `R ≡ P ` (Q `R) ○ ` P ≡ P

P �Q ≡ Q � P (P �Q) �R ≡ P � (Q �R) ○ � P ≡ P

inference rules:

C{ ○ }
interact

C{ a ` a }

C{ (P `Q) �R }
switch

C{ P ` (Q �R) }

C{ ○ }
tidy

C{ ○ & ○ }

C{ P1 }
choose left

C{ P1 ⊕ P2 }

C{ P2 }
choose right

C{ P1 ⊕ P2 }

C{ (P `R) & (Q `R) }
external

C{ (P &Q) `R }

Figure 1 Structural congruence and inference rules for MALL in the calculus of structures.

The structural congruence ensures the multiplicatives par ` and times � are commutative181

monoids with a common unit. The switch rule and interact rule form multiplicative linear182

logic. Regarding the inference rules, there is one rule, choose, for additive plus ⊕, which183

chooses either the left or right branch during proof search. The rule external distributes the184

additive with & over par, forcing both branches to be explored. The tidy rule ensures proof185

search is successful only if both branches are successful.186

A derivation is a sequence of zero or more rule instances, where the structural congruence187

can be applied at any step. The bottommost formula is the conclusion and the topmost is188

the premiss. A proposition P is provable, written ⊢ P , whenever there exists a derivation189

with conclusion P and premise ○. Linear implication P ( Q is defined as P `Q; hence a190

provable linear implication is written ⊢ P ( Q.191

This presentation of MALL has a common unit for the multiplicatives, consequently192

implication ⊢ P �Q( P `Q holds. The reader familiar with linear logic will observe this193

means the mix rule is admissible. Note the results in this paper also hold for a formulation194

of MALL that does not admit mix, but mix is included so as the logic extends immediately195

to non-commutative logic.196

3.2 Extending with the probabilistic sub-additives (and sequentiality)197

The calculus of structures provides a setting in which the sub-additives can be expressed and198

evaluated. We explain briefly the new rules of the structural congruence and the inference199

rules in Fig. 2. Note we assume a probability p is always such that 0 < p < 1, thus any200

sub-formula that appears in a probabilistic choice occurs with non-zero probability.201

The rule of the structural congruence for the probabilistic sub-additives, Fig. 2, ensures202

the balance of probabilities is maintained when applying idempotency, associativity and203

FSCD 2019



23:6 The Sub-Additives: A Proof Theory for Probabilistic Choice extending Linear Logic

commutativity. By maintaining the balance of probabilities, structural congruence preserves204

underlying probability distributions. For example p∆ + (1 − p)∆ = ∆, hence we have a205

weighted form of idempotency P ⊕p P = P .206

For associativity, observe if ∆0, ∆1 and ∆2 are distributions corresponding to P , Q and207

R respectively, then q (p∆0 + (1 − p)∆1) + (1 − q)∆2 = r∆0 + (1 − r) (s∆1 + (1 − s)∆2) only208

if r = pq and (1 − r)s = q(1 − p). Furthermore, commuting formulae inverts probabilities209

(p∆1 + (1 − p)∆2 = (1 − p)∆2 + p∆1).210

structural congruence:

P &r Q ≡ Q &1−r P P &r P ≡ P (P &p Q) &q R ≡ P &pq (Q & q(1−p)
1−pq

R)

P ⊕r Q ≡ Q ⊕1−r P P ⊕r P ≡ P (P ⊕p Q) ⊕q R ≡ P ⊕pq (Q ⊕ q(1−p)
1−pq

R)

○ ◁ P ≡ P P ≡ P ◁ ○ (P ◁Q) ◁R ≡ P ◁ (Q ◁R)

inference rules:

C{ (P `R) &p (Q ` S) }
confine

C{ (P ⊕p Q) ` (R &p S) }

C{ (P `R) ⊕q (Q ` S) }
medial

C{ (P ⊕q Q) ` (R ⊕q S) }

C{ (P &p R) ⊕q (Q &p S) }
medial

C{ (P ⊕q Q) &p (R ⊕q S) }

C{ (P &R) ⊕q (Q & S) }
medial

C{ (P ⊕q Q) & (R ⊕q S) }

C{ (P &R) &p (Q & S) }
medial

C{ (P &p Q) & (R &p S) }

C{ (P `R) ◁ (Q ` S) }
medial

C{ (P ◁Q) ` (R ◁ S) }

C{ (P &R) ◁ (Q & S) }
medial

C{ (P ◁Q) & (R ◁ S) }

C{ (P &p R) ◁ (Q &p S) }
medial

C{ (P ◁Q) &p (R ◁ S) }

C{ (P ◁R) ⊕p (Q ◁ S) }
medial

C{ (P ⊕p Q) ◁ (R ⊕p S) }

linear negation:

P ◁Q = P ◁Q P ⊕p Q = P &p Q P &p Q = P ⊕p Q

Figure 2 Rules for the probabilistic sub-additive operators and seq in ∆MAV, extending Fig. 1.

