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Abstract

Background

Heart failure induced cachexia is highly prevalent. Insights into disease progression are

lacking.

Methods

Early state of left ventricular dysfunction (ELVD) and symptomatic systolic heart failure (HF)

were both induced in rabbits by tachypacing. Tissue of limb muscle (LM) was subjected to

histologic assessment. For unbiased characterisation of early and late myopathy, a proteo-

mic approach followed by computational pathway-analyses was performed and combined

with pathway-focused gene expression analyses. Specimen of thoracic diaphragm (TD)

served as control for inactivity-induced skeletal muscle alterations. In a subsequent study,

inhibition of the renin-angiotensin-system and neprilysin (RAS-/NEP) was compared to

placebo.

Results

HF was accompanied by loss of protein content (8.7±0.4% vs. 7.0±0.5%, mean±SEM, con-

trol vs. HF, p<0.01) and a slow-to-fast fibre type switch, establishing hallmarks of cachexia.

In ELVD, the enzymatic set-up of LM and TD shifted to a catabolic state. A disturbed

malate-aspartate shuttle went well with increased enzymes of glycolysis, forming the enzy-

matic basis for enforced anoxic energy regeneration. The histological findings and the path-

way analysis of metabolic results drew the picture of suppressed PGC-1α signalling, linked

to the natriuretic peptide system. In HF, natriuretic peptide signalling was desensitised, as
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confirmed by an increase in the ratio of serum BNP to tissue cGMP (57.0±18.6pg/ml/nM/ml

vs. 165.8±16.76pg/ml/nM/ml, p<0.05) and a reduced expression of natriuretic peptide

receptor-A. In HF, combined RAS-/NEP-inhibition prevented from loss in protein content

(8.7±0.3% vs. 6.0±0.6% vs. 8.3±0.9%, Baseline vs. HF-Placebo vs. HF-RAS/NEP, p<0.05

Baseline vs. HF-Placebo, p = 0.7 Baseline vs. HF-RAS/NEP).

Conclusions

Tachypacing-induced heart failure entails a generalised myopathy, preceding systolic dys-

function. The characterisation of “pre-cachectic” state and its progression is feasible. Early

enzymatic alterations of LM depict a catabolic state, rendering LM prone to futile substrate

metabolism. A combined RAS-/NEP-inhibition ameliorates cardiac-induced myopathy inde-

pendent of systolic function, which could be linked to stabilised natriuretic peptide/cGMP/

PGC-1α signalling.

Introduction

Systolic heart failure remains a major healthcare challenge[1]. The mortality remains unac-

ceptably high, albeit the progression of disease can be protracted by improved therapeutic

opportunities[2]. During the gained time period between diagnosis and death, advances in

pharmacological and interventional treatment helped to relieve patients’ dyspnoea and phases

of decompensation[3,4]. As these canonical hallmarks of systolic heart failure can be better

controlled than 20 years ago, the consequences of heart failure induced systemic metabolic fail-

ure have come to the fore of patients’ symptoms[5]. Particularly, skeletal muscle wasting is fre-

quent, limits patients’ physical capacity and predicts independently death in heart failure[6].

Despite extensive scientific efforts, its end-stage “cachexia” can hardly be addressed therapeuti-

cally. Accordingly, strategies for early diagnosis and prevention were emphasised by consensus

statements and a “pre-cachectic” state was defined and subjected to further studies[7]. Unfor-

tunately, an animal model showing reproducibly and stable an early state of cardiac-induced

myopathy and its steady progression in systolic heart failure is lacking[8]. Therefore, we set

out to evaluate, whether the tachypacing-heart failure model[9,10] entails progressive myopa-

thy. As a very early, generalized myopathy similar to humans could be established, the enzy-

matic set-up was characterised by a multi-omics approach, applying pathway-focused gene

expression analysis[11] and proteomic methods[12,13]. Pathway analyses gave hints for a

failing link between natriuretic peptide signalling and peroxisome-proliferator-activated-

receptor-γ-coactivator-1-α (PGC-1α), in line with previous in-vitro and in-vivo data under

physiologic conditions[14]. Therefore, we speculated about a beneficial effect to myopathy by

counterbalancing the desensitised natriuretic peptide signalling in heart failure[15] and per-

formed subsequently a pharmacological intervention: combined inhibition of the renin-angio-

tensin system and neprilysin (RAS/NEP) was compared to placebo in heart failure animals.

