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Abstract

Selection of appropriate housekeeping genes is essential for the validity of data normaliza-

tion in reverse transcription quantitative PCR (RT-qPCR). Synovial fibroblasts (SF) play a

mediating role in the development and progression of osteoarthritis (OA) pathogenesis, but

there is no information on reliable housekeeping genes available. Therefore the goal of this

study was to identify a set of reliable housekeeping genes suitable for studies of mechanical

loading on SF from healthy and OA patients. Nine genes were evaluated towards expres-

sion stability and ranked according their relative stability determined by four different

mathematical procedures (geNorm, NormFinder, BestKeeper and comparative ΔCq). We

observed that RPLP0 (ribosomal protein, large, P0) and EEF1A1 (eukaryotic translation

elongation factor 1 alpha 1) turned out to be the genes with the most stable expression in SF

from non-OA or OA patients treated with or without mechanical loading. According to geN-

orm two genes are sufficient for normalization throughout. Expression of one tested target

gene varied considerably, if normalized to different candidate housekeeping genes. Our

study provides a tool for accurate and valid housekeeping gene selection in gene expression

experiments on SF from healthy and OA patients with and without mechanical loading in

consistent with the MIQE (Minimum Information for Publication of Quantitative Real-Time

PCR Experiments) guidelines and additionally demonstrates the impact of proper house-

keeping gene selection on the expression of the gene of interest.

Introduction

For gene expression analysis there are currently three methods available: RNA-Seq, microarray

analysis and RT-qPCR. RNA-Seq and microarray analysis were used to analyse many different

gene expression profiles [1–5]. In contrast to these both methods reverse transcriptase quanti-

tative PCR (RT-qPCR) allows to analyse the impact of various experimental conditions on the
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expression of one single gene [6–9]. Therefore RT-qPCR is still the method of choice for gene

expression evaluation in most areas of molecular biology. Carefully chosen housekeeping

genes guarantee precise gene expression quantification by accurate and valid data normaliza-

tion [6,8,10]. One major feature of an optimal housekeeping gene is a small variation in expres-

sion across various experimental setups and cell types [8,11]. There are many studies dealing

with the variation of expression stability of housekeeping genes across different experimental

conditions or cell types [11,12]. The usage of not validated housekeeping genes in RT-pPCR

studies can lead to potential bias and misinterpretation of experimental outcomes. To achieve

conformity in RT-pPCR data evaluation, MIQE guidelines (Minimum Information for Publi-

cation of Quantitative Real-Time PCR Experiments) were established several years ago [10].

Usage of these guidelines is proposed to enhance reproducibility of RT-qPCR results [10]. The

choice of housekeeping genes has a direct impact on the results of target gene analysis by RT-

qPCR. To investigate the stability of different housekeeping genes, some mathematical algo-

rithms like geNorm [12], NormFinder [13], BestKeeper [14] and the comparative ΔCq method

[15,16] were developed.

The geNorm [12] algorithm calculates the mean pairwise variation of the Cq values of one

tested housekeeping gene compared with all other tested genes and specifies that value as sta-

bility M. Housekeeping genes with elevated M values are suggested to have an higher pairwise

variation. As enhanced pairwise variation correlates with instable expression ratios, house-

keeping genes with higher M values are not ideal for normalization [12]. With geNorm it is

also possible to define the minimum required amount of housekeeping genes for target gene

normalization, as it computes the gene stability by average pairwise variation among internal

control genes [12].

The NormFinder algorithm [13] calculates intra- and intergroup variation between the

tested housekeeping genes. Furthermore it designates a conjoint stability value for each tested

housekeeping gene applying a model-based approach [13]. In this mathematical algorithm

increased gene expression stability is associated with decreasing stability values.

The comparative ΔCq method evaluates housekeeping genes on the basis of the standard

deviation of the average ΔCq aberrations of each tested housekeeping gene to all other tested

housekeeping genes. Therefore it collates relative housekeeping gene expression within groups

of biological replicates and from all other tested housekeeping genes [15,16].

The BestKeeper [14] algorithm makes use of the standard deviation of mean Cq of each

tested housekeeping gene and evaluates gene stability by pairwise bivariate correlations of Cq

values of each gene using a “BestKeeper Index“. Stably expressed housekeeping genes are

reported to have higher r values. Until now various studies were performed to assess appropri-

ate housekeeping genes for different experimental setups and cell types, but there are still no

reliable housekeeping genes for studies on human synovial fibroblasts published.

