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Abstract

Background: Testing for association between RNA-Seq and other genomic data is challenging due to high
variability of the former and high dimensionality of the latter.

Results: Using the negative binomial distribution and a random-effects model, we develop an omnibus test that
overcomes both difficulties. It may be conceptualised as a test of overall significance in regression analysis, where the
response variable is overdispersed and the number of explanatory variables exceeds the sample size.

Conclusions: The proposed test can detect genetic and epigenetic alterations that affect gene expression. It can
examine complex regulatory mechanisms of gene expression. The R package globalSeq is available from Bioconductor.
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Background
Genetic and epigenetic factors contribute to the regula-
tion of gene expression. A better understanding of these
regulatory mechanisms is an important step in the fight
against cancer. Of interest are genetic alterations such
as single nucleotide polymorphisms (SNPs), copy-number
variations (CNVs) and loss of heterozygosity (LOH), as
well as epigenetic alterations such as DNA methylation,
microRNA expression levels and histone modifications.
From a statistical perspective, it makes sense to repre-

sent the expression of one gene as a response variable that
changes when some covariates are altered. As a starting
point, we assume that all covariates come from a single
genetic or epigenetic molecular profile. Typically, more
covariates are of interest than there are samples.
A plethora of methods for the analysis of gene expres-

sion and covariates has emerged in the last years. Many of
these methods test each covariate individually, and subse-
quently correct for multiple testing or rank the covariates
by significance. An alternative approach is the global test
from Goeman et al. [1]. The global test does not test the
individual but the joint significance of covariates. It allows
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for high dimensionality, reduces the multiple testing bur-
den, and successfully detects small effects that encompass
many covariates. Due to its desirable properties, the global
test has becomeawidely used tool in genomics (e.g. [2–4]).
Currently, gene expression microarrays are being sup-

planted by high-throughput sequencing. The negative
binomial distribution seems to be a sensible choice for
modelling RNA sequencing data [5, 6]. One of its parame-
ters describes the dispersion of the variable. If this param-
eter is unknown, the negative binomial distribution is not
in the exponential family. As the global test from Goeman
et al. [1] is limited in its current form to the exponential
family of distributions, a new test is needed for RNA-Seq
data. We will provide here such a test.
After proposing a global test for the negative binomial

setting, we perform a simulation study, and analyse two
publicly available datasets. The first application concen-
trates on method validation, overdispersion, and individ-
ual contributions. The second application concentrates on
robustness against multicollinearity, the method of con-
trol variables, and the simultaneous analysis of multiple
molecular profiles.
Although we focus on RNA-Seq gene expression data,

the test developed here is applicable whenever associa-
tions between a count variable and large sets of quantita-
tive or binary variables are of interest. In essence, it can
be applied to any other type of sequencing data, such as
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ChIP-Seq (chromatin immunoprecipitation), microRNA-
Seq or meth-Seq (methylation).

Methods
The random-effects model
The human genome contains several thousand protein-
coding genes. In the following, only one gene is con-
sidered at a time. Accordingly, the expression of one
gene across all samples is our response variable y =
(y1, . . . , yn)T . If we were interested whether a given sub-
set of SNPs affected gene expression, these SNPs would be
our p covariates. The n×p covariatematrixX is potentially
high-dimensional (p � n).
We represent the relationship between the response and

the covariates using the generalised linear model frame-
work fromMcCullagh and Nelder [7]:

E[ yi]= h−1

⎛⎝α +
p∑

j=1
Xijβj

⎞⎠ ,

where h−1 is an inverse link function, α is the unknown
intercept,Xij is the entry in the ith row and jth column ofX,
and β1, . . . ,βp are the unknown regression coefficients.
This model holds for all samples i (i = 1, . . . , n).
We are interested in testing the joint significance of all

regression coefficients. This is challenging because the
regression coefficients cannot be estimated by classical
regression methods if there are more covariates than sam-
ples. Goeman et al. [1] took a novel approach for testing
H0 : β1 = . . . = βp = 0 againstH1 : β1 �= 0∪ . . .∪βp �= 0.
The decisive step from Goeman et al. [1] was to assume
β = (β1, . . . ,βp)T to be random, with the expected value
E[β]= 0 and the variance-covariance matrix Var[β]=
τ 2I, where I is the p× p identity matrix and τ 2 ≥ 0. Then
a random-effects model is obtained:

E
[
yi|ri

] = h−1(α + ri), ri =
p∑

j=1
Xijβj. (1)

This random-effects model allows to rephrase the null
and the alternative hypotheses. Defining the random vec-
tor r = (r1, . . . , rn)T , it can be deduced that E[ r]= 0
and Var[ r]= τ 2XXT . Now the null hypothesis of no asso-
ciation between the covariate group and the response is
given byH0 : τ 2 = 0. To construct a score test against the
one-sided alternative hypothesis H1 : τ 2 > 0, we need to
assume a distribution for yi|ri.

The testing procedure
We assume the negative binomial distribution yi|ri ∼
NB(μi,φ), where the mean parameter μi depends on
the sample, but the dispersion parameter φ does not.
We parametrise the negative binomial distribution such

that E[ yi|ri]= μi and Var[ yi|ri]= μi + φμ2
i . Its density

function is given by

f (yi) =
�

(
yi + 1

φ

)
�

(
1
φ

)
�(yi + 1)

(
1

1 + μiφ

) 1
φ

(
μi

1
φ

+ μi

)yi

.

Various link functions come into consideration for the
negative binomial model. We favour the logarithmic link
in order to relate the negative binomial model directly
to the Poisson model (see below). As library sizes can
be unequal, we include the offset log(mi/m), where mi
denotes the library sizes, and m their geometric mean.
Thus the mean function becomes

μi = exp
(
α + ri + log

mi
m

)
= mi

m
exp(α + ri). (2)

When τ 2 is close to zero, the score test is the most pow-
erful test of the null hypothesis H0 : τ 2 = 0 against
the alternative hypothesis H0 : τ 2 > 0 [8]. Here the
score function is the first derivative of the logarithmic
marginal likelihood with respect to τ 2. Intuitively, if the
marginal likelihood reacts sensitively to changes in τ 2

close to 0, there is evidence against τ 2 = 0. Using results
from le Cessie and van Houwelingen [9], we show in the
Additional file 1 how to calculate the score function. This
function contains the unknown parameters α and φ, but
they can be estimated by maximum likelihood. Replacing
the unknown parameters by their estimates leads to the
test statistic

unb =
{ n∑

i=1

n∑
k=1

Rik
2

(yi − μ̂i)(yk − μ̂k)

(1 + φ̂μ̂i)(1 + φ̂μ̂k)

}

−
n∑

i=1

Rii
2

(μ̂i + yiφ̂μ̂i)

(1 + φ̂μ̂i)2
,

(3)

where Rij is the entry in the ith row and jth column of the
n × n matrix R = (1/p)XXT , and μ̂0,i = (mi/m) exp(α̂)

is the estimated mean under the null hypothesis. For sim-
plicity we always write μ̂i instead of μ̂0,i. In the Additional
file 1 the test statistic is rewritten in matrix notation.
Statistical hypothesis testing depends on the null dis-

tribution of the test statistic unb, which is unknown. We
will obtain p-values by permuting the response y =
(y1, . . . , yn)T together with the mean μ̂ = (μ̂1, . . . , μ̂n)T .
Since this is a one-sided test [10], if the observed
test statistic is larger than most of the test statistics
obtained by permutation, there is evidence against the null
hypothesis.
As we are not using a parametric form for the null

distribution of the test statistic, no adjustments for the
estimation of α and φ are necessary. Furthermore, maxi-
mum likelihood estimation does not depend on the order
of the elements in y = (y1, . . . , yn)T . Because neither α̂
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nor φ̂ vary under permutation, computational efficiency
can be achieved with these parameters as given.
When testing for associations between RNA-Seq data

and another molecular profile, numerous genes might be
of interest. Because one test is performed per gene, the
multiple testing problem reappears. (In the applications
from below we omit multiple testing correction when
analysing the distribution of p-values.)