Methods

Animal model

All studies were approved by the institutional and governmental animal care committee

(Regierung der Oberpfalz, Germany; University of Regensburg, Germany). Male rabbits (chin-

chilla bastard) were acquired from Charles River Laboratories and housed under standard
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conditions (12:12h light:dark rhythm) with regular, unrestricted diet. For the first descriptive

study characterising skeletal muscle alterations in tachycardia-induced heart failure (Fig 1A),

11 rabbits underwent implantation of a programmable cardiac pacemaker (Medtronic Minix

8340, Minneapolis, MN, USA, or Vitatron Model 810, Dieren, NL) as previously described[9].

In brief, ketamine (60mg/kg) and xylazine (5mg/kg) were given as intramuscular bolus

Fig 1. Sequential animal trial designs for first descriptive analyses and the subsequent pharmacological intervention study. (A) In a

tachypacing-induced heart failure model, skeletal muscle alterations were analysed by histology and a multi-omics approach. The results

generated the hypothesis, that combined RAS-NEP-inhibition could exert a potential beneficial effect on myopathy in heart failure. To scrutinise

the hypothesis, a pharmacological interventional study was designed and performed (B). bpm: beats per minute. CTRL: control. ELVD: early left
ventricular dysfunction.HF: heart failure. RAS-NEP-inhibition: combined inhibition of the renin-angiotensin system and neprilysin. VPI:
vasopeptidase inhibitor omapatrilat, combined RAS/NEP-inhibitor.

https://doi.org/10.1371/journal.pone.0225937.g001
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injection to establish anaesthesia and were administered intravenously during the procedure

according to the animal’s vital signs. The pacemaker lead was inserted into the right internal

jugular vein, passed to the right ventricular apex under fluoroscopic guidance and fixed by

screwing it into the myocardial tissue. The device was implanted subcutaneously into the right

abdominal wall. A standardized pharmacological protocol was used in the early post-surgery

period (rimadyl 4mg/kg s.c.; baytril 5mg/kg s.c. for 3 days). After at least 10days at rest, a

V00-Pacing mode was programmed and conducted tachypacing for a total of 30days, increas-

ing stepwise the stimulation frequencies at 10 days intervals (330beats/min; 360 beats/min;

380beats/min). 4 animals were euthanized after 10 days of pacing, resulting in early left ven-

tricular dysfunction (ELVD group). Further 7 animals went through 30 days of incremental

pacing, showing signs of heart failure (HF group), as ascites and pleural effusion. 6 untreated

animals served as controls (CTRL group).

In the subsequent interventional trial (Fig 1B), a combined RAS-/NEP-inhibition was

administered as previously described[12]. Since LCZ696 was not yet available for research pur-

poses at that time, the vasopeptidase inhibitor omapatrilat was used. In animal experiments, it

has been given by intravenous bolus application for the evaluation of acute drug effects[16]

and by gavage[17] or dissolved in drinking water[18,19] or food [20] for long term administra-

tion. Due to anatomical features of rabbits, gavage is accompanied by a higher risk of trauma

to oesophageal and gastric lining and aspiration pneumonia than in rats or mice[21]. As oma-

patrilat is dissolvable in water, has good bioavailability, high distribution volume and long

half-life[22], it was administered via drinking water in order to avoid injury to the animals by

repeated gavage. Adequate concentration of omapatrilat was validated in our previous studies

[12,23].

