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Abstract

The fifth generation (5G) wireless networks have to deal with the high data rate and stringent

latency requirements due to the massive invasion of connected devices and data-hungry applications.

Edge caching is a promising technique to overcome these challenges by prefetching the content closer to

the end users at the edge node’s local storage. In this paper, we analyze the performance of edge caching

5G networks with the aid of satellite communication systems. Firstly, we investigate the satellite-aided

edge caching systems in two promising use cases: a) in dense urban areas, and b) in sparsely populated

regions, e.g., rural areas. Secondly, we study the effectiveness of satellite systems via the proposed

satellite-aided caching algorithm, which can be used in three configurations: i) mono-beam satellite,

ii) multi-beam satellite, and iii) hybrid mode. Thirdly, the proposed caching algorithm is evaluated by

using both empirical Zipf-distribution data and the more realistic Movielens dataset. Last but not least,

the proposed caching scheme is implemented and tested by our developed demonstrators which allow

real-time analysis of the cache hit ratio and cost analysis.

I. INTRODUCTION

During the past 40 years, the Internet has followed an extraordinary evolution and has become

an integral part of the modern society. However, this evolution has kept momentum and there

Part of this work has been presented in the 36th ICSSC conference [24].
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are constantly new services and contents distributed through this global communication network.

Based on Cisco’s report [1], it is predicted that the mobile data traffic will grow 74% by 2021.

Particularly, the mobile video will increase eleven-fold between the mentioned years. The main

causes of this traffic growth are the vast availability of mobile devices, e.g., smart phones,

tablets, and notebooks, as well as the fast growth of video content on the Internet and their

increasing quality. Using these mobile devices, more and more users are immigrating from

traditional linear broadcasting services (TV channels) to streaming services, such as YouTube

and NetFlix. Another factor that contributes to the traffic is the increasing video quality, i.e., 3D,

4K video, Virtual Reality etc., which can be translated to increased bandwidth requirements for

both the core and access networks. This perspective seems very promising for content providers,

since they can provide improved services and reap the benefits either through subscriptions or

advertising. Nevertheless, looking at this from a telecom operator’s point of view, it is obvious

that video traffic will become a bottleneck and put excessive strain on current communication

infrastructure. On the other hand, video traffic also results in revenue growth. However, telecom

operators do not have direct access to the revenue generated through video content delivery and

as a result they cannot use it to upgrade their infrastructure. In parallel, spectrum has become

scarce and the operators cannot easily access new frequency bands to expand their wireless

access and backhaul segments.

These are the reasons why in the last few years, telecom operators started to build their own

content delivery networks (CDNs). The aim of a CDN is to serve contents to end-users with

high performance by using edge catching. The main benefit of CDNs is represented by the

higher degree of cross-optimization between the physical infrastructure and the network service

that leads to an improved transmission efficiency. It becomes obvious that closer interaction

between operators and content providers will be needed in order to optimize content delivery

and overcome the projected bottleneck due to video traffic [3]. Some steps have been made

in this direction, for instance Dhiraagu, the Maldives operator, have deployed Google caches

successfully in its network [2].

One of the challenges in the edge caching is how to effectively prefetch the popular content

to the caches considering the high volume of data [4]. In order to overcome this issue, we

propose to use satellite backhauling for cache placement phase to exploit the large coverage of

the satellite beams. Satellite systems have the ability to provide high throughput links and to

operate in multi/broad-cast modes for immense area coverage.

DRAFT December 16, 2019



3

Due to their multi-hop unicast architecture, the cached content via terrestrial networks has to

go through multiple links and has to be transmitted individually towards each base station (BS).

