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Spin-wave stiffness of the Dzyaloshinskii-Moriya helimagnet compounds Fe1−xCoxSi studied
by small-angle neutron scattering
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The spin wave stiffness was measured by small-angle neutron scattering method in the Dzyaloshinskii-Moriya
helimagnet compounds Fe1−xCoxSi with x = 0.25, 0.30, 0.50. It has been shown that the spin wave dispersion
in the fully polarized state is anisotropic due to Dzyaloshinskii-Moriya interaction. It is reflected in the neutron
scattering pattern as two circles for neutrons obtaining and losing the magnon energy, respectively. The centers
of the circles are shifted by the momentum transfer oriented along the applied magnetic field H and equal to
the wave vector of the spiral ±ks. The radius of the circles is directly related to the stiffness of spin waves and
depends on the magnetic field. We have found that the spin-wave stiffness A change weakly with temperature
for each individual compound. On the other hand, the spin-wave stiffness A increases linearly with x in contrast
to the x dependences of the critical temperature Tc and the low-temperature ordered moment. Experimentally
obtained values of the stiffness A approve quantitative applicability of the Bak-Jensen model for the compounds
under study.
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I. INTRODUCTION

In recent years the exotic spin systems, which are formed
as a result of a balance between the ferromagnetic exchange
interaction and the Dzyaloshinskii-Moriya exchange antisym-
metric interaction, have attracted particular interest [1–19].
The Dzyaloshinskii-Moriya interaction (DMI) emerges as a
result of a lack of an inversion symmetry in cubic crystals with
the P213 space group. It is the ratio between the ferromagnetic
interaction with the constant J and the DMI with the constant
D that determines the magnitude of the helix wave vector or
skyrmion array ks = D/J [1,2]. Moreover, the constants D and
J determine the energy landscape of the magnetic system and
its spin dynamics.

Though most of researchers attention has been drawn to
the manganese monosilicide MnSi [3–5], other archetypical
compounds Fe1−xCoxSi have also demonstrated many intrigu-
ing properties. First of all, these compounds Fe1−xCoxSi order
below Tc in a homochiral spin helical structure in the range
of x ∈ [0.05; 0.8] [6–9]. The critical temperature TC shows a
slightly asymmetric bell-like shape as a function of the Co
concentration x with a maximum at x ∼ 0.40. Secondly, all
of them demonstrate the appearance of the skyrmion lattice
in the tiny pocket of the (H − T ) phase diagram close to
the critical temperature Tc [8–12]. Another intriguing feature
observed in the mixed compounds Fe1−xCoxSi [13] (as well as
in Mn1−xFexGe [14,15] and Fe1−xCoxGe [16]) is a flip of the
link between crystallographic and magnetic chiralities upon
mixing the two different magnetic atoms Fe and Co (or, Mn

and Fe). Theoretical investigations suggest to ascribe the flip
of the helix chirality as a function of x to a change of sign
of the DMI constant [17–19]. As was shown in Ref. [13] that
the spin helix in Fe1−xCoxSi compounds transforms to a ferro-
magnet (|k| → 0) at a critical concentration xc ≈ 0.65 at low
temperature (T ≈ 3 K). This transformation is accompanied
by the change of the link between structural and magnetic
chiralities for x < xc and x > xc. For FeSi-based compounds
(x < xc) the right-/left-handed crystalline chirality is accom-
panied by the left-/right-handedness of the magnetic helix
(�c × γm = −1), while the CoSi-based compounds (x > xc)
show the right handed lattice chirality along with the right
handedness of the magnetic spiral (�c × γm = 1). Here �c is
the crystal chirality, and γm is the magnetic chirality taking
the value −1 for the right handed or 1 for the left handed
chiralities.