Relation to the poissonmodel
For comparison we also consider the Poisson distribution
yi|ri ∼ Pois(μi) with E[ yi|ri]= Var[ yi|ri]= μi and a log-
arithmic link function. Proceeding as above we obtain the
test statistic

upois =
{ n∑

i=1

n∑
k=1

Rik
2

(yi − μ̂i)(yk − μ̂k)

}
−

n∑
i=1

Rii
2

μ̂i,

(4)

where the estimates μ̂i are the same as in the negative
binomial model.
In the case of φ̂μ̂ = 0 we would have unb = upois, but

in practice only situations with μ̂ > 0 are of interest. The
fact that φ̂ = 0 implies unb = upois is convenient since
a negative binomial distribution with a dispersion param-
eter close to zero is practically equivalent to a Poisson
distribution.

Individual contributions
Following Goeman et al. [1], the test statistic unb can be
rewritten to reveal the influence of individual samples and
covariates.
The contribution of sample i (i = 1, . . . , n) to the test

statistic is

si =
{ n∑
k=1

Rik
2

(
yi − μ̂i

)
(yk − μ̂k)

(1 + φ̂μ̂i)(1 + φ̂μ̂k)

}
− Rii

2
(μ̂i + yiφ̂μ̂i)

(1 + φ̂μ̂i)2
.

(5)

If si is positive, the sample i increases the evidence
against the null hypothesis. Though, si not only depends
on the sample i, but through R, μ̂ and φ̂ also on the other
samples.
Especially useful is the contribution of covariate j (j =

1, . . . , p) to the test statistic:

cj = 1
2p

{ n∑
i=1

Xij
yi − μ̂i

1 + φ̂μ̂i

}2

−
n∑

i=1

X2
ij

2p
(μ̂i + yiφ̂μ̂i)

(1 + φ̂μ̂i)2
.

(6)

Note that multiplying cj by p gives the unb that would
have been obtained if only the covariate j had been tested.
Similar to Goeman et al. [1], the test statistic for a group

of covariates is the average of the individual test statis-
tics. If cj is positive, the covariate j increases the evidence
against the null hypothesis. Conveniently, cj is indepen-
dent of all other covariates.
By construction we have unb = ∑n

i=1 si and unb =∑p
j=1 cj. Even though a single hypothesis is tested on the

covariate group, these decompositions allow to determine
which samples and which covariates are the most influen-
tial on the test result. If samples or covariates can be put
into categories, decomposing the test statistic and group-
ing samples by category could visualise how each category
contributes to the test results. Similarly, if samples or
covariates can be ordered according to some genomic or
phenomic criteria, patterns might be detected.

Method of control variables
One drawback of obtaining p-values via permutation is
the computational burden. Here we will make use of the
work from Senchaudhuri et al. [11] in order to estimate
p-values efficiently.
The proposed test statistic and the test statistic from

Goeman el al. [1] have different advantages: whereas the
former adequately models overdispersed count data, the
latter has a known asymptotic null distribution. Usually
we would obtain an unbiased estimate of the p-value using
1/k

∑k
i=1 1[ui ≥ u0], where 1 is the indicator function

and ui represents the proposed test statistic for a per-
mutation (i = 1, ..., k) or for the observed data (i = 0).
Following Senchaudhuri et al. [11], we could also obtain
an unbiased estimate using 1/k

∑k
i=1 1[ui ≥ u0]−1[ qi ≥

q0]+p∗, where qi and p∗ are the test statistic and asymp-
totic value, respectively, from Goeman et al. [1]. If the test
statistics ui and qi have a strong positive correlation, then
this alternative estimate is preciser than the usual esti-
mate [11]. (In the applications from below we only use the
method of control variables when explicitly stated.)