On the other hand, with wide area coverage, the satellite backhaul can broadcast content to all

BSs or multi-cast contents to multiple groups of BSs. Therefore, bringing these two technologies

together can further off-load the network. The main idea is to integrate the satellite and terrestrial

telecommunication systems in order to create a hybrid federated content delivery network, which

can improve the user experience. The joint deployment of satellite and terrestrial networks can

be found in [7], [8]. In this paper, we consider the satellite channel as the only mean for cache

placement. The application of satellite communications in feeding several network caches at the

same time using broad/multi-cast is investigated in [5], [6], [7]. The work of [6] proposes using

the broad/multi-cast ability of the satellite to send the requested contents to the caches located at

the user side. Online satellite-assisted caching is studied in [7]. In this work, satellite broadcast

is used to help placing the files in the caches located in the proxy servers. Each server uses the

local and global file popularity to update the cache.

In this work, a satellite-aided caching algorithm is proposed. We use off-line caching ap-

proaches [8], [9], [10], [11], [12] to off-load the backhaul of the terrestrial network. We focus

on the role of multimodal satellite backhauling, which provides flexible backhaul’s transmission

modes, e.g., broadcast and broadband, and its effectiveness on edge caching. The proposed

algorithm can be used with three different satellite’s configurations: i) broadcast mono-beam, ii)

broadband multi-beam where the content of each beam can be selected independently, and iii)

hybrid mode that is a combination of the first two modes. Focusing on promising satellite markets,

we evaluate the performance of the proposed caching algorithm in two use cases: in dense urban

areas and in sparsely populated rural regions. Based on both empirical Zipf-distribution data

[13] and the more realistic Movielens dataset [14], we show via numerical results that the multi-

beam satellite will outperform the mono-beam system when the demands are less correlated,

and that the hybrid achieves a cache hit ratio between the multi-beam and mono-beam schemes.

These observations are very much dependent on the popularity of the content. Despite that, the

proposed caching algorithm is capable of adapting to different means of content delivery to

optimize the system cost function. Furthermore, the proposed caching algorithm is implemented

in our developed demonstrators which enable real-time analysis of the cache hit ratio and cost

analysis.

The rest of the paper is organized as follows. Section II provides technological enablers for
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caching over satellite. Section I describes the system parameters and the caching algorithm.

Section IV presents the FLUTE protocol which will be used in our demonstrator. Section V

provides cost analysis for different transmission modes. Section VI presents numerical results.

The implementation and tested results are given in Section VII. Finally, Section VIII concludes

the paper.

II. TECHNOLOGICAL ENABLER FOR SATELLITE-ASSISTED EDGE CACHING

A. Hybrid Satellite

The satellite architecture in general can be classified in two traditionally different cases:

satellite with a very wide single beam, mainly used for broadcast services, and satellite with

many small beams, mainly used for broadband services (see Fig. 1 for example of satellite

coverage). While the distinction between these two types of architectures is well established

nowadays, in the future satellite system there may be no real distinction between broadcast and

broadband payload. Thanks to the adoption of new technologies, like digital transparent payload

(DTP) and (semi-)active on-board antennas, it will be possible to have both services sharing

the same hardware power and spectrum resources in reconfigurable hybrid broadcast/broadband

payloads. Many satellite manufacturers are currently working towards this new type of payload

[15] and in Fig. 2 we provide a pictorial representation of this hybrid architecture.

As an example shown in Fig. 2, the satellite is receiving 3 different streams: 2 broadband

streams (the light and the dark blue lines) and 1 broadcast stream (the red line). At a beam ports

level (the output of the DTP) we still have 3 different streams that are the input of the active

antenna. Thanks to the active antenna technology, it will be possible to create overlapping beams

of variable granularity and use a single broadcasting system to drive a large broadcast beam and at

the same time it will be possible to generate on the same payload separated broadband beams.

The flexible payload would be able also to shape the broadcasting beams to concentrate the

transmitted power where it is needed. It is interesting to note that in this configuration there

isn’t a direct relation between the beams and the feed, but basically all the feeds cooperate to

create all the beams using digital beamforming (BF). In this way is possible to optimize the

power consumption of the high power amplifiers (HPAs) serving the feeds.

