

PhD-FSTC-2019-67
The Faculty of Sciences, Technology and Communication

DISSERTATION

Defence held on 31/10/2019 in Esch-sur-Alzette

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Gilles NEYENS
Born on 26 July 1991 in Luxembourg (Luxembourg)

CONFIDENCE-BASED DECISION-MAKING SUPPORT

FOR MULTI-SENSOR SYSTEMS

Dissertation defence committee
Dr Denis Zampunieris, dissertation supervisor
Professor, Université du Luxembourg

Dr Jens Weber
Professor, University of Victoria, Canada

Dr Leon Van der Torre, Chairman
Professor, Université du Luxembourg

Dr Anthony Cleve
Professor, Université de Namur, Belgique

Dr Nicolas Navet
Professor, Université du Luxembourg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/286378654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Abstract

We live in a world where computer systems are omnipresent and are con-
nected to more and more sensors. Ranging from small individual electronic
assistants like smartphones to complex autonomous robots, from personal
wearable health devices to professional eHealth frameworks, all these sys-
tems use the sensors’ data in order to make appropriate decisions according
to the context they measure.

However, in addition to complete failures leading to the lack of data
delivery, these sensors can also send bad data due to influences from the
environment which can sometimes be hard to detect by the computer sys-
tem when checking each sensor individually. The computer system should
be able to use its set of sensors as a whole in order to mitigate the influ-
ence of malfunctioning sensors, to overcome the absence of data coming
from broken sensors, and to handle possible conflicting information com-
ing from several sensors.

In this thesis, we propose a computational model based on a two layer
software architecture to overcome this challenge.

In a first layer, classification algorithms will check for malfunctioning
sensors and attribute a confidence value to each sensor. In the second layer,
a rule-based proactive engine will then build a representation of the con-
text of the system and use it along some empirical knowledge about the
weaknesses of the different sensors to further tweak this confidence value.

Furthermore, the system will then check for conflicting data between
sensors. This can be done by having several sensors that measure the same
parameters or by having multiple sensors that can be used together to cal-
culate an estimation of a parameter given by another sensor. A confidence
value will be calculated for this estimation as well, based on the confidence
values of the related sensors.

The successive design refinement steps of our model are shown over
the course of three experiments. The first two experiments, located in the
eHealth domain, have been used to better identify the challenges of such
multi-sensor systems, while the third experiment, which consists of a vir-
tual robot simulation, acts as a proof of concept for the semi-generic model
proposed in this thesis.

ii

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor,
Professor Dr. Denis Zampunieris, for having given me the opportunity to
participate in his research and teaching team during the last years and for
his advice and guidance during countless meetings.

I would also like to thank the members of my CET, Leon van der Torre
and Philippe Lalanda, for their valuable advice and guidance during the
last few years.

Furthermore, I would like to thank the professors Leon van der Torre,
Nicolas Navet, Anthony Cleve and Jens Weber for agreeing to be part of my
thesis committee.

I also express my thanks to Sandro Reis for his technical and moral sup-
port during my PhD.

Finally, I would like to thank my parents, Christian Grévisse, Remus
Dobrican and my other friends for their moral support during the last
years.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1
1.1 Context of the thesis . 2
1.2 Research questions and objectives 2
1.3 Thesis structure . 4

2 State of the art 7
2.1 Reasoning in computer science 8

2.1.1 Expert systems . 8
2.1.2 Agents . 9
2.1.3 Context-based reasoning 10

2.2 Autonomic computing . 11
2.2.1 Self-* properties . 11
2.2.2 Structure of autonomic systems 12

2.3 Proactive computing . 14
2.3.1 The proactive engine 14

2.3.1.1 Rule-engine and rule structure 14
2.3.1.2 Scenarios, Rules and Meta-Rules 16
2.3.1.3 The database 16

2.3.2 Proactive computing vs Autonomic computing 16
2.3.3 Proactive computing vs Agents 16

2.4 Sensor fusion . 17
2.5 Conflict handling for sensor fusion 18

3 First Experiment: eHealth systems with a single sensor 21
3.1 Introduction . 22
3.2 Related work . 22
3.3 Our single sensor eHealth system 23

3.3.1 Architecture . 23
3.3.2 Theoretical overview of Hidden Markov Models . . . 24
3.3.3 Training . 25

3.4 Performance of the tested system 26
3.5 Discussion . 27
3.6 Conclusion . 28

v

4 Second Experiment: eHealth systems with multiple sensors 29
4.1 Introduction . 30
4.2 Multi-sensor System: first version 30

4.2.1 Related work . 30
4.2.2 System and discussion 30

4.3 Multi-sensor System: second version 32
4.3.1 Related work . 32
4.3.2 System and discussion 32

5 Proposed model 35
5.1 Introduction . 36
5.2 Motivation . 36
5.3 Overall Architecture . 37
5.4 First layer . 39
5.5 Second layer . 40

5.5.1 Context-building scenarios 41
5.5.2 Influencing scenarios 42
5.5.3 Conflict handling scenarios 42
5.5.4 Transmitting scenarios 43

5.6 Discussion . 43

6 Third experiment: Robotics Proof of concept 47
6.1 Introduction . 48
6.2 Proof of concept . 48

6.2.1 Webots . 48
6.2.2 Our robot and its environment 48
6.2.3 Software Architecture 51

6.3 Related work . 52
6.3.1 Convolutional neural networks 52
6.3.2 LSTM neural networks 56

6.4 Implementation . 59
6.4.1 Data processing . 59
6.4.2 Classifiers . 60
6.4.3 Scenarios . 64

6.5 Evaluation . 67
6.5.1 Setup . 67
6.5.2 Expected results . 68
6.5.3 Results . 69

6.6 Conclusion . 70

7 Conclusion 71
7.1 Achievements . 72
7.2 Future work . 73

vi

List of Figures

2.1 Architecture of an autonomic element 13
2.2 The algorithm to run a rule . 15

3.1 Topology of the HMM . 23
3.2 Normal heartbeat . 24

4.1 Multiple sensor eHealth system (sensors used individually) . 31
4.2 Multiple sensor eHealth system with sensor fusion 33

5.1 Overall architecture . 38
5.2 System architecture . 39
5.3 Scenario flow . 40
5.4 Starting influencing scenarios 42

6.1 Robot and application environment 49
6.2 Roll, Pitch and Yaw angles . 50
6.3 Influence radius of skyscrapers 51
6.4 Robot architecture . 52
6.5 Example perfect GPS vs GPS injected with errors 53
6.6 General architecture of a convolutional neural network . . . 54
6.7 Example of a 2 by 2 filter applied to an image 55
6.8 Example of max pooling . 56
6.9 Architecture of a convolutional neural network for one di-

mensional time series . 56
6.10 An RNN and its unfolded form 57
6.11 An LSTM cell [1] . 58
6.12 Accuracy and loss graphs for the inertial unit 63
6.13 Scenarios present in the application 65
6.14 Pseudo Code of the GPSEstimationMetaRule 66
6.15 Pseudo Code of the GPSStartEstimationRule 67
6.16 Robot path without our system 68
6.17 Robot path with our system 69

vii

viii

List of Tables

3.1 Classification results . 26

5.1 Sensor registration table . 41
5.2 Contextual influence of sensors 42

6.1 Confusion matrix . 64

ix

x

1 Introduction

Contents
1.1 Context of the thesis . 2
1.2 Research questions and objectives 2
1.3 Thesis structure . 4

1

1.1 Context of the thesis

Over the last years, sensors have become omnipresent. They are used in
robots but also in the ever-growing market of mobile phones and wearable
devices[2] as well as every day devices like coffee machines. Not only are
sensors omnipresent, they also become more and more precise[3]. How-
ever, this improvement in precision only affects the base precision in nor-
mal circumstances. Situations in which the accuracy of the sensors get af-
fected by external sources still present a challenge.

Consider the example of a system with a single sensor to monitor a
given parameter. If there is an external influence that affects the accu-
racy of the sensor, the whole system becomes unreliable and, contrary to
the case of a completely failing sensor, the situation cannot be helped by
adding more sensors of the same type as they would all be malfunctioning
due to the external influences.

A solution could be to use sensors of different types with different weak-
nesses to external influences and to detect the contextual situation of the
system in order to decide which of the sensors to use. In some cases it
may even be possible to calculate an estimation of the parameter given by
a sensor based on the data of several other sensors.

To give a more concrete example, consider a robot navigating through
an urban environment that has to follow a series of checkpoints using its
GPS. As high buildings may influence the accuracy of a Global Positioning
System (GPS) by up to 100m as shown in the study conducted in Chicago
presented in [4], this may result in the robot being unable to correctly nav-
igate through the city. In this case, the base accuracy of the sensor is irrel-
evant. However, the accuracy of the current position of the robot can be
improved by detecting the contextual situation the robot is in and by cal-
culating an estimation of the current position based on past valid data and
other sensors like the inertial unit and accelerometer.

With these examples in mind, we define our research questions in the
next section.

1.2 Research questions and objectives

Nowadays, systems generally use data coming from multiple sensors in or-
der to make decisions and rarely rely on the use of a single sensor. Analysing
the reasons the systems do not use a single sensor to make decisions any-
more could help to further improve the decision-making. Therefore, our
first research question reads as follows:

RQ1: What challenges arise when only using a single sensor for decision-
making and how could they be solved?

2

The answer to this question does not seem to be that complicated at
first. Using more sensors gives access to more data which in turn
will lead to better decisions, so if the only sensor in the system fails,
the system receives no data and thus cannot make good decisions.
Additionally, using a single sensor limits the amount of information
at the disposal of the system to make an informed decision. However,
if you analyse the behaviour of the system in more detail, it becomes
clear that the use of a single sensor makes handling noise tricky.
Using multiple sensors can help to overcome some of these problems,
but is not necessary enough as shown by some eHealth systems that
use multiple sensors but make a diagnosis based on each sensor indi-
vidually [5]. Initial experiments that were done with an early version
of our system in ”Using hidden markov models and rule-based sen-
sor mediation on wearable ehealth devices” [6] showed some of the
limitations of using a single sensor. These initial experiments are
presented in Sections 3 and 4. The topics discussed lead us to the
next question.

RQ2: How can the use of multiple sensors help to improve decision-making?

Sensor fusion methods can be used to combine data coming from
multiple sensors. The fusion methods can help handle noise in the
data and partly compensate for failing sensors. This leads to better
decisions. However, the existing techniques still have some draw-
backs, as they have difficulties to handle conflicting information com-
ing from different sensors [7]. These drawbacks and challenges will
be discussed in more detail in Section 2.5 and Section 4 and we for-
mulate the next question as follows:

RQ3: How can conflicting information between sensors be identified and
how can resolving these conflicts help to improve the decision-making
process?

This question was explored in the papers ”Conflict handling for auto-
nomic systems” [8] and ”A Rule-Based Approach for Self- Optimisa-
tion in Autonomic EHealth Systems” [9]. The idea is to have a system
architecture with multiple layers. In a first layer, machine-learning
techniques analyse the data from each sensor in order to assign con-
fidence values to a sensor, where a high confidence indicates that the
sensor is working correctly and a low confidence indicates that the
sensor is failing or malfunctioning.
However, this step will only detect the more obvious cases of mal-
functioning sensors. Therefore, in a second layer, we will use the

3

rule-based proactive engine developed by Prof. Zampunieris in or-
der to run expert scenarios based on contextual information gathered
from the sensors (See Section 2.3 for more information on the proac-
tive engine). In the second layer, the confidence values of the sensors
are adapted continually and dynamically based on the contextual in-
formation, conflicts are detected and resolved. In addition, the final
confidence level for the sensors along with potentially improved data
is passed to the final step in order to make a decision.
It would also be interesting to see if it is possible to standardize a
part of the second layer to simplify the development of systems with
different sensors. Therefore, the final research question is:

RQ4: To what extent can the proposed solution, i.e. attributing confidence
values to sensor data based on the system context, be standardised?

While the first layer will certainly be very domain and sensor specific,
it could be possible to standardise a part of the second layer in such a
way that an expert introducing a set of parameters would be enough
to adapt the second layer for a new system.
The last two questions will be discussed in Sections 5 and 6 and were
the topic of two publications (”Proactive Middleware for Fault De-
tection and Advanced Conflict Handling in Sensor Fusion” [10] and
”Proactive Model for Handling Conflicts in Sensor Data Fusion Ap-
plied to Robotic Systems” [11]).

1.3 Thesis structure

In this section, we will outline the structure of this thesis and when ap-
plicable, cite the papers about this work that got accepted by the scientific
community. First in Chapter 2 we will give the needed background infor-
mation about the state-of-the-art and related work concerning this thesis.
The topics presented include expert systems, context-based reasoning, au-
tonomic computing, proactive computing, sensor fusion and conflict han-
dling in sensor fusion.

In Chapter 3 we will then study a single sensor system in the eHealth
domain and identify the drawbacks using a single sensor has for the deci-
sion making process of a system. The content of this chapter was published
as the paper ”Using hidden markov models and rule-based sensor media-
tion on wearable eHealth devices” [6].

Chapter 4 is similar to the previous chapter, only that the single sensor
system will be switched out for a multi-sensor system. The advantages of
the multi-sensor system over the single sensor system will be discussed, as
well as the challenges that arise with using multiple sensors. The topics of

4

this chapter were discussed and published in ”A Rule-Based Approach for
Self-Optimisation in Autonomic EHealth Systems” [9].

The challenges identified will then be used in Chapter 5 in order to
guide the development of the architecture of our system. The evolution of
the system structure can be followed in the publications ”A Rule-Based Ap-
proach for Self-Optimisation in Autonomic EHealth Systems”[9], ”Conflict
handling for autonomic systems” [8] and ”Proactive Middleware for Fault
Detection and Advanced Conflict Handling in Sensor Fusion” [10].

In Chapter 6, we will then apply our system to a robot in a simula-
tion environment and show a proof a concept application that shows that
our system helps the robot to navigate better through an environment that
affects the accuracy of its sensors. The related paper is ”Proactive Model
for Handling Conflicts in Sensor Data Fusion Applied to Robotic Systems”
[11].

Finally, in Chapter 7 we will take a look back at the achievements of
this thesis and provide some ideas for future work.

5

6

2 State of the art

Contents
2.1 Reasoning in computer science 8

2.1.1 Expert systems . 8

2.1.2 Agents . 9

2.1.3 Context-based reasoning 10

2.2 Autonomic computing 11
2.2.1 Self-* properties . 11

2.2.2 Structure of autonomic systems 12

2.3 Proactive computing . 14
2.3.1 The proactive engine 14

2.3.1.1 Rule-engine and rule structure 14

2.3.1.2 Scenarios, Rules and Meta-Rules 16

2.3.1.3 The database 16

2.3.2 Proactive computing vs Autonomic computing . . 16

2.3.3 Proactive computing vs Agents 16

2.4 Sensor fusion . 17
2.5 Conflict handling for sensor fusion 18

7

In this chapter, we are going over the state of the art of the concepts
which are relevant for the work done in this thesis. In the first section, we
will talk about reasoning, how expert systems and agents reason, and about
context-based reasoning. In the subsequent sections we will then introduce
the notions of autonomic computing and proactive computing and outline
the differences between the two. Finally, we will introduce different sensor
fusion methods and take a look at their conflict handling capabilities.

2.1 Reasoning in computer science

Reasoning in computer science is omnipresent. The type of reasoning can
range from very basic ”if else” statements to more complex strategies of
choosing the right decision. These decisions are obtained by applying rea-
soning strategies and algorithms to knowledge that a system has. Accord-
ing to Mylopoulos and Levesque, this knowledge can be represented in
4 different ways: logical representation, procedural representation, net-
worked representation and structural representation[12, 13]. The most rel-
evant knowledge representation for the work in this thesis is the procedural
representation, which includes rule-based production systems that can be
used to implement expert systems presented in the next section.

2.1.1 Expert systems

Before the recent achievements of Google’s DeepMind AlphaGo beating
grandmaster Lee Sedol 4-1 after already defeating the european Go cham-
pion by 5-0 [14], expert systems took the spotlight in these kind of chal-
lenges. In 1997 IBM’s Deep Blue won against the acting world champion
Gary Kasparov[15], where IBM gave credit to expert systems for the open-
ing moves of the system[16]. In 2011, IBM developed another expert sys-
tem called Watson that was able to defeat two of the best Jeopardy! players
in the world [17].

These expert system are rule-based and use rules in order to capture
the knowledge from human experts. Some authors do not differentiate
between production systems, rule-based systems and expert systems [18].
However, some differences between the aforementioned types of systems
are sometimes considered. Both rule-based systems and production sys-
tems can provide a framework to create an expert system, but they are not
necessarily expert systems. An example of a production system that is not
an expert system is an email client that allows the user to add rules to man-
age his emails.

On the other hand expert systems do not necessarily have to be imple-
mented using rules. Other approaches listed in [19] are case-based systems,
neural networks or a combination of the different approaches. In order for

8

a rule-based system to be considered an expert system, it has to have re-
ceived some domain specific knowledge from a human expert. The final
goal of an expert system is to be able to replace an expert in the domain
it was designed for[20]. For the rest of this section, we are focusing on
rule-based expert systems.

A rule-based expert system generally consists of a collection of rules
also called knowledgebase, a collection of facts also called working mem-
ory and an inference engine[21]. In some cases, they might only be com-
posed of a collection of rules and an inference engine[22]. The collection
of rules can be considered to be long term knowledge which can be used to
change the short term knowledge contained in the collection of facts[13].

In order to ease the development of expert systems, Expert system shells
like the well-known Java Expert System Shell (Jess) [23] were created. They
provide an user interface in addition to the inference engine and allow
users the easy creation of rules in order to develop their expert system.
Additional functionality includes the choice between different knowledge
representations and between different reasoning techniques.

In Section 2.3 we will present our own implementation of a proactive
rule-based engine that we will use for the work done in this thesis.

