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ABSTRACT

Photoluminescence characterization of semiconductors is a powerful tool for studying shallow and deep defects. Excitation-intensity-
dependent measurements at low temperatures are typically analyzed to distinguish between exciton and defect related transitions. We have
extended existing models based on rate equations to include the contribution of deep defects. Generally, it is observed that the photoluminescence
intensity IPL follows a power law IPL / fk with the excitation intensity f. We show that the exponent k takes on values of multiples of 1=2. The
values depend on the availability of additional recombination channels. Defect levels can saturate at high enough excitation intensities, leading to
one or several crossover points from one power law behavior to another. Power law exponents different from n=2 can result from the transition
region between two limiting cases of linear power laws. Model functions for the analytical description of these transitional excitation dependen-
cies are derived and the analysis is applied to chalcopyrite thin films and to numerical data. The saturation effects of defects by excess carriers as
well as the influence of deep recombination centers can be extracted with the help of the presented model, which extends existing theories.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5095235

I. INTRODUCTION

Excitation-dependent photoluminescence measurements are
often used as a tool to distinguish excitons, free-to-bound or donor-
acceptor-pair transitions in semiconductors.1–22 The different transi-
tions are generally identified by measuring the photoluminescence
intensity in dependence of the laser power. For example, in Ref. 1, a
description of the transitions with rate equations is given as well as
numerical results and experimental measurements on CdTe. It is
shown that the intensity of the photoluminescence transitions
follows a power law behavior with IPL / fk in simplified cases. The
excitation power density f is varied over several orders of magni-
tude. The power law exponent k is between 1 and 2 for free- or
bound-exciton transitions and below 1 for free-to-bound or donor-
acceptor pair transitions. This model is used in the literature to dis-
tinguish between excitonic and defect related transitions.1–15

However, it has been shown that the attribution can be erroneous if
deep levels are present as well.17,19 For example, we will show in the
following that, for certain cases, the PL intensity of a shallow donor-

acceptor pair transition can increase with a superlinear power law if
deep recombination centers are present. Furthermore, it is often
observed that the log-log plot of PL intensity vs excitation intensity
is not linear. Several models exist for the analytical or numerical
description of nonlinear log-log plots.26 To detect this nonlinear
behavior, it is very important to measure the excitation dependence
over several orders of magnitude.

In the following, we derive a general model that combines lim-
iting cases of low and high excitation regimes, and we describe the
excitation dependence with a phenomenological fitting function.
The model is applicable to cases with and without any number of
deep defect levels. The motivation for the present study arises from
the fact that, in the literature, including our own work, on discrete
photoluminescence transitions at low temperatures, it is often taken
for granted that a power law exponent between 1 and 2 indicates
excitonic transition, whereas only an exponent smaller than 1 indi-
cates a defect related transition.1–15 In several publications with
excitation-intensity-dependent photoluminescence measurements,
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only single power law exponents are fitted to the experimental
data.5–15 From this, and based on the results in Ref. 1, different
types of transitions are then discriminated from a power law expo-
nent larger or smaller than 1.

We will show in the following that the conventional character-
ization does not hold in general when deeper luminescence transi-
tions dominate. One needs to keep in mind that deep defect
transitions might be present but not detected because they are
outside the sensitivity range of the detector used. While exciton
transitions always yield power law exponents above or equal to 1
(in accordance with Ref. 1), defect related transitions, such as
free-to-bound or donor-acceptor pair transitions, can also increase
superlinearly with excitation and, therefore, could be falsely attrib-
uted to exciton transitions. Furthermore, our calculations and sim-
ulations indicate again that a large measurement range of excitation
intensities is necessary.

If the power law exponents are measured for each unknown
photoluminescence transition in the low and high excitation
regimes, our model can yield a full overview of all involved transi-
tions: a unique set of exponents leads to a unique set of observed
transitions. It is possible to discriminate defect levels if only the
exponents are known from the experiment. The results of Ref. 1
will be extended and a novel characterization method for defect
studies is given. In general, nonlinear log-log plots are a result of
the rate equations when changing more than 2 orders of magnitude
of excitation intensity.