Because the creation of the beams is driven by the digital beamforming network (DBFN),

the beams design can be very easily reconfigured. This type of flexibility is certainly extremely

important for satellite operators, so that they can modify their satellite configuration in order
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Fig. 1: Illustration of the reference satellite coverage and architectures

Fig. 2: Hybrid Satellite Architecture

to better accommodate the variation of the traffic demands during the satellite lifetime. In this

context we refer in particular to the content-related traffic evolution determined by various factors

such as population evolution and changes in the content consumption preferences.

B. Integrated Satellite-Terrestrial System

The classic cellular backhaul comprises of fibre, copper lines and wireless links, which can

efficiently transfer the backhaul traffic from point to point. The multimodal architecture enhances
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the conventional backhaul by overlaying wide satellite beams and narrower broadcasting cells

(e.g. HPHT), which are capable of P2MP (point to multi-point) multi/broadcasting. Studies in

[16] have shown that a small percentage of extremely popular video files can pose a huge load on

current networks that do not support broadcasting on the physical layer. The proposed satellite

overlay caching solution can relieve this load by simultaneously and efficiently distributing

popular content the edge caches using traditional P2P backhauling with broad/multicasting P2MP

backhauling. It should be noted that these multi/broadcast systems can inherently reach a large

number of BSs with a single PHY-layer transmission in contrast to the NET-layer multicasting

which implies packet replication and multiple individual PHY connections. In addition to above

mentioned benefit, this converged solution brings several distinct benefits: 1) additional backhaul

capacity based on existing infrastructure, 2) spectrally-efficient physical-layer multi/broadcasting,

3) variable cell sizes for broadcast backhauling (wide coverage for satellite, narrow coverage for

high broadcasting towers).

III. SYSTEM MODEL AND CACHING ALGORITHM

We consider a satellite system serving the users within its coverage via a number of edge

nodes, e.g., base stations (BS), which are equipped with a satellite receiver. The satellite is capable

to deliver content via both mono-beam and multi-beam transmissions. In order to exploit wide

coverage, globally popular contents will be prefetched via satellite links, whereas locally popular

contents will be transmitted via terrestrial networks, as depicted in Fig. 3. The considered system

can find application in both urban and rural areas. In the former, each BS serves a large number

of users, while in the latter, there are less users served by one BS. Each BS has a local storage

which can store up to M bits. The users are interested in requesting contents from a library

F = {1, . . . , f, . . . , F} consisting of F files. Let Qf denote the size (in bits) of file f .

We consider offline caching which consists of two consecutive placement phase and delivery

phase. The cache placement phase is executed periodically in off-peak hours [8], e.g., from

midnight to early morning. Our focus is to design efficient cache placement phase in order to

exploit the benefit of the satellite channels. Denote C as the caching capacity of the satellite

links, which is the maximum load the satellite channel can deliver during the placement phase. In

addition, we consider three operating modes of the satellite channels: mono-beam, multi-beam,

and hybrid.
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Fig. 3: Hybrid satellite-terrestrial network using a multi-beam satellite for more accurate content

placement phase. Globally popular contents are sent via satellite channels, while locally popular

contents can be sent via either terrestrial network or multi-beam satellite.

A. Caching via Broadcast mono-beam

With mono-beam satellite mode, both broadcast and multicast are possible. However, the

efficiency of the multicast in this mode is in general lower than in multibeam systems due to

the wide beam. This is the reason why in our study, we assume that the monobeam is used for

broadcasting. The cache placement is done based on the global popularity.

Based on the user preference sent to the network controller via the return link, a local user

preference (content popularity) is obtained, which is then used to determine caching strategy.

The local popularity is estimated based on the user requests sent to the corresponding BS in the

previous phase. Denote nk,f is the number of requests for file f from BS k. The local content
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popularity at BS k is computed as pk = [pk,1, . . . , pk,F ], where

pk,f =
nk,f∑F
f=1 nk,f

.