2.1.2 Agents

Agent is a general term which covers multiple domains. The term of agent
has been defined in different ways by many different authors[24][25][26]. It
can be seen as a system that is able to replicate human intelligence which is
why authors sometimes talk about intelligent agents. However, a common
definition of the term has not been agreed upon.

One such definition is given by Woolridge in [25], who defines agents
as systems that are autonomous, social, reactive and proactive. In Section
2.3, we will discuss how this definition of agent and its proactive property
compares to the concept of proactive computing.

In [24], the authors provide a very general definition of the term agent,
i.e. an agent is an entity that uses sensors to perceive the environment
around it and uses effectors to act upon said environment. Additionally,
some authors make further distinctions between normal agents and au-
tonomous agents[27]. But here again, the definition of autonomous can
vary from author to author. For the authors in [28], autonomous means
that the agent can perform its actions without implicit intervention from a
user or other program. In [29], the authors define autonomous as the abil-
ity to fill out the gaps caused by partial or incorrect prior knowledge. Yet
another definition says that an autonomous agent can decide to perform a
task without being affected by outside influences[30]. Coming back to the
definition of an agent, the authors in [26] consider there to be two main
properties that computer systems need to satisfy in order to be considered

9

an agent. They are the perception of the environment and temporal conti-
nuity.

As the definitions given until now would allow anything or anyone that
is able to take a decision on its own to be an agent, the author in [31] pro-
posed to separate agents into three categories: physical or tangible agents
which include agents like robots, natural agents like humans or animals
and software agents. To distinguish software agents from simple software
programs the authors in [29] listed other characteristics that a software
agent needs to have like autonomous control, perception of the environ-
ment, adaptiveness and persistence over long periods of time.

To be able to properly satisfy the property of environment perception,
the system needs to be aware of the context it currently is in and needs to
know how to reason about it, which we will cover in the next section.

2.1.3 Context-based reasoning

Expert systems and especially agents can be used in a wide range of differ-
ent environments. As these environments are evolving over the life time
of a system, the systems have to be able to react to changes in the environ-
ment and to do this they have to be aware of the current context they find
themselves in.

The term context-awareness was first coined by Schilit and Theimer in
1994[32] in their work about mobile distributed computing. Schilit and
his co-author considered the context to be the location and identities of
nearby people and objects and changes to these objects. In other works
context has been simply defined as the environment or situation of the
system[33, 34, 35]. In another paper, Schilit listed three important as-
pects of context: where you are, who you are with, and what resources
are nearby[36]. He considered context to be about more than just the loca-
tion of the user or system as there are other things of interest around the
system that are also evolving and changing. In the case of his work, con-
text would thus also encompass lighting, noise level, network connectivity,
communication costs, communication bandwidth, and the social situation
the user finds himself in.

In his work in 2001[37], Dey gave another definition of context ”Con-
text is any information that can be used to characterise the situation of an
entity. An entity is a person, place, or object that is considered relevant to
the interaction between a user and an application, including the user and
applications themselves.”

Dey also provided a definition for context-awareness of a system [37]:
”A system is context-aware if it uses context to provide relevant informa-
tion and/or services to the user, where relevancy depends on the user’s
task.”

In this thesis, whenever we talk about context, we mean Dey’s defini-

10

tions with the clarification that a user does not have to be a human user but
can also represent another system.

The term context-based reasoning goes back to Gonzalez and Ahlers[38].
Context-based reasoning is a reasoning paradigm that allows for intelli-
gent agents to be modeled for use in a variety of environments and sce-
narios where specific expertise is necessary[39]. The main idea behind this
paradigm is that people tend to only use a fraction of their knowledge at
any given time[38].

This brings us to the proactive computing paradigm and the proactive
engine (PE), which is a rule-based system, used in this work. In this sys-
tem, different contextual situations are represented by different scenarios,
a scenario being a set of rules. This allows the system to reduce the amount
of knowledge it has to use simultaneously, meaning that the set of rules
that can get activated at a given time depends on the current context of the
system. We will explain the detailed functioning of the proactive engine in
section 2.3.

2.2 Autonomic computing

In 2001, forecasts by researchers from IBM predicted that computing de-
vices would continuously increase in complexity[40]. This complexity does
not encompass only the complexity of creation and development but also
the complexity of operation, maintenance and management. Up to this
point, these tasks were carried out solely by highly skilled and trained hu-
mans, however the rate of complexity increase pushed researchers from
IBM to propose a new approach to address the problem: Autonomic com-
puting [41].

In short, an autonomic system (AS) is a system that will manage itself
based on the current context[42], while the task of the human in charge is
reduced to setting general directives and policies to guide the system. Note
that autonomic is not the same as autonomous, which describes systems
that reach a certain goal without user intervention.

The requirements that a system needs to meet in order to be considered
autonomic will be discussed in the next section.

2.2.1 Self-* properties

In their manifesto, the researchers from IBM listed eight characteristics
that an autonomic system needs to have, which they later summarised by
four fundamental properties also called self-* properties: [41, 43]:

• Self-configuration
The system is capable of adapting its internal parameters to react to
dynamic environmental changes while still meeting initial deploy-
ment requirements.

11

• Self-healing
The system is able to identify failed components as well as repairing
them in order to ensure maximum availability.

• Self-optimisation
The system continuously tries to optimise its operation with respect
to predefined goals. These goals may vary drastically depending on
the system, ranging from optimising energy consumption to optimis-
ing response speed.

• Self-protection
The systems needs to preserve its security and integrity by identify-
ing threats and neutralizing them. It also has to anticipate threats.

Over the years this list of properties has been extended with several
optional properties. Following is a selected list of these properties[43].

• Self-adapting
The system needs to modify itself and/or its internal parameters to
react to changes in the current external context in order to ensure
that its objectives are still being met despite these external changes.

• Self-anticipating
The system needs to be able to predict future events. An anticipating
system should be able to manage itself proactively.

• Self-aware
The system needs to possess knowledge of its internal elements, their
current status, history, capacity and connections to external elements
or systems. This can also include knowledge of the actions the system
may perform.

• Self-monitoring
The system needs to be able to retrieve information on its internal
state and behaviour, be it globally, or for any of its elements.

2.2.2 Structure of autonomic systems

An AS consists of one or several autonomic elements that get information
from the usage (persons or other systems interacting with the AS) and com-
puting context (resources of the AS) and are guided by high-level policies
set by human administrators. They are also required to provide under-
standable feedback to its administrator. An autonomic element is struc-
tured according to the architecture proposed by IBM [44, 43] and shown in
Figure 2.1. It has 2 components: The managed resources or artefacts and
the autonomic manager.

12

Figure 2.1: Architecture of an autonomic element

The autonomic manager is in charge of managing the resources allo-
cated to it. Sensors provide the autonomic manager information about the
resources while effectors allow the autonomic manager to act on the re-
sources. The autonomic manager implements the MAPE-K loop in order to
transform the high-level policies set by the administrators to direct actions
to be performed on the managed resources [45]:

1. Monitor
During monitoring, the system collects details from the resources
and tries to detect any irregularities that may need to be analyzed.

2. Analyze
During the analysis step, the system reasons about the irregularities
that were detected during the monitoring step. If it determines that
changes in the system are required, the necessary request is passed
to the planning step.

3. Plan
During the planning, the system determines and organizes the ac-
tions needed to address the issues discovered previously while still
allowing itself to achieve its goals and objectives.

4. Execute
The execute step executes the actions that were organized in the pre-
vious step.

5. Knowledge
Knowledge designates the data shared among the monitor, analyze,
plan and execute steps as well as additional information about the
system such as historical logs, metrics and policies.

While autonomic systems, like proactive systems, originated around the
same time and have some similarities, they also have some differences that
we will cover in the next section after the presentation of the concept of
proactive computing.

13

2.3 Proactive computing

The notion of proactive computing, has initially been introduced by Ten-
nenhouse [46] in 2000. In proactive computing, the human user is no
longer the center of the interaction between humans and computers but
takes the role of a supervisor, which watches over the actions executed by
a proactive system (PS). A PS thus does not rely on explicit user input and
can act on its own initiative [46] to react to other events or proactively in-
terpret the lack of user input. To achieve this, PSs need to be aware of their
current context, extract the relevant information for their tasks from it and
then react accordingly [47]. The idea of proactive computing lead to the de-
velopment of a rule-based proactive engine (PE) by professor Zampunieris
and his team, which was used in a multitude of projects at the University of
Luxembourg, mainly in the domains of E-Learning, cognitive science and
eHealth[48, 49, 50, 51].

2.3.1 The proactive engine

The proactive engine is the implementation of a rule-based proactive sys-
tem that is used in the work of this thesis. It regroups both the strength of
Object-oriented principles and the strength of rule-based systems. The PE
is a middleware system that can be attached to other systems either directly
or through the use of a common database. The proactive engine consists of
a rule-engine, a database and rules.

2.3.1.1 Rule-engine and rule structure

The rule-engine is responsible for executing the proactive rules, which is
done in iterations. This rule-engine is composed of two First in First out
(FIFO) queues called currentQueue and nextQueue. The currentQueue
contains the rules that need to be executed at the current iteration of the
rule-engine, while the nextQueue contains the rules that were generated
during the current iteration. At the end of each iteration the rules from the
nextQueue will be added to the currentQueue and the next Queue will be
emptied.
A rule consists of any number of input parameters and five execution steps
[52]. These five steps have each a different role in the execution of the rule.

1. Data acquisition
During the data acquisition step, the rule gathers data that is impor-
tant for its subsequent steps. This data is provided by the context
manager of the proactive engine, which can obtain this data from
different sources such as sensors or a simple database.

14

1 . repeat for each data a c q u i s i t i o n request DA
a . perform DA
b . i f e r r o r then

r a i s e exception on system manager console and go to step 7
e l s e
create new l o c a l v a r i a b l e and i n i t i a l i z e i t with the

r e s u l t of DA
2 . create new l o c a l Boolean v a r i a b l e ” a c t i v a t e d ” i n i t i a l i z e d to

f a l s e
3 . repeat for each a c t i v a t i o n guard t e s t AG

a . evaluate AG
b . i f r e s u l t == f a l s e then go to step 6

e l s e i f AG == l a s t a c t i v a t i o n guard t e s t
then a c t i v a t e d = true

4 . repeat for each condi t ions t e s t C
a . evaluate C
b . i f r e s u l t == f a l s e then go to step 6

5 . repeat for each ac t ion i n s t r u c t i o n A
a . perform A
b . i f e r r o r then r a i s e exception on system manager console and

go to step 7
6 . repeat for each rule generat ion R

a . perform R
b . i n s e r t newly generated rule as the l a s t ru le of the system

7 . delete a l l l o c a l v a r i a b l e s
8 . discard rule from the system

Figure 2.2: The algorithm to run a rule

2. Activation guards
The activation guards will perform checks based on the context in-
formation whether or not the conditions and actions part of the rule
should be executed. If the checks are true, the activated variable of
this rule will be set to true.

3. Conditions
The objective of the conditions is to evaluate the context in greater
detail than the activation guards. If all the conditions are met as
well, the Actions part of the rule is unlocked.

4. Actions
This part consists of a list of instructions that will be performed if
the activation guards and condition tests are passed.

5. Rule generation
The rule generation part will be executed independently whether
the activation guards and condition checks were passed or not. In
this section the rule creates other rules in the engine or in some cases
just clones itself.

During an iteration of the rule-engine, each rule is executed in turn. The

15

algorithm to execute a rule is presented in Figure 2.2. The data acquisition
part of the rule is run first. If the data acquisition fails none of the other
parts of the rule is executed. Upon successful data acquisition, the activa-
tion guards part is executed and evaluated. If the tests pass, the conditions
part is executed. If again all the tests of the conditions part pass the actions
part of the rule is executed. Finally, the rule generation part of the rule is
executed independent of whether the activation guards or conditions tests
were passed.

2.3.1.2 Scenarios, Rules and Meta-Rules

The rules described in the previous section can be regrouped into scenarios.
A Scenario is a set of rules that will be executed for a given event. Gener-
ally, a scenario conceptually regroups rules that are necessary to react to
or proactively act in a specific situation. The starting point of a scenario
is called a meta-rule, which is a context-aware continuous never-ending
rule[53] that decides when the rest of the scenario should get activated.

2.3.1.3 The database

The database is used to save the state of the proactive system and in some
cases to communicate with a third party system the proactive system is at-
tached to. It contains all the information necessary to recover the last state
of the proactive system in case of a crash, contains the historical data from
sensors and the results obtained by executing the rules that were running
on the proactive engine.

2.3.2 Proactive computing vs Autonomic computing

The two paradigms of proactive computing and autonomic computing have
been compared by their creators at Intel Roy Want, Trevor Pering and David
Tennenhouse [54]. The main difference highlighted is that an autonomic
system seems to be more oriented towards self-management, whereas a
proactive system is more dedicated to user-related context activity. Accord-
ing to Want et al., the two computing approaches can complete each other,
if integrated within one framework. In the case of proactive systems, this
user can also be another computer system that uses the services provided
by the proactive system.

2.3.3 Proactive computing vs Agents

A proactive system might be seen as a software agent in some cases as both
share some properties like context-awareness and adaptiveness. However,
a proactive system missing some properties listed in Section 2.1.2 like long-
time persistence and autonomy as the proactive system is specific to the

16

environment it is executed in and does not necessarily react well to un-
foreseen situations as it executes the actions that are incorporated in its
rules[13].

2.4 Sensor fusion

In the past years, several sensor fusion methods have been used to ag-
gregate data coming from different sensors. Depending on the level of
fusion, different techniques have been used. In robotics the most popu-
lar method for low-level data is the Kalman filter which was developed
in 1960[55] along with its variants the extended Kalman filter or the un-
scented Kalman filter who are often used in navigation systems[56, 57], but
also other methods like the particle filter. On a decision level other meth-
ods like the Dempster Shafer theory[58, 59] are used. But what actually is
sensor fusion?

Before we discuss sensor fusion itself we will first introduce the notion
of uncertainty that comes with sensors. Uncertain data is data that contains
noise. The origin of this noise can vary. It can occur due to malfunctioning
or failing sensors, external attacks or due to parameters in the environment
that influence the readings on the sensors. For this work we will not cover
external attacks but rather focus on malfunctioning sensors, in particular
if this malfunction is caused by the environment the system resides in.

When it comes to fusion system, like often in computer science, there is
some confusion regarding the terminology. Depending on the scientist, the
terms sensor fusion, data fusion,information fusion and multi-sensor data
fusion are used interchangeably[60][61]. Some scientists consider data fu-
sion to be the overall term for fusion systems and define data fusion as a
formal framework that comprises means tools for the alliance of data origi-
nating from different sources [60][62]. Others proposed to use information
fusion as the overall term for fusion systems[63].

Here we are going to use the definition given in [60] for both the infor-
mation fusion and the sensor fusion terms:

”Information Fusion encompasses theory, techniques and tools conceived
and employed for exploiting the synergy in the information acquired from
multiple sources (sensor, databases, information gathered by human, etc.)
such that the resulting decision or action is in some sense better (qualita-
tively or quantitatively, in terms of accuracy, robustness, etc.) than would
be possible if any of these sources were used individually without such
synergy exploitation.”

”Sensor Fusion is the combining of sensory data or data derived from
sensory data such that the resulting information is in some sense better
than would be possible when these sources were used individually.”

Furthermore, in sensor fusion, the data sources for a fusion process do

17

not need to come from homogeneous sensors. A difference is made between
direct and indirect fusion. In direct fusion the data from homogeneous or
heterogeneous sensors and past sensor data are used in the fusion process
while in indirect fusion a priori knowledge about the environment and
human input are also used[60].

When discussing about the number of sensors that should be used in
a fusion system, some scientists argue that adding a sensor only helps the
fusion system if the data of that sensor is of good quality[60] while others
try to prove that more sensors means better fusion results[64].

Several fusion methods and techniques exist. One of them is the Kalman
filter named after the Hungarian Rudolf E. Kálmán who created it in 1960[55].
One of the main difficulties in implementing the Kalman filter is the esti-
mation of the noise covariance matrices Qk and Rk . So not only have these
matrices either be manually adjusted or be trained somehow, they are also
not suited in variable noise environments. Extensions to the Kalman fil-
ter that allow for variable noise covariance matrices have been developed
recently[65], but they still retain the same difficulties of actually obtaining
acceptable noise covariance matrices.

Nevertheless, Kalman filters see a lot of applications to improve the
estimation of the position of a robot or human as for example in [66] where
the authors were fusing data from wifi, smartphone sensors and landmarks
in order to improve indoor localisation. In [67], Kalman filters were used
to slightly improve the GPS navigation in urban environments.

Another popular fusion technique due to its flexibility is the particle
filter. It is a recursive implementation of the Sequential Monte Carlo algo-
rithm [68][69] and have recently been used for pose estimation in capsule
robots[70], assisting visually impaired people using image and radar data
to detect obstacles [71] or in heart rate monitoring [72] to reduce artefacts
introduced by motion of the patient. However, this flexibility comes at the
price of being computationally more intensive then the Kalman filter[73].

A higher level fusion technique is the Dempster-Shafer theory of ev-
idence was first introduced by Arthur P. Dempster[58, 74] and later ex-
tended by Glenn Shafer into a more general framework [59]. It has been ap-
plied to landslide detection using airborne laser scanning data[75], to the
detection of traffic incidents[76] or to the detection of DDoS attacks[77].

These different techniques can be used to improve data in noisy envi-
ronments, but in order to be able to handle conflicting data and to avoid
counter-intuitive results additional steps need to be taken[73].

2.5 Conflict handling for sensor fusion

As seen in the previous section, sensor fusion methods can combine data
from multiple sensors. However, information coming from different sensor

18

sources can be contradictory. If the data coming from different sources is
contradictory, we will talk about conflicts or conflicting information for
the remainder of this work. Conflicts in the context of this work are not
high-level conflicting goals or policies of the system, but rather refer to
inconsistent and contradictory information sources.