Rabbits’ fluid intake was monitored on a daily basis for each animal individually and drink-

ing water was freshly prepared for each animal every day. In order to achieve a uniform dos-

age, an amount of stock solution of omapatrilat was added to the fresh drinking water in such

a manner, that a dosage of 50mg/kg/d was achieved in an amount of drinking water, which

was equal to the previous average daily drinking amount of that individual animal. Together,

drinking water of animals undergoing 30days of tachypacing was either substituted with oma-

patrilat (HF-VPI group, n = 7), or remained untreated (HF-placebo group, n = 7). At baseline

(BL) and at the end of the protocol (HF), conscious arterial pressure was measured invasively:

an intravascular cannula was inserted into the medial ear artery. An electronic pressure trans-

ducer (P23XL; Siemens, Munich, Germany) and a recorder (Hellige, Freiburg, Germany) were

employed to monitor constantly the blood pressure. 5 animals not undergoing tachypacing

served as controls (CTRL-2; n = 5). After euthanasia by pentobarbital injection, tissue of the

M. quadriceps femoris (limb muscle, LM) and the muscular part of the thoracic diaphragm

(TD) was rapidly harvested, deep-frozen in liquid nitrogen and stored at -80˚C.

Echocardiography

Echocardiographic assessment was performed under moderate sedation (acepromazine,

0.07mg/kg) and pacing was intermitted temporarily as previously described[9,10,12]. A HP

Sonos 5500 equipped with a 12MHz transducer (Philips Electronics, Eindhoven, the Nether-

lands) was applied to measure left ventricular end-diastolic (LVEDD) and end-systolic diame-

ter (LVESD) by two-dimensionally guided M-Mode in the parasternal long axis in accordance

to the current European guidelines[24]. Systolic function was determined as fractional short-

ening (FS), because FS provides reliable information in heart disease without regional wall

motion abnormalities according to current guidelines[24], measurement of ejection fraction

is hardly feasible in rabbits [25] and the necessary longer examination time for biplane
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measurement from an apical view under sedation entails the relevant risk of lethal respiratory

insufficiency in end-stage HF rabbits. FS was calculated as FS = (LVEDD-LVESD)/LVEDD.

Determination of muscle fibre types

For optimizing cryo-sections, frozen tissue of skeletal muscles was treated as previously

described[26]. Briefly, tissue was thawed, dehydrated, again frozen in 2-methylbutanol and

sliced (Leica Biosystems, Nussloch, Germany). To distinguish muscle fibre types, differences

of the actomyosin ATPase were determined by exposing sections to alkali or acid before stain-

ing for ATPase[27]. Acid pre-incubation inhibits the actomyosin ATPase activity in fast (type

II), but not slow (type I) fibre types. In contrast, basic pre-incubation inhibits actomyosin

ATPase in slow (type I), but not fast fibre types. Chemicals were acquired from Sigma,

St. Louis, MO, USA. After 5 minutes of fixation (formaldehyde 2%, sodium cacodylate 0.19M,

CaCl2 0.07M, sucrose 0.34M, pH 7.6) and 1 minute of washing in rinse solution (18mM CaCl2,

tris(hydroxymethyl)aminomethane 100mM, pH 7.8), slides were pre-incubated in alkaline

solution (CaCl2 18mM, 2-amino-2-methyl-1-propanol 0.1M, pH 10.4) for 15min. After wash-

ing them twice, they were incubated for 60 minutes (ATP 2.7mM, KCl 50mM, CaCl2 18mM,

pH 9.4, 37˚C), rinsed three times for 30 seconds each (CaCl2 1%w/v) and exposed to cobalt

chloride 2% (w/v) for 3 minutes. After washing them again 4-times for 30seconds each

(2-amino-2-methyl-1-propanol 0.1M, pH 9.4), they were incubated in ammonium sulfide 1%

w/v and washed in bi-distilled water for 4 minutes. Afterwards, slides were dehydrated in

graded ethanol, cleared in xylol and embedded in entellan (Merck, Darmstadt, Germany). For

exposing tissue to acid, the same procedures were basically employed except for the fact, that

there was no fixation. For acidic pre-incubation, a different solution was used (CaCl2 18mM,

potassium acetate 50mM, pH 4.35) for 25 minutes. The stained tissue was visualized by

microscopy (Zeiss, Oberkochen, Germany). For quantitative analysis comprising specimen of

all animals, nine sections were done from each individual. After acid pre-incubation, only type

I fibres stained darkly (Fig 2G and 2H). The area of darkly (type I) and lightly (type II) stained

fibres was quantified by ImageJ (version 1.48v).