Synovial fibroblasts play a leading part in the maintenance of a healthy joint. The synovium

encases articular joints throughout the human body and maintains the integrity of articular

cartilage by regulating synovial fluid volume and composition producing lubricin and hyal-

uronic acid [17]. Among others, synovial fibroblasts make up the major cell population in the

synovium of joints and play a critical mediating role in the development and progression of

osteoarthritis (OA), since they are able to secrete proinflammatory cytokines [18] and express

immune-receptors like toll-like receptors (TLR) [19,20]. The degenerative disease OA is asso-

ciated with several afflictions such as chronic pain, articular cartilage degradation and sub-

chondral bone remodelling as well as induced synovitis [21]. Aging, obesity, sport injuries,

genetic predisposition [22] and mechanical overload [23,24] are reported to be risk factors for

OA development. Also excessive mechanical loading on normal articular cartilage may lead to

the development of OA by disruption of cartilage matrix homeostasis [24,25]. For several
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years, interest in the stromal-cell-like synovial fibroblasts has increased, as they were identified

as key players in the innate immune-system-response, inflammation-related processes and

intercellular actions and as principal performers involved in OA development and

progression.

The study was designed to 1) identify a set of stably expressed housekeeping genes for

human synovial fibroblasts derived from OA and non-OA patients, particularly in experiments

with mechanical loading simulating OA pathogenesis and progression, 2) to assess the effects

of different housekeeping genes used for normalization on target gene expression and 3) to

compare various mathematical procedures used regarding their conformity. As mechanical

stress loading is one major risk factor for the development of OA, we aimed to assess stable

housekeeping genes for pressure application in both tested synovial fibroblast cell lines.

Materials and methods

In vitro cell culture experiment setup

Synovial fibroblasts from a healthy, non-OA patient were obtained directly from BioIVT

(PCD-90-0645). Synovial fibroblasts from an OA patient were obtained and cultured from tis-

sue to be discarded during knee surgery in the Department of Orthopedics at the University of

Regensburg. The study was approved by the Ethics Committee of the Faculty of Medicine

Regensburg (approval ID 12-170-0150) and written informed consent was obtained from the

tissue donor.

Approximately 70,000 synovial fibroblasts per well, either derived from a non-OA or an

OA patient, were seeded on a 6-well plate and preincubated under cell culture conditions for

24 h. Afterwards incubation was continued for another 48 h with or without mechanical load-

ing according to an established and published model for inducing compressive force on adher-

ently growing fibroblasts [8,26,27]:

• 1st group: synovial fibroblasts from a healthy, non-OA patient (N-SF), incubated under cell

culture conditions for a total of 72 h (n = 6);

• 2nd group: synovial fibroblasts from a healthy non-OA patient (N-SF) exposed to static com-

pressive force (2 g/cm2 pressure, Fig 1) for 48 h after 24 h of preincubation (n = 6);

Fig 1. In vitro application of mechanical loading to synovial fibroblasts. Application of a sterile glass disc of defined

size and weight to the cell layer, exerting a compressive force of 2g/cm2.

https://doi.org/10.1371/journal.pone.0225790.g001
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• 3rd group: synovial fibroblasts from an OA patient (OA-SF), incubated under cell culture

conditions for a total of 72 h (n = 6);

• 4th group: synovial fibroblasts from an OA patient (OA-SF) exposed to static compressive

force (2 g/cm2 pressure, Fig 1) for 48 h after 24 h of preincubation (n = 6).

RNA isolation and purity determination

In order to remove residual cell culture media, synovial fibroblasts were washed two times

with phosphate-buffered saline (PBS). RNA was isolated using peqGOLD TriFast™ (PEQLAB,

1 ml/well conforming with the manufacturer’s instructions [9,28,29]. The resulting RNA pellet

was reconstituted in 25μl nuclease-free water (Carl-Roth) and immediately cooled on ice.