A self-dual non-commutative operator seq, notated ◁, is introduced in order to model211

processes with action prefixes or sequential composition. Seq was first introduced in system212

BV [17], which was subsequently extended with the additives to obtain system MAV [20]. The213

operator seq lies between multiplicative operators times � and par ` from linear logic [15].214

Inference rule confine and the medial rules are best explained in the context of examples215

throughout the remainder of this paper. Notice all medials have a standard form.216

(P ER) D (Q E S)
medial

(P DQ) E (R D S)
where (E,D) ∈ { (`,⊕q), (&p,⊕q), (&,⊕q), (&,&p),

(`,◁), (&,◁), (&p,◁), (◁,⊕q) }217

Cut elimination in the calculus of structures is equivalent to the following statement.218
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I Theorem 2 (cut elimination). In ∆MAV, if ⊢ C{ P � P }, then ⊢ C{ ○ }.219

The above theorem is the main technical justification for the correctness of ∆MAV. A proof220

sketch is delayed until Section 5. As with MALL, linear implication P ( Q is defined in221

terms of negation and par such that P `Q. A useful but straightforward property is linear222

implication is reflexive. Amongst the immediate consequences of cut elimination is linear223

implication in ∆MAV is transitive. Furthermore, also as a corollary of cut elimination, linear224

implication holds in every context (note negation and implication are derived operators,225

hence are not part of the syntax of contexts).226

I Corollary 3. Linear implication is a preorder that holds in every context (a precongruence).227

This corollary establishes a key criteria for using linear implication as a notion of refinement.228

Note, in this paper, operator &p is treated as a synthetic dual to ⊕p necessary for complet-229

ing the proof system, and used when proving linear implications. This operator likely has230

applications, for modelling probabilistic communicating systems; but we avoid controversy231

by sticking to the indisputable established probabilistic choice modelled by ⊕p.232

3.3 Embedding of Probabilistic Processes in ∆MAV233

While cut elimination proves we have made the correct choices of rules for the logic to work,234

it says little about its relationship to probabilistic refinement. Here we state the main result235

showing that implication is sound with respect to the key established notions of refinement236

for probabilistic processes.237

We employ the following embedding, mapping processes to formulae.1238

Name of operator Process term Logical operator
success JokK ○

prefix Jα.tK α ◁ JtK
parallel composition Jt1 ∥ t2K Jt1K � Jt2K
external choice Jt1 ⊓ t2K Jt1K & Jt2K
probabilistic choice Jt1 +p t2K Jt1K ⊕p Jt2K

239

The mapping extends to discrete probability distributions over process terms such that240

J1tK = JtK and if ∆ = p∆1 + (1 − p)∆2, where 0 < p < 1 then J∆K = J∆1K ⊕p J∆2K.241

Using the above embedding of processes as formulae we can compare processes using242

linear implication. All linear implications between processes can also be established using243

weak complete probabilistic simulation. Each approach is quite different, since the former244

involves unfolding logical rules while the latter involves defining a simulation relation wit-245

nessing the refinement. Here these two approaches to probabilistic refinement are formally246

connected as follows.247

I Theorem 4. If ⊢ Jt1K ( Jt2K, in ∆MAV, then t1 simulates t2 (Def. 1).248

The proof provides a proceedure that constructs a weak complete probabilistic simulation249

from any linear implications between embeddings of processes. It adapts proof techniques250

devised for establishing a similar results for the π-calculus [22] (without probabilities).251

The converse of Theorem 4 does not hold. As reinforced by related work [21], linear252

implication has non-interleaving properties. For example a ` a ( a ◁ a does not hold,253