In Sec. II, a theoretical description of the rate equations is
given for two situations with shallow or deep defects. A model
function for nonlinear log-log plots is derived in Sec. III. For vali-
dation, the model is compared with numerical results and fitted to
experimental data on chalcopyrite semiconductors in Sec. IV.

II. THEORETICAL EXCITATION DEPENDENCE

We consider a semiconductor with a shallow acceptor, a
shallow donor, and an additional deep donorlike recombination
center and the semiconductor emits excitonic luminescence at low
temperatures. A schematic overview is given in Fig. 1. We make the
following assumptions:

(i) We consider an experiment with a continuous wave excita-
tion and a steady state condition.

(ii) We assume a homogenous sample, where transport effects
can be neglected.

(iii) We assume that at low temperature we can neglect thermally
excited carriers; for example, only photogenerated electrons
and holes are considered.

(iv) We assume that the transition coefficients are prefactors
independent of the generation rate.

(v) We neglect high excitation effects like Auger-recombination,
Fermi-levels inside the bands, or stimulated emission.

(vi) Resonant defect absorption is not considered. This process is
negligible for excitation energies far above the bandgap.

For typical low temperature PL experiments with laser excitation
on semiconductors with a reasonable PL yield, these assumptions
are likely to be fulfilled.

A. Rate equations and charge balance

In a photoluminescence experiment, electron hole pairs are
generated at a rate G. This rate is proportional to the laser power
density f with a coefficient cf. Within 10�12 s, the excess carriers
relax to the band edges23 and are distributed according to a Fermi
distribution with a temperature close to the temperature of the
lattice.

After this process, transitions between the free carriers and
defect levels will occur. An overview of possible transitions for the
electrons is shown in Fig. 1 as an example. The rate of these transi-
tions is proportional to the electron density in the upper state ni
and the hole density (empty states) in the lower state n j with a
transition coefficient cij.

24 These transition coefficients can cover
radiative and nonradiative transitions. The rate equations are given
for the free electron (hole) concentration n (p), the density of
neutral donors (occupied by electrons) N0

D, the density of neutral
deep defects (occupied by electrons) N0

S , and the density of neutral
acceptors (occupied with holes) N0

A. The corresponding constant
total defect densities are written without the superscript for the
charge state, for example, Ni ¼ N0

i þ Nþ=�
i for single charge levels,

dn
dt

¼ cf f|ffl{zffl}
generation

� cnD n(ND � N0
D)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

e�capture (eDþ)

� cnS n(NS � N0
S )|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

e�capture (eSþ)

� cnA nN0
A|fflfflfflffl{zfflfflfflffl}

FBA (eA0)

� cnp np|fflffl{zfflffl}
BB=FX

, (1)

dN0
D

dt
¼ cnD n(ND � N0

D)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
e�capture (eDþ)

� cDS N
0
D(NS � N0

S )|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
e�capture (D0Sþ)

� cDA N0
DN

0
A|fflfflfflfflfflffl{zfflfflfflfflfflffl}

DA (D0A0)

� cDp N
0
Dp|fflfflfflffl{zfflfflfflffl}

FBD (D0h)

, (2)

dN0
A

dt
¼ cAp (NA � N0

A)p|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
h�capture (A�h)

� cDA N0
DN

0
A|fflfflfflfflfflffl{zfflfflfflfflfflffl}

DA (D0A0)

� cSA N0
SN

0
A|fflfflfflfflfflffl{zfflfflfflfflfflffl}

SA (S0A0)

� cnA nN0
A|fflfflfflffl{zfflfflfflffl}

FBA (eA0)

, (3)

dN0
S

dt
¼ cnS n(NS � N0

S )|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
e�capture (eSþ)

þ cDS N
0
D(NS � N0

S )|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
e�capture (D0S0)

� cSA N0
SN

0
A|fflfflfflfflfflffl{zfflfflfflfflfflffl}

SA (S0A0)

� cSp N
0
Sp|fflfflffl{zfflfflffl}

FBS (S0h)

: (4)

Charge neutrality is given by

nþ N�
A ¼ pþ Nþ

D þ Nþ
S , (5)

assuming single charge levels for all defects.
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Since we consider low temperatures, the band-to-band (BB)
transition is dominated by the excitonic transition. Free- and bound-
exciton transitions are labeled by FX and BX, respectively. Bound
excitons are briefly discussed in the supplementary material (S2).
If not stated otherwise, we will always refer to the recombination
dynamics of free excitons when we discuss transitions involving
excitons. Free excitons can be treated the same way as band-to-band
transitions: both transitions are proportional to electron and hole
concentrations in the band and we do not discuss the transition
energies.