Isolation of mitochondria

For the isolation of mitochondria, a commercially available kit was used according to manu-

facturer’s instructions (NBP2-29448, Novus Biologicals, Littleton, CO, USA). Results were

checked for sufficiency of isolation by western blotting and electron microscopy.

Electron microscopy

Isolated mitochondria samples were incubated in Karnovsky-fixative. Transmission electron

microscopy was performed as previously described[9,12] using an EFTEM LEO912AB (Zeiss,

Oberkochen, Germany) equipped with an 1kx1k pixel side-entry mounted CCD camera con-

trolled by the iTEM software (OSIS, Muenster, Germany). The analysis was focused on num-

ber of mitochondria and their integrity.

qPCR

mRNA was extracted from TD and LM samples utilizing a commercially available kit (RNeasy,

Qiagen, Venlo, Netherlands) by following manufacturer’s protocol. RNA yield was photospec-

trometrically measured at 260nm. Expression levels of natriuretic peptide receptors A, B and C

and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) were

analysed using Custom TaqMan Assays provided by ThermoFisherScientific, Waltham, MA,

Skeletal muscle alterations in tachycardia-induced heart failure
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USA, (NPR-A = XM002715497; NPRB = XM008268071; NPRC = XM008262100, GAPDH =

OC03823402_g1; PGC-1α = XP002709423). GAPDH was used as housekeeping gene. All anal-

yses were run in triplicate.

Pathway-focused gene expression analysis

For pathway-focused gene expression analysis, assays targeting genes relevant to the pathways

of interest, which resulted from the proteome analysis, were applied. Commercially available

array kits (Qiagen) were customized for rabbits based on RT2 Profiler PCR Arrays targeting

mitochondria (PANZ-087Z), PPAR signalling (PANZ-149Z), and fatty acid metabolism

Fig 2. Tachypacing leads to systolic heart failure and signs of sarcopenia. Rapid ventricular pacing caused left ventricular dysfunction (A).

Body weight remained stable (B), due to ascites and pleural effusion in HF. Heart failure syndrome was accompanied by raising lactate levels

(C), decreased protein content of LM (D) and a slow-to-fast fibre type switch (E, F), which is depicted by representative slices (G, H): after

specific inhibition of ATPase by alkali (type I fibres) and acid (type II fibres), ATPase staining shows dark slow and light fast fibres. A-C: paired
t-test n = 5 for each group; D: paired t-test n = 3 for each group; E, F:Welch’s unequal variances t-test. �p<0.05, ��p<0.01. n(CTRL/HF) = 6/3.

FS: fractional shortening. CTRL: control. ELVD: early left ventricular dysfunction.HF: heart failure. LM: limb muscle.

https://doi.org/10.1371/journal.pone.0225937.g002
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(PANZ-007Z). The detailed gene lists are depicted in the Supplementary material S1 File

(Tables A, B, C). qPCR was carried out using a ViiA7 Real-Time PCR System equipped with

ViiA7 RUO software (ThermoFisherScientific) and the RT2 SYBR Green qPCR master mix

(Qiagen) according to the RT2 Profiler PCR Array instructions. The results were analysed as

described[11]: microarray data were normalised against the house keeping genes, as the ΔCT

for each gene in the plate was computed. The RT2 PCR array data analysis web portal (http://

saweb2.sabiosciences.com/pcr/arrayanalysis.php, accessed 03/2018) provided the tools for fur-

ther descriptive statistics, performing tests and plotting the results. A two-sided error probabil-

ity below 0.05 was deemed to be significant.