Another important experimental parameter characterizing
the system is the magnitude of the external magnetic field HC2,
which must be applied in order to transform the spin helix into
a collinear spin structure (fully polarized state). It is shown
that the energy difference gμBHC2 between the fully polarized
state and the spiral state is Ak2

s , where A = SJ is the spin-wave
stiffness and S is the ordered spin [20,21]. One can estimate
the spin wave stiffness using the relation Ak2

s = gμBHC2. Such
an estimate made for the spin wave stiffness (T = 0 K) of
the compounds Fe1−xCoxSi shows a linear dependence of A
on the concentration in the range of x from 0.1 to 0.6 [10].
The linear x dependence demonstrates no correlation with
the critical temperature TC , which shows a bell-like shape
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function on x with a maximum at x ∼ 0.40 [13]. Similarly, the
saturation magnetization measurements show that the ordered
moment per metallic atom in Fe1−xCoxSi compounds has the
bell-like x dependence with a maximum at x ∼ 0.40 [22].
As was noticed above the value of the helix wave vector
k shows nonmonotonous (even oscillating) behavior as a
function of the concentration x [13]. Therefore it is surprising
that theoretical estimates of the spin-wave stiffness A show
linear increase with concentration x. The direct measurements
of the spin wave stiffness using neutron scattering have not
been performed in these compounds and, therefore, it was
difficult to confirm or disprove the conclusions of work [10].

In this paper we have used a recently proposed method
of small-angle neutron scattering to measure the spin wave
stiffness in the Dzyaloshinskii-Moriya helimagnet compounds
Fe1−xCoxSi. We have found that the spin-wave stiffness A
increases linearly with x. The measured values are in good
agreement with the theoretical predictions given on the basis
of Bak-Jensen theory [10].

II. EXPERIMENT

As was recently shown the low energy spin waves in the he-
limagnetics with the DM interaction are strongly anisotropic
even in the fully polarized state [23]. The spin-wave energy in
this case was explicitly given by Kataoka in Ref. [24]:

εq = A(q − ks)2 + (H − HC2), (1)

where ks matches with the orientation of the external magnetic
field. The sign of the DM constant determines the direction
of the helix wave vector ks being parallel or antiparallel with
respect to the direction of the field. Here and further on we
omit the factor gμB at the value of the field H for simplicity
but imply H is measured in the energy units. This form of the
spin wave dispersion causes the nonreciprocity of the spin-
wave propagation demonstrated in fully polarized helimagnet
compounds with DM interaction [25,26].

The validity of the spin-wave dispersion [Eq. (1)] has
been experimentally proven for MnSi using the small-angle
polarized neutron scattering [23]. It was demonstrated that the
sign of the DM constant determines a preferable clockwise or
anticlockwise rotation of the spin waves, i.e., the chirality of
the DM helimagnet compounds results in one-handed exci-
tations in the full-polarized state. Analysis of the scattering
patterns allows one to measure the spin-wave stiffness A as a
function of temperature. Conclusions derived in Ref. [23] on
the basis of SANS measurements have been proven once again
using triple-axis spectroscopy [27]. The complementarity of
these two methods has been clearly discussed in Ref. [23].

It was analytically shown that the inelastic neutron scatter-
ing in the case of DM helimagnet compounds is concentrated
mostly around the momentum transfers corresponding to ±ks

within two narrow cones limited by the cutoff angle θC for the
energy gain/energy loss, respectively [23]. The cutoff angle θC

is connected to the spin-wave stiffness A via the dimensionless
parameter θ0 = h̄2/(2Amn):

θ2
C (H ) = θ2

0 − θ0

Ei
H + θ2

B, (2)

where mn is the neutron mass, θB is the Bragg angle of the
scattering on spin spiral with the length 2π/ks, and Ei denotes
the energy of incident neutrons.

Following the protocol of measurements given in Ref. [23],
we have determined the spin-wave stiffness in the fully po-
larized state for the Fe1−xCoxSi compounds using the small-
angle neutron scattering method. High-purity single crystals
of the Fe1−xCoxSi with x = 0.30 and 0.50, grown by the
Chokhralski method, were chosen for this study. They were
disks with diameter of the order of 8 mm and thickness of the
order of 1 mm.

The small-angle neutron scattering experiments were per-
formed with Fe0.70Co0.30Si and Fe0.50Co0.50Si compounds at
the instrument SANS-1 (λ = 0.5 nm) at the FRM-II reactor
at the MLZ (Germany). The ordering temperature of these
compounds is Tc = 47 K and Tc = 42 K, the critical field
of the transition to the fully polarized state is HC2 = 0.17 T
and HC2 = 0.05 T, and the helix wave vector k = 0.16 nm−1

and k = 0.068 nm−1, respectively. A magnetic field up to 2 T
was applied along Qx perpendicular to the neutron beam. The
[110] axis of the single crystals was oriented parallel to the
applied field with accuracy of 5◦. Background intensity maps
were taken for all samples at low temperature (T = 5 K) and
high magnetic field (H = 2 T) when both the elastic magnetic
peak and spin wave scattering are fully suppressed. These
background maps were subtracted from the other scattering
maps of a given sample. We used the data-reduction software
GRASP developed at the ILL, Grenoble [28].