While the fusion methods described in the previous section perform
very well in very good conditions, they can have problems when the infor-
mation coming from different sensors is conflicting. In this section we will
therefore take a closer look at the conflict handling capabilities of these
different methods.

Kalman filter and particle filter can generally handle some noise and
uncertainty in the data decently well, however they are very sensitive to
outliers in the data that result in conflicting information[73]. A recent
study partly addressed these issues by using a particle filter method in
combination with recurrent neural networks[70]. This solution managed
to correctly identify situations in which sensors were failing. In [78] the au-
thors propose a fault tolerant architecture for sensor fusion using Kalman
filters for mobile robot localization. The detection rate of the faults in-
jected was 100%, however the diagnosis and recovery rate is lower at 60%.
The study in [79] proposed two new extensions to the kalman filter, the
Fuzzy Adaptive Iterated Extended Kalman Filter and the Fuzzy Adaptive
Unscented Kalman Filter in order to make the fusion process more resis-
tant to noise.

As it is possible to use Dempster’s rule of combination to combine two
independent sets of probability mass assignments, one would assume that
they can be used very well for the fusion of multiple sensors. However, it
is known for a long time that Dempster-Shafer theory can give unintuitive,
illogical or contradictory results in cases of high and even sometimes low
conflict [80, 81, 82].

In [81], Zadeh gives the following example to show Dempster’s rule of
combination giving counter-intuitive results in a case of high conflict:

A patient P is examined by two doctors A and B. Both doctors agree
that the probability that P has a brain tumour is 0.01. However, doctor A
thinks that P has meningitis with 0.99 probability while B thinks that P has
a concussion with 0.99 probability.

Using Dempster’s rule of combination would yield the result that pa-
tient P has a 100% chance of having a brain tumour, which both doctors
thought was very likely to not be the case.

While Dempster-Shafer theory is widely used in the domains of sen-
sor fusion/information fusion, and work has been done to try to overcome
these counter intuitive results in cases of conflicting information [83, 84,
85], it still remains an open problem[86].

There are two different main approaches. The first approach is to mod-
ify the combination rule itself like done by Smet[87], Dubois[88] and Yager

19

[89]. While they generally performed better for conflicting information,
the changes done broke other properties of the rule. The second approach
is to pre-treat the information before applying the combination rule. One
of the more recent works used a weighted combination method for con-
flicting information in multi-sensor data fusion by assigning credibility or
trust values to sources of information[86]. These weights were then taken
into account for the combination process. The authors showed that their
method is more confident in its results than other methods.

One model proposed for conflict handling between input sources was
by Uwe Mönks [90]. He proposes a two-layer conflict resolution model
based on Dempster-Shafer set theory and Fuzzy set theory and inspired by
a similar model from Li and Lohweg [91], in order to better estimate the
state or health of the system.

20

3 eHealth systems with a single sensor

Contents
3.1 Introduction . 22
3.2 Related work . 22
3.3 Our single sensor eHealth system 23

3.3.1 Architecture . 23

3.3.2 Theoretical overview of Hidden Markov Models . 24

3.3.3 Training . 25

3.4 Performance of the tested system 26
3.5 Discussion . 27
3.6 Conclusion . 28

21

3.1 Introduction

In this first experiment, we explore single sensor systems and more pre-
cisely single sensor systems in eHealth. There exist several systems, that
use a single sensor to make a diagnosis of a patient or to monitor a patients
behaviour. Examples of such systems include the system described in [92]
where the authors concentrate on electrocardiogram (ECG) data in order
to detect cardiovascular diseases. Another similar approach in order to de-
tect pulse loss based on blood pressure data is presented in [93]. In both of
these examples, the systems concentrate on the data coming from a single
electrocardiogram (ECG) or other health related sensor in order to make a
diagnosis for the patient.

So, in this chapter we analyze how well a single sensor can be used
under normal conditions for deciding in which state a patient is in. We
present our system, the results obtained and discuss possible drawbacks of
using only one sensor and make some observations which will help us in
improving the system by using multiple sensors.

We will first present some related work that include single sensor eHealth
systems. We will continue with giving a small introduction to Hidden
Markov Models (HMMs). Then, we will present our system, the tests that
were carried out and the results that were obtained and finish with a dis-
cussion.

3.2 Related work

The first experimental field that was used to test the system or parts of
the system was the domain of eHealth. These eHealth systems have taken
advantage of the advances in sensor technology in order to provide better
services to patients. In this part, we present some existing eHealth systems
that use only a single sensor.

One eHealth system that uses a single sensor is HeartToGo[94]. It can
continuously monitor and analyse an ECG in real time in order to detect
cardiovascular diseases. Another system that uses the ECG to detect car-
diovascular diseases is described in [92], where the authors proposed a
two smartphone-based wearable device to overcome the limitations of both
Holter monitors and resting ECG machines. They underline the impor-
tance of being able to monitor the patient at home as the conditions may
not be present during the hospital visits as they can show up only period-
ically. In [93], the authors present a system with similar objectives based
on the data from a blood pressure sensor.In [95] and [96] an accelerometer
sensor is used in order to monitor how well patients are recovering after a
stroke.

Finally, the work in [51] was based on the proactive engine described

22

in Section 2.3. It allowed patients to be monitored constantly at home in a
non-invasive way during a cardiac rehabilitation process[51].

3.3 Our single sensor eHealth system

3.3.1 Architecture

The system developed for this experiment [6] uses data coming from a sin-
gle ECG sensor and try to detect ’bad’ heartbeats. This is done by using a
Hidden Markov Model (HMM) with the topology shown in Figure 3.1 [97].
The middle chain of states represents the normal cardiac cycle. The differ-
ent states represent the P, PR, R, S , ST and T phases of the cardiac cycle
(See Figure 3.2[98]). The other two sequences of states represent two types
of faulty heartbeats, supraventricular and ventricular. The two states con-
necting these state sequences represent the phase in between heartbeats.
As every state of a heartbeat does not just consist of a single data point or
sensor reading, the states can also loop on themselves. Finally, at the end
of the heartbeat, the last state of the model has a transition to loop back to
it’s initial state to handle the next heartbeat.

Figure 3.1: Topology of the HMM

23

Figure 3.2: Normal heartbeat

3.3.2 Theoretical overview of Hidden Markov Models

Hidden Markov Models (HMMs) have been successfully used in many fields,
be it for speech recognition [99][100][101], failure detection [102] or com-
plex action recognitions [103].Different studies also used them for ECG
[97][104][105] and respiration analysis [106]. In this section we will give a
theoretical overview of HMMs.

An HMM models stochastic sequences as Markov chains where the states
are hidden. HMMs consist of five parts [101] :

1. The number of states N in the model. Even though the states are
hidden, they generally have a physical meaning. In the case of a
patient, they can mean that the patient is in a low, medium, high
or no risk state. We denote the individual states as S= {S1,S2, ...,SN }
and the state at time t as qt.

2. The number of distinct observation symbols. We denote the indi-
vidual symbols as V= {v1,v2, ...,vM}.

3. The state transition probability distribution A = {aij(k)} where
{aij(k)} = P [qt+1 = Sj |qt = Sj], 1 ≤ i, j,≤N .

4. The observation probability distribution B = {bj(k)} for every state j
where
{bj(k)} = P [vk at t|qt = Sj], 1 ≤ j ≤N,1 ≤ k ≤M.

5. The initial state distribution π = {πi} where
πi = P [q1 = Si], 1 ≤ i ≤N .

There are three fundamental problems for HMMS:

1. Given an observation sequence O= O1,O2...OT and a model λ =
(A,B,π), how do we compute P (O|λ) ?

24

2. Given an observation sequence O= O1,O2...OT and a model λ =
(A,B,π), how do we find the most likely state sequenceQ = q1,q2, ...,qT)?

3. How do we optimise the model parameters A, B and π of the model
λ in order to maximize P (O|λ)?

The solutions to the first and second problems can be both used for clas-
sification. With the solution to the first problem, we can calculate the prob-
ability that an observation belongs to a specific model. By doing this for
different models, we can choose the model that yielded the highest proba-
bility to classify the observation sequence. Example:

We have an observation sequence O=O1,O2...OT and three trained mod-
els X,Y and Z representing three different classes, such that ∀o ∈O , o ∈ VX
∧ o ∈ VY ∧ o ∈ VZ . Using the solution to the first problem we calculate
the probability that O belongs to X, Y or Z: P (O|X) = 0.4, P (O|Y) = 0.2 and
P (O|Z) = 0.8. As P (O|Z) > P (O|X) and P (O|Z) > P (O|Y) we can conclude
that O most likely belongs to the class represented by model Z.

The second problem can be solved easily by trying every possible state
sequence and taking the one with the highest probability. As this method
increases exponentially with the length of the observation sequence a more
effective solution was developed: the Viterbi decoding algorithm [107] [108].
The Viterbi algorithm calculates the state sequence that has the highest
probability to have generated a given observation sequence by only do-
ing subsequent calculations for the partial path with the best probability,
thus the complexity only increases linearly with the observation sequence
length.

The third problem consists of training the model in such a way that,
given a training observation sequence O, the parameters of the model λ =
(A,B,π) are adapted in order to maximise the probability of O given lambda.
There does not exist an optimal solution for this problem, but there are
several solutions to find local maxima for P (O|λ) including the expectation
maximisation algorithm [109], the segmental K-means algorithm [110] and
the Baum-Welch algorithm [111].

3.3.3 Training

To train this model, we used data from the free and openly accessible Mas-
sachusetts General Hospital/Marquette Foundation (MGH/MF) Waveform
Database [112, 113]. This data set contains three ECG leads (I, II, and V)
and was sampled at a rate of 360 readings per second. It also contains a
separate file in which expert cardiologists have identified and annotated
every heartbeat, meaning that they provide the time stamp of the start of
a new heartbeat and classify the heartbeat in the three categories Normal,
Ventricular or Supraventricular. However, part of the annotations are in-
complete, as the medical experts themselves were not sure which category

25

Table 3.1: Classification results

File TP FP FN TN FP rate Recall Specificity
mgh001 11 824 1 1747 32.05% 91.67 % 67.95 %
mgh002 333 817 98 4320 15.90 % 77.26 % 84.10%
mgh003 7 1532 0 5449 21.95 % 100 % 78.05%

a heartbeat belongs to. These records have been ignored for the training of
the HMM. The database is separated in different files for each patient and
are named following the pattern mgh001 - mgh00N, where N is the total
number of patients in the database.

To train HMMs we need good initial parameters to get satisfactory clas-
sification results [114]. In fact, the starting parameters have to be within
one standard deviation [115] from the actual parameters of the system in
order for the training algorithm to converge on the right values. Therefore
the initial starting parameters have been calculated manually by averaging
the values of ten normal, ventricular and supraventricular heartbeats.

Additionally, the HMMs are trained individually for every type of car-
diac cycle (normal, ventricular and supraventricular), and once they are
regrouped, they get merged into the final HMM shown in Figure 3.1. The
training was done using the mgh001 data set with the Baum-Welch algo-
rithm [111].

For the test sets we used records from 3 patients, mgh001 which was
also used for training, mgh002 and mgh003. To classify the heartbeats in
these test sets we used the Viterbi algorithm[107] [108] to find the most
likely state sequence of the observations and checked in the topology of
Figure 3.1 which type of cardiac cycle it matches.

3.4 Performance of the tested system

The classification results are shown in Table 6.1. The table contains in-
formation about correctly determined abnormal heartbeats (TP), correctly
determined normal heartbeats (TN), false alarms (FP) and not detected ab-
normalities (FN). Furthermore, the recall (percentage of abnormal heart-
beats that were actually detected) and specificity (percentage of normal
heartbeats that were correctly labeled as normal). As we can see, the re-
call for the data sets mgh001 and mgh003 is quite high with 91.67% and
100%, which might be also partly due to the small total number of actual
abnormal heartbeats (11 and 7). For the mgh002 data set the recall is lower
with 77.26%. For the specificity, all 3 data sets show similar results. They
all have a quite large number of false positives, meaning that the HMM

26

wrongly classified normal heartbeats as abnormal.

3.5 Discussion

These results are more or less in line with the results obtained in [97] which
presents also a quite high rate of false positives. The results themselves can
be interpreted in a few ways depending on the situation the system is used:

• Hospital:
The system could help to quicken the workflow of the doctors. While
it does not detect every single abnormal heartbeat, it is not really
necessary as the doctors just want to know if the patient has an ar-
rhythmia and is interested in the abnormalities found which leads
us also to the drawback of the system: the high rate of false posi-
tives. This results in the doctor having to filter through a substantial
amount of heartbeats manually only to find out that most of them or
even all of them (in the case of a healthy patient) are normal.

• At home:
One of the main goals of eHealth systems is to be able to monitor
patients at home. If the system detects that something is wrong with
the patient, it could decide to notify the patient, notify the doctor or
even call emergency services. In this situation, the current system
with a single ECG sensor that is analysed with a HMM could notify
the patient that there is a problem and that he should go and see a
doctor. The system, while not being able to identify every abnormal
heartbeat, could still be useful. However, the large number of false
positives could also annoy the patient with notifications to the point
he just does not use the system anymore.

A system with a single sensor like the one shown here is not perfect. While
the classification results certainly can still be improved by adapting the
system or even completely changing the classification algorithm, a single
sensor is just not enough to deal with all the uncertainties that such a sys-
tem has to deal with.

These uncertainties, in the case of this system, include muscle noise re-
lated to the electrical signal of the muscles interfering with the ECG signal
and power line interference [97, 116]. There is work to reduce the noise
[116, 117], however the techniques will not be able to completely remove
the influence of the noise.

Another drawback of a single sensor system is, that in case of a mal-
function or complete failure of a sensor, the system itself becomes unable
to fulfill its tasks and thus useless. So, how can these issues been dealt
with?

In the medical domain you generally treat the patient on two fronts:
you treat the symptoms in order to reduce any pain or discomfort on the

27

patients side but you also try to treat the source of the problems the patient
is experiencing. This method could provide useful for sensor system as
well, by not only trying to reduce the noise from the sensors but by also
detecting the cause for the malfunctioning sensors and acting on it.

3.6 Conclusion

In this section, we explored existing single sensor eHealth systems and pre-
sented our version of a single sensor system. We presented the results of
the performance of the system and discussed potential drawbacks of using
only a single sensor.

If we further analyze the issues described earlier, we can make a few
observations:

1. A lot of the time, it is known when a sensor is sensitive to external
influences.

2. Again, a lot of the time, it is also known to which noise sources the
sensors are sensitive, meaning that it could be potentially identified
if the current situation a system operates in could influence it’s sen-
sor.

3. Advances in sensor technology gave birth to a large array of sensors.
Some parameters can be measured using multiple distinct sensors
that use different technologies to achieve the same goal and there-
fore could also react differently to noise sources.

With these observations in mind, we extend the single sensor system to a
multi-sensor system in the next chapter. There are different versions of
multi-sensor systems that will be presented. The advantages and potential
challenges of these systems will also be discussed.

28

4 eHealth systems with multiple sensors

Contents
4.1 Introduction . 30
4.2 Multi-sensor System: first version 30

4.2.1 Related work . 30

4.2.2 System and discussion 30

4.3 Multi-sensor System: second version 32
4.3.1 Related work . 32

4.3.2 System and discussion 32

29

4.1 Introduction

The drawbacks described for a single sensor system and the observations
made in the previous chapter indicate that a system that possesses more
than just a single sensor will be likely to perform better than a system with
just a single sensor. In this chapter we present different iterations of multi-
sensor systems, discuss the advantages to the previous versions and anal-
yse the disadvantages in order to further improve the architecture of the
system. We first start by taking a look at existing multi-sensor systems
in eHealth and present an extension of the system described in Chapter 3
where we add multiple sensors to the system and discuss the advantages
this can be bring compared to the previous version of the system and what
possible disadvantages or new challenges may appear. We then further re-
fine the system in a second version, take a look at existing similar systems
and again analyse the advantages and possible arising challenges which
will lead us to our final model presented in the next chapter.

4.2 Multi-sensor System: first version

4.2.1 Related work

In this section we will take a look at eHealth systems that use multiple sen-
sors but still use them in an individual manner, meaning that each sensor
is used to make its own diagnosis, but the results are never combined.

In [5], the authors presented an approach with multiple sensors where
the system not only uses an ECG sensor but also an Electroencephalogram
(EEG) in order to measure brain activity and an Electrogastrogram (EGG),
which records the electrical signals of the muscles in the stomach. How-
ever, while it uses multiple sensors, the diagnosis is done based on data
from individual sensors. This means that if for example a sensor detects a
problem, the system will alert the patients/doctors without considering the
results of the analysis from other sensors. This can lead to false decisions
taken if the data was for example influenced by an external source.

Similarly, in [118] the LifeGuard system is described, which is capable
of measuring ECG, the respiration rate, the blood oxygen saturation, the
skin temperature, the heart rate, the blood pressure and body movement.
However, again every sensor is just used to make a diagnosis based on its
own data, but the data is never combined to make a decision.

4.2.2 System and discussion

As described above, there exist eHealth systems that use multiple sensors
in order to make a better diagnosis for the patient [5]. However, they use

30

them in an individual manner which still does not tackle the issues ad-
dressed in the previous chapter. To showcase this, we will extend our sys-
tem with a few sensors in order to improve the diagnosis made.

In Figure 4.1, the extended version of the system is depicted. The sys-
tem includes a layer of filtering and preprocessing of the data. The Elec-
trocardiogram (ECG) used previously only for arrhythmia detection is also
used for respiration analysis [119, 120]. The system additionally contains
a blood pressure sensor and a module that analyses the blood pressure in-
formation. The system could be further extended by a number of sensors
that are all used to detect a specific anomaly in the patient.