1 Note the system is completely symmetric so the dual operators could be used, inverting implication.

FSCD 2019
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but these processes are equivalent in any interleaving semantics, including probabilistic254

simulation in Def. 1. This can be regarded as a strength of linear implication, since such255

non-interleaving semantics are preserved under action refinement [41] — the substitution of256

an atomic action with any process. For the minimal process language in this this work, we257

consider only refinement of an action with a sequence of actions.258

I Corollary 5. For process terms t1 and t2, and substitution σ mapping actions, say a, to a259

sequence of actions, say b1.⋯bn, if ⊢ Jt1K ( Jt2K then ⊢ Jt1σK ( Jt2σK.260

For example, since ⊢ Ja ∥ aK ( Ja.aK holds, by applying the action refinement σ ={b.c/a}, the261

following holds: ⊢ Jb.c ∥ b.cK ( Jb.c.b.cK.262

Action refinement is not respected by any interleaving semantics, including weak com-263

plete probabilistic simulation (previous work on action refinement in the probabilistic set-264

ting [8] avoids parallel composition). Furthermore, although there is work on probabilistic265

event structures [1, 42], linear implication in ∆MAV appears to be the first non-interleaving266

notion of refinement accommodating probabilistic choice.267

4 Examples of properties established using linear implication268

Having introduced definitions and stated the main results, we illustrate the theory with269

examples. This section covers examples of refinements that are permitted or forbidden270

between processes. There are also some examples justifying the medial rules.271

4.1 Refinements also provable using probabilistic simulation272

As noted in the introduction, projection and injection are forbidden for probabilistic simu-273

lation, hence should be forbidden for the sub-additives. Indeed, the following processes are274

unrelated by linear implication.275

heads +1/2 tails is unrelated to heads and also is unrelated to tails276

Hence, as a consequence of Theorem 4, none of the following hold in general: P ( P ⊕p Q,277

P ⊕p Q( P , Q( P ⊕p Q and P ⊕p Q( Q.278

Now, using the rules of ∆MAV, we can verify the following chain of implications, proving279

that the probabilistic sub-additives lie between the standard additives.280

P &Q( P &p Q P &p Q( P ⊕p Q P ⊕p Q( P ⊕Q281

The first implication has a proof of the following form.282

○

idempotency
○ &p ○

Proposition 3
(P ` P ) &p (Q `Q)

choose
((P ⊕Q) ` P ) &p ((P ⊕Q) `Q)

confine
((P ⊕Q) ⊕p (P ⊕Q)) ` (P &p Q)

idempotency
(P ⊕Q) ` (P &p Q)

283

Also, due to de Morgan dualities, the third implication in the chain above has a proof of284

the same form (by setting P as P and Q as Q). The second implication in the chain of285



Ross Horne 23:9

implications above has the following proof.286

○

idempotency
○ &p ○

Proposition 3
(P ` P ) &p (Q `Q)

confine
(P &p Q) ` (P ⊕p Q)

confine
(P ⊕p Q) ` (○ &p ○) ` (P ⊕p Q)

idempotency
(P ⊕p Q) ` (P ⊕p Q)

287

Notice, by instantiating the above with process embeddings, ⊢ Jt1 ⊓ t2K ( Jt1K &p Jt2K and288

⊢ Jt1K &p Jt2K ( Jt1 +p t2K hold. Hence, by Theorem 2, there is also a proof of the following.289

⊢ Jt1 ⊓ t2K ( Jt1 +p t2K290

As guaranteed by Theorem 4, the above linear implication can also be established by prob-291

abilistic simulation. For example, process a ⊓ b simulates a +p b. This holds since R such292

that a R 1a⊓b, b R 1a⊓b, and ok R 1ok defines a weak probabilistic simulation such that293

Ja &p bK R̂ Ja ⊓ bK. The converse does not hold since a ⊓ b a I 1ok, which is a transition294

that cannot be matched by distribution p1a + (1− p)1b. Hence, by Theorem 4, the converse295

implication P ⊕p Q( P &Q also does not hold in general.296

4.2 Distributivity properties, some forbidden others permitted297

We highlight, quite subtly, that we must also forbid certain distributivity properties over298

parallel composition. Operator ⊕p forbids refinements that undesirably leak information.299

For example, processes (a ∥ c) +p (b ∥ d) and (a +p b) ∥ (c +p d) are unrelated by probabilistic300

simulation. Therefore, by Theorem 4, the following are unrelated by linear implication.301