Multiple molecular profiles
Not only SNPs but also other molecular mechanisms reg-
ulate gene expression. For instance, aberrant DNAmethy-
lation levels in promoter regions can activate oncogenes
and inactivate tumour suppressor genes. Thus it could be
interesting to test for associations between RNA-Seq gene
expression data on one hand, and on the other SNP data
as well as methylation data.
Let X represent the n × p SNP data matrix, and let Z

represent the n × q methylation data matrix. The model
from Eq. 1 allows to test single covariate sets, leading to
the test statistic unb = u(X) for SNP data, and to the test
statistic unb = u(Z) for methylation data.
Menezes et al. [12] provided a test for analysing multi-

ple molecular profiles simultaneously, for responses with
a distribution in the exponential family. As the nega-
tive binomial distribution with an unknown dispersion
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parameter is not in the exponential family, we have to
adapt this test. Following Menezes et al. [12], we include
a second covariate set in the random-effects model from
Eq. 1:

E[ yi|ri]= h−1(α+ri), ri =
p∑

j=1
Xijβj+

q∑
j=1

Zijγj.

(7)

Using the ideas and the notation from above: for the ran-
dom vectors β = (β1, . . . ,βp)T and γ = (γ1, . . . , γq)T we
assume E[β]= E[ γ ]= 0, Var[β]= τ 2I, Var[ γ ]= υ2I
and Cov[β , γ ]= 0, where τ 2 ≥ 0 and υ2 ≥ 0. Conse-
quently, the random vector r = (r1, . . . , rn)T has E[ r]= 0
and Var[ r]= τ 2XXT + υ2ZZT . The joint test of both
covariate sets is described by

H0 : τ 2 = υ2 = 0 versus H1 : τ 2 �= 0 ∪ υ2 �= 0.

Menezes et al. [12] showed that ignoring the correlation
between the individual test statistics entails little loss of
power, and proposed to use the sum of the individual test
statistic as a joint test statistic. As mean and variance of
the individual test statistics should be brought onto the
same scales [12], our joint test statistic is

u(X,Z) = u(X) − Ê[u(X)]√
V̂ar[u(X)]

+ u(Z) − Ê[u(Z)]√
V̂ar[u(Z)]

. (8)

Permuting as above, we estimate the first two central
moments of u(X) and u(Z) under the null hypothesis, and
calculate a p-value for the joint test. Note that this frame-
work can be extended to an arbitrary number of covariate
sets. Under k covariate sets the joint test statistic is the
standardised sum of k individual test statistics.

Results
Simulation study
We perform a simulation in order to study the power of
the proposed test in various circumstances. Instead of ran-
domly generating covariates, we extract a n × p covariate
matrix X from the HapMap data (see below) at a random
position. Thismaintains the correlation structure between
SNPs, and thereby ensures a realistic noise level. Initially
we set all coefficients in β = (β1, . . . ,βp)T equal to zero.
Then we randomly select a subset of r consecutive coef-
ficients, and assign with the probabilities 80% and 20%
the values s and 2s to them, where s is the effect size.
Using the relation μ = Xβ , we calculate the mean vec-
tor μ = (μ1, . . . ,μn)T , and simulate the response vector
y = (y1, . . . , yn)T under the distributional assumption
yi ∼ NB(μi,φ). This procedure ensures that y and X are
associated. If we wanted to obtain comparable data under
the null hypothesis, we would shuffle the elements in μ.
In either case it is of interest how much evidence the
proposed test finds for an association between y and X.

After simulating numerous response vectors indepen-
dently and identically, we calculate the specificity and
sensitivity of the proposed test at various significance lev-
els, and visualise their relation in a ROC curve. All other
things being held equal, we either vary the dispersion
parameter φ, the sample size n, the effect size s, or the
number of non-zero coefficients r. In the last case we do
not select another subset of coefficients, but shorten or
lengthen the original subset. It is reassuring that the area
under the curve changes in the expected directions (see
Figure A in the Additional file 1) and that the type I error
rates are maintained (see Table A in the Additional file 1).
A slight modification of this simulation study allows to

compare the statistical power between testing all covari-
ates at once and testing them one by one. For this we
extract various covariate matrices X from the HapMap
data, and let the coefficient vector β exclusively take non-
zero values. For each covariate matrix X we simulate one
response vector y under the alternative hypothesis. Using
the proposed test, we test the joint as well as the individual
significance of the p covariates. Subsequently, we compare
the joint p-value with the minimum of the FDR-corrected
individual p-values (false discovery rate correction). In our
setting with many small effects, joint testing is more pow-
erful than individual testing (see Table B in the Additional
file 1). Note that this might not hold in situations with
fewer or stronger effects.