Photometrical adsorption measurements at 280nm and 260nm revealed purity and quantity of

the eluted RNA (NanoDrop, Implen). RNA integrity was determined using an Agilent 2100

Bioanalyzer (Agilent Technologies) based on the provided protocol of the manufacturer (S1

File). At least, one sample per group had to be excluded from further analysis due to poor or

not measurable RNA integrity values (S2 File).

Reverse transcription (cDNA synthesis)

For cDNA synthesis we transcribed 100 ng RNA per sample using a combination of 0.1 nmol

random hexamer primer (Life Technologies), 0.1 nmol oligo-dT18 primer (Life Technologies)

mixed with 1×M-MLV-buffer (Promega), 40 nmol dNTP mix (Carl-Roth), 40 U RNase inhibi-

tor (Life Technologies) and M-MLV reverse transcriptase (Promega) and added nuclease-free

H2O (Carl-Roth) to a final volume of 20 μl. We then incubated the samples at 37˚C for 1 h and

finally inactivated the reverse transcriptase at 95˚C for 2 min. Experimental variation was

reduced by simultaneous synthesis of cDNA for all samples.

Real-time quantitative RT-PCR

The used oligonucleotides were designed based on the gene sequences achieved from the

Nucleotide database NCBI (GeneBank, National Centre for Biotechnology Information) and

validated for absence of secondary structures, self and cross dimers as well as primer efficiency

and specificity, as already described [8] (Table 1). Eurofins MWG Operon LLC (Huntsville;

High Purity Salt Free Purification HPSF1) was assigned for primer synthesis and purification.

For each RT-qPCR reaction we used 7.5 μl SYBR1Green JumpStart™ Taq ReadyMix™
(Sigma-Aldrich), 10 pmol/μl of the respective forward and reverse primer and 1.5 μl of the

diluted cDNA (1:10). RNase-free H2O (Carl-Roth) was added to a total volume of 15 μl. All

cDNA samples were tested as three replicates per housekeeping gene and on the same 96 well

PCR plate per biological replicate in 45 cycles (95˚C for 5 min, per cycle 95˚C for 10 s, 60˚C

for 8 s, 72˚C for 8 s) to reduce possible inter-run variations on relative housekeeping gene sta-

bility assessment. Non-template controls and reverse transcription controls were additionally

performed. For qPCR a Mastercycler1 ep realplex-S thermocycler (Eppendorf AG, Hamburg,

Germany) was used in conjunction with 96-well PCR plates (Biozym Scientific) covered with

BZO Seal Filmcover sheets (Biozym Scientific) [8,30,31].

Assessment of reference gene stability

We calculated Cq values with the realplex software (version 2.2, Eppendorf AG) using the

CalqPlex algorithm. The arithmetic mean of each Cq triplet per tested housekeeping gene and

RT-qPCR study on housekeeping genes from SF with mechanical loading
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sample was used for analysis. The stability for each tested potential housekeeping gene was

assessed by four different mathematical procedures: geNorm [12], NormFinder [13], Best-

Keeper [14] and the comparative ΔCq method [16]. We performed stability calculations with

the official corresponding Microsoft-Excel-based software applets according to the developers’

instructions. The comparative ΔCq method was executed by manual calculations [16]. The

application of the geNorm and NormFinder algorithms requires a transformation of native Cq

data to the linear scale expression quantities Q = E-(Cqmin-Cqsample) computing the qPCR effi-

ciency (E) of each gene [8,9,16]. For evaluation, the tested housekeeping genes were listed

based on their stability values (geNorm: M, NormFinder: ρig/σi, deltaCT: mean SD of ΔCq;

BestKeeper: Pearson’s r), determined by the chosen algorithms and set up. To assess the opti-

mal number of houskeeping genes for solid RT-qPCR normalization, we used the geNorm

[12] algorithm. A gene was considered superfluous for normalization, if the pairwise variation

(Vn/Vn+1) of two pairs of housekeeping genes with one pair including an accessory gene

was� 0.15. By compilation of a bivariate correlation matrix (Pearson´s correlation coefficient

r, two-sided, normality confirmed by Shapiro-Wilk tests and histogram evaluation) including

the assessed stability values achieved by two respective algorithms, the variations between the

tested mathematical procedures were ranked.