Obviously, the overall intensity of the free exciton and
band-to-band transition are different, which can be accounted for
by different prefactors cFX and cBB. At low temperatures where the
thermal energy is below the exciton binding energy and the free
carrier concentration is low, the band-to-band transition is unlikely
and only the free exciton transition needs to be considered.
Since we neglect thermal carrier generation at low temperatures,
electron and hole densities are given by the photogenerated carriers
only: Δn and Δp. For each state, the rate equations are given in
Eqs. (1)–(4). The different terms are labeled with transitions
from donor-to-acceptor (DA), deep-donor-to-acceptor (SA), and
free-to-bound (FB) with the subscript of the involved defect
levels. Since we assume steady state, the time derivative of the con-
centrations is zero, and the generation of carriers equals their
recombination.

For each transition, we define the power law exponents by
ki ¼ d log(Ii)=d log(f). Because the rate of a transition depends
linearly on the product of the charge densities of the two levels
involved, the k-value of a transition is the sum of the k-values of

the two charge densities. The k-value of a charge density N0
i

is defined as ki ¼ d log(N0
i )=d log(f). The recombination of a

donor-acceptor pair, as an example, is proportional to the
density of neutral donors and acceptors. In this case, the power
law exponent kDA is the sum of the exponents for each density
with kD ¼ d log(N0

D)=d log(f) and kA ¼ d log(N0
A)=d log(f).

Equations (6)–(11) give an overview of the link between these pho-
toluminescence intensities, the carrier densities, and the power law
exponents,27

IFX / np ) kFX ¼ kn þ kp, (6)

IFBD / N0
Dp ) kFBD ¼ kD þ kp, (7)

IFBS / N0
Sp ) kFBS ¼ kS þ kp, (8)

IFBA / nN0
A ) kFBA ¼ kn þ kA, (9)

IDA / N0
DN

0
A ) kDA ¼ kD þ kA, (10)

ISA / N0
SN

0
A ) kSA ¼ kS þ kA: (11)

In contrast to Ref. 1, we do not assume n ¼ p. In certain
cases, for example, when there is only one shallow acceptor level,
the free electron concentration will be equal to the sum of concen-
trations of holes in the valence band and in the acceptor state.

FIG. 1. Band diagram of transitions in a semiconductor with a shallow donor level at ED, a shallow acceptor level at EA, and a deep donorlike level at ES. Free (FX) and
bound (BX) exciton transitions are given with reference to the band-to-band (BB) transition. The conduction band minimum is labeled with EC and the valence band
maximum with EV.
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Thus, the carrier densities n and p will be treated separately, as well
as the corresponding power law exponents kn and kp.

In the following, we will discuss the power law exponents in
low and high excitation conditions for two different cases: a semi-
conductor with one shallow donor and one shallow acceptor, and
the case with a shallow donor/acceptor, each, and one deep recom-
bination center. The cases with no defect level or with one shallow
defect level can be found in the supplementary material (S1) for
comparison.

B. Donor and acceptor: Compensated

In the compensated case, nearly all donors and acceptors are
ionized at low temperatures with ND � Nþ

D � NA � N�
A . There are

no deep recombination centers in this example, so that
NS ¼ N0

S ¼ 0. In the dark, electrons from the donor sites compen-
sate the holes from the acceptor sites.