(a � c) ⊕p (b � d) is unrelated to (a ⊕p b) � (c ⊕p d)302

However we should allow other refinements. For example, the semantics of ∆MAV, does303

admit the following partial distributivity property, preserving all four possible combinations304

of parallel actions.305

⊢ (a ⊕p b) � (c ⊕q d) ( ((a � c) ⊕q (a � d)) ⊕p ((b � c) ⊕q (b � d))306

The above distributivity property is also respected by probabilistic simulation introduced307

in Sec. 2. Observe, both δ(((a ∥ c) +q (a ∥ d)) +p ((b ∥ c) +q (b ∥ d))) and δ((a +p b) ∥ (c +q d))308

map to the same underlying probability distribution, hence have the same behaviours.309

pq1a∥c + p(1 − q)1a∥d + (1 − p)q1b∥c + (1 − p)(1 − q)1b∥d310

Indeed, in general, the following implication holds in ∆MAV, establishing how probabilistic311

choice distributes over parallel composition.312

⊢ P � (Q ⊕p R) ( (P �Q) ⊕p (P �R)313

There are also distributivity properties relating non-deterministic and probabilistic choice [43].314

For example we have that ⊢ (P &Q) ⊕p (P &R) ( P & (Q ⊕p R) holds, as established by315
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the following proof.316

○

tidy
○ & ○

idempotency
(○ &p ○) & (○ &p ○)

by Proposition 3
((P ` P ) &p (P ` P )) & ((Q `Q) &p (R `R))

by confine
((P &p P ) ` (P ⊕p P )) & ((Q &p R) ` (Q ⊕p R))

idempotency
((P &p P) ` P ) & ((Q &p R) ` (Q ⊕p R))

by choose
(((P ⊕Q) &p (P ⊕R)) ` P ) & (((P ⊕Q) &p (P ⊕R)) ` (Q ⊕p R))

by external
((P ⊕Q) &p (P ⊕R)) ` (P & (Q ⊕p R))

317

By Theorem 4, we have that (t1 ⊓ t2) +p (t1 ⊓ t3) simulates t1 ⊓ (t2 +p t3), for any process.318

For example, a ⊓ (b +p c) is simulated by (a ⊓ b) +p (a ⊓ c). To see why, observe relation S319

defined such that a⊓ (b+p c) S p1a⊓b + (1− p)1a⊓c and s S 1s, for any s, is a simulation; for320

which Ja ⊓ (b +p c)K Ŝ J(a ⊓ b) +p (a ⊓ c)K.321

The converse of the above simulation does not hold. Hence, as a consequence of The-322

orem 4, the converse of the above implication does not hold in ∆MAV. I.e., in general, the323

following is not provable: P & (Q ⊕p R) ( (P &Q) ⊕p (P &R).324

4.3 But are the medial rules necessary in ∆MAV?325

The most mysterious rules of ∆MAV are themedial rules. The justification we provide here is326

purely logical, although these rules are likely to play a more significant role when considering327

more expressive process calculi with full sequential composition and mixing suitable notions328

of internal and external choice (sometimes known as angelic/daemonic choices [31]).329

Here we show the medial rules are necessary in order for cut-elimination to hold. Medial330

rules capture a pattern where a weaker additive distributes over a stronger additive, where331

& < &p < ⊕p < ⊕. This is a derived property of the standard additives in linear logic; namely332

the implication (P &Q)⊕(R & S) ( (P ⊕R)&(Q ⊕ S) is provable, while its converse does not333

hold. The corresponding property for the sub-additive is not derivable without the medials.334

Only by including an explicit medial rule in Fig. 2 can we prove the following property.335

(P &p Q) ⊕q (R &p S) ( (P ⊕q R) &p (Q ⊕q S)336

We are forced to include several further medial rules, induced by associativity and com-337

mutativity. This is more surprising since all other medial rules correspond to implications338

provable without including any medial rules. For example, we have the following proof of339

implication (P &Q) &q (R & S) ( (P &q R) & (Q &q S).340

○

tidy and itempotency
(○ &q ○) & (○ &q ○)

interact
((P ` P ) &q (R `R)) & ((Q `Q) &q (S ` S))

choose
(((P ⊕Q) ` P ) &q ((R ⊕ S) `R)) & (((P ⊕Q) `Q) &q ((R ⊕ S) ` S))

confine
(((P ⊕Q) ⊕q (R ⊕ S)) ` (P &q R)) & (((P ⊕Q) ⊕q (R ⊕ S)) ` (Q &q S))

external
((P ⊕Q) ⊕q (R ⊕ S)) ` ((P &q R) & (Q &q S))