Normalization of target gene expression

To assess the impact of housekeeping gene stability on relative expression of the target gene

prolyl-4-hydroxylase-alpha-1 (P4HA1), collagen-1-alpha-2 (COL1A), cylclooxygenase-2 (COX2)
and interleukin-6 (IL6) we determined the relative gene expression as 2-ΔCq [32] with ΔCq = Cq

(target gene)–Cq (housekeeping gene), divided by the respective arithmetic 2-ΔCq mean of the

untreated synovial fibroblast controls derived from a healthy subject with their relative gene

expression normalized as 1. Using the software application SPSS1 Statistics 24 (IBM1,

Armonk, NY, USA), data were tested for normal distribution (Shapiro-Wilk test) and homoge-

neity of variance (Levene’s test). Experimental groups were compared by Welch-corrected

one-way ANOVAs. We used Games–Howell post hoc tests for pairwise comparisons. All dif-

ferences were considered statistically significant at p�0.05. Descriptive statistics are given as

arithmetic mean ± standard deviation.

Results

Quality and integrity of RNA samples

The mean concentration of harvested RNA (n = 20) was assessed by its optical density

(260nm) as 25.5 ng/μl (standard deviation SD 10.8 / Min. 12.1 / Max. 46.4) with a mean

OD260nm/280nm ratio of 1.91 (SD 0.14 / Min. 1.82 / Max. 2.21) indicating a negligible contami-

nation with protein (S1 Table). The RNA integrity number (RIN) algorithm allocates a RIN

number score from 1 to 10 with a value of 10 representing completely intact RNA and a value

of 1 degraded RNA [33]. Three samples displayed poor RIN values and one sample concentra-

tion was too low for RIN measurement. These samples were excluded from housekeeping

gene analysis. For the other samples RIN values ranged from 9.3 to 9.8 (mean 9.2, SD 0.4),

indicating negligible RNA degradation (S1 File). We also confirmed integrity of total RNA by

assessing the ratio of 28S/18S ribosomal RNA, which ranged from 1.1 to 2.4 (S1 File). The neg-

ative controls (reverse transcription negative control, negative NTC reactions) did not show

the presence of interfering genomic DNA and contamination, as the observed Cq values

were substantially higher than those of of wells containing samples or reverse transcriptase

(S2 Table).
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Primer specificity and Cq expression levels

We confirmed primer specificity by agarose gel electrophoresis and melting curve analysis (S2

File). The range of observed Cq values of the tested genes was between 9.0 to 29.4 cycles (Fig 2,

S3 Table). RNA18S showed the lowest values and TBP the highest.

Refinement of housekeeping gene number for normalization

For studies with synovial fibroblasts, two housekeeping genes in RT-qPCR in the tested experi-

mental conditions were adequate for normalization according to the geNorm algorithm using

their geometric mean (Fig 3a).

Relative performance as housekeeping gene

By using the geNorm algorithm, we found RPLP0 and GAPDH to be the most stably expressed

housekeeping genes overall (Table 2, Fig 3b). Similarly, comparing N-SF and OA-SF fibro-

blasts without mechanical loading with the geNorm algorithm, we determined RPLP0,

GAPDH and PPIB to have the lowest expression variation (Table 2). Additionally, we also ana-

lysed untreated N-SF and compressive-force-treated N-SF with this algorithm and revealed

EEF1A1 and RPLP0 to be the most stably expressed housekeeping genes under these condi-

tions (Table 2).

The NormFinder algorithm identified RPLP0 and EEF1A1 as most stable genes overall

(Table 2). NormFinder confirmed the geNorm findings for N-SF and OA-SF fibroblasts

without compressive force application and for untreated and loaded N-SF (Table 2), as this

algorithm also revealed RPLP0 and PPIB or EEF1A1 and RPLP0 as most stably expressed

housekeeping genes.

The comparative ΔCq method [16] was in line with NormFinder results (Table 2) regarding

the combined conditions, as it also defined RPLP0 and EEF1A1 to be the most stably expressed

Fig 2. Expression levels of tested housekeeping genes in the experimental set-up. Values illustrate mean Cq

(quantification cycle; n = 20). Gene names are listed in Table 1. Boxplots illustrate median, interquartile range as

box and data range by whiskers. Circles show outliers and asterisms extreme values.

https://doi.org/10.1371/journal.pone.0225790.g002
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genes. For the other tested conditions, the comparative ΔCq method confirmed the findings of

NormFinder and geNorm algorithms (Table 2).