The global content popularity is computed from local popularities, pk, given as pG = 1
K

∑K
k=1 pk,

where K is the number of BSs. The gateway then use pG to determine the most popular contents

to be sent via the satellite channel as follows. First, the gateway obtains p̃G = π(pG), π() denotes

the sorting operator. Denote Ψ(m; q̃G) =
∑m

f=1Qf1q̃G,f
as the total file size (in bits) of the first

m contents in p̃G, where 1x , sgn(x). Then the gateway chooses

mG = arg max
m
{Ψ(m; q̃G) | Ψ(m; q̃G) ≤ C}

first files in p̃G to broadcast over the satellite channel. Each BS k will choose the first mk files of

p̃k = π(pk) to be stored in the kth BS’s cache, where mk = arg maxm{Ψ(m; q̃k) | Ψ(m; q̃k) ≤

M}. Obviously, if C >
∑F

f=1Qf , all the BSs can cache the most locally popular files in their

cache. However, when C <
∑F

f=1Qf , some BSs might not be able to cache the most popular

files (locally) if {pk} are uncorrelated, hence the CHR during the delivery phase is degraded.

The cache hit ratio (CHR) is the main performance indicator to be considered. It is defined as

the ratio between the number of requests served by the local cache, divided by the total number

of requests:

CHR =

∑K
k=1 n̄k∑K
k=1 nk

, (1)

where n̄k is the number of requested files available in the kth local cache, and nk is the total

number of requests at the kth BS.

B. Caching via Broadband multi-beam

The CHR performance can potentially be improved by using multi-beam satellite as the content

deliver is done per beam and not for the whole widebeam. For a satellite with multi-beam and

flexible beam coverage, the caching can target, in fact, a subset of beams. It is often expected

that the narrower beam can reach a higher spectral efficiency, compared to the global beam,

while utilizing similar satellite resources in terms of power and bandwidth. However, the use of

multi-beam system may introduce additional inference due to the reuse of the spectrum. The level

of co-channel interference will depend on the isolation among different beams, the beam size,

etc. In our analyses, the efficiency of the link is taken into account as a configurable parameter.
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TABLE I: CACHING ALGORITHM VIA SATELLITE

Input: C - caching capacity, Mk,∀k - cache size at the base station, nk,f - number of requests for file f from

BS k, L - number of beams.

1. BS k estimates pk = [pk,1, . . . , pk,F ], where pk,f =
nk,f∑F

f=1
nk,f

, then forward it to the gateway

2. if (mono− beam)

2.1. The global cache manager (GCM) at the gateway computes the global popularity pG = 1
K

∑K
k=1 pk

2.2. The GCM sorts pG in the decreasing order to obtain p̃G

2.3. The GCM chooses the first mG = arg maxm{Ψ(m; p̃G) | Ψ(m; p̃G) ≤ C} files in p̃G to broadcast for

caching, where Ψ(m; p̃G) denotes the total volume of the first m files in p̃G.

2.4. Each BS k sorts pk in the decreasing order, and chooses the first mk = files in the sorted local popularity

for caching, where mk = arg maxm{Ψ(m; p̃k) | Ψ(m; p̃k) ≤M}.

A file is cached at the local cache of BS k if it is in the list and is sent by the GCM

3. else if (multi− beam)

3.1. The GCM constructs L beams. Kl denotes the set of BSs in the l-th beam.

3.2. For each beam, the GCM applies the caching policy in step 2.

4. else if (hybrid− mode)

4.1. Determine Cmono, Cmul as the caching capacity in mono-beam and multi-beam satellites, respectively.

4.2. The GCM applies step 2 to with the caching capacity Cmono to determines the files being broadcasted

via mono-beam satellite, denoted by Fmono

4.3. The GCM excludes files in Fmono from the requests {nk,f}∀k,f , then applies step 3 with the caching

capacity Cmul.

Let L denote the number of beams. We define the number of files that each beam is capable of

delivering in the placement phase as the caching capacity C bits. Denote Kl as the set of BSs in

the l-th beam. The gateway will calculate the popularity of the user requests within each beam

as follows: pl
G = 1

Kl

∏
k∈Kl

pk. Then the l-th beam will apply the same caching technique as in

the previous subsection to broadcast the most popular contents this beam.