Figure 4.1: Multiple sensor eHealth system (sensors used individually)

Finally, these classification results are used to make a diagnosis of the
patient. However, they all do so individually and thus the system still has
pretty much the same drawbacks that it had before using only one sensor.
The points in the system that have been improved are firstly that the sys-
tem is able to detect a wider range of health conditions of the patient and
secondly, that in the case a sensor is failing, it is not completely useless, but
is still able to detect the other anomalies in the patient’s health condition.

Concerning the uncertainties and noise that can influence the result
of the classification, the system is in the exact same state that it was in
previously. It still tries to fix the symptoms instead of trying to eliminate
the sources that cause these symptoms. Therefore, some systems went a
step further as we will show in the next section.

31

4.3 Multi-sensor System: second version

4.3.1 Related work

In this section we will take a look at related eHealth systems that use mul-
tiple sensors and try to combine the data from these sensors in order to
make better decisions. The authors in [121] developed the alert portable
telemedical monitor (AMON) and introduced reliability values for the dif-
ferent sensors to facilitate the combination of data from different sensors.
The autonomic management of ubiquitous e-Health systems (AMUSE) pre-
sented in [122] adopted an autonomic approach based on self-managed cell
in order to be able to react to device failures. Each cell manages a set of re-
lated devices.

The authors in [123] proposed a multi-tier hierarchy that uses data from
multiple sensors in combination with machine learning methods for dis-
ease recognition. Another eHealth system uses data fusion methods in
order to aggregate data coming from different sensors and other sources
like social network feeds[124]. Both approaches allow for small optimi-
sations for the decisions taken. In [125] the authors use an expert model
to do the classification and showed that adding an expert model helped to
improve the classification results of epilepsy detection in comparison to a
standalone neural-network model.

4.3.2 System and discussion

Sensor fusion techniques, like described in Section 2.4 can be used to com-
bine data coming from different sensors. The architecture of a version of
the system that includes sensor fusion techniques is shown in Figure 4.2.
Instead of trying to detect abnormalities in the patients health condition di-
rectly in the data of a single sensor, the data is first preprocessed and then
data from multiple sensors that can be used to detect the same anomaly
is sent to the sensor fusion layer in which it gets combined. This version
of the system takes advantage of the redundant information present in the
different sensors. As some sensors measure the same parameters, the fu-
sion algorithms can use that information in order to reduce the uncertainty
as much as possible and in the end a classification and diagnosis is made
based on this improved the data. Depending on the system, a set of ho-
mogeneous sensors is used in order to compensate for potential failures or
malfunctions, however this is generally mostly useful for individual hard-
ware failures. In the case of external factors that could create noise in the
data, it is very likely that every sensor of the set of homogeneous sensors
will produce noisy data.

Therefore, another solution for these systems is to use heterogeneous
sensor. These heterogeneous sensors can help in different ways:

32

Figure 4.2: Multiple sensor eHealth system with sensor fusion

1. The sensors measure the same parameter.
Contrary to a set of homogeneous sensors, in this case the sensors
used take advantage of different technologies in order to measure
the same parameters. For example in eHealth systems, the ECG and
the photoplethysmogram (PPG) can be used in order to detect ar-
rhythmias [126]. This can be useful as they use different methods
to achieve the same goal. The ECG uses electrodes placed on the
patient (which is why the ECG measurements are sensitive to power
lines) while the PPG uses a light-based technology, which makes it
react differently depending on the light level [127]. This means, that
depending on the situation, one of the sensors is more reliable than
the other and will thus likely provide better data.

2. The sensors measure different parameters.
In this case some sensors measure different parameters, that can be
used together to calculate or estimate a parameter that one of the
sensors is measuring. An example of such a parameter would be
the position that will generally be given by the GPS. However in
case of a failure in the GPS, the current position could be estimated
based on the last known position and data from an accelerometer
(movement), gyroscope (orientation) and magnetometer (direction
of movement). This is already used to some extend in IMU enabled
GPS devices [128].

The system now possesses the right tools in order to make better and more
reliable decisions. However, there are still some challenges left that need
to be addressed.

1. The first one is to identify if the information from different sensors
is conflicting, meaning that the system has to know that two differ-

33

ent sensors measure the same parameter and has to detect that the
information coming from them is contradicting.

2. The second challenge is then to handle this conflicting data and to
decide which one is the most trustworthy and should be used for the
decision making process. For this to be possible, the system has to
know which sensors can currently be trusted. Thus, the system has
to know which sensors are likely to behave in a bad way if they find
themselves in specific situations.

3. The third challenge then consists of the system correctly identifying
the situation it finds itself in, so that it can then decide which sensors
it can trust.

If the system manages to address all of these challenges, it will be able
to make more informed and thus better decisions. In the next chapter, we
will describe the model of our system that was designed to overcome the
challenges presented in this chapter.

34

5 Proposed model

Contents
5.1 Introduction . 36
5.2 Motivation . 36
5.3 Overall Architecture . 37
5.4 First layer . 39
5.5 Second layer . 40

5.5.1 Context-building scenarios 41

5.5.2 Influencing scenarios 42

5.5.3 Conflict handling scenarios 42

5.5.4 Transmitting scenarios 43

5.6 Discussion . 43

35

5.1 Introduction

To address the challenges presented in Chapter 4, we developed a multi-
layer architecture for the second version of our multi-sensor system, which
we will present in this chapter, starting with the overall architecture of
the system and continuing with a detailed description of every layer. Fi-
nally, we will finish with a discussion about the objectives of the proposed
model, of what it is supposed to be and what not, compare it to other pos-
sible approaches and identify the parts of the system that can be more or
less generic and could be largely reused independent of the application
domain.

5.2 Motivation

In the two previous chapters (3 and 4), we made observations about single
and multi-sensor systems and identified challenges that arise when build-
ing such systems that need to be addressed. In this section we will first
recapitulate the most important points and describe what could be possi-
bly done to address them which will finally lead us to the next section in
which we will present the architecture of our model. Let us list the obser-
vations made previously:

1. A lot of the time, it is known when a sensor is sensitive to external
influences;

2. Again, a lot of the time, it is also known to which noise sources the
sensors are sensitive, meaning that it could be potentially identified
if the current situation a system operates in could influence it’s sen-
sor;

3. Advances in sensor technology gave birth to a large array of sensors.
Some parameters can be measured using multiple distinct sensors
that use different technologies to achieve the same goal and there-
fore could also react differently to noise sources.

Using these observations we formulate requirements that a system over-
coming the previously described challenges needs to have. They are as fol-
lows:

1. to have multiple sensors. Subsets of these sensors should be able to
be used to measure or estimate the same parameter;

2. to be aware of the current situation it operates in;
3. to have knowledge about what factors from the surrounding envi-

ronment are causing noise for a given sensor type.
The first requirement can be considered more of a precondition or hy-
pothesis for the system. A multi-sensor system that does not fulfill this
precondition will be limited in its actions to overcome the challenges de-
scribed in the previous chapters. Therefore, even though we present a par-

36

tially generic architecture for a multi-sensor system in the next section, the
choice of sensors will be important and will have to be done for every situ-
ation in which the system will be deployed.

The second requirement can be addressed by adding a context module
to the system. This means that the system has to constantly analyse the
data coming from some sensors in order to build the context the system
operates in. This can be done with a hybrid approach of machine learning
classifiers and a rule-based engine. The job of the classifiers will be to check
whether sensors are likely failing and provide a confidence values for them.
They will also classify part of the data required to build the context. A rule-
based engine could then be used to further refine the context by using some
pre-defined expertise coded in the rules.

For the third requirement, the use of a rule-based engine and a knowl-
edge base jumps to mind. The knowledge will be used to reason about the
trustworthiness of certain sensors and to decide which sensors are the most
reliable in the current situation. For this step, machine learning techniques
are less useful as they would be extremely hard to train for this use case,
be less flexible and also pose more challenges when it comes to following,
understanding and improving the behaviour of the system. With these po-
tential solutions in mind we will present the two-layer architecture of our
system in the next section.

5.3 Overall Architecture

To address the challenges outlined in the previous section we developed
a two-layer architecture that can act as a middleware between the sensors
and the decision making of an existing system. To be able to address these
issues, the system has to be composed of a set of heterogeneous sensors.
As discussed previously, heterogeneous sensors provide the best possible
opportunity to identify situations in which sensors are most likely to fail
or malfunction. Additionally, the set of heterogeneous sensors has to be
interrelated in some ways in order for the system to be able to decide which
sensors are malfunctioning and to propose an alternative solution. In some
cases, having multiple sensors of the same type can be a plus.

Additionally, the system also has to be able to correctly identify the
context it currently operates in. When talking about this system, context
describes the current situation the system finds itself in that could poten-
tially influence the accuracy of its sensors. Context does not relate to any
situation or information that would be necessary for the system to attain
its objectives. Consider the overall architecture of the application shown
in Figure 5.1.

The sensors and decision making parts belong to an already existing
system. Our system is set in between the sensors and the decision making.

37

Figure 5.1: Overall architecture

It receives the raw data from the sensors of the existing system and relays
enhanced information to the decision making module.

Figure 5.2 shows the more detailed version of our system and how it
tries to achieve its goal with a two-layer architecture that consists of a clas-
sification layer and a rule-based conflict-handling layer. The classification
layer takes the raw data from the sensors and tries to detect whether they
are functioning correctly or not. The output of the classification layer will
be a confidence value that is attributed to each sensor, which will then be
passed to the rule-based proactive engine (PE).

The second layer consists of the PE. It receives raw data from the sen-
sors and the confidence values that were attributed by the classification
layer to these sensors. With that information it first builds the context that
the system finds itself in and using the context it adapts and refines the
confidence values attributed to each sensor.

Finally, using these updated confidence values, the PE decides which
sensors can be trusted and tries to circumvent failing and malfunctioning
sensors by calculating estimates based on data from other trustworthy sen-
sors where possible.

38

Figure 5.2: System architecture

5.4 First layer

The first layer is a classification layer that assigns an initial confidence
value to every sensor. This confidence value represents the level of trust
in the sensor. A low confidence value means that a sensor is likely mal-
functioning. These classifiers have to be tailor made for every sensor and
adapted to the appropriate environment as they have to get trained cor-
rectly before they can give appropriate confidence values.

The job of this layer is not to have a 100% accuracy in the confidence
value or even in the classification result, but rather to give a rough esti-
mate on whether or not a sensor is malfunctioning. The confidence value
obtained is then sent along with the raw data to the second layer for further
processing.

39

5.5 Second layer

The second layer consists of the PE on which scenarios will be run to build
the current context, to further refine the decision on which sensors can be
trusted and to decide whether to pass data directly from a sensor to the
existing third party system or to calculate an estimate based on data from
more reliable sensors.

A more detailed version of the second layer is shown in Figure 5.3. Con-
ceptually, the processing of the data is divided into different steps:

Figure 5.3: Scenario flow

1. Context-building scenarios
The job of these scenarios is to build the current context the system
operates in, so that it can be used by the following processing steps
to decide which sensors to trust.

40

Sensor name List of properties
Minimum

confi-
dence

Grace
period

History
Length

GPS position 0.8 1s 1000
Accelerometer acceleration 0.8 1s 800

Light lightlevel 0.5 30s 50
...

Table 5.1: Sensor registration table

2. Influencing scenarios
Influencing scenarios will adapt confidence values from sensors based
on the current context and predefined knowledge about the sensors’
weaknesses.

3. Conflict handling scenarios
Conflict handling scenarios then check whether sensors measuring
the same properties provide conflicting data. As the confidence val-
ues has already been updated by taking the current situation into
account, these scenarios can then decide which sensors to trust and
in some cases to calculate an estimate of the real data.

4. Transmitting scenarios
The job of these scenarios is to get the results from the previous steps
and to relay them to the third party system.

These different steps will be explained in more detail in the subsequent
sections.

The second layer will also be connected to a database where domain
specific knowledge about the sensors and the properties they are measur-
ing will be stored. Consider Table 5.1. It contains every registered sensor
that is part of the third party system and describes which properties they
are measuring. Additionally it defines values for the minimum allowed
confidence, a grace period and the kept history length, whose purpose will
be explained in the appropriate section.

5.5.1 Context-building scenarios

The context-building scenarios will be, just like the classifier layer, very
domain specific. The job of the context-building scenarios is to create a
context that accurately represent the current environment of the robot and
that is useful for the subsequent steps in the processing chain to reason
about which sensor to trust.

The context parameters will be either generated by the classifiers or
obtained by the proactive engine that deduces them from the data from
multiple sensors. These context parameters will then also receive a con-

41

Sensor name Context parameter Value Operation
GPS high buildings true equals

Ultrasonic sensor temperatureVariation 20 bigger
...

Table 5.2: Contextual influence of sensors

fidence value based on the classification results and the confidence of the
sensor(s) they were obtained from.

5.5.2 Influencing scenarios

This processing step adapts the confidence values of the sensors that were
obtained from the classifiers according to knowledge it has about the sen-
sors sensitivity to contextual noise. This knowledge has to be defined in the
database like shown in Table 5.2. For every sensor where it is applicable,
one or more contextual parameters that can affect the accuracy of the data
provided, are defined. The value field defines the actual number, the range
or the limit for which the context parameter starts influencing the accuracy
of its related sensor. Note that for conciseness this is represented here as a
single table, but in reality it will be split in several tables for the different
representations of the values.

The rule generation part of the meta influencing scenario will look as
the pseudo code shown in Figure 5.4. The meta scenario starts a specific
scenario for every contextual parameter that can influence the accuracy
of a sensor. The underlying specific scenarios then vary slightly based on
whether the accepted values for a contextual parameter is a range, a limit
or a specific value.

for sensor in s e n s o r L i s t {
contextParameterLis t=GetListOfContextParameters (sensor , DB) ;
for contextParameter in contextParameterLis t {

s t a r t S p e c i f i c I n f l u e n c i n g S c e n a r i o (sensor , contextParameter) ;
}

}

Figure 5.4: Starting influencing scenarios

5.5.3 Conflict handling scenarios

The conflict handling scenarios handle the cases where multiple sensors
provide different contradicting data. We distinguish between two cases,

42

the first case where two sensors measure the same parameter and the sec-
ond case where one sensor measures a parameter that can be calculated or
estimated by combining the data coming from several other sensors.

In the first case, the scenario will simply chose the sensor with the high-
est confidence and trigger the related transmitting scenario with this sen-
sor as parameter. This is possible as at this stage in the execution process,
the contextual parameters that may potentially influence the accuracy and
thus confidence put into the different sensors, have already been taken into
account. Thus, the sensor with the higher confidence will be the one that
provides the more accurate data in the current contextual situation.

In the second, more complex case, the scenario will first check the con-
fidence of a sensor. If the confidence is lower than the allowed minimum
confidence for the sensor, the next rule that will calculate an estimation for
the parameter given by the distrusted sensor will get executed. If this es-
timated value diverges from the value given by the sensor by a predefined
margin, the next rule will get executed.

This rule will take the average confidence of the sensors used to calcu-
late the estimation, check if every sensor meets the minimum confidence
requirements and notifies the transmitting scenarios about whether the
connected system should use the data from the original sensor or the cal-
culated estimate.

5.5.4 Transmitting scenarios

The transmitting scenarios communicate the recommendations of our sys-
tem to the connected system. This is done through the database and in-
cludes the sensors, parameters, related confidences, when applicable con-
fidence of the estimates and a recommendation which one to use.

The final decision on whether to use this recommendation or to ignore
it, relies in the connected system, which is possible as it has access to both
the real value from the sensors as well as the calculated estimates through
the database.

5.6 Discussion

In this section we are going to discuss the objectives of the proposed model
and which previously described challenges it addresses, what is not part of
the objectives, its advantages and possible limitations.

The objective of the system is to make sure that a third party system
gets the most reliable data possible to make its decisions. The decisions
of our system are limited to the sensor and data management side. There
are no decisions taken to achieve a goal other than providing trustworthy
information to a third party system.

43

To see if our proposed model can address the existing challenges let us
first recapitulate what these challenges actually are:

1. The system can correctly identify its current context so that it can
then decide which sensors it can trust.

2. The system has to know which sensors are likely to behave in a bad
way if they find themselves in specific situations, in order to decide
which sensors can be trusted.

3. The system has to identify whether information from different sen-
sors is conflicting, has to handle this conflicting data and has to de-
cide which one is the most trustworthy and should be used for the
decision making process.

Note that we changed the order of the challenges described in Chapter 4
in order to better fit the processing steps in our model. The first item on
the list, identifying the current context, is addressed by the first process-
ing step in the proactive engine, the context-building scenarios. The sec-
ond challenge is addressed by the influencing scenarios and the knowledge
about the different sensors that is saved in the database. Finally, the third
one is addressed by the conflict handling scenarios.

The two layer approach presented that consists of a layer of classifiers
and a layer consisting of a rule-based system, has some advantages over
a two layer approach consisting of a second layer of neural networks re-
grouping the information from the first layer to make decisions about the
trustworthiness of sensors.

Firstly, the neural networks would need to be trained, which is already
challenging for the first layer and would be even more challenging for the
second layer. Secondly, it is easier to understand, follow and fix the reason-
ing in a rule-based system than it is in neural networks. From this follows,
that our model could potentially justify its decisions to a human user or
could be able to share the reasoning behind its decisions with other sys-
tems. For neural networks it is very difficult to know why they do not give
the expected results and where things went wrong.

Concerning the limitations of our system, like with every rule-based
system, the larger it grows and the more complex it becomes the more dif-
ficult it becomes to foresee every possible interaction between sensors and
different properties.

To answer our last research question on which parts of the system can
be designed in a generic way, so that they can be applied to different do-
mains, it has to be noted that having a generic solution for this type of
problem is very difficult if not impossible. The first layer of our proposed
model certainly has to consist of classifiers specifically trained for a given
domain. The second layer also needs domain specific knowledge so that
it can reason about which sensors to trust and detect and handle potential
conflicts between the data of different sensors.