For the lowest excitation, the free carrier concentration is negli-
gible compared to the concentration of ionized defects. The neutral
defect densities are negligible compared to ionized ones and the
capture of electrons by the shallow donor level and the capture of
holes by the shallow acceptor level dominate. In this case and under
illumination, p � N0

A and Eq. (1) can be simplified to

cf f � cnDnND: (12)

Because the fixed donor density ND is independent of f, it
follows that the electron concentration n is proportional to f. The
charge balance provides n ¼ p and, therefore, the hole concentra-
tion p is also proportional to f. The electron and the hole concen-
tration both increase linear with excitation, which yields a power
law exponent of kn=p ¼ 1. The corresponding power law exponent
for the free exciton or band-to-band transition is 2 with
kFX ¼ kn þ kp. Equation (2) reduces to

cnDnND � cDAN
0
DN

0
A: (13)

The donor-acceptor pair transition increases proportionally to
f at low excitation, since n/ f from Eq. (12). Both the occupation
of the donor with electrons N0

D and the occupation of the acceptor
with holes N0

A increase only with f1=2. The values are summarized
in Table I.

If the compensation is not exact, e.g., if NA is slightly lower
than ND, or if the capture cross sections of the defects are very
different, one defect saturates first and the concentration of the
neutral defect becomes independent of the excitation at intermedi-
ate excitation intensities. For example, if the acceptor defect satu-
rates before the donor defect [see Table I, column (b)], the
occupation of the donor defect with electrons can still increase and
the power law exponents are kD ¼ 1=2 and kn ¼ 1. In this case, the
hole capture into the acceptor can no longer increase, leading to
kA ¼ 0 and kp ¼ 1=2. In comparison to the lower excitation case,
the power law exponents k for the free exciton and the donor-
acceptor pair transition kDA are reduced by 1/2 in the intermediate
excitation regime.

At highest excitation, all donors and acceptors are neutral-
ized by photogenerated excess carriers and the last excitation

regime in column (c) is reached, where the power law exponents
decrease again by 1/2. Aside from bound excitons, k-values above
2 are not observed.28 This is due to the fact that the free carrier
concentrations in the bands cannot increase superlinearly with
the excitation. They can only increase with a power law exponent
of 1=2 or 1. For example, electrons can recombine with free holes
as the dominant process (kn ¼ 1=2) or they get mostly captured
by defects (kn ¼ 1).

C. Donor, acceptor, and deep level: Compensated

Here, we introduce an additional deep defect. We start the dis-
cussion with the lowest excitation intensities, so that N0

D � ND,
N0
A � NA, N0

S � NS, and n, p � ND, NA, NS is valid. We consider
the compensated case.29 If the defects are all compensated with
NA � ND þ NS, Eq. (1) reduces at lowest excitation to

cff ¼ n(cnDND þ cnSNS): (14)

It follows that the free electron concentration is proportional to the
excitation intensity and, therefore, increases with kn ¼ 1. The same
argument holds for the free hole concentration and kp ¼ 1. The
rate equation for the donor in Eq. (2) simplifies to

cnDnND ¼ N0
D(cDSNS þ cDAN

0
A þ cDpp): (15)

If the density of the deep defect is high enough, so that the
condition cDSNS � cDAN0

A þ cDpp is valid, most of the electrons
will fall into the deep defect before recombining with holes in
the valence band or with holes from the acceptor site. In this
case, the density of occupied shallow donors N0

D increases pro-
portional to the electron concentration n and proportional to
the excitation intensity f with kD ¼ 1 [n/ f from Eq. (14)
and n/ N0

D from Eq. (15)]. The deep defect level captures most
of the electrons which are first captured by the shallow donor.
Because most of the holes are captured by the shallow acceptor
at the same time, the deep SA transition will dominate the pho-
toluminescence spectrum at lowest excitation. Thus, Eq. (4)

TABLE I. Power law exponents: Donor and acceptor.

(a) (b) (c)

N0
D � ND N0

D � ND N0
D � ND

Densities Exponents N0
A � NA N0

A � NA N0
A � NA

n kn 1 1 1/2
p kp 1 1/2 1/2
N0
D kD 1/2 1/2 0

N0
A kA 1/2 0 0

Transitions Low f Mid f High f

FX kFX 2 3/2 1
FBD kFBD 3/2 1 1/2
FBA kFBA 3/2 1 1/2
DA kDA 1 1/2 0
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reduces to

cnSnNS ¼ cSAN
0
SN

0
A: (16)

The left side is proportional to the electron concentration n,
which is proportional to f from Eq. (14). Therefore, both densities
N0
S and N0

A are proportional to f1=2. There exists no further
capture level between ES and EA, and the pair transition SA from
the deep donorlike level into the shallow acceptor increases linearly
with kSA ¼ kS þ kA ¼ 1.