Protein extraction

Frozen LM and TD tissue was ground up under liquid nitrogen and transferred to lysis buffer

(urea 7M, thiourea 2M, Tris 30mM, 3-((3-cholamidopropyl)dimethylammonium)-1-propane-

sulfonate 4%w/v, Aprotinin bovine lung 0.045–0.315TIU/ml, pH 8.5). Alternatively, when

analysing particularly mitochondrial proteins, the pellet containing isolated mitochondria was

resuspended in lysis buffer. Overall protein content was determined by a bicinchoninic acid

assay (Sigma) according to manufacturer’s instructions.

2-D fluorescence difference gel electrophoresis (2-D DIGE)

Protein lysates of LM and TD tissue and, subsequently, of isolated LM and TD mitochon-

dria were subjected to two-dimensional fluorescence difference in gel electrophoresis

(2D-DIGE). To precisely load 2-D-gels, the protein concentration was quantified by 2D

Quant Kit (GE Healthcare, Chalfont St Giles, UK). A pH between 8.0 and 9.0 was carefully

titrated. The 3Dye 2D DIGE kit (Lumiprobe, Hannover, Germany) containing 3 different

cyanine dyes was used to label proteins according to manufacturer’s instructions. Lysates of

all specimens were pooled to an internal standard. On each gel, 3 samples were run simulta-

neously: 2 actual probes and the internal standard. Controls and disease states were not

pooled, but analysed as biological individuals. 2-D gel electrophoresis was performed as pre-

viously reported[9]: the samples were standardized by containing protein weight (50μg). 3

samples labelled with Cy2, 3 or 5 were combined and transferred to 350μl rehydration buffer

(7M urea, 2M thiourea, 4% CHAPS, 1% Serdolit MB-1 p.A. (SERVA, Heidelberg, Germany),

1.5% DeStreak Reagent (Amersham Biosciences, Uppsala, Sweden), 0.5% Pharmalyte). For

the first dimension electrophoresis, immobilized pH gradient strips (IPG 3-10NL, 18cm,

GE Healthcare) were used on the Ettan IPGphor 3 Isoelectric Focusing Unit (GE): starting

with an active rehydration (16h, 50V, 0.05mA/strip), the protocol provided an incremental

increase of voltage (500V for 135min, 1000V for 90min, rapid voltage ramping to 8000V

for 60min, 8000V for 240min; T = 20˚C). Afterwards, the strips were equilibrated (1% (w/v)

DTT, 6M urea, 30% (w/v) glycerol, 2% (w/v) SDS, 0.05M Tris-HCl buffer, pH = 8.8) for

15min and once again in a similar solution, containing iodoacetamide 8% (w/v) instead of

DTT. For the second dimension, polyacrylamide gels were cast (12.5 (v/v) polyacrylamide,

3.3% w/w crosslinking, 26x20x0.1cm) between low-fluorescence glass plates (DALTsix Gel

Caster, GE). The vertical electrophoresis was accomplished in an Ettan DALTsix Electropho-

resis Unit using a PowerSupply EPS 601(GE; U = 600V; I = 400mA; 17h; 10˚C). Gels were

scanned by ChemiDoc MP (Cy2 λex/ λem 490/518nm; Cy3 λex/ λem 545/577nm; Cy5 λex/ λem

645/ 675nm) and analysed using dedicated software (MELANIE, version 7.0.6, Geneva Bio-

informatics, Geneva, Switzerland), performing spot detection, in-gel normalisation, gel-to-

gel matching and statistical analysis. The differences between subgroups were tested for sig-

nificance by one-way analysis of variance (ANOVA).
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Protein identification

Protein spots showing significant differential normalised intensity were excised manually

and sequentially identified by peptide-mass fingerprinting. As the protein amount on DIGE

labelled gels was small, spot intensity was too low for an unambiguous detection “by eye” for

manual spot excision. Therefore, for spot picking, gels were loaded with 750μg protein and

stained by SyproRuby stain (Sigma) according to manufacturer’s instructions. In brief, gels

were fixated (methanol 50%, CH3COOH 7%) twice for 30 minutes each and afterwards stained

overnight in SyproRuby solution. After washing them in dedicated solution (methanol 10%,

CH3COOH 7%) for 30 minutes, they were rinsed several times with bi-distilled water. Stained

proteins were visualized at a λex of 302nm (ChemiDoc MP, BioRad) and manually excised.