44

However, if this knowledge is encoded like in our system, the influenc-
ing scenarios and a part of the conflict handling scenarios (the first case
where two sensors measure the same parameter) can be kept generic to a
point that the number of scenario types is independent from the domain
and from the number and types of sensors in the system as the system can
manage to carry out these processing steps with differently parametrized
instances of the existing scenarios.

This allows a developer or expert to simply add the required knowledge
to the database and the system would automatically know how to use it
without needing any changes to the source code. The additional knowledge
can even be taken into account at runtime, meaning that adaptations can
be done without the need of restarting or redeploying the system.

In the next chapter we will look at how the system and scenarios look
like when applied to a specific application (in this case a robot in a simu-
lation environment) and we will show a proof of concept of the system in
action to show that it can improve the decision making of the robot.

45

46

6 Robotics Proof of concept

Contents
6.1 Introduction . 48
6.2 Proof of concept . 48

6.2.1 Webots . 48

6.2.2 Our robot and its environment 48

6.2.3 Software Architecture 51

6.3 Related work . 52
6.3.1 Convolutional neural networks 52

6.3.2 LSTM neural networks 56

6.4 Implementation . 59
6.4.1 Data processing . 59

6.4.2 Classifiers . 60

6.4.3 Scenarios . 64

6.5 Evaluation . 67
6.5.1 Setup . 67

6.5.2 Expected results . 68

6.5.3 Results . 69

6.6 Conclusion . 70

47

6.1 Introduction

In this chapter we are presenting a possible application for our model in-
troduced in the previous chapter, in the domain of robotics. For this pur-
pose, we use the robotics simulation software Webots[129]. We provide a
robot with the functionality of our system and test its effectiveness. We
will first start with a section about related work in robotics systems and
continue by explaining the chosen example situation the robot has to deal
with in the proof of concept. Moreover we give an overview about the We-
bots simulation environment, describe the implementation of the different
layers and provide some test results. Finally, we finish with a discussion
about the current system implementation.

6.2 Proof of concept

6.2.1 Webots

Webots [129] is a robotics simulation software that recently has become
open-source. It is developed since 1996 in cooperation with the Swiss Fed-
eral Institute of Technology in Lausanne and is widely used in industry,
education and research.

Webots provides a large collection of sensors,actuators, robots and ob-
jects that are frequently used in robotics. It includes an API for several
programming languages including Java, C, C++ and Python. Another fea-
ture of the software is the recording of simulation movies.

However, as with every simulator there is a gap between reality and the
simulation[130]. Consequently, while the test results obtained in a simu-
lator are certainly an interesting indicator of the performance of a system,
they still have to be taken with a grain of salt.

6.2.2 Our robot and its environment

To test our model we will deploy it on a robot in Webots. While Webots
provides a large set of simulated real robots, we chose to use a custom
robot that will only have the sensors needed for our example application,
chosen in the set of predefined sensors that is already provided by Webots.
Before we describe the sensors used, we will first describe the environment
the robot will operate in.

The environment is shown in Figure 6.1. It is an urban environment
with several skyscrapers and normal houses. As pointed out in [131, 132],
urban environments with high buildings negatively affect GPS accuracy.
A study conducted in Chicago even showed that the GPS can give wrong
positions that are up to 100m away from the real position[4] and for more
than half of the time, the positional error was above 20m.

48

Figure 6.1: Robot and application environment

With this knowledge in mind, we simulate the situation through our
environment in Webots. The sensors we will be using for this application
are the following:

• GPS
The GPS provides the position of the robot as well as its speed. It will
be the main focus of the application as a failure or malfunctioning of
the GPS sensor should trigger the mechanisms set in place by our
system.

• Accelerometer

49

The Accelerometer provides the acceleration of the robot along all 3
possibles axes.

• Gyroscope
The Gyroscope provides the angular velocity, i.e. the speed with
which the robot rotates around the three axes.

• Inertial Unit
The Inertial unit (IMU) measures the current orientation of the robot.
It return the roll, pitch and yaw angles of the robot. (See Figure 6.2
[129])

• Camera
The camera will allow the robot to detect high buildings in the area.
As image recognition is a challenging topic and beyond the scope of
this thesis, Webots provides the possibility to add a Recognition node
to the camera which can detect some predefined objects by cheating
a bit. It allows you to set a recognitionColor of a solid node (object) in
addition to the normal color that will be used for rendering, and the
camera then uses this recognitionColor to detect which objects are
currently in its view. It also allows you to set a distance at which ob-
jects can be recognised, meaning that the recognition node can only
detect objects that are closer than the given distance.

Figure 6.2: Roll, Pitch and Yaw angles

To simulate the inaccuracies of the GPS near skyscrapers, we will in-
ject it with gaussian noise based on the proximity of the robot to one of
the skyscrapers. The influence radius of the skyscrapers in the previously
shown environment is represented by the red circles in Figure 6.3.

50

Figure 6.3: Influence radius of skyscrapers

The goal of the robot is to navigate through the city following a prede-
fined route, while the objective of our system is to handle the conflicting
information the robot will be receiving from its sensors due to the inac-
curacies of the GPS and make sure that the robot receives enhanced GPS
information in order to make the appropriate decisions about its naviga-
tion.

6.2.3 Software Architecture

As described previously, we will augment the robot with our system. The
architecture of the final system is shown in Figure 6.4.

The robot possesses several sensors which we described previously: GPS,
Accelerometer, Gyroscope, Inertial Unit and Camera. It also has a decision
making module (controller in Webots terminology) where it will decide
what actions it has to carry out in order to reach its goal.

The goal of the robot is to follow a predefined route through the city.
The actions the robot can take are : TurnLeft, TurnRight, MoveForward and
Stop. The robot will only continue its journey to the next checkpoint on the
route if it is within a given radius of the previous checkpoint.

51

Figure 6.4: Robot architecture

After being augmented by our system, the robot will no longer use the
data from the sensors directly in its decision making but will first pass the
data to our system and then use the resulting data that comes from the
computation done in our system.

In the part of our system, the data from the sensors will first get passed
to the classification layer and then to the proactive engine along with the
results from the classifications. The proactive engine will handle the possi-
ble conflicting information, enhance the data and pass it back to the robot
along with a confidence value for the different sensors.

In the next sections, we will take a look a the implementation of these
two layers for this example application.

6.3 Related work

6.3.1 Convolutional neural networks

Convolutional Neural Networks (CNNs) have seen increasing popularity
over the last few years, and have had a huge success in image classification
and object recognition tasks[133]. This success lead researchers to also try
and use them for time series classification either by transforming the time
series itself in an image [134] or by using a one dimensional version of a
CNN[133]. They have recently be used successfully in single sensor data
fault detection[135, 136, 137, 138, 139].

52

Figure 6.5: Example perfect GPS vs GPS injected with errors

This usage might seem strange at first as data coming from most sen-
sors do not seem to have anything in common with images, however this
strangeness comes rather from the human struggles of visualising time se-
ries rather than the inability of CNNs for time series classification.

In Figure 6.5 an example of data that is easier to visualise is presented.
It consists of several consecutive sequences of the normalised latitude ob-
tained from a GPS. The first image depicts measurements from a perfectly
functioning GPS and in the second image wrong values have been intro-
duced at random. In this visualisation it is easy to spot the outliers and an
algorithm that was designed to recognise objects or patterns in an image
should provide good results in detecting these anomalies. Of course the
example shown in these pictures is an idealised example for visualisation
purposes but the core idea is the same even if the GPS data would be a bit
more noisy in the real world. One of the advantages of CNNs is that it can
recognise these patterns in the images or data automatically[140].

53

In Figure 6.6 the architecture of a basic CNN for image processing is
shown. The input is an image of X by Y pixels and consists of several chan-
nels which for images typically represent the RGB values, meaning that
each channel represents the red, green and blue values of the pixels. The
next layer is a convolutional layer which applies filters to the input by cal-
culating the dot product of the input values with the filter values. Applying
a filter to the input is called a convolution. A convolution can be seen like
a sliding window as the filters slide all over the input image like shown in
Figure 6.7. The steps by which the filter is repositioned is called stride. In
the example shown the stride is equal to 1.

The resulting ’images’ are called feature maps as they extract features
from the image. They will be slightly reduced in dimensions compared to
the input images based on the dimensions of the filter applied.

Figure 6.6: General architecture of a convolutional neural network

54

Figure 6.7: Example of a 2 by 2 filter applied to an image

The next layer is the pooling layer which is used to further reduce the
dimensions of the image. There exist two main pooling techniques: max
pooling and average pooling. Their names are indicative for the operations
they apply to the image: max pooling takes the maximum value of a part
of the image while average pooling calculates the average. An example of
max pooling is shown in Figure 6.8.

55

Figure 6.8: Example of max pooling

The two types of layers mentioned in the previous paragraphs can be
repeated several times. At the end of the CNN the feature maps are flat-
tened into a normal 1 dimensional dense layer of neurons. This layer then
finally connects to the output neurons which will contain the classification
or prediction results.

As CNNs can overfit quite easily, a Dropout layer is generally intro-
duced after the pooling layers [141], which makes the network only use a
part of the available neurons during training, scarifying some performance
on the training set for better generalisation.

To use a CNN for the sensors in our application, we can use the struc-
ture shown in Figure 6.9. The concepts are the same, except that the input
is one dimensional and as a result the filters are also one dimensional.

Figure 6.9: Architecture of a convolutional neural network for one dimen-
sional time series

6.3.2 LSTM neural networks

Sensors provide a system with a stream of data. The data in this stream is
often time dependent, meaning that the a value in the stream is dependent

56

of the previous values. The first neural networks that allowed for some
sort of time dependency were the Recurrent Neural Networks (RNN). The
architecture of an RNN and its unfolded form are shown in Figure 6.10.
It consists of input and output nodes with hidden nodes in between. This
represents a single time step. The output will be looped around to act as
input for the next time step. When looked at in its unfolded form a RNN
can be seen as a series of copies of traditional neural networks that pass
the output from one network to another. However, it turned out that, due
to the architecture of RNNs, they are only good at learning very short-term
dependencies in data streams[142]. Nevertheless, they have been used suc-
cessfully in sensor fault detection[143].

Figure 6.10: An RNN and its unfolded form

To overcome this short-term dependency problem and extend Recur-
rent Neural Networks in a way to be able to learn longer-term dependen-
cies, Hochreiter and Schmidhuber developed Long Short Term Memory
(LSTM) networks[144]. LSTM networks are a special kind of RNNs that
replace the simple Hidden layer with an LSTM cell shown in Figure 6.11.

57

Figure 6.11: An LSTM cell [1]

Note that in this figure, rectangles represent neural network layers,
while circles represent functions that are applied to the information, so the
tanh inside the rectangle represents a neural network layer whose output is
called to be between -1 and 1 by using a tanh function and the tanh inside
the circle simply means that the tanh function is applied to the information
that passes at that point in the execution of the cell.

The LSTM cell is composed of four different neural network layers that
can influence the cell state and thus the output in different ways. Three
of these layers are gates. They are composed of a sigmoid layer that re-
turns values between 0 and 1, describing the amount of information that
should get passed the gate (0 means nothing and 1 means everything), and
a pointwise multiplication operation.

The first gate in the process is called the forget gate. It decides how
much of the cell state from the previous time step should be forgotten. This
is done by feeding the output from the previous time step and the input of
the current time step to the sigmoid neural network layer and multiplying
the result with the previous cell state.

The second gate is called input gate. Again it is composed of a sigmoid
layer that decides what values to update and by how much. The result is

58

multiplied with the output of a tanh layer whose task it is to propose new
values to update the cell state. Thanks to the multiplication operation the
result is a scaled version of the output of the tanh layer and is added to the
cell state.

The third and final gate decides which parts of the cell state should
be output. This is done by multiplying the output from the sigmoid layer
with the current cell state that was scaled using the tanh function. The
result represents the output of the current time step which will also be
used along the current cell state to compute the output for the next time
step.

LSTM networks also have been successfully applied to sensor fault de-
tection [145].

6.4 Implementation

For the implementation we used the Python machine learning libraries
Scikit-learn [146] and Tensorflow[147] as well as the high level deep neural
network API Keras [148].

6.4.1 Data processing

The data necessary for the training has been gathered in the simulation
environment Webots [129]. While gathering the data for every sensor de-
scribed previously (except the camera), errors have been injected periodi-
cally and the data has been labelled accordingly.

As the data was gathered in a simulation environment and the dimen-
sionality of the data for every sensor is quite limited, the amount of pre-
processing that needs to be done for the training set is quite small:

1. Feature scaling
Neural networks are sensitive to features that have different scales
and train better when the data is normalised[141].

2. Split the data into sequences
When using the NN, we will not be able to use really long data
sequences in order to make a classification, but have to use rather
small sequences. Therefore, during training the model has to be fed
these same small sequences as well.

3. Data augmentation
While we are gathering data from a simulation environment and
could gather data at infinitum, in the real world we do not have
this luxury. Data augmentation can help to have more data with
which to train the networks[149]. In the case of the GPS we could
for example apply different translations to the training set in order
to get more data. Another possibility to get more data is to shift the
sequences generated previously.

59

When using the trained NN in our application we have to pre-process
the data as well:

1. Fill in missing values
2. Feature scaling

The same scaling used for the training set has to be applied to the
data from the sensors as well.

3. Split the data into sequences
The data coming from the sensors has to be regrouped into sequences
before it can be fed to the trained model.

In order to obtain satisfying results when using these classifiers, the
training data has to be similar enough to the data at the time of execution.
If it is not, we talk about a dataset shift or, if only the input distribution of
the data changes, we talk about a covariate shift. The reasons for this shift
can come from bias introduced when generating the training set or because
it was not possible to reproduce the real execution conditions at training
time[150]. A possible way to detect these distribution changes in the input
data is kernel mean matching[151].

6.4.2 Classifiers

The classification layer for the sensor analysis and classification can be
quite flexible. It potentially can contain any algorithm that is able to clas-
sify time series and provide the confidence it has in its classification. For
this application we are using CNNs, that have seen increased use in time
series classification after its success in image recognition[133], and LSTM
recurrent neural networks. In the previous section we presented these two
types of neural networks. In this section, we describe how we can apply a
CNN to our system by training it on the values from the inertial unit.

Training The architecture of the CNN used for the inertial unit values
consists of one convolutional layer (50 filters), one average pooling layer
with dropout and a dense layer[135]. The first step of training consists of
a grid search of hyperparameters in order to get an idea of which specific
parameters give the best results. The hyperparameters tested include:

1. The activation function (softmax, softplus, softsign, relu, tanh, sig-
moid, hard sigmoid, linear)

2. The weight constraint (1, 2, 3, 4, 5)
3. The dropout rate (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
4. The number of epochs (5,10,20,50,100,200)
5. The batch size (4,8,16,32,64,128,256)
6. The optimization algorithm (SGD, RMSprop, Adagrad, Adadelta,

Adam, Adamax, Nadam)
7. The learn rate (0.001, 0.01, 0.1, 0.2, 0.3)

60

8. The number of neurons (dense layer) (1, 5, 10, 15, 20, 25, 30, 40, 50,
60, 70, 80, 90, 100)

9. The initializers for the initial random weights (uniform, lecun uni-
form, normal, zero, glorot normal, glorot uniform, he normal, he
uniform)

To reduce the time complexity, only two different hyperparameters were
used in the gridsearch at a time. The configuration that was finally used
for the CNN based on the results from this gridsearch is shown below.

1. The activation function: relu for convolutional layer and softplus
for dense layer. For the final output the sigmoid activation function
is used as it is a binary classification task and we need values be-
tween 0 and 1 representing the probabilities of belonging to a class
(softmax would have been a better option for multiple classes[152]).

2. The weight constraint: 3
3. The dropout rate: 0.5
4. The number of epochs: 100
5. The batch size: 64
6. The optimization algorithm: Adam
7. The learn rate: 0.001
8. The number of neurons (dense layer): 70
9. The initializers for the initial random weights: lecun uniform

With this configuration, the network has been trained on a dataset con-
sisting of over 200000 entries and evaluated using a different dataset of
roughly the same size. The goal of the classifier is to be able to differenti-
ate between correct and incorrect data for a single sensor and to attribute
a confidence value to a sensor that is higher the more likely the data is to
contain no errors. The results of the evaluation will be shown in the next
sections.

Evaluation As the data has been collected in a simulation environment
and the errors have been introduced by ourselves, there is a risk that the
evaluation results might be biased. To give a fair evaluation of the perfor-
mance of the neural networks that were trained, we tried to create datasets
that will allow us to better evaluate how generalisable the networks are.
To make these datasets as different as possible from the training sets while
still keeping the original information about the problem the networks are
supposed to solve we changed the following parameters:

1. Seed of the random generator
The random generator was used in 2 instances. First, for the robot
to randomise its movement and second for when to inject errors.

2. Position and scaling of the area the robot is driving around in
This means that we positioned the area in a different place in the co-
ordinate system and increased the size of the area, so that the robot

61

has more freedom to drive around.
3. Error rate

The goal of changing the error rate is to see how well the networks
can handle different amounts of errors that are introduced.

To evaluate the performance of the classification we are using differ-
ent metrics. (TP=true positives, TN=true negatives, FP=false positives,
FN=false negatives):

• Precision
T P

T P+FP
• Recall, sensitivity or True positive rate

T P
T P+FN

• Specificty or True negative rate
TN

TN+FP
• False positive rate

FP
FP+TN

• F1 score
2∗T P

2∗T P+FP+FN
• Balanced accuracy

Recall+Specif icity
2

As the datasets are highly imbalanced, accuracy is not a good measure to
use. The balanced accuracy is preferred. Also the f1 score gives a good
indication how well the classifier is doing in an unbalanced dataset.