341

The above implication does not mean rule
(P &Q) &q (R & S)

(P &q R) & (Q &q S)
is admissible (redundant in342

∆MAV). To see why, consider the following observations. Firstly, observe the following is343
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provable without using any medial rules.344

(a1 ` a2) &p ((b1 &q (c & d)) ` (b2 ⊕q (c & d))) ( (a1 &p (b1 &q (c & d))) ` (a2 ⊕p (b2 ⊕q (c & d)))345

Now, assuming r = (1 − p)q and p = s(1 − r), observe the following are equivalent by associ-346

ativity and commutativity of the sub-additives.347

(a1 &p (b1 &q (c & d))) ` (a2 ⊕p (b2 ⊕q (c & d))) ≡ (b1 &r (a1 &s (c & d))) ` (b2 ⊕r (a2 ⊕s (c & d)))348

Thirdly, observe the following implication is provable, without any medial rules.349

(b1 &r (a1 &s (c & d))) ` (b2 ⊕r (a2 ⊕s (c & d)))
( (b1 &r ((a1 &s c) & (a1 &s d))) ` (b2 ⊕r ((a2 ⊕s c) & (a2 ⊕s d)))

350

Now, assuming cut elimination holds, combining the above three observations, necessarily,351

we can construct a cut-free proof of the following implication.352

(a1 ` a2) &p ((b1 &q (c & d)) ` (b2 ⊕q (c & d)))
( (b1 &r ((a1 &s c) & (a1 &s d))) ` (b2 ⊕r ((a2 ⊕s c) & (a2 ⊕s d)))

353

Unfortunately, the above implication is not provable without medial rules. Specifically, we354

require medial rules commuting the sub-additives over with in order to establish the proof355

of the above implication. This example is extracted from exactly where the cut elimination356

would fail if the medial rules are omitted. Thus the medial rules are not a design decision,357

but necessary in order for cut-elimination to hold.358

5 On the proof of cut-elimination (Theorem 2)359

Proving proof normalisation results involves extensive case analysis; hence we provide only360

a sketch proof of cut elimination proof for ∆MAV. The interesting point is that the idem-361

potency of sub-additives is problematic, giving rise to infinite derivations. For example,362

formula a ⊕ b has infinitely many premises, including those of the form a &1/2−1/2n (a ⊕ b).363

To handle such problems caused by idempotency in the cut elimination proof we move to364

a semantically equivalent but more controlled version of ∆MAV, turning idempotency, from365

an equivalence into the following inference rules.366

C{ R ⊕p R }
contract

C{ R }

C{ ○ }
tidy distribution

C{ ○ &p ○ }
C{ P &r Q }

special case of confine
C{ P ⊕r Q }

367

The proof of cut-elimination (Theorem 2) proceeds by, firstly, observing rule P ⊗ P
cut

○

368

can be broken down to its atomic form co-interact using the following co-rules.369

C{ (P ⊕R) ⊗ (Q & S) }
co-additives

C{ (P ⊗Q) ⊕ (R⊗ S) }

C{ (P ⊕p Q) ⊗ (R &p S) }
co-confine

C{ (P ⊗R) ⊕p (Q⊗ S) }
370

C{ ○ ⊕ ○ }
co-tidy

C{ ○ }

C{ a⊗ a }
co-interact

C{ P }
co-contract

C{ P &p P }
C{ ○ }

371

C{ (P ER) D (Q E S) }
medial where (E,D) ∈ {(&q,⊗), (&q,⊕), (⊕p,⊕), (◁,⊗)}

C{ (P DQ) E (R D S) }
372

373
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We then proceed by the following strategy to show all such co-rules can be eliminated.374

We firstly apply a technique called decomposition [18, 39, 40], showing instances of the375

problematic contract rule can be pushed to the bottom of a proof. This involves introducing376

further co-rules, notably the rule co-contract, which is pushed to the top of the proof. The377

technical challenge with decomposition is devising a measure controlling explosions in the378

size of the proof, based on the topology of the proof, caused by permuting contractions with379

co-contractions.380

I Lemma 6 (decomposition). For any derivation
S

P
, including co-rules, there exists Q and381

R such that there is a derivation:

S
using co-contract only

R
including co-rules but without contract or co-contract

Q
using contract only

P

382

Notice, when decomposition is applied to a proof, which must have premise ○, the co-contract383

rules disappear, becoming instances of tidy distribution. This way, we transform a proof of384

P into a proof of some formula Q which does not use contract or co-contract rules, such385

that Q is reachable from P using only the contract rule. For the proof of Q, that does not386

use contract or co-contract rules, we can apply a technique called splitting [19]. Splitting387

generalises the effect of applying rules in sequent-like contexts.388

I Lemma 7 (splitting). In the following, killing contexts are multi-hole contexts defined by389

grammar T { } ∶∶= { ⋅ } ∣ T { } & T { }. The following hold in ∆MAV without contract, but390

with tidy distribution and the special case of confine:391

If ⊢ (P &Q) `R then ⊢ P `R and ⊢ Q `R.392

If ⊢ (P &p Q)`R, there exist U , V such that
U ⊕p V

R
and both ⊢ P `U and ⊢ Q`V hold.393

If ⊢ (P ⊕p Q)`R, there exist U , V such that
U &p V

R
and both ⊢ P `U and ⊢ Q`V hold.394

If ⊢ (P ◁Q)`R, there exist T { }, Ui and Vi such that
T { Ui ◁ V }

R
and, for all i, both395

⊢ P `Ui and ⊢ Q ` Vi hold.396

If ⊢ (P �Q) ` R, there exist T { }, Ui and Vi such that
T { Ui ` Vi }

R
and, for all i,397

⊢ P `Ui and ⊢ Q ` Vi.398

If ⊢ (P ⊕Q) `R then, there exist Wi such that
T { Wi }

R
and, for all i, either ⊢ P `Wi399

or ⊢ Q `Wi hold.400

If ⊢ a `R then
T { a }

R
.401

If ⊢ a `R then
T { a }

R
.402

Splitting is then used to extended sequent-like contexts to any context.403

I Lemma 8 (context reduction). If, for all R, ⊢ P `R yields ⊢ Q `R then, for all contexts404

C{ }, ⊢ C{ P } yields ⊢ C{ Q }.405

By using splitting and context reduction, the co-rules previously introduced in this sec-406

tion are shown to be admissible, which together show cut is admissible in the fragment407

without contraction. The first three co-rule elimination lemmas concern only connectives of408

MALL [20].409
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I Lemma 9. If ⊢ C{ ○ ⊕ ○ } then ⊢ C{ ○ }.410

I Lemma 10. If ⊢ C{ (P ⊕Q) � (R & S) } holds, then it holds that ⊢ C{ (P �R) ⊕ (Q � S) }.411

I Lemma 11. If ⊢ C{ a⊗ a } then ⊢ C{ ○ }, for any atom a.412

The following co-rule elimination lemma involves the probabilistic sub-additives.413

I Lemma 12. If ⊢ C{ (P ⊕p Q) � (R &p S) } holds, ⊢ C{ (P �R) ⊕p (Q � S) } holds.414

The four extra medial rules can also be eliminated.415

I Lemma 13. For any (E,D) ∈ {(&q,⊗), (&q,⊕), (⊕p,⊕), (◁,�)}, if ⊢ C{ (P ER) D (Q E S) }416

then ⊢ C{ (P DQ) E (R D S) }.417

We can now establish cut elimination for the proof system described at the beginning of418

this section, without idempotency, but with three inference rules: contract, tidy distribution419

and the special case of confine. Having applied decomposition (Lemma 6) to push contract420

to the bottom of the proof, the proof combines the above lemmas to remove each co-rule.421

This leaves a system without co-rules.422

Finally, we obtain our main result (Theorem 2): cut elimination in the more controlled423

system implies cut elimination in ∆MAV, simply be substituting contract, tidy distribution424

and the special case of confine with instances of idempotency and confine.425

6 Related work on Sub-Additive Operators and Nominal Quantifiers426

Between the standard additives of multiplicative linear logic, with and plus, there are further427

sub-additive operators. Roversi [35] proposed a sub-additive operator, say �, also forbidding428

projection and injection, that is self-dual. Note a self-dual operator is such that the linear429

negation of P �Q is P �Q, i.e., the operator is de Morgan dual to itself.430

Such a self-dual sub-additive operator cannot be used to model probabilistic choice in431

the processes-as-formulae paradigm. The problem is the following implication is provable432