Application: HapMap
Here we verify that the proposed test finds biologically
meaningful signals, examine whether overdispersion is
present, and measure the influence of covariates and
samples.
We use the datasets from Montgomery et al. [13] and

Pickrell et al. [14] that were made available in a prepro-
cessed form by Frazee et al. [15]. They include RNA-Seq
gene expression data for 59 individuals from the popu-
lation “Utah residents with ancestry from northern and
western Europe” (CEU) and 69 individuals from the popu-
lation “Yoruba in Ibadan, Nigeria” (YRI). Excluding genes
outside the 22 autosomes, without any variation within
the sample, or without annotations, 11 700 genes are
left. For each individual, SNP data is obtained from the
International HapMap Consortium [16]. Throughout this
application we use the term SNP to designate the num-
ber of minor alleles per locus (0, 1 or 2), considered
quantitatively.

Stratified permutation test
Considering one gene at a time, its expression level over
all individuals is used as a response vector, and the SNPs
in the neighbouring region are used as a covariate matrix.
The aim is to detect regions where causal SNPs might be.
To be precise, we test each of the 11 700 gene expression
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vectors for associations with the respective SNPs that are
within a window of ± 1 000 base pairs around the gene.
This window size leads to p > n for approximately 13% of
the genes, with a maximum of p = 5 152. Under the
null hypothesis of no association between gene expres-
sion and local SNPs, the p-values would follow a uniform
distribution.
Each sample either belongs to the population CEU or

to the population YRI, and we account for this group-
ing by restricting permutations to keeping samples within
the same population. As the distribution of p-values is
weakly positively skewed, the overall evidence against the
null hypotheses is small (see Figure B in the Additional
file 1). Only 40 genes reach the minimal p-value given by
the reciprocal of the number of permutations (see Table C
in the Additional file 1). As in Hulse and Cai [17], we find
some genes in the major histocompatibility complex fam-
ily to be associated with nearby SNPs. Our results display
good overlap with the examined results from Lappalainen
et al. [18] (see Figure C in the Additional file 1), leading us
to conclude that the proposed test identifies biologically
meaningful signals.

Presence of overdispersion
The reliability of the global test depends on how well the
underlying distribution of RNA-Seq gene expression data
is approximated. We are interested whether this dataset
requires a model with an offset as well as an disper-
sion parameter, or whether a simpler model would be
sufficient.
Fitting under the null hypothesis of no association

between gene expression and local SNPs, we observe that
the Poisson distribution without an offset has a poor fit,
and that including an offset for different library sizes or
using the negative binomial distribution improves the fit
(see Figure D in the Additional file 1).
In this example the Poisson model with an offset seems

to fit almost equally well to the data as the negative bino-
mial with or without an offset. This might be caused by
genetic homogeneity within populations or by the absence
of diseases. In cancer datasets we expect a much higher
variability between individuals (see below).

Individual contributions
For each of the 11 700 tests (one test per gene), the test
statistic can be decomposed to show the contribution of
individual samples or covariates (Eqs. 5 and 6). By con-
struction these contributions can be positive or negative,
but the same holds for their expected values under the
null hypothesis. We select two tests (i.e. genes) in order to
illustrate these decompositions.
For gene HLA-DQA2, most covariates have a larger

influence than expected under the null hypothesis (Fig. 1).
This suggests that several SNPs might be associated with