62

Figure 6.12: Accuracy and loss graphs for the inertial unit

Results The accuracy and loss graphs obtained during training is shown
in Figure 6.12. Note that the train accuracy is lower than the test accuracy
and the train loss is higher than the test loss which can be caused by the
utilisation of a quite high dropout, which is used during training to prevent
overfitting but is not used anymore when testing the network.

In Table 6.1 the confusion matrix of the result from the evaluation data
set is shown. The network only raised 8 false alarms where it predicted a
failure while there was none. Also the number of missed failures is quite
low, which is shown by the listed metrics below.

63

Table 6.1: Confusion matrix

Predicted No Failure Predicted Failure
Actual No Failure 174954 8
Actual Failure 115 31627

Evaluation metrics:

• ROC AUC: 0.999903
• Accuracy: 0.999405
• Precision:0.9997477
• Recall: 0.996377
• F1 score: 0.998059
• False Positive Rate: 0.00004572421
• Specificity: 1-FPR=0.99996538689
• Balanced accuracy=0.99817119344

Discussion Note that the layer implemented here is not necessarily using
the best possible solution for the failure detection of every sensor type, but
a solid solution in order to test the effectiveness of our system. The topic of
of sensor failure detection, classification and machine learning is huge and
it is beyond the scope of this thesis to have an optimal classifier for every
sensor.

6.4.3 Scenarios

In this example application there are several scenarios running on the proac-
tive engine as shown in Figure 6.13. For the context building scenarios step
and influencing scenarios step described in the previous chapter, there is
one scenario each. The conflict-handling scenarios step and transmitting
scenarios in this case are regrouped under a single scenario. In parallel,
a clean-up scenario is running to periodically clean up the obsolete data
from the database.

64

Figure 6.13: Scenarios present in the application

1. Context-building
The context in this application consists of the knowledge of whether
the robot is near a high building. The related scenario thus consists
of a single rule that verifies this based on data from the recognition
module of the camera and accordingly updates the knowledgebase
to represent whether the robot is currently near a high building or
not.

2. Influencing
The only sensor in this example application whose accuracy can get
influenced by the environment or contextual information is the GPS.
Therefore this step consists of a single scenario with a single rule to
update the confidence value of the GPS. This rule fetches the knowl-
edge about the presence of near high buildings from the knowledge-
base that was build during the previous step and in the case the
robot really is next to some higher buildings, it will set the confi-
dence of the GPS to 10%.

3. Conflict handling and Transmitting
This scenario is composed of four rules. One META rule who is con-
tinuously running and checking if the right conditions are met and
three normal rules who will get created by the META rule depend-
ing on the conditions that are met.
The pseudo code for the META rule is shown in Figure 6.14. The
rule keeps track of the confidence values for the GPS. In the dataAc-
quisition part of the rule it first fetches for the last known confidence
value of the GPS. The rule is only activated if the fetched confidence

65

is lower than a predefined (or possibly dynamic) threshold. Whether
the rule is activated or not, it always saves the confidence of the GPS
and clones itself. In the case the rule was activated, meaning that the
confidence for the GPS is lower than the threshold, it distinguishes
between two cases. The first possibility is where the saved confi-
dence from the previous execution of the rule is higher than the
threshold. In this case the GPS was working fine previously. The
rule will therefore create a StartEstimationRule. In the second case
the estimation calculation was already started previously, therefore
a ContinueEstimationRule is created. Finally, if the rule was not ac-
tivated, a CleanEstimationRule is created.

GPSEstimationMetaRule :
double oldConfidence
dataAcquis i t ion :
currentConfidence=database . getLastConfidence (”gps”)
act ivat ionGuards :
return currentConfidence <CONFIDENCE THRESHOLD
condi t ions :
return t rue
a c t i o n s :
None
rule generat ion :
i f (getAct ivated ()) {
i f (lastConfidence >CONFIDENCE THRESHOLD) {
createRule (new Star tEst imat ionRule ())
} e l s e {
createRule (new ContinueEstimationRule ())
}
} e l s e {
createRule (new CleanEstimationRule ())
}
las tConf idence=currentConfidence
createRule (t h i s)

Figure 6.14: Pseudo Code of the GPSEstimationMetaRule

The pseudo code for the StartEstimationRule is shown in Figure
6.15. In the dataAcquisition part the rule gets the last valid GPS
value (when the GPS was still working correctly) and the time this
value was recorded. It then retrieves all the inertial unit values and
speed values that were recorded since that time, sorted from old to
new. The activationGuards and conditions for this rule are always
true. In the actions part, the rule will then iterate over the inertial
unit and speed values and calculates an estimation of the new GPS
position with these values, the old GPS position and the time differ-
ence between the entries. Finally the estimated position is put into

66

the database, taking thus care of transmitting the estimated values
to the robot. This rule does not create any other rules.
The ContinueEstimationRule is very similar to the StartEstimation-
Rule, except that the calculations are based on the last estimated
GPS position and not on the last valid GPS position.
The CleanEstimationRule removes all the estimations from the database.

GPSStartEstimationRule :
dataAcquis i t ion :

lastGPSValue=database . getLastValidGPSValue ()
lastTime=lastGPSValue . getTime ()
iUnitValues=database . getIUnitValuesAfterTime (lastTime)
speedValues=database . getSpeedValuesAfterTime (lastTime)

act ivat ionGuards :
return t rue

condi t ions :
return t rue

a c t i o n s :
while (iUnitValues . next () and speedValues . next ())
{

newTime=iUnitValues . getTime ()
t imeDifference=newTime− lastTime
newGPSValue=c a l c u l a t e P o s i t i o n (lastGPSValue , iUnitValues ,

speedValues , t imeDifference)
lastTime=newTime
lastGPSValue=newGPSValue

}
insertToDB (newGPSValue)

rule generat ion :
None

Figure 6.15: Pseudo Code of the GPSStartEstimationRule

6.5 Evaluation

6.5.1 Setup

To demonstrate that the system is working, we put our robot in an environ-
ment with normal buildings and some skyscrapers. The skyscrapers will
influence the accuracy of the robot’s GPS by injecting Gaussian noise once
it enters a predefined radius. The goal of the robot is to follow a predefined
list of checkpoints using its sensors. The robot can decide itself whether it
has reached a checkpoint based on the position data from its GPS sensor.

This experiment is run first without our system and afterwards with
our system.

67

6.5.2 Expected results

The experiment without our system should behave correctly as long as the
robot does not enter an area near a skyscraper as its GPS should function
normally during that time. Once it enters such an area, the GPS will get
influenced by the nearby skyscrapers and the system will be unable to cor-
rectly get to the next checkpoint.

When the robot is equipped with our system, the behaviour of the robot
will be similar to the one previously, but once the robot comes near a tall
building, it will be able build the contextual data, know that it is near a tall
building, ignore the data coming from the GPS, and calculate an estimated
position based on the last known valid position. The resulting path taken
should get closer to the checkpoints than the one taken by the previous
version of the robot.

Figure 6.16: Robot path without our system

68

Figure 6.17: Robot path with our system

6.5.3 Results

The path of the robot without our system is shown in Figure 6.16. The
robot is trying the objectives (blue dots) normally, until it reaches the area
of influence of the skyscrapers (red circles). Because of the added noise it
then has trouble following the predefined checkpoints and finally ends up
next to a skyscraper and decides that it has reached the final objective.

In Figure 6.17, the path taken by the robot that has been augmented
with our system is shown. In the black area, where there are no external
influences applying on the GPS, the robot takes the same path as its version
without our system, however once it enters the area of influence of the
skyscrapers, the system detects with the help of the camera that the robot
is too close to the skyscrapers for the GPS to be 100% reliable, reduces
the confidence of the GPS and thus begins calculating an estimate based
on the last known position with the highest confidence, the speed and the
orientation of the robot. The results are then transmitted to the controller
for the robot which can then decide whether to use the GPS values or the
calculated estimate based on the confidence values transmitted. In this
case it will use the estimated values to navigate through the red zones and,

69

even though the path taken is not perfect as the robot still stops a bit before
the final checkpoint, it does a lot better job at navigating than the version
without our system.

6.6 Conclusion

In this chapter we have presented a proof of concept for the application
of the system presented in the previous section. The classification layer
to compute initial confidences for the different sensors has been imple-
mented using two different kinds of neural networks (CNNs and LSTMs)
to show that multiple methods could be used for that layer without need-
ing to change anything to the architecture of the system.
We also have shown how the scenarios can be implemented using an ex-
ample application of a robot navigating through an area of high buildings
and we have shown that the implemented scenarios can help the robot to
use contextual data to improve its navigation through the city.
In the next and last chapter we will take a look back at the work done in
this thesis, draw some conclusions and give some directions for possible
future work.

70

7 Conclusion

Contents
7.1 Achievements . 72
7.2 Future work . 73

71

In this thesis, we have seen that sensor malfunctions due to external
influences can lead to bad decisions being taken. While this kind of mal-
function is difficult to detect when only looking at sensors individually, we
have proposed a semi-generic model that can remedy this kind of issue and
handle conflicting information coming from different sensors. The model
proposed is based on a two layer architecture, one using classification algo-
rithms to check for sensor failures and attribute confidence values to each
sensor, and a second one to use contextual data along with some knowledge
about sensor weaknesses to detect and handle conflicting data. The system
thus gives a recommendation on which sensor the system can currently
trust and in some more complex cases provides an estimation calculation
for the real values of the malfunctioning sensors. The evolution of the sys-
tem has been illustrated over three experiments, two of which have been
located in the eHealth domain and one in the robotics domain.

In this chapter we will look back at these achievements and relate them
to the research questions stated in the introduction. Furthermore, in the
last section we will propose some possible outlooks for future work to fur-
ther enhance the current system.

7.1 Achievements

The research questions that have been stated in Section 1.2 have been an-
swered over the course of this thesis. In this section, we will summarize the
answers.

RQ1 was answered in Chapter 3. The results presented in the Chap-
ter showed that, while the classification done by the system could still be
improved, a single sensor is not enough to deal with the uncertainties that
arise in such a system. The uncertainties regarding this system included
muscle noise and power line interference. Furthermore, in the case of a
sensor failure, the system becomes unable to carry out the tasks it was de-
signed to do. The solution to overcome these challenges is to add multiple
sensors to the system that can help to overcome the uncertainties and to
keep the system running in case of a sensor failure.

RQ2 was discussed in Chapter 4. To describe how multiple sensors can
help to improve decision making, we distinguished between 2 cases. In the
first case, we have multiple sensors that measure the same parameter while
using different technologies for doing so. The ECG and photoplethysmo-
gram (PPG) are examples of such sensors in the eHealth domain. They can
be both used to detect arrhythmias [126], but they both have different weak
points. These weak points could be overcome by detecting the situation the
system is currently in and by deciding to use the sensor that currently is
functioning correctly.

The second case was about sensors that measure different parameters

72

but could be combined in order to calculate or estimate a parameter that is
normally given by a another sensor but which has some weak points where
it is not functioning correctly anymore. Again, the system could decide
based on the context whether to use the data from the single sensor, or, if
it the context suggests that this sensor is malfunctioning, it could use the
data from the other sensors to calculate an estimate.

RQ3 and RQ4 were answered in Chapters 5 and 6. The model that was
proposed has a two-layer architecture in order to detect and handle poten-
tial conflicting information coming from different sensors. The classifica-
tion layer first provides a confidence values for the different sensors that
will give a good estimate whether the sensors are malfunctioning in most
situations. Then in the second layer, the rule-based proactive engine will
build the context based on information coming from the sensors, decide
based on predefined rules what contextual situation potentially affects the
accuracy of some sensors and reduces the confidence for them, and finally,
in case a sensor was tagged as too unreliable, will calculate an estimate for
the data that can no longer be used directly from the sensor.

Over the course of these two chapters it was also discussed that, while
the classification layer has to be trained for every domain, the overall struc-
ture of the system remains unchanged. Also, there is the potential to use
a single predefined scenario for the influencing step, by reading the differ-
ent parameters and effects from the database that can be changed without
affecting the code.

7.2 Future work

In this section we are going to present different ideas on how the system
presented in this thesis could potentially be extended in the future in order
to further improve and optimise the decision making.

A possibility could be to let modules of the third party system decide
the precision of the data they require. Our system would then potentially
pass different data to the different modules. For example, while temper-
ature affects ultrasonic sensors, the divergence from the real values is in-
significant in some circumstances.

Another, quite challenging idea that is also recently emerging in related
works[153], is to create a feedback loop from the conflict-handling part to
the classification layer and use online machine learning techniques in order
to update the classifiers and thus to improve the classification results. The
end goal of this improvement could then be to have so reliable confidence
values, that most of the steps in the second layer of the system could be
skipped and that the entire application could directly decide whether it
wants to use the data from a sensor or the calculated estimate.

The proposed model could also be used to find out relations between

73

data that are not yet known. A possible approach would be to test mul-
tiple scenarios in parallel and see if one of them provides better results.
Additionally, association rule learning with algorithms like Eclat[154] and
FP-Growth[155] can extract interesting relations between the data from the
database.

Moreover, while for the proof of concept in the simulation environ-
ment the sensors are synchronized, this will not necessarily be the case
in real-life real-time systems, especially if the sensors are part of a wire-
less sensor network like the sensors used to monitor the health status of
machines [156]. It is thus necessary to extend the proposed model in or-
der to solve this time synchronization problem of asynchronous sensor
measurements. Several approaches exist, including the convex-hull based
TICSync algorithm[157], a filter-based approach proposed by Nilsson and
Händel[158] or the the flooding time synchronization protocol that uses
periodic flooding of synchronisation messages[159] that can get a network-
wide time synchronisation at micro seconds accuracy and is scalable to
up to 100 nodes[160].Other algorithms are: Multihop flooding time syn-
chronization protocol[161], Rapid Time Synchronization[162], Low over-
head Time-sync[163], Power efficient time synchronisation protocol[164]
and many more. In order to decide about the appropriate algorithm for
our system, these different algorithms will need to get tested against each
other.

Finally, as an important recent topic is Trustworthy Artificial Intelli-
gence for which the High-Level Expert Group on Artificial Intelligence
(HLEGAI) appointed by the European Union published a set of ethics guide-
lines in April 2019 [165], we could consider integrating these guidelines
into our system. They put forward 7 key principles that trustworthy AI
should have: Human agency and oversight, technical robustness and safety,
privacy and data governance, transparency, diversity and non-discrimination,
societal and environmental well-being and accountability. We will give
possible improvements for the system regarding Human agency and over-
sight and accountability.

For the HLEGAI, AI systems should provide some sort of human agency
and oversight. In our system, the decisions from the rule-based proactive
engine that are logged could be displayed to a user that supervises the sys-
tem. This could be structured in a way such that the user first gets an
overview of the scenarios that were triggered and can then look at the de-
tailed rule execution if he so chooses. In the case confidence values of mul-
tiple sensors are so low that our system would not know what to do, the
supervising human could get prompted to make a decision. This decision
would then be used by the system to carry out its tasks.

With regards to accountability, the HLEGAI requires AI systems to have
mechanisms that allow for the assessment of the algorithms, data and de-
sign processes used in the system. Again, the log of the decisions taken by

74

the rules of the proactive engine could be helpful in order to retrace deci-
sion processes and evaluate whether the system is performing well enough.

75

76

List of my publications

[1] G. Neyens and D. Zampunieris, “Proactive middleware for fault detec-
tion and advanced conflict handling in sensor fusion,” in International
Conference on Artificial Intelligence and Soft Computing. Springer, 2019,
pp. 643–653.

[2] G. Neyens and D. Zampunieris, “Proactive model for handling conflicts
in sensor data fusion applied to robotic systems,” in Proceedings of the
14th International Conference on Software Technologies (ICSOFT), 2019
Prague, Czech Republic, 26-28 July, 2019. SCITEPRESS, 2019, pp. 468–
474.

[3] G. I. F. Neyens and D. Zampunieris, “A rule-based approach for self-
optimisation in autonomic ehealth systems,” in ARCS Workshop 2018;
31th International Conference on Architecture of Computing Systems.
VDE, 2018, pp. 1–4.

[4] G. Neyens, “Conflict handling for autonomic systems,” in 2017 IEEE
2nd International Workshops on Foundations and Applications of Self* Sys-
tems (FAS* W). IEEE, 2017, pp. 369–370.

[5] G. Neyens and D. Zampunieris, “Using hidden markov models and
rule-based sensor mediation on wearable ehealth devices,” in Proced-
ings of the 11th International Conference on Mobile Ubiquitous Comput-
ing, Systems, Services and Technologies, Barcelona, Spain 12-16 November
2017. IARIA, 2017.

[6] R.-A. Dobrican, G. Neyens, and D. Zampunieris, “A context-aware
collaborative mobile application for silencing the smartphone during
meetings or important events,” International Journal On Advances in In-
telligent Systems, vol. 9, no. 1&2, pp. 171–180, 2016.

[7] G. Neyens, R.-A. Dobrican, and D. Zampunieris, “Enhancing mobile
devices with cooperative proactive computing,” in Proceedings of the
5th International Conference on Advanced Collaborative Networks, Sys-
tems and Applications (COLLA 2015). IARIA, 2015, pp. 1–9.

[8] R.-A. Dobrican, G. Neyens, and D. Zampunieris, “Silentmeet-a pro-
totype mobile application for real-time automated group-based col-
laboration,” in Proceedings of the 5th International Conference on Ad-
vanced Collaborative Networks, Systems and Applications (COLLA 2015).
IARIA, 2015, pp. 52–56.

77

78

Bibliography

[1] “Understanding lstm networks,” https://colah.github.io/posts/
2015-08-Understanding-LSTMs/, accessed: 2019-07-15.

[2] “Wearable devices forecasts,” https://www.
gartner.com/en/newsroom/press-releases/
2018-11-29-gartner-says-worldwide-wearable-device-sales-to-grow-,
accessed: 2019-09-05.