The BestKeeper algorithm [14] was also in accordance with NormFinder and the compara-

tive ΔCq method suggesting EEF1A1 as the best housekeeping gene overall (Table 2). For

experiments regarding N-SF and OA-SF experiments BestKeeper defined RNA18S and TBP as

reliable housekeeping genes (Table 2). For N-SF treated with or without compressive force

BestKeeper proposed EEF1A1 and TBP as suitable housekeeping genes (Table 2).

Conformity of used algorithms for housekeeping gene stability analysis

We performed bivariate correlations of gene rankings between the used algorithms to assess

their conformity (Fig 4, n = 20). geNorm, NormFinder and the comparative ΔCq method dis-

play significant correlations of the ranking of the tested housekeeping genes. Only BestKeeper

algorithm showed discrepancies, as it did not correlate with the other algorithms used (Fig 4).

Effect of housekeeping gene stability on relative target gene expression

To assess the importance of the correct choice of housekeeping genes for experiments on N-SF

and OA-SF with and without mechanical loading, we calculated relative gene expression of

the target gene prolyl-4-hydroxylase-alpha-1 (P4HA1, Fig 5), collagen-1-alpha-2 (COL1A2),

cylcooxygenase-2 (COX2) and interleukin-6 (IL-6; all in S3 File) using the candidate housekeep-

ing genes tested in this study, which differ in expression stability. P4HA1 is responsible for the

Fig 3. Analysis of expression stability of the tested housekeeping genes with geNorm. (a) Ideal number of

housekeeping genes for gene expression studies on synovial fibroblasts. V = variation (b) Average values of expression

stability derived by successive exclusion of the most instable performed housekeeping gene across all specimens and

experimental conditions (n = 20). Decreasing M values indicate increasing gene expression stability. Consult Table 1

for gene names.

https://doi.org/10.1371/journal.pone.0225790.g003
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proper three-dimensional folding of newly synthesized procollagen chains. The expression lev-

els of P4HA1 varied in a wide range depending on the housekeeping gene used for normaliza-

tion (Fig 5). We observed significant pressure effects in N-SF with EEF1A1, GAPDH, POLR2A,

RNA18S, RPL22, RPLP0 and YWHAZ used for normalization, but using PPIB as housekeeping

gene, we determined no significant induction of P4HA1 (Fig 5). Differences between N-SF

and OA-SF under physiological conditions seemed to be significant with GAPDH, PPIB and

YWHAZ. With all other tested housekeeping genes there were no significant differences in

P4HA1 expression between N-SF and OA-SF detectable (Fig 5). Variations between N-SF and

OA-SF after compressive force treatment only appeared significant with EEF1A1, GAPDH,

Table 2. Housekeeping gene stability ranking for human synovial fibroblast experiments with compressive force application (compressive force vs. untreated con-

trol), experiments on osteoarthritis (osteoarthritis vs. normal fibroblasts) and pooled/overall experimental conditions. Calculations based on the algorithms geNorm,

NormFinder, comparative ΔCq and BestKeeper. A higher rank indicates reduced expression stability.

Rank Total (of 4

methods)

geNorm NormFinder comparative deltaCq BestKeeper

Ranking

order

Rank

sum

Ranking

order

Stability

value (M)

Ranking

order

Stability

value (ρig/σi)

Standard

error

Ranking

order

Stability value

(mean SD of

mean ΔCq)

Ranking

order

Stability

value (r)

SD (+/-

Cq)

CV (%

Cq)

Synovial fibroblasts pooled/overall (experiments on mechanical loading and osteoarthritis, n = 20)