The similar SANS experiment had been performed re-
cently for the Fe0.75Co0.25Si compound at the instrument
D11 (λ = 0.6 nm) at the Laue-Langevin Institute (Grenoble,
France) [29]. The ordering temperature of this compound is
Tc = 38 K, and the critical field is HC2 = 0.18 T and the
helix wave vector k = 0.19 nm−1. The data obtained for this
compound are added to this work for completeness.

III. RESULTS

Figure 1(a) shows a typical map of the small-angle neu-
tron scattering intensity for the compound Fe0.70Co0.30Si at a
temperature below Tc and in a magnetic field below HC2. The
Bragg reflections at Q = ±ks are clearly seen in Fig. 1(a) due
to scattering by the spiral structure with the wave vector ±ks

directed along the applied field H. The wave vector ks depends
weakly on temperature and is equal to 0.16 nm−1 at T = 5 K
and to 0.147 nm−1 at T = 40 K.

At fields exceeding the critical field HC2, the elastic neutron
scattering (Bragg peaks) disappears completely and inelas-
tic scattering remains only, concentrated around Q = ±ks

[Fig. 1(b)]. This scattering intensity is collected within a
circular spot limited by the cutoff angle θC . For nonpolarized
neutron experiments one can detect two Bragg reflections at
Q = ±ks as in Fig. 1(a). It is known that the neutrons after
scattering events became polarized: The incident neutrons
with the spins parallel to the field are reflected to the right
spot but those with the spins opposite the field are scattered
to the left spot [30]. For the sake of statistics of the inelastic
experiment we conducted measurements with nonpolarized
neutrons. As a result two circular spots centered at Q = ±ks

overlap, as seen in Fig. 1(b). Nevertheless, the clear cutoff of
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FIG. 1. Maps of the small-angle neutron scattering at T = 15 K
for Fe0.7Co0.3Si: (a) in the conical phase at magnetic field μ0H =
0.125 T, (b) in the induced ferromagnetic phase at magnetic field
μ0H = 0.3 T.

the spots allows one to separate both spots [shown by a dashed
circles in Fig. 1(b)].

These circular spots with the center at Q = ks can be
observed in a wide range of fields up to Hoff = θ0Ei of the
order of 1 T for this compound [according to Eq. (2)]. A size
of these spots shrinks remarkably with the field as can be seen
in Figs. 2(a)–2(c). The cutoff angle of neutron scattering θC

related to the spin wave stiffness can be easily estimated from
these data.

To further improve the statistics, the scattering intensity of
the SANS maps was azimuthally-averaged over the angular
sector of 120 degrees with the center positioned at Q = ±ks

as shown in Fig. 1(b). An example of how the profile I (θ − θB)
transforms with the field is shown in Fig. 3.

A sharp cutoff of the intensity was not observed for all
measured fields due to both the large contribution of the dif-
fuse scattering and the spin-wave damping. The expected step-
like intensity profile is somewhat smeared into the smoothly
decreasing curve. Nevertheless, the increase of the field results
in shrinking the spots and in shifting the cutoff angle θC

toward θB. The measured intensity can be fitted by the product
of the sigmoid function and the Lorentz function, which
captures the main features of the scattering:

I (θ ) = I0

θ2 + κ2

{
1

2
−

(
1

π
arctan

[
2(θ − θC )

δ

])}
. (3)

Here the Lorentz function describes the contribution of the
diffuse scattering and its parameter κ2 = θ0(H − Hc2/En)
reflects the closeness of the system to the critical field Hc2.
The sigmoid serves as a steplike function with cutoff angle θC ,
which is smeared over its width δ. It is related to the spin-wave
damping as � ≈ δEi, when the instrumental resolution allows
us to distinguish it.
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FIG. 2. Maps of the small-angle neutron scattering at the tem-
perature T = 15 K for Fe0.7Co0.3Si at different magnetic fields:
(a) μ0H = 0.3 T, (b) μ0H = 0.5 T, (c) μ0H = 0.7 T.