Fig. 1 Contributions of covariates to the test statistic for gene
HLA-DQA2. The shaded area indicates their lower 99% confidence
interval under the null hypothesis

the expression of the gene. Indeed, if they are tested indi-
vidually using 10 000 permutations, almost half of them
obtain the minimal p-value of 0.0001.
For gene CIRBP, the samples from the population CEU

tend to contribute positively to the test statistic, whereas
those from the population YRI tend to have negative con-
tributions (Fig. 2). Accordingly, the ordinary permutation
test would give a much smaller p-value than the strati-
fied permutation test (0.001 versus 0.065). In the case of

Fig. 2 Contributions of samples to the test statistic for gene CIRBP.
Samples 1 to 59 are from population CEU, samples 60 to 128 are from
population YRI
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gene CIRBP we cannot detect any sample with an extreme
contribution to the test statistic.

Application: TCGA
In this application we illustrate that the proposed test is
robust against multicollinearity of the covariates, apply
the method of control variables, and test for association
with multiple covariate sets simultaneously.
We use a dataset on prostate cancer from TCGA et al.

[19]. It includes expression levels of 17 678 genes, DNA
methylation levels at 482 486 sites, and DNA copy num-
bers measured at 30 000 locations for 162 individuals.
Section B in the Additional file 1 gives further information
about this dataset, including preprocessing. Examining
some randomly selected genes, it becomes clear that the
Poisson distribution fits badly, but the negative binomial
distribution with a free dispersion parameter fits well to
the gene expression data (see Figure E in the Additional
file 1). Given that the RNA-Seq data has been adjusted for
different library sizes, we do not use an offset.

Robustness to multicollinearity
McCarthy, Chen and Smyth [20] developed a test of dif-
ferential expression between conditions defined by one or
more covariates. Taking the design matrix into account
when estimating the dispersion parameters, this gener-
alised linear model likelihood-ratio test is powerful for
testing small numbers of covariates jointly. However, as in
all regression models, multicollinearity may have undesir-
able consequences.
When testing for associations between gene expression

and local genetic or epigenetic variations, high-dimen-
sional situations can occur. Then the likelihood-ratio test
breaks down due to singularity, but the global test is still
applicable.
But also in low-dimensional situations perfect multi-

collinearity poses a practical problem. For example, copy
number data has a relatively high chance of being per-
fectly multicollinear, because it correlates highly between
locations. If we wanted to apply the likelihood-ratio test
nonetheless, we would have to drop some covariates. In
contrast, the global test exploits this correlation.

Method of control variables
Here we compare the method of control variables with
the crude permutation test, based upon randomly selected
genes. Testing the expression of each gene for associations
with copy numbers that are within 1 000 000 base pairs
around the gene, we estimate the precision of the esti-
mated p-values by repeating each permutation test many
times. The precision of the estimated p-values not only
increases with the number of permutations, but according
to Table 1 also when switching from the crude permuta-
tion test to the method of control variables. For the genes

Table 1 Precision of estimated p-values from tests with 100
permutations, estimated from 1,000 repetitions

EXOSC9 FRMD1 SLC22A6 CNFN PDHB U2AF1L4

crude 3.50E+03 4.25E+02 4.13E+02 5.74E+03 1.75E+03 3.38E+03

MCV 2.78E+04 9.17E+04 1.29E+03 1.28E+13 1.89E+04 1.43E+04

ENTPD6 TMED2 POU6F1 ANP32E CLDND1 C2orf54

crude 1.91E+03 1.61E+03 1.67E+03 1.38E+05 3.91E+03 5.57E+02

MCV 7.31E+03 8.47E+03 1.50E+04 7.24E+10 3.93E+04 1.12E+03

At all randomly selected genes (columns) the crude permutation test (first row) is
outperformed by the method of control variables (second row) in terms of precision

(i.e. tests) in Table 1 the correlation between the two test
statistics is sufficiently strong to make this happen, but
this is not necessarily true for all genes. However, also in
the application HapMap this improvement occurs at all
randomly selected genes (see Table D in the Additional
file 1). Before deciding between the two methods, we
advise to estimate the precision analytically [11].