1.) RPLP0 6 RPLP0 0.242 RPLP0 0.082 0.019 RPLP0 0.255 EEF1A1 0.884 0.234 1.203

2.) EEF1A1 8 GAPDH 0.254 EEF1A1 0.097 0.021 EEF1A1 0.264 RNA18S 0.871 0.385 3.958

3.) GAPDH 14 EEF1A1 0.255 TBP 0.103 0.022 GAPDH 0.267 RPLP0 0.862 0.211 0.975

4.) TBP 17 TBP 0.259 GAPDH 0.106 0.022 TBP 0.274 RPL22 0.824 0.282 1.200

5.) RPL22 22 POLR2A 0.281 POLR2A 0.133 0.025 POLR2A 0.295 TBP 0.796 0.207 0.713

6.) POLR2A 24 RPL22 0.300 RPL22 0.149 0.027 RPL22 0.312 GAPDH 0.741 0.171 0.816

7.) PPIB 28 PPIB 0.317 PPIB 0.173 0.031 PPIB 0.337 PPIB 0.709 0.269 1.139

8.) RNA18S 29 YWHAZ 0.320 YWHAZ 0.175 0.031 YWHAZ 0.337 YWHAZ 0.662 0.297 1.261

9.) PPIB 32 RNA18S 0.394 RNA18S 0.244 0.041 RNA18S 0.395 POLR2A 0.619 0.182 0.686

N-SF vs. OA-SF (experiments on osteoarthritis, n = 10)

1.) RPLP0 6 RPLP0 0.202 RPLP0 0.064 0.023 RPLP0 0.213 RNA18S 0.894 0.319 3.228

2.) TBP 12 GAPDH 0.214 PPIB 0.081 0.025 PPIB 0.225 TBP 0.843 0.195 0.671

3.) PPIB 12 PPIB 0.214 GAPDH 0.085 0.026 TBP 0.241 RPLP0 0.841 0.188 0.869

4.) GAPDH 20 TBP 0.226 TBP 0.093 0.027 POLR2A 0.252 EEF1A1 0.752 0.203 1.042

5.) EEF1A1 21 POLR2A 0.239 POLR2A 0.116 0.031 EEF1A1 0.254 RPL22 0.721 0.220 0.936

6.) POLR2A 21 EEF1A1 0.249 RPL22 0.128 0.034 RPL22 0.263 PPIB 0.692 0.134 0.571

7.) RPL22 23 RPL22 0.254 EEF1A1 0.130 0.034 YWHAZ 0.332 GAPDH 0.636 0.123 0.586

8.) RNA18S 25 RNA18S 0.303 RNA18S 0.178 0.044 GAPDH 0.598 POLR2A 0.549 0.141 0.535

9.) YWHAZ 33 YWHAZ5 0.314 YWHAZ 0.193 0.048 RNA18S 0.679 YWHAZ 0.478 0.208 1.192

N-SF untreated vs. compressive force (experiments on pressure application, n = 10)

1.) EEF1A1 4 EEF1A1 0.217 EEF1A1 0.064 0.025 EEF1A1 0.224 EEF1A1 0.936 0.225 1.154

2.) RPLP0 9 RPLP0 0.221 RPLP0 0.078 0.026 RPLP0 0.234 TBP 0.913 0.191 0.658

3.) TBP 11 TBP 0.225 TBP 0.080 0.027 TBP 0.238 RPLP0 0.897 0.229 1.057

4.) RPL22 16 RPL22 0.236 RPL22 0.100 0.030 RPL22 0.246 RPL22 0.873 0.224 0.950

5.) GAPDH 21 GAPDH 0.246 GAPDH 0.109 0.031 GAPDH 0.259 RNA18S 0.803 0.319 3.247

6.) YWHAZ 26 YWHAZ 0.253 YWHAZ 0.120 0.033 YWHAZ 0.266 GAPDH 0.774 0.200 0.951

7.) POLR2A 30 POLR2A 0.278 POLR2A 0.145 0.038 POLR2A 0.295 PPIB 0.757 0.313 1.322

8.) RNA18S 31 PPIB 0.354 PPIB 0.219 0.054 RNA18S 0.362 YWHAZ 0.639 0.167 0.699

9.) PPIB 32 RNA18S 0.358 RNA18S 0.225 0.055 PPIB 0.380 POLR2A 0.597 0.204 0.768

Cq = quantification cycle; SD = standard deviation; CV = coefficient of variation; r = Pearson’s correlation coefficient.

https://doi.org/10.1371/journal.pone.0225790.t002
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RPLP0, TBP and YWHAZ as housekeeping genes (Fig 5), but not with POLR2A, PPIB,

RNA18S or RPL22.