All the experimental data at different fields and tempera-
tures were fitted by the expression Eq. (3). The extracted val-
ues of the cutoff angle (squared) θ2

C are plotted for T = 15 K
as a function of the field in Fig. 4. As one can see, the square
of the cutoff angle depends linearly on the field in accordance

FIG. 3. Azimuth averaged neutron scattering intensity as a func-
tion of the scattering angle (θ − θB) at different magnetic fields
μ0H = 0.3, 0.5, 0.7, 0.9 T for Fe0.7Co0.3Si composition at the tem-
perature T = 15 K.
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FIG. 4. The field dependence of the square of the cutoff angle θ2
C

for Fe0.7Co0.3Si at T = 15 K.

to Eq. (2). This fact ensures that the value of θ0 (and the
spin-wave stiffness A) can be determined with high accuracy
as all values of θC taken at different fields but at the same
temperature should give the same value of θ0 upon solving
Eq. (2). The approximation shows that the parameter δ related
to the damping varies slightly with an increase in the field and
an error of its determination increases.

The cutoff angle θC extracted from the fit is plotted in
Fig. 5(a) as a function of temperature. Taken at a certain field
value (say, H = 0.3 T) it increases smoothly as temperature
increases. On the other hand, values of the cutoff angle θC

are different for different magnetic fields at the same tem-
perature in accordance to Fig. 3 and Eq. (2). One should
note that the magnetic field more affects the cutoff angle at
high temperatures (close to TC) than at low and intermediate
temperatures. In accordance to Eq. (2), it is related to the
value of θ0 that becomes bigger with temperature. For this
reason, the magnetic field up to 1.2 T was applied for the
temperatures equal to or above T = 30 K and it was limited
by 0.9 T for measurements with T lower than 30 K. The width
δ associated with the spin wave damping was normalized to
θC plotted in Fig. 5(b). The ratio δ/θC is of the order of 0.2
at low temperatures and it increases with the temperature and
approaches to 1 at the critical temperature range.

The fitting procedure provides the value of the parameter
θC with an error associated with a mismatch between the
measured intensity and the model function [Eq. (3)]. Using
Eq. (2) one can determine the value of θ0 and, therefore, the
spin-wave stiffness A with a certain error bars for each value
of the magnetic field. In spite of the fact that the cutoff angles
θC are different for various magnetic fields (see Fig. 5) the
values of the stiffness A lay close to each other (for the same
temperature and different fields). Finally, all values of the
spin-wave stiffness A obtained at different values of magnetic
field were averaged. The error bars for the averaged value of A
were calculated as a standard deviation. The temperature de-
pendence of thus averaged spin-wave stiffness A is presented
in Fig. 6.

The SANS measurements performed for the Fe0.5Co0.5Si
compound brings the scattering maps at different temperatures

FIG. 5. (a) The temperature dependence of the cutoff angle θC

at different magnetic fields for Fe0.7Co0.3Si compound. (b) The ratio
δ/θC as a function of temperature at different magnetic fields.

and fields similar to those shown in Figs. 1 and 2. The size
of the inelastic scattering intensity spots is two times smaller
than for the Fe0.7Co0.3Si compound. The neutron scattering
data gives the value of the spin wave stiffness A shown in

FIG. 6. The temperature dependence of the spin-wave stiffness
for the three compounds Fe1−xCoxSi with x = 0.25, 0.30, 0.50. All
values of the spin-wave stiffness A obtained at different magnetic
field were averaged.
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FIG. 7. The spin-wave stiffness dependence A on the concentra-
tion x for the Fe1−xCoxSi compounds: data of SANS experiments
extrapolated to T = 0 K (circles), values estimates from Bak-Jensen
theory (squares). The x dependence of the critical temperature Tc

(triangles) is plotted for comparison.

Fig. 6. The temperature dependence of A for the Fe0.75Co0.25Si
compound is added to Fig. 6 for completeness [29].