Multiple molecular profiles
Several molecular mechanisms are believed to have an
impact on gene expression. In the following, the simulta-
neous analysis from Eqs. 7 and 8 is applied to chromo-
some 1. We test for associations between RNA-Seq gene
expression data on one hand, and on the other methyla-
tion values within ± 50 000 base pairs, or copy numbers
within ± 2 000 000 base pairs around the start location of
the gene. To make the comparison meaningful, the same
1 000 permutations are used for the individual tests and
the joint test.
Figure 3 shows: (1) the evidence against null hypothe-

ses is stronger for methylations than for copy numbers;
(2) testing methylations and copy numbers jointly leads
to an increase in power compared to testing only copy
numbers or only methylations; (3) the joint p-values are
strongly correlated with both sets of individual p-values.
Because window sizes are arbitrary, great care is

required for biological interpretations of (1). However,
(2) and (3) imply that the joint test adds some informa-
tion to the individual tests. Indeed, in 13% of the cases
the joint test gives smaller p-values than both individual
tests (Fig. 4). This illustrates the fact that the joint test
finds effects that are missed by both individual tests. At
a false discovery rate of 5%, Table E in the Additional
file 1 lists all genes that are insignificant in both individual
tests but significant in the joint test. Extreme examples are
the genes CNKSR1, ZNHIT6, TMEM56, PRPF38B, and
SLC39A1, where both individual p-values are larger than
0.005, but the joint p-values are equal to 0.001. Among
these genes, ZNHIT6 and SLC39A1 have been linked to
prostate or breast cancer [21].
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Fig. 3 Empirical cumulative distribution functions and scatterplots of p-values. We test for associations between RNA-Seq on one hand, and either
copy numbers, methylations or both on the other. The corresponding Spearman correlation coefficients are 0.04 (top right), 0.55 (bottom left) and
0.72 (bottom right)

Discussion
We have proposed a test for association between RNA-
Seq data and other molecular profiles. By virtue of the
negative binomial distribution, we have accounted for
overdispersion in the RNA-Seq data. And owing to a
random-effects model, we have allowed for the high
dimensionality of the other molecular profiles. Varying
library sizes are naturally dealt with by an offset in the
model.
We applied the proposed test to detect regulatory

mechanisms of gene expression. Thereby we illustrated
some of its advantages: (1) stratified permutation allows
to account for simple groupings; (2) if overdispersion
is absent, the proposed test is equivalent to the one
based on the Poisson distribution; (3) the test statistic
can be decomposed to show the influence of covari-
ates or samples; (4) the test is applicable in presence
of multicollinearity; (5) an extension allows to analyse
multiple covariate sets simultaneously.
We use simple offsets and dispersion estimates, but

more sophisticated results can easily be integrated into

the proposed test. In this regard, sharing information on
overdispersion would probably improve the performance
of the test under small sample sizes.
The proposed test is based on permutations. Due to

the lower multiple testing burden, testing the joint sig-
nificance of covariates requires much less permutations
than testing their individual significance. Even though
the computation time for a single test is usually much
shorter than one second, genome-wide analyses can be
computationally expensive. Running several processes in
parallel and interrupting permutation when it becomes
impossible to reach a predefined significance level [22]
reduces the computation time of a genome-wide analysis
to a couple of minutes. If expressions for the mean and
the variance of the test statistic were obtained, it would
be possible to approximate its null distribution without
using permutations. This would allow to obtain signif-
icant p-values under small sample sizes, and lead to a
drastic reduction of computation time. An alternative way
of achieving precision as well as speed is the discussed
method of control variables.
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Fig. 4 Scatterplot of logarithmic p-values from the simultaneous
analysis of multiple covariate sets. Black pointsmatch the minimal
individual p-values with the corresponding joint p-values. Grey circles
visualise how often these combinations occur

Conclusions
Wehave proposed a powerful test for finding eQTL effects
based upon RNA-Seq data. It can be computed efficiently
and is able to handle sets of highly correlated covariates.

Software
The R package globalSeq runs on any operating
system equipped with R-3.3.0 or later. It is available
from Bioconductor under a free software license:
http://bioconductor.org/packages/globalSeq/.
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