Apart from this, the shallow DA-transition increases superli-
nearly, because kD ¼ 1 and kA ¼ 1=2 and, therefore ,kDA ¼ 3=2. If
one assumes a deep acceptorlike level instead of a deep donorlike
level, the values of the power law exponents for kn and kp as well as
for kD and kA are simply exchanged. It is important to mention
that, in the literature, it is often assumed that the donor-acceptor
pair transition yields power law exponents below or equal to 1
(Ref. 1 and literature citing this reference). This is only valid if no
effective capture state (for example, an empty deep defect) exists
between the two levels.

The value of kD is reduced to 1=2 at low excitation, if the deep
donorlike defect does not exist or if it cannot capture more carriers
(saturated or too low capture coefficient). In this case, the shallow
donor-acceptor pair transition dominates the spectrum. An over-
view of all power law exponents k is given in Table II.

In this table, five different cases are considered for the defect
saturation: from the case of lowest excitation (a) with nearly empty
defect levels (N0

i � Ni) to the case of highest excitation (f ) with
full occupation of all defects (N0

i � Ni). The table is valid for a
broad range of situations since the absence of one of the defects
can be treated in the same way as the fully occupied case of this
defect.

Furthermore, adding another deep recombination center does
not change the results of Table II. The transition between two

highly localized levels (S1 to S2) is negligible. In this case, the same
k-values for FBS1 and FBS2 , as well as for S1A and S2A, are the
result. An experimental example for this is given in Fig. 3. Table II
can also be used if the deep defects are acceptorlike (N0=�1

S ), but
the values of kn and kp as well as kD and kA need to be exchanged.

In order to experimentally observe different cases of Table II,
it is necessary to vary the excitation power over more than 3 orders
of magnitude. Power law exponents larger than 1 generally result
from empty capture levels between the two involved states. If one
of the three levels becomes saturated by excess carriers (one of the
two levels of the transition or the deeper level in between), the
power law exponent observed at low excitation klow is reduced by
1=2 at high excitation with khigh ¼ klow � 1=2. Power law exponents
of 1=2 or smaller can only be observed if one defect level directly
involved in the transition is saturated.

In Sec. III, a phenomenological fitting function is given, which
can describe the full experimental curvature of excitation depen-
dent photoluminescence intensities, including low and high excita-
tion regimes with different power law exponents.

III. FITTING NONLINEAR LOG-LOG PLOTS

From the discussion above, it is clear that, in most cases, a
simple power law will not be observed over a wide range of excita-
tion intensities. In general, the excitation dependence of the photo-
luminescence in a log-log plot will have a curvature, resulting from
the transition between two limiting power law exponents. In a
simple case, only one crossover point exists and lies in between two
different excitation regimes. In each excitation regime alone, the
photoluminescence intensities increase according to a simple power
law. The corresponding linear log-log plots can only be observed
for excitation intensities far below or far above the crossover point.
If the range of excitation allows us to fit the linear regimes in low
and high excitation, the excitation intensity where both linear lines
cross each other will be called crossover excitation f0.

TABLE II. Power law exponents: Donor, acceptor, and deep level.