Furthermore, we calculated the statistical differences between results of target gene analysis

for P4HA1, COL1A2, COX-2 and IL-6 normalized to the least stable housekeeping gene PPIB

and the geometric mean of EEF1A1/RPLP0 as most stable housekeeping genes using an

unpaired t test for the different conditions and groups (intragroup comparisons, S4 Table).

We determined a significant difference only for IL-6 target gene expression in one experimen-

tal condition. Nonetheless, there are differences in significance levels due to normalization

with different reference genes (Fig 5, S3 File).

Discussion

We identified RPLP0, EEF1A1, TBP and PPIB to be reliable housekeeping genes for normaliza-

tion of target gene expression in RT-qPCR studies on human synovial fibroblasts derived

from non-OA or OA patients by analysing the expression stability of at least nine potentially

suitable housekeeping genes with four different mathematical algorithms. In general RPLP0
and EEF1A1 proved to be most stable throughout all tested experimental conditions and algo-

rithms. As required by the MIQE guidelines, these genes have different functions in cell

metabolism, which indicates that they are not co-regulated and may be used in conjunction

for normalization of gene expression [10]. RPLP0 is involved in protein synthesis, as this gene

encodes for one large 60S acidic ribosomal protein subunit [34]. EEF1A1 encodes for an iso-

form of the alpha subunit of the elongation factor-1 complex [35], which acts as GTPase and

actin-bundling protein [36]. RPLP0, TBP and PPIB seem to be ideal for studies focusing on dif-

ferences between non-OA and OA synovial fibroblasts. In contrast, PPIB encodes for a pro-

tein-binding cyclosporine in the endoplasmic reticulum, which is important in collagen type I

folding [37]. PPIB is also associated with pathological conditions potentially affecting osteoar-

thritis, such as osteogenesis imperfecta [38]. TBP encodes for a TATA-box-binding protein,

which is involved in transcription processes by the regulation of the RNA polymerase I [39]. A

Fig 4. Correlation analysis of values for stability of the conducted algorithms for housekeeping gene assessment

(geNorm, NormFinder, BestKeeper, comparative ΔCq). Bivariate correlations are displayed by scatterplots of the

total stability values of the tested housekeeping genes, calculated by two algorithms. Correlation plots include linear

regression lines.

https://doi.org/10.1371/journal.pone.0225790.g004
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Fig 5. Influence of the choice of housekeeping gene used for normalization and its stability on the fold-change

expression of P4HA1 in N-SF and OA-SF without and with additional static pressure application. Distinct

differences in relative gene expression are evident with significance of pairwise comparisons varying across the

individual housekeeping genes used for normalization (n = 6 per group). Statistics: Welch-corrected ANOVA with

Games-Howell post-hoc tests.

https://doi.org/10.1371/journal.pone.0225790.g005
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set of two internal control genes were determined to be adequate for reliable reference normal-

ization using their geometric mean.

We confirmed high intraassay reliability and precision of the obtained data [40], based on

the satisfactory quality of the obtained RNA samples and RT-qPCR analysis. We confirmed

protein-free and qualitative adequate RNA by assessment of the purity and integrity of total

isolated RNA, as protein contamination can inhibit cDNA synthesize and qPCR reaction and

therefore lead to biased Cq values [41]. We also confirmed primer specificity in silico and in
vitro.

Various studies on other tissues and experimental setups exist, which have determined sta-

ble housekeeping genes in the used conditions and tissues [42–44]. But most of them used

only two algorithms for housekeeping gene stability assessment [11,45]. In this study we used

four mathematical procedures and evaluated their conformity to assess, whether a combined

usage of these algorithms adds reliability in housekeeping gene stability calculations. Norm-

Finder, geNorm and comparative ΔCq algorithms correlated to a a high degree with each

other, which was mirrored by similar gene stability rankings. The BestKeeper algorithm on

the other hand differed in its assessment from the other procedures. Originally, it was designed

to assess general suitability of a housekeeping gene for RT-qPCR in a consecutive two-step

assessment based on mean Cq standard deviation and correlation analysis and not to compare

possible housekeeping genes. The other algorithms like geNorm or the comparative ΔCq

method implement either pairwise comparisons of housekeeping genes with linear quantities

or apply an approach of linear quantity models, as it can be seen in the NormFinder algorithm

[13].