(a � b) � (c � d) ( (a � c) � (b � d). Consequently, self-dual sub-additives are unsound with433

respect to probabilistic simulation (notice the possibility of a � d or b � c occurring has434

been excluded in the formula on the right). The pair of probabilistic sub-additives &p and435

⊕p, were discovered by seeking more controlled variants of � such that the above unsound436

distributivity property is forbidden.437

(a) P ⊕Q

P ⊕p Q

○

P �Q

○

P &p Q

○

P &Q
○

○

(b) ∃x.P

Эx.P
○

∇x.P

○

Иx.P

○

∀x.P
○

○

(c) P `Q

P ◁Q

○

P ⊗Q

○

Figure 3 Relationships between various operators in extensions of linear logic: (a) the additives
and sub-additives, (b) the first-order quantifiers and nominal quantifiers, (c) the multiplicatives.

Figure 3(a) compares additives &, &p, ⊕p, ⊕ and �. Notice similarities with Fig 3(b)438

depicting de Morgan dual pair of nominal quantifiers, Иx.P and Эx.P , located between for439
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all and exists [23]. Similarly, to the sub-additives, the justification for the pair of nominal440

quantifiers, rather than a self-dual nominal quantifier [14, 34, 35], say ∇x.P , was to soundly441

model private names in direct logical embeddings of π-calculus processes [32].442

Related work at the intersection of linear logic and probabilistic programs is typically443

denotational (of a model theoretic flavour). For example, probabilistic coherence spaces [16,444

12] provide a probabilistic denotational semantics [26, 7] for linear logic but with standard445

additives with and plus only. Probabilistic coherence spaces and related models are typically446

used directly to provide a semantics for functional probabilistic programming languages, such447

as PCF with random number generators [13, 6] or a probabilistic λ-calculus [29]. However,448

probabilistic extensions of linear logic itself, giving rise to probabilistic sub-additives sound449

with respect the probabilistic choice in process calculi, have not previously been investigated.450

7 Conclusion451

This paper exposes an extended syntax and proof system for linear logic with explicit prob-452

abilistic choice operators. The rules for these sub-additives are determined by studying a453

generalisation of cut elimination (Theorem 2), leaving no room for design decisions. When454

designing process preorders, we are confronted by a vast design space. Thus ∆MAV (Fig. 2)455

can assist objectively with resolving language design decisions. I argue linear implication is456

a compelling notion of probabilistic refinement, being sound with respect to weak (complete)457

probabilistic simulation (Theorem 4), hence also probabilistic may testing. Furthermore, lin-458

ear implication has the advantage that it is the coarsest notion of refinement for probabilistic459

concurrent processes in the literature respecting action refinement (Corollary 5).460

Interestingly, the proof of cut elimination demands a technique called decomposition,461

Lemma 6, to handle idempotency of choice, which, previously, has only been necessary for462

handling modalities in non-commutative logic NEL [39, 19]. Details of the proof theory are463

reserved for an extended version.464

Future work includes explaining the connections between the quantitative modal logics,465

such as the quantitative modal µ-calculus [25], and ∆MAV. Future work may also consider466

richer process models in ∆MAV and its extensions [24]. For example, by using positive and467

negative atoms to model inputs and outputs [3, 22], we can model probabilistic calculi with468

communication. A related question is whether the operator &p is useful when modelling469

processes. Recall &p was discovered, synthetically, as the operator de Morgan dual to prob-470

abilistic choice ⊕p. To help understand the nature of &p, observe that it is related to ⊕p471

in a similar fashion that, in the internal π-calculus [36], fresh name binding ν is related to472

internal input (which receives a name, but only if it is fresh). By using this analogy, &p473

can model branches of an input that preserves a probability distribution by using knowledge474

of the probability distribution over branches with which it interacts (perhaps by measuring475

previous interactions with a controller, for example), and only interacts if the distribution476

matches the criteria specified by the internal choice (as suggested by rule confine). Such con-477

straints could be useful for preventing systems from being composed whenever the random478

behaviour of one component falls out of expected bounds of another component (possibly479

causing the component that receives messages on a random channel from failing to meet its480

specification). Considering possible connections between &p/⊕p and angelic/daemonic prob-481

abilistic choices [31] is also future work. To help the reader digest this novel theory, initially,482

only simple and indisputable core process models are discussed in the current paper.483
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