(a) (b) (c) (d) (e) (f)

N0
D � ND N0

D � ND N0
D � ND N0

D � ND N0
D � ND N0

D � ND

N0
S � NS N0

S � NS N0
S � NS N0

S � NS N0
S � NS N0

S � NS

N0
A � NA N0

A � NA N0
A � NA N0

A � NA N0
A � NA N0

A � NA

kn 1 1 1 1 1/2 1/2
kp 1 1 1/2 1/2 1 1/2
kD 1 1/2 1 1/2 0 0
kA 1/2 1/2 0 0 1/2 0
kS 1/2 0 1/2 0 0 0

Low f … … … … High f

kFX 2 2 3/2 3/2 3/2 1
kFBD 2 3/2 3/2 1 1 1/2
kFBA 3/2 3/2 1 1 1 1/2
kFBS 3/2 1 1 1/2 1 1/2
kDA 3/2 1 1 1/2 1/2 0
kSA 1 1/2 1/2 0 1/2 0
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In the present section, a fitting function for nonlinear log-log
plots will be given. This fitting function can be used to quickly and
easily estimate the crossover excitation and to get the limiting expo-
nents k, even if only the curved transition region is measured. This
can be the case if, for example, the experimental excitation range is
not sufficient to resolve the linear regimes far below and far above
f0. We have shown the case for two levels and with the saturation
effects of only one level in Ref. 17. The fitting function was
obtained by the multiplication of the carrier densities in the initial
and the final state of the recombination path:

IPL / n1n2: (17)

For a donor-acceptor pair transition with no defect level in
between, functions n1 and n2 are proportional to the occupation of
the donor with electrons and the occupation of the acceptor with
holes. We will take this example for a straightforward motivation of
the fitting function. If under low excitation, the excess carrier
density is far below the defect density, so that no saturation effects
occur, a simple power law can describe ni. On the other hand, at
highest excitation when the occupation of a defect with excess car-
riers cannot increase any further, the power law behavior changes
to a constant value. The crossover occurs in between with the cross-
over excitation fi. A fitting function which describes both excita-
tion regimes for the donor occupation (power law exponent k1)
and the acceptor occupation (power law exponent k2) in a donor-
acceptor pair recombination is given by Eq. (18)

IPL / fk1

1þ ( f
f1
)
k1

fk2

1þ f
f2

� �k2
, (18)

IPL / fk1þk2

1þ f
f1

� �k1þ f
f2

� �k2þ f
f1

� �k1 f
f2

� �k2
: (19)

For low excitation with f � f1, density n1 (occupation of the
donor with electrons) follows the power law fk1 . For high excita-
tion with f � f1, the term converges to the constant value fk1

1 .
The same holds true for the acceptor and k2. The crossover excita-
tions fi are linked to the defect densities which become saturated.
Saturated in this case means that the occupation of the defect level
with excess carriers is not increasing anymore with increasing exci-
tation. A discussion for the saturation effects of the defect densities
can be found in the supplementary material (S6). If all transition
coefficients cij are equal, the defect population N0

i saturates for high
excitation at Ni=2. On the other hand, if, for a shallow donor
defect, the transition time for the free electron capture is much
faster than the recombination of the captured electron with a free
hole, the defect population N0

i saturates at the full defect concentra-
tion Ni.

Equation (19) has two different crossover excitations.
However, the equation can be further simplified if only one of the
two defects shows saturation effects in the range of excitation used.
This is the case if one defect in the donor-acceptor pair transition
has a much higher defect concentration. With f2 ! 1, the two

last terms in the denominator in Eq. (19) vanish and it follows:

IPL / fk1þk2

1þ f
f1

� �k1
¼ fklow

1þ f
f0

� �klow�khigh
: (20)

This equation can be used to fit a curved log-log plot with the
crossover excitation at f0. It not only applies to a donor-acceptor
pair transition but also to a free-to-bound or exciton transition
where the values for klow and khigh are different. For low excitation
(f � f0), the power law exponent converges to k ¼ klow. For high
excitation (f � f0), the 1 in the denominator can be neglected and
the power law exponent converges to k ¼ klow � (klow � khigh) ¼
khigh. Equation (20) describes most experimental situations, where a
nonlinear log-log plot is observed with only one crossover excitation
f0. Equation (19), however, describes also situations where two
crossover points in the log-log plot are observed.30 Although
Eq. (19) was motivated with a donor-acceptor pair transition, it can
be easily extended to a free exciton transition as an example: the
equation only needs to be multiplied with a single power law of f1=2

for the free electron and one for the free hole concentration [see the
supplementary material (S3)].