C. Caching via Hybrid design

In the hybrid setting, some contents can be prefetched via the mono-beam mode, while the

rest are sent via the multi-beam satellite. A similar approach was proposed for the terrestrial

Centralized-RAN (CRAN) architecture in [19]. Denote Cmono, Cmul as the caching capacity of

the mono-beam satellite and multi-beam satellite, respectively. First, the mono-beam caching

algorithm in Section III-A is applied subject to the caching capacity Cmono. The cached files

after this phase are removed from the requests. Next, the multi-beam caching algorithm in
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Section III-B with the caching capacity Cmul bits is used on the remaining requested files. The

proposed caching algorithm is summarized in Table I.

IV. FLUTE PROTOCOL FOR CONTENT DELIVERY OVER SATELLITE

In this section, we briefly introduce the file delivery over unidirectional transport protocol

(FLUTE), which will be used to implement the caching algorithm over satellite channels. The

principle of FLUTE enables scalability and realizability which are suitable for broadcast networks

[20]. Since FLUTE is built on top of asynchronous layered coding protocol (ALC), it permits to

transfer binary objects with multiple rate congestion control and application-level forward erasure

correction (AL-FEC) to an unlimited number of concurrent receivers from a single sender.

A complete FLUTE-based file transfer protocol consists of a FLUTE sender and multiple

FLUTE receivers. The former is responsible for encoding data with proper code rates to guarantee

some given reliability and sending the coded files over the network. The FLUTE sender is to able

send a collection of files in the form of packets. In particular, multiple files are sliced into blocks,

which are then sliced into packets, as depicted in Fig. 4. Blocks and packets are numbered by

SND and ESI, respectively. It is worthy noting that the FLUTE packets are compatible with

UDP/IP protocol. The FLUTE receivers receives UDP/IP packets which contain ALC payload.

The received packets are then reordered and reconstructed into blocks, as shown in . Fig. 5.

Since employing a Al-FEC decoder, some missing packets can be reliably recovered.

Fig. 4: FLUTE sender.
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Fig. 5: FLUTE receiver.

A. FLUTE/DASH protocol

Media contents from movie database are encoded using dynamic adaptive streaming over

HTTP format (DASH). DASH specifies XML and binary formats that enable the delivery of

media content from standard HTTP servers to HTTP clients [21]. DASH permits to encode

multiple representations of the content with different bit rates or resolutions. The media content

is sliced in small pieces of files called segments. Multiple segments will be transferred via

FLUTE as binary files. DASH contains the media presentation description (MPD), an XML

document that describes how media segments are relative to each other. It contains metadata

about the content and information permitting to select video, audio, caption components for the

clients.

A content in DASH format is transferred over multiple FLUTE sessions. MDP and service-

based transport session instance description (S-TSID) are transferred over a FLUTE session with

a transport session identifier (TSI) of 0. Then each media representation is transferred over its

own FLUTE session. [22]. FLUTE receivers must listen to FLUTE session with TSI equal to

0 and acquire the MPD and S-TSID. Once these two files are received, the S-TSID is used to

determine the mapping between a DASH media representation and a FLUTE session. Details of

the FLUTE/DASH protocol is depicted in Fig. 6.
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Fig. 6: Mapping between DAHS and FLUTE.

B. NACK protocol

Since negative acknowledgment protocol (NACK) is unavailable in the standard FLUTE, we

have implemented NACK on top of the FLUTE protocol to improve the file transfer reliability as

it allows to request and retransmit lost packets at an expense of a return channel. NACK protocol

is based on the file repair procedure defined in TS 126 346 [23, chapter 9]. File repair capability

is signaled by the FLUTE sender in an associated procedure description instance (APD) file.