Proteins were digested by trypsin (sequencing grade, Roche, Penzberg, Germany), extracted

from the small pieces of gel, cleansed from interfering substances and identified by matrix-

assisted laser desorption/ionisation-tandem mass spectrometry (MALDI-MS/MS) as previ-

ously described[9,10,28]. The digest was dissolved in matrix solution and spotted onto the

target plates. Mass spectrometry was performed (MALDI-TOF MS/MS, 4800 proteomics ana-

lyser running with the v3.5.3 4000 series explorer software, AB Sciex, Framingham, USA) and

resulting mass spectra were compared to the NCBI protein database by dedicated software

(Mascot, Matrix Science, London, UK). A Mascot score denoting an error probability below

0.05 for protein identification was deemed to be statistically significant.

Analysis of proteomic data

To assign the biological process and molecular functions defined by the Gene Ontology

Consortium[29] to the detected proteins, a comprehensive data search was performed based

on the UniProt database[30] for each individual protein using the rabbit proteome (ID:

UP000001811, last modified on March 13, 2018). As the rabbit proteome is incompletely anno-

tated, for pathway analysis the coding genes of the proteins were ascertained using the NCBI

protein database (accessed 07/2018) and their human orthologs were looked for by the Better-

Bunny analysis tool (v2.3, updated 11/2015)[31]. Afterwards, the corresponding PANTHER

tools[32] were applied (version 13.1, released on February 3, 2018), based on the GO database

version 13.1 (released February 3, 2018) as previously described[9].

Western blot

For western blot, fractions containing isolated mitochondria or lysates of whole tissue LM and

TD were stored in RIPA buffer (Tris 50mM, NaCl 150mM, Sodiumdesoxycholat 0.5%, SDS

0.1%, TritonX 1%, EDTA 2mM). They were heated to 95˚C for 5 minutes and were subjected

to 1-D vertical SDS-gel electrophoresis afterwards (100V, 75minutes) using polyacrylamide

gels (7.5 to 12%) and the BioRad Mini PROTEAN Tetra Cell chamber (BioRad, Hercules, CA,

USA). For blotting, the Blot Turbo RTA Transfer Kit (BioRad) was used according to manu-

facturer’s instructions (2.5A, 25V, 3min). Membranes were blocked by 5%-milk powder (Carl

Roth, Karlsruhe, Germany) for 1 hour and washed 3-times in in TBS-T (8 minutes). Incuba-

tion (overnight, 4˚C) was done using the following antibodies of Abcam (Cambridge, UK):

VDAC mouse (31kDa), Hsp60 mouse (60kDa), cytochrome C mouse (12kDa) and β-actin

mouse (42kDa). Donkey anti-mouse IgG (Abcam) was chosen as secondary antibody (1 hour).

Clarity Western ECL substrate (BioRad) was used and chemiluminescence was measured by

ChemiDoc MP (BioRad). ImageJ (version 1.48v) was employed for quantitative analysis. To

scrutinize the expression levels of the 5 complexes of oxidative phosphorylation, a dedicated

antibody cocktail was used (ab110413, abcam, Cambridge, UK), as Anti-PGC-1α (ab106814,

abcam) was applied for PGC-1α. Since even small effects of protein regulation of electron
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transport chain (ETC) complexes and PGC-1α are of major interest regarding to the hypothe-

ses created by 2-D DIGE, stain-free technology was used for normalisation, as previously

described[33].