As an example, we assume one acceptor level at low tempera-
tures. For the free exciton transition IFX, the following values for
the power law exponents kFX have to be inserted into Eq. (20):
klow ¼ 3=2 and khigh ¼ 1. This condition corresponds to the last
two columns in Table II. The photoluminescence intensity can be
described in this example by

IFX / f3=2

1þ f
f0

� �1=2
: (21)

For an arbitrary overall amplitude, the crossover excitation f0 is
the only free fitting parameter in Eq. (21), which marks the cross-
over excitation in the nonlinear log-log plot. If in experiment the
excitation intensity is only varied in a narrow range (for example,
less than 3 orders of magnitude), close to the crossover excitation,
any fit of a simple, linear power law would lead to k-values
between 1 and 3/2.

Often observed single power laws with exponents different
from n=2 could be a result of narrow excitation variations where
the curvature is not clearly visible and an apparent straight line is
assumed. We give an example in Sec. IV, where the fitting functions
of Eqs. (19) and (20) are applied to numerical solutions of the rate
equations and measurements on CuGaSe2 thin films.

IV. VALIDATION OF THE MODEL

In this section, we will show that our model agrees well with
numerical solutions of the rate equations, as well as experimental
measurements on chalcopyrite thin films.

A. Fitting numerical solutions: Example with a shallow
donor, a shallow acceptor, and a deep donor

In the following, we consider a semiconductor with a shallow
donor, a shallow acceptor, and a deep donorlike level as given in
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Table II. To minimize the number of possible crossover points in
the excitation dependence and having a straightforward example
for the influence of deep defects, we will again consider the com-
pensated case with ND þ NS ¼ NA. Analytical solutions of the rate
equations can be found in supplementary material (S6).

In Fig. 2, numerical solutions of the rate equations are shown.
Two different crossover excitations f1 and f2 can be seen. This
leads to three different excitation regimes where the slope of the
excitation dependent photoluminescence intensity can be different.
For the selected parameters, the crossover excitation f1 is in
between regime A, where the excess electron concentration n is
much smaller than the deep donor concentration NS, and regime B,
where the excess electron concentration is much larger than the
deep donor concentration. The first crossover results from satura-
tion effects of the neutralized deep defect concentration N0

S .
The second crossover excitation f2 from regime B to regime C

results from saturation effects of the acceptor. The amount of neu-
tralized defects N0

A is not further increased with higher excitation
in regime C, far above f2. The same effect occurs for N0

D due to
the compensation condition with ND � NA. The different power
law exponents and excitation regimes can be compared with
Table II and regimes A, B, and C can be attributed to cases (a), (b),
and (f ). The results of the numerical solutions confirm our
descriptive arguments that led to the power law exponents in
Table II.

Because there are two crossover excitations, the curves in
Fig. 2 can be fitted with Eq. (19). The fitting function agrees well
with the solutions of the rate equations. The power law exponents
are given in the inset of the figure and confirm the model in

Table II. Some variation of the crossover intensities fi is expected
because of differences in transition coefficients and the uncertainty
of the fit. The variation of the fit is marked by the gray patterned
boxes in the figure.

B. Fitting experimental data: CuGaSe2 thin films

As the next step, we apply the theory to measurements and
match the model functions from Sec. III to our experimental data.
In Fig. 3, measurements on an epitaxial CuGaSe2 thin film are
given. It is the same sample and the same SA transitions as in
Ref. 17. The photoluminescence intensity of several transitions is
measured at low temperatures (10 K) with laser excitation varia-
tions over more than 5 orders of magnitude. The transitions,
labeled with SA1 and SA2, are identical to the deep donor-acceptor
pair transitions DDA1 and DDA2 in Ref. 17.

All curves in Fig. 3 can be well fitted with Eq. (20) because
only one crossover excitation f0 occurs. The value of klow � khigh
in Eq. (20) can be fixed to 1=2 for all curves. Furthermore, the
average crossover excitation f0 of all transitions is close to
1W=cm2 [see the supplementary material (S5)]. It can be con-
cluded that the crossover excitation is the same for all transitions.