The APD is an XML file that is transmitted over FLUTE in a carousel. The APD contains file

repair properties needed by the FLUTE receivers in order to initialize the file repair procedure.

In this work, we implement two file transfer protocols. The first one uses HTTP client/server

to send NACK and receive responses. The second one is based on UDP. NACK requests are

encapsulated in a single UDP packet and then the repair packets can be transmitted over UDP

via unicast/multicast links.

V. COST PER BIT CALCULATION

In order to define the cost per bit for the satellite transmission, different aspects need to be

considered, such as the entire service costs of the transmission and the capacity of the satellite

system for all the possible transmissions of services.

For contents distribution service, we assume that the transmission is organized in a multicast

manner allowing many terminals to receive the same content. In the following, we will so

compare the cost per transferred bit between a widebeam multicarrier mode and a multibeam

single carrier mode. For this we need to consider the required resources of the satellite and take

into account the link budget results to assess the overall picture. This is a first order assessment
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of the cost per bit compared to what the total capacity of the satellite is, so it does not consider

eventual opportunity costs resulting from specific operational contexts or second order effects

that one service might have on alternative usage of the capacity. This is a comparison on the

basis of the total satellite cost per transmitted information bit.

We assume multi-cast link budget assessment results indicating the required ES/N0 values

for both the considered transmission modes. From this assessment, we derive the transmission

efficiency, taking into account all overhead parameters required.

The power and bandwidth used in the link budgets to assess the transmission efficiency have

to be considered. If it is multiplexed with other traffic, the proportional DC power resources

and bandwidth utilization resources is taken in to account. The DC power equivalent is deduced

from the assessment of the power assessment taking into account the amplifier efficiency and

output backoff (OBO) of the amplifiers required. The total bandwidth available over all beams is

considered as bandwidth reference for the satellite. Here the total bandwidth of the simultaneously

transmitted traffic has to be considered for all possible beams which are active at the same time.

The total cost of the transmission can be estimated based on the reference of same satellite

services,which takes into account CAPEX (and OPEX in a refined model, but not required in first

order approximation) costs with related assumptions on fill rates per lifetime. This is deduced

as cost per Mbps assessment for the computed traffic load. We may consider different levels of

costs to take into account the fact that an underutilized time period could be used for the data

transfer. The total is a COSTLINK result as RESOURCEPERCENT * COSTSAT .

Then the total file transfer cost results in:

COSTfile = Size ∗ COSTLINK/Efficiency ∗Bw.

The relative cost comparison between mono-beam and multi-beam used in the simulation is

given in Table II.

VI. PERFORMANCE EVALUATION VIA NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed caching algorithms in two forms

of numerical results and file transfer implementation.

In this subsection, the cache hit ratio (CHR) performance of the proposed caching algorithms

is evaluated via numerical results. The user’s requests follow Zipf distribution with the skewness

factor equal to 0.8. The library consists of F = 500 files of equal size of Q bits. Since the
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TABLE II: RELATIVE COMPARISON FOR COST PER BIT

Widebeam Multibeam Unit

Multicarrier Singlecarrier

ES/N0 (worst case) 8.0 7.5 dB

Efficiency 2.4 2.1 bps/Hz

Total Sat RF Power 8556 5398 W

Total Sat Bandwidth 4320 80000 MHz

Beams per coverage 1 10 #

Power per beam 120 60 W

Bandwidth per beam 60 500 MHz

Power Ratio 1.4% 11.1%

Bandwidth Ratio 1.4% 6.3%

RESOURCEPERCENT 1.4% 11.1%

COSTLINK 0.014 0.111 relative

Size 5000 5000 Mbyte

COSTfile 3.89 4.19

Cost w.r.t. widebeam 1 1.09 relative

files have the same size, the storage capacity is normalized by the file size for simplicity. All

the BSs are equipped with a cache of size M (files). To make a fair comparison, the caching

capacity in mono-beam and multi-beam settings are chosen such that both schemes have same

total placement cost. This means that we fix the caching capacity of the monobeam mode and

we scale the caching capacity of the multibeam mode in accordance with the results of Table II.