[3] S. Goel, X. Luo, A. Agrawal, and R. L. Reuben, “Diamond machining
of silicon: a review of advances in molecular dynamics simulation,”
International Journal of Machine Tools and Manufacture, vol. 88, pp.
131–164, 2015.

[4] C. Bo, X.-Y. Li, T. Jung, X. Mao, Y. Tao, and L. Yao, “Smartloc: Push
the limit of the inertial sensor based metropolitan localization using
smartphone,” in Proceedings of the 19th annual international confer-
ence on Mobile computing & networking. ACM, 2013, pp. 195–198.

[5] F.-S. Jaw, Y.-L. Tseng, and J.-K. Jang, “Modular design of a long-term
portable recorder for physiological signals,” Measurement, vol. 43,
no. 10, pp. 1363–1368, 2010.

[6] G. Neyens and D. Zampunieris, “Using hidden markov models and
rule-based sensor mediation on wearable ehealth devices,” in Proced-
ings of the 11th International Conference on Mobile Ubiquitous Comput-
ing, Systems, Services and Technologies, Barcelona, Spain 12-16 Novem-
ber 2017. IARIA, 2017.

[7] W. D. Blair and T. Bar-Shalom, “Tracking maneuvering targets with
multiple sensors: Does more data always mean better estimates?”
IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no. 1,
pp. 450–456, 1996.

[8] G. Neyens, “Conflict handling for autonomic systems,” in 2017 IEEE
2nd International Workshops on Foundations and Applications of Self*
Systems (FAS* W). IEEE, 2017, pp. 369–370.

[9] G. I. F. Neyens and D. Zampunieris, “A rule-based approach for
self-optimisation in autonomic ehealth systems,” in ARCS Workshop
2018; 31th International Conference on Architecture of Computing Sys-
tems. VDE, 2018, pp. 1–4.

[10] G. Neyens and D. Zampunieris, “Proactive middleware for fault
detection and advanced conflict handling in sensor fusion,” in In-

79

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.gartner.com/en/newsroom/press-releases/2018-11-29-gartner-says-worldwide-wearable-device-sales-to-grow-
https://www.gartner.com/en/newsroom/press-releases/2018-11-29-gartner-says-worldwide-wearable-device-sales-to-grow-
https://www.gartner.com/en/newsroom/press-releases/2018-11-29-gartner-says-worldwide-wearable-device-sales-to-grow-

ternational Conference on Artificial Intelligence and Soft Computing.
Springer, 2019, pp. 643–653.

[11] G. Neyens and D. Zampunieris, “Proactive model for handling con-
flicts in sensor data fusion applied to robotic systems,” in Proceed-
ings of the 14th International Conference on Software Technologies (IC-
SOFT), 2019 Prague, Czech Republic, 26-28 July, 2019. SCITEPRESS,
2019, pp. 468–474.

[12] J. Mylopoulos and H. Levesque, “An overview of knowledge repre-
sentation,” in GWAI-83. Springer, 1983, pp. 143–157.

[13] R. Dobrican, Collaborative Rule-Based Proactive Systems: Model, Infor-
mation Sharing Strategy and Case Studies, 2013.

[14] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis, “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, pp. 484–503, 2016.
[Online]. Available: http://www.nature.com/nature/journal/v529/
n7587/full/nature16961.html

[15] M. Campbell, A. J. Hoane, Jr., and F.-h. Hsu, “Deep blue,” Artif.
Intell., vol. 134, no. 1-2, pp. 57–83, Jan. 2002. [Online]. Available:
http://dx.doi.org/10.1016/S0004-3702(01)00129-1

[16] R. E. Korf, “Does deep blue use ai?”

[17] D. A. Ferrucci, “Introduction to ”this is watson”,” IBM Journal of Re-
search and Development, vol. 56, no. 3.4, pp. 1–1, 2012.

[18] I. Management Association, Machine Learning: Concepts,
Methodologies, Tools and Applications: Concepts, Methodolo-
gies, Tools and Applications, ser. Premier reference source.
Information Science Reference, 2011. [Online]. Available:
https://books.google.lu/books?id=1GWcHmCrl0QC

[19] J. Sokolowski and C. Banks, “Modeling and simulation for analyzing
global events,” Modeling And Simulation For Analyzing Global Events,
06 2009.

[20] E. A. Feigenbaum, “Expert systems: principles and practice,” 1992.

[21] R. Davis and J. J. King, “The origin of rule-based systems in ai,” Rule-
based expert systems: The MYCIN experiments of the Stanford Heuristic
Programming Project, 1984.

80

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://dx.doi.org/10.1016/S0004-3702(01)00129-1
https://books.google.lu/books?id=1GWcHmCrl0QC

[22] G. Chryssolouris, Manufacturing systems: theory and practice.
Springer Science & Business Media, 2013.

[23] E. Friedman-Hill, “Jess, the java expert system shell,” Biosystems, 01
2003.

[24] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1995.

[25] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and
practice,” The knowledge engineering review, vol. 10, no. 2, pp. 115–
152, 1995.

[26] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A tax-
onomy for autonomous agents,” in International Workshop on Agent
Theories, Architectures, and Languages. Springer, 1996, pp. 21–35.

[27] M. Luck, M. d’Inverno et al., “A formal framework for agency and
autonomy.” in ICMAS, vol. 95, 1995, pp. 254–260.

[28] N. R. Jennings, K. Sycara, and M. Wooldridge, “A roadmap of agent
research and development,” Autonomous agents and multi-agent sys-
tems, vol. 1, no. 1, pp. 7–38, 1998.

[29] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards,
Artificial Intelligence: A Modern Approach. Prentice hall Upper Sad-
dle River, 2003, vol. 2.

[30] B. T. Clough, “Metrics, schmetrics! how the heck do you determine
a uav’s autonomy anyway,” AIR FORCE RESEARCH LAB WRIGHT-
PATTERSON AFB OH, Tech. Rep., 2002.

[31] T. Salamon, Design of agent-based models. Eva & Tomas Bruckner
Publishing, 2011.

[32] B. N. Schilit and M. M. Theimer, “Disseminating active mop infon-
ncition to mobile hosts,” IEEE network, 1994.

[33] T. Rodden, K. Cheverst, K. Davies, and A. Dix, “Exploiting context
in hci design for mobile systems,” in Workshop on human computer
interaction with mobile devices. Citeseer, 1998, pp. 21–22.

[34] A. Ward, A. Jones, and A. Hopper, “A new location technique for the
active office,” IEEE Personal communications, vol. 4, no. 5, pp. 42–47,
1997.

[35] P. J. Brown, “The stick-e document: a framework for creating
context-aware applications,” Electronic Publishing-Chichester-, vol. 8,
pp. 259–272, 1995.

81

[36] B. N. Schilit, N. Adams, R. Want et al., Context-aware computing ap-
plications. Xerox Corporation, Palo Alto Research Center, 1994.

[37] A. K. Dey, “Understanding and using context,” Personal and ubiqui-
tous computing, vol. 5, no. 1, pp. 4–7, 2001.

[38] A. J. Gonzalez and R. Ahlers, “Context-based representation of in-
telligent behavior in training simulations,” Transactions of the Society
for Computer Simulation, vol. 15, no. 4, pp. 153–166, 1998.

[39] B. S. Stensrud, G. C. Barrett, and A. J. Gonzalez, “Context-based rea-
soning: A revised specification.” in FLAIRS Conference, 2004, pp.
603–610.

[40] P. Horn, “Autonomic computing: Ibm\’s perspective on the state of
information technology,” 2001.

[41] A. C. Manifesto, “IBMs perspective on the state of information
technology,” http://www.research.ibm.com/autonomic/manifesto/,
2001.

[42] K. Ahuja and H. Dangey, “Autonomic computing: An emerging per-
spective and issues,” in 2014 International Conference on Issues and
Challenges in Intelligent Computing Techniques (ICICT). IEEE, 2014,
pp. 471–475.

[43] P. Lalanda, J. A. McCann, and A. Diaconescu, Autonomic computing.
Springer, 2013.

[44] A. Computing et al., “An architectural blueprint for autonomic com-
puting,” IBM White Paper, vol. 31, no. 2006, pp. 1–6, 2006.

[45] J. O. Kephart and D. M. Chess, “The vision of autonomic comput-
ing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[46] D. Tennenhouse, “Proactive computing,” Communications of the
ACM, vol. 43, no. 5, pp. 43–50, 2000.

[47] D. Shirnin, S. Reis, and D. Zampunieris, “Experimentation of proac-
tive computing in context aware systems: Case study of human-
computer interactions in e-learning environment,” Cognitive Meth-
ods in Situation Awareness and Decision Support (CogSIMA), 2013
IEEE International Multi-Disciplinary Conference on, pp. 272–279, 26-
28 February 2013.

[48] S. M. Dias, S. Reis, and D. Zampunieris, “Personalized, Adaptive
and Intelligent Support for Online Assignments Based on Proactive
Computing,” in 2012 IEEE 12th International Conference on Advanced
Learning Technologies. Rome, Italy: IEEE, Jul. 2012, pp. 668–669.

82

http://www.research.ibm.com/autonomic/manifesto/

[49] R. A. Dobrican, S. Reis, and D. Zampunieris, “Empirical Investiga-
tions on Community Building and Collaborative Work inside a LMS
using Proactive Computing,” in Proceedings of E-Learn - World Con-
ference on E-Learning 2013 Conference. Theo Bastiaens and Gary
Marks, 2013.

[50] D. Shirnin, “Formalising the twofold structure of a proactive sys-
tem:proof of concept on deterministic and probabilistic levels,” Uni-
versity of Luxembourg, 2014.

[51] R. A. Dobrican and D. Zampunieris, “A proactive solution, using
wearable and mobile applications, for closing the gap between the
rehabilitation team and cardiac patients,” in Healthcare Informatics
(ICHI), 2016 IEEE International Conference on. IEEE, 2016, pp. 146–
155.

[52] D. Zampunieris, “Implementation of a Proactive Learning Manage-
ment System,” in E-Learn World Conference on E-Learning in Corpo-
rate, Government, Healthcare and Higher Education, Hawaii, 2006, pp.
3145–3151.

[53] S. Reis, D. Shirnin, and D. Zampunieris, “Design of proactive scenar-
ios and rules for enhanced e-learning,” in CSEDU 2012 - Proceedings
of the 4th International Conference on Computer Supported Education.
Porto, Portugal: SciTePress, 2012, pp. 253–258.

[54] R. Want, T. Pering, and D. Tennenhouse, “Comparing autonomic and
proactive computing,” IBM Systems journal, vol. 42, no. 1, pp. 129–
135, 2003.

[55] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[56] C. Hide, T. Moore, and M. Smith, “Adaptive kalman filtering for low-
cost ins/gps,” The Journal of Navigation, vol. 56, no. 1, pp. 143–152,
2003.

[57] J. Sasiadek and Q. Wang, “Sensor fusion based on fuzzy kalman
filtering for autonomous robot vehicle,” in Robotics and Automa-
tion, 1999. Proceedings. 1999 IEEE International Conference on, vol. 4.
IEEE, 1999, pp. 2970–2975.

[58] A. P. Dempster, “A generalization of bayesian inference,” Journal
of the Royal Statistical Society. Series B (Methodological), vol. 30,
no. 2, pp. 205–247, 1968. [Online]. Available: http://www.jstor.org/
stable/2984504

83

http://www.jstor.org/stable/2984504
http://www.jstor.org/stable/2984504

[59] G. Shafer, A Mathematical Theory of Evidence. Princeton University
Press, 1976.

[60] W. Elmenreich, “An introduction to sensor fusion,” Vienna University
of Technology, Austria, vol. 502, 2002.

[61] P. L. Rothman and R. V. Denton, “Fusion or confusion: knowledge
or nonsense?” in Data Structures and Target Classification, vol. 1470.
International Society for Optics and Photonics, 1991, pp. 2–12.

[62] L. Wald, “A european proposal for terms of reference in data fusion,”
in Commission VII Symposium” Resource and Environmental Monitor-
ing”, vol. 32, no. 7, 1998, pp. 651–654.

[63] B. V. Dasarathy, “Information fusion-what, where, why, when, and
how?” Information Fusion, vol. 2, no. 2, pp. 75–76, 2001.

[64] P. J. Nahin and J. L. Pokoski, “Nctr plus sensor fusion equals iffn or
can two plus two equal five?” IEEE Transactions on Aerospace and
Electronic Systems, no. 3, pp. 320–337, 1980.

[65] T. Yoshioka, T. T. Phuong, K. Ohishi, T. Miyazaki, and Y. Yokokura,
“Variable noise-covariance kalman filter based instantaneous state
observer for industrial robot,” in 2015 IEEE International Conference
on Mechatronics (ICM), March 2015, pp. 100–105.

[66] Z. Chen, H. Zou, H. Jiang, Q. Zhu, Y. Soh, and L. Xie, “Fusion of
wifi, smartphone sensors and landmarks using the kalman filter for
indoor localization,” Sensors, vol. 15, no. 1, pp. 715–732, 2015.

[67] Y. Liu, X. Fan, C. Lv, J. Wu, L. Li, and D. Ding, “An innovative in-
formation fusion method with adaptive kalman filter for integrated
ins/gps navigation of autonomous vehicles,” Mechanical Systems and
Signal Processing, vol. 100, pp. 605–616, 2018.

[68] D. Crisan and A. Doucet, “A survey of convergence results on par-
ticle filtering methods for practitioners,” IEEE Transactions on signal
processing, vol. 50, no. 3, pp. 736–746, 2002.

[69] F. Caron, M. Davy, E. Duflos, and P. Vanheeghe, “Particle filtering
for multisensor data fusion with switching observation models: Ap-
plication to land vehicle positioning,” IEEE Transactions on Signal
Processing, vol. 55, no. 6, pp. 2703–2719, June 2007.

[70] M. Turan, Y. Almalioglu, H. Gilbert, H. Araujo, T. Cemgil, and
M. Sitti, “Endosensorfusion: Particle filtering-based multi-sensory
data fusion with switching state-space model for endoscopic capsule
robots,” in 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2018, pp. 1–8.

84

[71] N. Long, K. Wang, R. Cheng, K. Yang, and J. Bai, “Fusion of mil-
limeter wave radar and rgb-depth sensors for assisted navigation of
the visually impaired,” in Millimetre Wave and Terahertz Sensors and
Technology XI, vol. 10800. International Society for Optics and Pho-
tonics, 2018, p. 1080006.

[72] V. Nathan and R. Jafari, “Particle filtering and sensor fusion for ro-
bust heart rate monitoring using wearable sensors,” IEEE journal of
biomedical and health informatics, vol. 22, no. 6, pp. 1834–1846, 2017.

[73] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisen-
sor data fusion: A review of the state-of-the-art,” Information fusion,
vol. 14, no. 1, pp. 28–44, 2013.

[74] A. P. Dempster, “Upper and lower probabilities induced by a mul-
tivalued mapping,” in Classic Works of the Dempster-Shafer Theory of
Belief Functions. Springer, 2008, pp. 57–72.

[75] M. Mezaal, B. Pradhan, and H. Rizeei, “Improving landslide detec-
tion from airborne laser scanning data using optimized dempster–
shafer,” Remote Sensing, vol. 10, no. 7, p. 1029, 2018.

[76] P. Mehrannia, A. A. Moghadam, and O. A. Basir, “A dempster-shafer
sensor fusion approach for traffic incident detection and localiza-
tion,” in 2018 21st International Conference on Intelligent Transporta-
tion Systems (ITSC). IEEE, 2018, pp. 3911–3916.

[77] W. Guo, X. Tang, J. Cheng, J. Xu, C. Cai, and Y. Guo, “Ddos attack
situation information fusion method based on dempster-shafer evi-
dence theory,” in International Conference on Artificial Intelligence and
Security. Springer, 2019, pp. 396–407.

[78] K. Bader, B. Lussier, and W. Schön, “A fault tolerant architecture for
data fusion: A real application of kalman filters for mobile robot
localization,” Robotics and Autonomous Systems, vol. 88, pp. 11 – 23,
2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0921889015302943

[79] S. Yazdkhasti and J. Z. Sasiadek, “Multi sensor fusion based on adap-
tive kalman filtering,” in Advances in Aerospace Guidance, Navigation
and Control. Cham: Springer International Publishing, 2018, pp.
317–333.

[80] L. A. Zadeh, On the validity of Dempster’s rule of combination of ev-
idence. Electronics Research Laboratory, College of Engineering,
University of California, Berkeley, 1979.

85

http://www.sciencedirect.com/science/article/pii/S0921889015302943
http://www.sciencedirect.com/science/article/pii/S0921889015302943

[81] L. A. Zadeh, “Review of a mathematical theory of evidence,” AI mag-
azine, vol. 5, no. 3, pp. 81–81, 1984.

[82] L. A. Zadeh, “A simple view of the dempster-shafer theory of evi-
dence and its implication for the rule of combination,” AI magazine,
vol. 7, no. 2, pp. 85–85, 1986.

[83] X. Deng and W. Jiang, “An evidential axiomatic design approach for
decision making using the evaluation of belief structure satisfaction
to uncertain target values,” International Journal of Intelligent Sys-
tems, vol. 33, no. 1, pp. 15–32, 2018.

[84] W. Jiang and W. Hu, “An improved soft likelihood function for
dempster–shafer belief structures,” International Journal of Intelligent
Systems, vol. 33, no. 6, pp. 1264–1282, 2018.

[85] E. Lefevre, O. Colot, and P. Vannoorenberghe, “Belief function com-
bination and conflict management,” Information fusion, vol. 3, no. 2,
pp. 149–162, 2002.

[86] F. Xiao and B. Qin, “A weighted combination method for conflicting
evidence in multi-sensor data fusion,” Sensors, vol. 18, no. 5, p. 1487,
2018.

[87] P. Smets, “The combination of evidence in the transferable belief
model,” IEEE Transactions on pattern analysis and machine intelli-
gence, vol. 12, no. 5, pp. 447–458, 1990.