From the difference of 1/2 for the power law exponents at low
and high excitation, it can be concluded that only one defect satu-
rates and causes the crossover. The saturation effect influences all
transitions and is responsible for the nonlinear log-log plots. When

FIG. 2. Numerical solutions of the rate equations in Sec. II A for np (eh), N0
Dp

(Dh), N0
Sp (Sh), N0

SN
0
A (SA), N0

DN
0
A (DA) with the constants ND ¼ 1016 cm�3,

NS ¼ 1014 cm�3, NA ¼ 1:01� 1016 cm�3, and cij ¼ 1. Each curvature is fitted
with the model function in Eq. (19) and slopes of constant power laws are
shown with dotted lines. Variations of the crossover excitations as the fitting
parameter are shown with the patterned boxes.

FIG. 3. Photoluminescence intensity of an exciton, donor-acceptor pair, and two
deep donor-acceptor pair transitions for varying excitation intensities.
Measurements are done on Cu-rich CuGaSe2 thin films and at a temperature of
T ¼ 10 K. Fits to Eq. (20) are shown by solid lines. The used fitting parameters
are given in the supplementary material (S5). For better comparison of the
slopes, all curves (arbitrary amplitude) are normalized to the photoluminescence
intensity at the crossover excitation f0. An exemplary slope of a linear power
law is shown with a dotted line. Power law exponents of low and high excitation
regimes are given in the legend. The labeled SA transitions equal the DDA tran-
sitions in Ref. 17.
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comparing the fixed values of klow and khigh (in the legend of
Fig. 3) with Table II, the crossover from case (a) to case (c) is
observed in low and high excitation. We can thus conclude, based
on our model consideration, that the defect that saturates is the
shallow acceptor.

This example also demonstrates that shallow donor-acceptor
pair transitions (DA) can yield a power law exponent above 1, if
deep recombination centers are present. The DA2 transition in
CuGaSe2 is well known in the literature.7 In our study, the superli-
nearity is a result of the presence of deep defects. Our model
describes well the excitation dependence of measured shallow
defect transitions, as well as deep defect transitions.

A superlinear dependence of donor-acceptor pair transitions
is not always only a result of deep defects. With increasing excita-
tion, the overlap of the wavefunction from the donor and the
acceptor increases, which can yield a much higher recombination
probability and a superlinear increase of the photoluminescence
intensity with increasing excitation.25 This effect would, however,
not lead to a power law. If the increasing overlap between donor
and acceptor states is responsible for the superlinear behavior, then
the transition coefficient itself becomes excitation dependent,
which would result in an exponential behavior of the PL intensity
on excitation.

V. CONCLUSION

We have presented a theoretical description of common cases
of excitation-intensity-dependent photoluminescence measure-
ments based on rate equations, as well as an extension of existing
models now including the influence of deep defects. In contradic-
tion to the previous conclusion that the donor-acceptor pair photo-
luminescence intensity increases with a power law exponent
smaller or equal to 1, we have shown that a value of 3/2 can be
observed if deep defects are present that interact with the free carri-
ers and shallow donors or acceptors.

The nonlinear behavior of the PL intensity in a log-log plot vs
excitation intensity results from a crossover from one single power
law at low excitation to another single power law at high excitation.
The crossover is triggered by the saturation of one of the defect
levels participating in the radiative recombination or by the satura-
tion of a deeper level that interacts with the two levels involved in
the transition. In each excitation regime alone, far above, or far
below the crossover excitation, the power law exponents can only
be multiples of 1=2. The limits are given in Table III. Measured
curvatures can be described by a phenomenological fitting function

[Eqs. (19) and (20)], which consists of only one or two free param-
eters for the crossover excitations. The fitted parameters fi are
linked to the defect saturation and can be used for the quantifica-
tion of defect concentrations and, therefore, of semiconductor
quality.

SUPPLEMENTARY MATERIAL

See the supplementary material for further theoretical cases of
semiconductors in which no defect or only one defect can be found
(S1), as well as comments on bound excitons (S2), an extended
fitting function (S3), another fitting example with numerical results
from the literature (S4), used fitting parameters (S5), and a short
discussion for the transition coefficients and possible analytical
solutions of the rate equations (S6).
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