In particular, let Cmono and Cmul denote the caching capacity in the mono-beam and multi-beam

modes, respectively. The caching capacity of the hybrid mode is calculated in accordance with

the usage percentage of the monobeam, Chybrid,1, and the multibeam mode, Chybrid,2. In order

to meet the same placement cost, we have Cmono = 1.09Cmul = Chybrid,1 + 1.09Chybrid,2. The

satellite provides service for an area consisting of 1000 BSs, each is serving 2000 users in use

case 1 (e.g., urban area) and 400 users in use case 2 (e.g., rural area).

Fig. 7 presents the CHR for the two considered use cases. The total caching capacity is

equal to 200 files in use case 1, and 100 files in use case 2. We assume that the user requests

form four geographical regions which are weakly correlated. More specifically, 10% of the files

is globally popular across all regions. The popularity of other files are randomly assigned for

each region. The multi-beam mode sends the data via 4 beams. It is observed that the multi-
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Fig. 7: CHR performance of the proposed caching algorithm in two use cases. For each case, the

caching algorithm is designed for three different beam settings: mono beam only, multi-beam

only, and hybrid mono beam and multi beam.
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Fig. 8: CHR performance of the multi-beam scheme v.s. number of beams. The user requests

form 4 weakly correlated regions.
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Fig. 9: CHR performance based on Movielens dataset.

beam satellite achieves a CHR significantly larger than the mono-beam scheme. This is because

the multi-beam satellite can better match the local popularity with the user demands. More

importantly, the proposed hybrid mode, which prefetches the cache via both the mono-beam and

the multi-beam satellite, can further improve the CHR performance. The usage percentage of

the mono-beam mode in the hybrid scheme is optimized and equal to the most popular files in

all regions, e.g., Chybrid,1 = 50 and Chybrid,2 = 138 in use case 1. It is also shown that usecase 1

outperforms usecase 2 due to larger caching capacity. Indeed, this initial result shows one of the

major advantages of the hybrid and multi-beam caching with respect to the mono-beam caching,

i.e. the access to the geographical diversity of the content. This way, the hybrid and multibeam

modes can cache the less correlated content popularity in a more efficient manner.

Fig. 8 shows the CHR of the two use cases as a function of number of beams or cluster

of beams according to the fact that we are considering the new hybrid satellite architecture,

presented in Section II-A, or a more conventional and less flexible payload. It is shown that the

number of beams equal to 4 gives the largest CHR for both scenarios. This is because there the

requests form 4 geographical areas which are weakly correlated. In this case, using four beams

is sufficiently efficient. It is noted that using more beams than the regions may degrade the CHR
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since the cost per bit of multi beam mode is larger than the that in the mono beam mode.

Fig. 9 presents the CHR of usecase 1 with Movielens demand [14]. The system parameters are

similar in the previous section. A significant gain is observed for multi beam satellite (4 beams)

compared with the mono beam counterpart. In particular, a CHR gain of 30% is achieved by

the 10-beam setup compared with the mono beam. This is because the user demands across

the beams are weakly correlated. Therefore, using the multi-beam satellite can serve the local

demands better than the mono beam. Indeed, multi-beam satellites bring the CHR in this case

to a level which is much more beneficial. It is also observed that the CHR in both setups

saturates due to the caching capacity limit. This is due to the fact that the caching capacity of

the transmission scheme is lower than the storage capacity of the terminals. This would be not

a limitation if we had run the simulation for a longer period of time, where the storage capacity

would have been filled in the caching period of several consecutive days.