To assess the impact of choosing appropriate housekeeping genes for normalization, we cal-

culated P4HA1 gene expression normalized to the different candidate housekeeping genes. We

observed distinct differences in the significance levels attributable to the relative stability of the

respective housekeeping gene used for normalization. These results confirm the importance of

housekeeping gene validation and of proper selection of stably expressed housekeeping genes

in experiments on N-SF and OA-SF synovial fibroblasts.

Conclusions

We identified RPLP0, EEF1A1, TBP and PPIB to be reliable housekeeping genes for normaliza-

tion of target gene expression in RT-qPCR studies on human synovial fibroblasts derived from

non-OA or OA patients by analysing the expression stability of at least nine potentially suitable

housekeeping genes with four different mathematical procedures. RPLP0 and EEF1A1 proved

to be the most stably expressed housekeeping genes regarding studies on synovial fibroblasts

focusing on experimental compressive force loading, whereas RPLP0, TBP and PPIB seem to

be ideal for studies focusing on differences between non-OA and OA synovial fibroblasts. For

accurate normalization, a set of two housekeeping genes was determined as sufficient, when

using their geometric mean.
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Investigation: Ute Nazet.

Supervision: Peter Proff, Christian Kirschneck.

Writing – original draft: Ute Nazet, Agnes Schröder, Christian Kirschneck.

Writing – review & editing: Susanne Grässel, Dominique Muschter, Peter Proff.

References
1. Chen G, Ning B, Shi T. Single-Cell RNA-Seq Technologies and Related Computational Data Analysis.

Front Genet. 2019; 10: 317. https://doi.org/10.3389/fgene.2019.00317 PMID: 31024627

2. Wang J, Dean DC, Hornicek FJ, Shi H, Duan Z. RNA sequencing (RNA-Seq) and its application in ovar-

ian cancer. Gynecol Oncol. 2019; 152: 194–201. https://doi.org/10.1016/j.ygyno.2018.10.002 PMID:

30297273

3. Rahmatallah Y, Emmert-Streib F, Glazko G. Gene set analysis approaches for RNA-seq data: perfor-

mance evaluation and application guideline. Brief Bioinformatics. 2016; 17: 393–407. https://doi.org/

10.1093/bib/bbv069 PMID: 26342128

4. Kierzek R, Turner DH, Kierzek E. Microarrays for identifying binding sites and probing structure of

RNAs. Nucleic Acids Res. 2015; 43: 1–12. https://doi.org/10.1093/nar/gku1303 PMID: 25505162

5. Keen HL, Sigmund CD. Microarray Analysis of Hypertension. Methods Mol Biol. 2017; 1527: 41–52.

https://doi.org/10.1007/978-1-4939-6625-7_3 PMID: 28116705

RT-qPCR study on housekeeping genes from SF with mechanical loading

PLOS ONE | https://doi.org/10.1371/journal.pone.0225790 December 6, 2019 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225790.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225790.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225790.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225790.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0225790.s007
https://doi.org/10.3389/fgene.2019.00317
http://www.ncbi.nlm.nih.gov/pubmed/31024627
https://doi.org/10.1016/j.ygyno.2018.10.002
http://www.ncbi.nlm.nih.gov/pubmed/30297273
https://doi.org/10.1093/bib/bbv069
https://doi.org/10.1093/bib/bbv069
http://www.ncbi.nlm.nih.gov/pubmed/26342128
https://doi.org/10.1093/nar/gku1303
http://www.ncbi.nlm.nih.gov/pubmed/25505162
https://doi.org/10.1007/978-1-4939-6625-7_3
http://www.ncbi.nlm.nih.gov/pubmed/28116705
https://doi.org/10.1371/journal.pone.0225790


6. Jacob F, Guertler R, Naim S, Nixdorf S, Fedier A, Hacker NF, et al. Careful selection of housekeeping

genes is required for reliable performance of RT-qPCR in human normal and cancer cell lines. PLoS

ONE. 2013; 8: e59180. https://doi.org/10.1371/journal.pone.0059180 PMID: 23554992

7. Kozera B, Rapacz M. Housekeeping genes in real-time PCR. J Appl Genet. 2013; 54: 391–406. https://

doi.org/10.1007/s13353-013-0173-x PMID: 24078518
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