For all three compounds one observes a tendency for soft-
ening with temperature but the value of A at Tc remains finite.
The spin wave stiffness A depends weakly on the temperature
and its value near the critical temperature Tc is of the order of
0.6–0.7 of its value at 0 K.

The concentration dependence of the spin wave stiffness
for the Fe1−xCoxSi compounds is shown in Fig. 7. Although
we have obtained three experimental points only, all of them
lay very well on the linear dependence A(x) that drops to zero
at x = 0.05. This is the concentration x where the system be-
comes magnetically ordered. The spin waves stiffness can be
estimated from the relation between the critical magnetic field
Hc2 and the energy difference gμBHC2 = Ak2

s between the
induced ferromagnetic state and helimagnetic states [20,21].
We add the estimated values to Fig. 7. As one can see they
follow more or less the tendency given by the experiment:
The spin wave stiffness of the Fe1−xCoxSi compounds shows
a linear dependence of A on the concentration x.

This x dependence of A is fully correlated with the critical
temperature TC in the range of x ∈ [0.05 ÷ 0.4] [13]. The
correlation between A and Tc is not surprising. It had been
observed, for example, in Mn1−xFexSi [31]. As the critical
temperature Tc shows a slightly asymmetric bell-like shape
function on x with a maximum at x ∼ 0.40, these two values
A and Tc are not connected above x = 0.4. The discrepancy
between A and TC becomes dramatically large for the Co-rich
compounds (see Fig. 7).

It is instructive to compare the magnetic properties of
the Fe1−xCoxSi compounds with those of Fe1−xCoxGe com-

pounds [16,19]. In the Co-rich compounds the magnetic prop-
erties duplicate each other: The CoGe and CoSi are both
nonmagnetic semimetals with intriguing properties [32], the
ordered magnetism emerges with 80% of the Co content, the
sign of the DM interaction changes at x = 0.6 in Fe1−xCoxGe
[16] and at x = 0.65 in Fe1−xCoxSi [13], the critical temper-
ature decreases monotonously with increase of x from 0.4
to 0.8. Thus, these two systems shows the same magnetic
behavior in the Co-rich ends of the phase diagram. On the
contrary, the Fe-rich compounds are different: FeGe is heli-
magnetic metal with very high Tc, while FeSi is nonmagnetic
semiconductor. The Co doping results in the decrease of the
critical temperature and the average magnetic moment for the
Fe1−xCoxGe compounds, while 5% of Co doping results in
appearance of the helimagnetic structure in the Fe1−xCoxSi
compounds. Nevertheless the magnetic and transport prop-
erties of the Fe-rich part of the Fe1−xCoxSi phase diagram
are rather well understood [22,33–35], but the Co-rich part
remains a puzzle.

There is intriguing hypothesis describing differences be-
tween magnetism in the Fe-rich and Co-rich compounds of
Fe1−xCoxSi [36]. It was shown that the spin dimensionality
is changed by Co doping in the Fe1−xCoxSi system: from
the three-dimensional (3D) Heisenberg model for x = 0.3 to
the 3D − XY model for x = 0.5 and to the 3D-Ising model
for x = 0.6. In the authors’ opinion, the lowering of the spin
dimensionality with the increase of Co content should result
from the enhancement of the anisotropic magnetic interaction
induced by the doping of Co [36]. It has been demonstrated
that in the B20 compounds, the magnetism correlates closely
with the structure, and the DMI in Fe1−xCoxSi can be effec-
tively controlled by the Co composition [13]. Thus, the change
of spin dimensionality induced by the doping of Co should
be caused by the modulation of the Dzyaloshinskii-Moriya
interaction.

IV. CONCLUSION

In conclusion, we have used the recently approved SANS
method [23] in order to experimentally measure the spin-wave
stiffness A in the series of three compounds Fe1−xCoxSi with
x = 0.25, 0.3, and 0.5. We have found that the spin-wave
stiffness A is weakly dependent on temperature. On the other
hand, the spin-wave stiffness A increases linearly with x
resembling the x dependences of the critical temperature Tc in
the Fe-rich concentration range and strongly deviating from it
in the Co-rich compounds. Obtained values of the stiffness
A demonstrate quantitative applicability of the Bak-Jensen
model for the Fe1−xCoxSi compounds for x = 0.25, 0.30,
and 0.50.
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