VII. TESTING SETUP AND IMPLEMENTATION RESULTS

In this section, we present the testing results executed in our developed testbed, which is

capable of demonstrating live satellite file transfer to edge caches using FLUTE protocol. The

test bed is highly configurable and permits to cover different use-cases (residential direct-to-

home broadcasting in developed markets, broadcasting in developing markets, feeding video to

terrestrial networks) with different technologies, e.g., widebeam, multispot beams and hybrid

beams. The test bed is able to emulate a maximum of 20000 users per local cache. It is possible

to run up to 6 local caches on single device. The gateway embeds a hard drive that contains

3738 movies encoded in mpeg-dash. The size of the local cache storage adjustable. The current

local storage is able to store a maximum of 300 movies.

The testbed allows to analyse the profitability of caching mechanisms. Metrics for the file

transfer cost have been defined with the caching algorithms to determine the cost of transmission,

and establish a comparison with traditional unicast file transfer. Cost ratio between satellite and

terrestrial file transfer has been used with various use-case of distribution -wide beam, multi spot

beam- in order to determine the profitability of satellite based file distribution. The testbed can

access such performance indicators for different transfer cost assumptions, using MovieLens [14]

and Netflix Prize datasets for user behavior emulation. Fig. 10 depicts the testing setup, which

has been trialed by the SES iCast demonstration over satellite using the developed technology.
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The robustness of the FLUTE implementation enables the demonstrator to be capable for further

trials and integration into a first product prototyping.

Fig. 10: Testbed permitting to analyse cache performance.

A. CHR performance

In this subsection, we run a test to evaluate the performance of the proposed caching algorithm.

It is assume that all the local caches are empty at the beginning of the test. During the test, the

local cache manager will aggregate the user requests to estimate the content popularity, which

is then used to determine the contents to be cached.

Fig. 11 (top) presents a snapshot of the CHR performance for both real-time and average

CHR values. The real time CHR measures the instantaneous CHR while the latter accounts

for all requests from the beginning of the test. It is observed that the average CHR increases

over time. This is because at the beginning of the test, CHR is equal to zero since all the local

caches are empty. And due to the limited backhaul capacity, it takes time to implement the cache

placement phase. This is different from common theoretical analysis results that usually ignore

the cost (time and bandwidth) to fill the cache. In Fig. 11 bottom, we also presents the cache

miss probability - the percentage of requests that are not served by the local cache, in addition

to the CHR. As the time comes, the CHR increases while the cache miss probability decreases.
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Fig. 11: Testbed permitting to analyse cache performance.

This expected observation results from the fact that over time the local caches better estimate

the file popularity, making the caching algorithm more efficient.

B. Cost for serving user requests

This subsection presents cost analysis to understand the benefits of the proposed caching

algorithm. The cost is calculated as the product of the cost per bit (see Section. V) with the

total file size. In particular, the implemented demonstrator allows to find the cost parameters and

simulation duration for which the cost of the caching scheme becomes less than the cost of the

solution without caching. Fig. 12 plots the relative cost of the caching scheme compared with the

solution without caching. A positive value of the different cost means that the caching scheme

costs more that without caching. And the vice versus, a negative value indicates the using the

caching solution is more cost efficient (the black y-axis). It is observed that the the relative cost

decreases over time and become negative eventually, which confirms the effectiveness of the

proposed caching algorithm.
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Fig. 12: Testbed permitting to analyse cache performance.

VIII. CONCLUSIONS AND FUTURE WORKS

We have demonstrated the effectiveness of the multimodal satellite backhauling on edge

caching systems in the presence of highly uncorrelated content which is likely to be the trend of

the future content consumption. The proposed offline caching algorithm is shown to be capable

for flexible deployments of the satellite channels: mono beam, multi beam and hybrid. We have

shown that the multi-beam and the hybrid modes become useful with respect to widebeam

in caching as the geographical distribution of content popularities becomes uncorrelated. In

particular, the future flexible multi-beam payloads with their adjustable coverage will be able

to better distinguish between the clusters of beams with less popularity correlation and hence

further improve the CHR. As future development, a cost based optimization of the rates of the

different modes of the hybrid setup, in order to better fit the traffic distribution, can be realized.

In addition, these results suggest a promising extension to on-line caching strategies [17], [18],

where the user preference periodically changes time to time.
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