[88] D. Dubois and H. Prade, “Representation and combination of un-
certainty with belief functions and possibility measures,” Computa-
tional intelligence, vol. 4, no. 3, pp. 244–264, 1988.

[89] R. R. Yager, “On the dempster-shafer framework and new combina-
tion rules,” Information sciences, vol. 41, no. 2, pp. 93–137, 1987.

[90] U. Mönks, Information Fusion Under Consideration of Conflicting Input
Signals. Springer, 2017.

[91] R. Li and V. Lohweg, “A novel data fusion approach using two-layer
conflict solving,” 2008.

[92] J. J. Oresko, Z. Jin, J. Cheng, S. Huang, Y. Sun, H. Duschl, and
A. C. Cheng, “A wearable smartphone-based platform for real-time
cardiovascular disease detection via electrocardiogram processing,”
IEEE Transactions on Information Technology in Biomedicine, vol. 14,
no. 3, pp. 734–740, 2010.

86

[93] J. Rickard, S. Ahmed, M. Baruch, B. Klocman, D. O. Martin, and
V. Menon, “Utility of a novel watch-based pulse detection system to
detect pulselessness in human subjects,” Heart Rhythm, vol. 8, no. 12,
pp. 1895–1899, 2011.

[94] Z. Jin, J. Oresko, S. Huang, and A. C. Cheng, “Hearttogo: a personal-
ized medicine technology for cardiovascular disease prevention and
detection,” in Life Science Systems and Applications Workshop, 2009.
LiSSA 2009. IEEE/NIH. IEEE, 2009, pp. 80–83.

[95] S. Patel, R. Hughes, T. Hester, J. Stein, M. Akay, J. G. Dy, and
P. Bonato, “A novel approach to monitor rehabilitation outcomes in
stroke survivors using wearable technology,” Proceedings of the IEEE,
vol. 98, no. 3, pp. 450–461, 2010.

[96] T. Hester, R. Hughes, D. M. Sherrill, B. Knorr, M. Akay, J. Stein, and
P. Bonato, “Using wearable sensors to measure motor abilities fol-
lowing stroke,” in Wearable and Implantable Body Sensor Networks,
2006. BSN 2006. International Workshop on. IEEE, 2006, pp. 4–pp.

[97] D. A. Coast, R. M. Stern, G. G. Cano, and S. A. Briller, “An approach
to cardiac arrhythmia analysis using hidden markov models,” IEEE
Transactions on biomedical Engineering, vol. 37, no. 9, pp. 826–836,
1990.

[98] M. Srinivas, T. Basil, and C. K. Mohan, “Adaptive learning
based heartbeat classification,” Bio-medical materials and engineering,
vol. 26, no. 1-2, pp. 49–55, 2015.

[99] X. D. Huang, Y. Ariki, and M. A. Jack, Hidden Markov models for
speech recognition. Edinburgh university press Edinburgh, 1990,
vol. 2004.

[100] M. Gales and S. Young, “The application of hidden markov models
in speech recognition,” Foundations and trends in signal processing,
vol. 1, no. 3, pp. 195–304, 2008.

[101] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[102] F. Salfner and M. Malek, “Using hidden semi-markov models for
effective online failure prediction,” in Reliable Distributed Systems,
2007. SRDS 2007. 26th IEEE International Symposium on. IEEE,
2007, pp. 161–174.

87

[103] M. Brand, N. Oliver, and A. Pentland, “Coupled hidden markov
models for complex action recognition,” in Computer vision and pat-
tern recognition, 1997. proceedings., 1997 ieee computer society confer-
ence on. IEEE, 1997, pp. 994–999.

[104] S. Hu, Z. Shao, and J. Tan, “A real-time cardiac arrhythmia clas-
sification system with wearable electrocardiogram,” in Body Sensor
Networks (BSN), 2011 International Conference on. IEEE, 2011, pp.
119–124.

[105] R. V. Andreão, B. Dorizzi, and J. Boudy, “ECG signal analysis through
hidden markov models,” IEEE Transactions on Biomedical engineer-
ing, vol. 53, no. 8, pp. 1541–1549, 2006.

[106] T. Al-Ani, Y. Hamam, R. Fodil, F. Lofaso, and D. Isabey, “Using hid-
den markov models for sleep disordered breathing identification,”
Simulation Modelling Practice and Theory, vol. 12, no. 2, pp. 117–128,
2004.

[107] A. Viterbi, “Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm,” IEEE transactions on Informa-
tion Theory, vol. 13, no. 2, pp. 260–269, 1967.

[108] G. D. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61,
no. 3, pp. 268–278, 1973.

[109] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the royal sta-
tistical society. Series B (methodological), pp. 1–38, 1977.

[110] B.-H. Juang and L. R. Rabiner, “The segmental k-means algorithm for
estimating parameters of hidden markov models,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 38, no. 9, pp. 1639–
1641, 1990.

[111] L. E. Baum and J. A. Eagon, “An inequality with applications to sta-
tistical estimation for probabilistic functions of markov processes
and to a model for ecology,” Bull. Amer. Math. Soc, vol. 73, no. 3,
pp. 360–363, 1967.

[112] J. Welch, P. Ford, R. Teplick, and R. Rubsamen, “The massachusetts
general hospital-marquette foundation hemodynamic and electro-
cardiographic database–comprehensive collection of critical care
waveforms,” Clinical Monitoring, vol. 7, no. 1, pp. 96–97, 1991.

[113] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,
R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley,

88

“Physiobank, physiotoolkit, and physionet,” Circulation, vol. 101,
no. 23, pp. e215–e220, 2000.

[114] L. R. Rabiner, B.-H. Juang, S. Levinson, and M. Sondhi, “Some prop-
erties of continuous hidden markov model representations,” AT&T
technical journal, vol. 64, no. 6, pp. 1251–1270, 1985.

[115] D. A. Coast, Cardiac arrhythmia analysis using hidden Markov models.
UMI, 1988.

[116] A. Hashemi, M. Rahimpour, and M. R. Merati, “Dynamic gaussian
filter for muscle noise reduction in ecg signal,” in 2015 23rd Iranian
Conference on Electrical Engineering. IEEE, 2015, pp. 120–124.

[117] M. Tomasini, S. Benatti, B. Milosevic, E. Farella, and L. Benini,
“Power line interference removal for high-quality continuous biosig-
nal monitoring with low-power wearable devices,” IEEE Sensors Jour-
nal, vol. 16, no. 10, pp. 3887–3895, 2016.

[118] C. W. Mundt, K. N. Montgomery, U. E. Udoh, V. N. Barker, G. C.
Thonier, A. M. Tellier, R. D. Ricks, R. B. Darling, Y. D. Cagle, N. A.
Cabrol et al., “A multiparameter wearable physiologic monitoring
system for space and terrestrial applications,” IEEE Transactions on
Information Technology in Biomedicine, vol. 9, no. 3, pp. 382–391,
2005.

[119] M. Schmidt, A. Schumann, J. Müller, K.-J. Bär, and G. Rose, “Ecg de-
rived respiration: comparison of time-domain approaches and appli-
cation to altered breathing patterns of patients with schizophrenia,”
Physiological measurement, vol. 38, no. 4, p. 601, 2017.

[120] N. Sadr and P. de Chazal, “A fast principal component analysis
method for calculating the ecg derived respiration,” in 2018 40th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). IEEE, 2018, pp. 5294–5297.

[121] U. Anliker, J. A. Ward, P. Lukowicz, G. Troster, F. Dolveck, M. Baer,
F. Keita, E. B. Schenker, F. Catarsi, L. Coluccini et al., “AMON: a wear-
able multiparameter medical monitoring and alert system,” IEEE
Transactions on information technology in Biomedicine, vol. 8, no. 4,
pp. 415–427, 2004.

[122] E. Lupu, N. Dulay, M. Sloman, J. Sventek, S. Heeps, S. Strowes,
K. Twidle, S.-L. Keoh, and A. Schaeffer-Filho, “Amuse: autonomic
management of ubiquitous e-health systems,” Concurrency and Com-
putation: Practice and Experience, vol. 20, no. 3, pp. 277–295, 2008.

89

[123] Y. Hongxu and N. Jha, “A hierarchical health decision support sys-
tem for disease diagnosis based on wearable medical sensors and ma-
chine learning ensembles,” IEEE Transactions on Multi-Scale Comput-
ing Systems, 2017.

[124] G. Suciu, A. Vulpe, R. Craciunescu, C. Butca, and V. Suciu, “Big data
fusion for ehealth and ambient assisted living cloud applications,”
in Communications and Networking (BlackSeaCom), 2015 IEEE Inter-
national Black Sea Conference on. IEEE, 2015, pp. 102–106.

[125] A. Subasi, “EEG signal classification using wavelet feature extraction
and a mixture of expert model,” Expert Systems with Applications,
vol. 32, no. 4, pp. 1084–1093, 2007.

[126] N. Paradkar and S. R. Chowdhury, “Cardiac arrhythmia detection
using photoplethysmography,” in 2017 39th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE, 2017, pp. 113–116.

[127] H. Liu, Y. Wang, and L. Wang, “The effect of light conditions on pho-
toplethysmographic image acquisition using a commercial camera,”
IEEE journal of translational engineering in health and medicine, vol. 2,
pp. 1–11, 2014.

[128] R. Bommi, V. Monika, R. Narmadha, K. Bhuvaneswari, and
L. Aswini, “Imu-based indoor navigation system for gps-restricted
areas,” in International Conference on Computer Networks and Com-
munication Technologies. Springer, 2019, pp. 157–166.

[129] Webots, “http://www.cyberbotics.com,” commercial Mobile Robot
Simulation Software. [Online]. Available: http://www.cyberbotics.
com

[130] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap:
The use of simulation in evolutionary robotics,” in European Confer-
ence on Artificial Life. Springer, 1995, pp. 704–720.

[131] Q. Chen, D. Ding, X. Wang, A. X. Liu, and A. Munir, “A speed hump
sensing approach to global positioning in urban cities without gps
signals,” in 2017 IEEE International Conference on Smart Computing
(SMARTCOMP). IEEE, 2017, pp. 1–8.

[132] S. Deep, S. Raghavendra, and B. Bharath, “Gps snr prediction in ur-
ban environment,” The Egyptian Journal of Remote Sensing and Space
Science, vol. 21, no. 1, pp. 83–85, 2018.

90

http://www.cyberbotics.com
http://www.cyberbotics.com

[133] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data Mining
and Knowledge Discovery, vol. 33, no. 4, pp. 917–963, 2019.

[134] Z. Wang and T. Oates, “Encoding time series as images for visual
inspection and classification using tiled convolutional neural net-
works,” in Workshops at the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence, 2015.

[135] T. Ince, S. Kiranyaz, L. Eren, M. Askar, and M. Gabbouj, “Real-time
motor fault detection by 1-d convolutional neural networks,” IEEE
Transactions on Industrial Electronics, vol. 63, no. 11, pp. 7067–7075,
2016.

[136] L. Jing, T. Wang, M. Zhao, and P. Wang, “An adaptive multi-sensor
data fusion method based on deep convolutional neural networks for
fault diagnosis of planetary gearbox,” Sensors, vol. 17, no. 2, p. 414,
2017.

[137] X. Guo, L. Chen, and C. Shen, “Hierarchical adaptive deep convolu-
tion neural network and its application to bearing fault diagnosis,”
Measurement, vol. 93, pp. 490–502, 2016.

[138] O. Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, and D. J. Inman,
“Real-time vibration-based structural damage detection using one-
dimensional convolutional neural networks,” Journal of Sound and
Vibration, vol. 388, pp. 154–170, 2017.

[139] O. Janssens, V. Slavkovikj, B. Vervisch, K. Stockman, M. Loccufier,
S. Verstockt, R. Van de Walle, and S. Van Hoecke, “Convolutional
neural network based fault detection for rotating machinery,” Jour-
nal of Sound and Vibration, vol. 377, pp. 331–345, 2016.

[140] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural
networks for time series classification,” Journal of Systems Engineer-
ing and Electronics, vol. 28, no. 1, pp. 162–169, Feb 2017.

[141] A. Gron, Hands-On Machine Learning with Scikit-Learn and Tensor-
Flow: Concepts, Tools, and Techniques to Build Intelligent Systems,
1st ed. O’Reilly Media, Inc., 2017.

[142] Y. Bengio, P. Simard, P. Frasconi et al., “Learning long-term depen-
dencies with gradient descent is difficult,” IEEE transactions on neu-
ral networks, vol. 5, no. 2, pp. 157–166, 1994.

[143] T. de Bruin, K. Verbert, and R. Babuška, “Railway track circuit fault
diagnosis using recurrent neural networks,” IEEE transactions on

91

neural networks and learning systems, vol. 28, no. 3, pp. 523–533,
2017.

[144] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neu-
ral computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[145] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in Proceed-
ings. Presses universitaires de Louvain, 2015, p. 89.

[146] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[147] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/

[148] F. Chollet et al., “Keras,” https://keras.io, 2015.

[149] L. Perez and J. Wang, “The effectiveness of data augmenta-
tion in image classification using deep learning,” arXiv preprint
arXiv:1712.04621, 2017.

[150] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Dataset Shift in Machine Learning. The MIT Press, 2009.

[151] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and
B. Schölkopf, “Covariate shift by kernel mean matching,” Dataset
shift in machine learning, vol. 3, no. 4, p. 5, 2009.

[152] L. Lenc and P. Král, “Deep neural networks for czech multi-label doc-
ument classification,” in International Conference on Intelligent Text
Processing and Computational Linguistics. Springer, 2016, pp. 460–
471.

[153] J. Yanase and E. Triantaphyllou, “A systematic survey of computer-
aided diagnosis in medicine: Past and present developments,” Expert
Systems with Applications, p. 112821, 2019.

92

https://www.tensorflow.org/
https://keras.io

[154] M. J. Zaki, “Scalable algorithms for association mining,” IEEE trans-
actions on knowledge and data engineering, vol. 12, no. 3, pp. 372–390,
2000.

[155] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candi-
date generation,” in ACM sigmod record, vol. 29, no. 2. ACM, 2000,
pp. 1–12.

[156] L. Hou and N. Bergmann, “Novel industrial wireless sensor networks
for machine condition monitoring and fault diagnosis,” Instrumenta-
tion and Measurement, IEEE Transactions on, vol. 61, pp. 2787–2798,
10 2012.

[157] A. Harrison and P. Newman, “Ticsync: Knowing when things hap-
pened,” in 2011 IEEE International Conference on Robotics and Au-
tomation. IEEE, 2011, pp. 356–363.

[158] J.-O. Nilsson and P. Händel, “Time synchronization and temporal or-
dering of asynchronous sensor measurements of a multi-sensor nav-
igation system,” in IEEE/ION Position, Location and Navigation Sym-
posium. IEEE, 2010, pp. 897–902.

[159] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time
synchronization protocol,” in Proceedings of the 2nd international con-
ference on Embedded networked sensor systems. ACM, 2004, pp. 39–
49.

[160] M. A. Sarvghadi and T.-C. Wan, “Message passing based time syn-
chronization in wireless sensor networks: A survey,” International
Journal of Distributed Sensor Networks, vol. 12, no. 5, p. 1280904,
2016.

[161] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “Robust multi-hop
time synchronization in sensor networks.” in International Conference
on Wireless Networks, 2004, pp. 454–460.

[162] B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi, and D. Culler,
“Elapsed time on arrival: a simple and versatile primitive for canon-
ical time synchronisation services,” International Journal of Ad Hoc
and Ubiquitous Computing, vol. 1, no. 4, pp. 239–251, 2006.

[163] Z. Shang and H. Yu, “A low overhead multi-hop time-sync protocol
for wireless sensor networks,” in Proceedings. 2005 IEEE Networking,
Sensing and Control, 2005. IEEE, 2005, pp. 54–59.

[164] C.-M. Chao and Y.-C. Chang, “A power-efficient timing synchroniza-
tion protocol for wireless sensor networks,” Journal of information
science and engineering, vol. 23, no. 4, pp. 985–997, 2007.

93

[165] H.-L. E. G. on Artificial Intelligence, “Ethics guidelines
for trustworthy ai.” [Online]. Available: https://ec.europa.eu/
digital-single-market/en/news/ethics-guidelines-trustworthy-ai

94

https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

	Abstract
	Acknowledgements
	Introduction
	Context of the thesis
	Research questions and objectives
	Thesis structure

	State of the art
	Reasoning in computer science
	Expert systems
	Agents
	Context-based reasoning

	Autonomic computing
	Self-* properties
	Structure of autonomic systems

	Proactive computing
	The proactive engine
	Rule-engine and rule structure
	Scenarios, Rules and Meta-Rules
	The database

	Proactive computing vs Autonomic computing
	Proactive computing vs Agents

	Sensor fusion
	Conflict handling for sensor fusion

	First Experiment: eHealth systems with a single sensor
	Introduction
	Related work
	Our single sensor eHealth system
	Architecture
	Theoretical overview of Hidden Markov Models
	Training

	Performance of the tested system
	Discussion
	Conclusion

	Second Experiment: eHealth systems with multiple sensors
	Introduction
	Multi-sensor System: first version
	Related work
	System and discussion

	Multi-sensor System: second version
	Related work
	System and discussion

	Proposed model
	Introduction
	Motivation
	Overall Architecture
	First layer
	Second layer
	Context-building scenarios
	Influencing scenarios
	Conflict handling scenarios
	Transmitting scenarios

	Discussion

	Third experiment: Robotics Proof of concept
	Introduction
	Proof of concept
	Webots
	Our robot and its environment
	Software Architecture

	Related work
	Convolutional neural networks
	LSTM neural networks

	Implementation
	Data processing
	Classifiers
	Scenarios

	Evaluation
	Setup
	Expected results
	Results

	Conclusion

	Conclusion
	Achievements
	Future work