Enzymatic activities of the mitochondrial respiratory chain

The enzymatic activities of the complexes I-IV were assayed spectrophotometrically. The

results were normalized to the activity of the citrate synthase. The activity of complex I

(NADH-ubiquinone oxidoreductase) was determined as previously described[34]. Con-

cisely, the oxidation of NADH at a wavelength of 340nm and, for control purposes, the rote-

none-insensitive complex I activity were quantified. The activities of complexes II (succinate

dehydrogenase) and III (Q-cytochrome-cytochrome-c-oxidoreductase) were measured by a

combined assay according to Spinazzi et al[35], who used succinate and cytochrome c as sub-

strates / electron acceptors. The absorbance was measured at 550nm for 3min. The activity

of the complex IV-enzyme was quantified by adding a mitochondrial isolate to a solution

containing DTT-reduced cytochrome c. The absorbance was measured at a wavelength of

550nm[12]. To determine the activity of citrate synthase, the protocol established by Srere

[36] was applied. Briefly, membrane proteins were solubilised by Triton X100. Acetyl-CoA,

oxalacetate and DTNB were added. Citrate synthase mediates the reaction of oxalacetate

with acetyl-CoA. The free CoA can convert DTNB to TNB, which was assessed by photome-

try at 412nm (200s). For all experiments a NanoDrop 2000c (ThermoFisher Scientific) was

used.

Natriuretic peptide measurements

After puncture of the marginal ear vein, samples were immediately transferred to chilled

Eppendorf-cups on ice for 30min and subsequently centrifuged (10,000g, 4˚C, 10min). The

supernatant was frozen at -80˚C. No freezing or thawing cycles were performed until final

measurement. Plasma BNP concentrations were quantified by a competitive enzyme immuno-

assay (KA1861, Abnova, Taipei City, Taiwan), according to manufacturer’s instructions. The

unit pg/ml is displayed. To convert it to recommended SI units of ng/l[37], multiply by 1

(ml�ng)/(pg�l). The concentration of BNP’s second messenger cGMP was measured in LM

and TD tissue by a competitive enzyme immunoassay (Biotrak cGMP, GE) as recommended

by the manufacturer.

Statistics

Values are shown as mean±standard error of the mean (SEM), if not indicated otherwise.

For qPCR, all statistics were calculated for ΔCT values. 95%-Confidence intervals for ΔΔCT-

values were computed according to Gauß’ error propagation. The results were potentiated to

show the geometric means of fold changes with 95% confidence intervals (CI) according to

the 2(-ΔΔCT)-method. Testing for significance was computed using the normally distributed

log-fold-changes (ΔΔCT) by unpaired student’s t-test.

The fold changes (FC) for ELVD and HF of the ratios of BNP and NPR-A or NPR-B were

calculated as:

FC BNP=NPR
ðELVD or HFÞ ¼

BNPELVD or HF

BNPCTRL
2DDCT ðELVD or HF� CTRLÞ
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The FC for ELVD and HF of the ratios of cGMP to NPR-A or NPR-B were calculated as:

FC cGMP=NPRðELVD or HFÞ ¼

cGMPELVD or HF

cGMPCTRL

2DDCT ðELVD or HF� CTRLÞ

The according confidence intervals were computed by the Fieller method [38] using the

online calculator of GraphPad Software (San Diego, CA, USA)[39].

All statistical analyses were performed using SPSS statistics version 22 (IBM, Armonk, NY,

USA) and GraphPad Prism Version 8.2.0. Statistical significance was assigned at a two-sided

p-values of less than 0.05.

Results

Skeletal muscle in tachypacing-induced heart failure

After 30 days of tachypacing, left ventricular systolic dysfunction was established in the HF

group (Fig 2A). The stable body weight (Fig 2B) despite sarcopenia might be due to fluid reten-

tion, in as much as the HF animals showed ascites and pleural effusion in the macroscopic

post mortem examination. Serum lactate levels were increased in HF (Fig 2C). Regarding mus-

cular alterations, a reduced overall protein content of LM was measured (Fig 2D). Systolic

heart failure provoked a slow-to-fast fibre type switch in LM as seen on representative slices

(Fig 2G and 2H) and substantiated by quantitative analysis (Fig 2E and 2F). Together, tachypa-

cing-induced heart failure was associated with signs of LM sarcopenia.

Proteomic screening indicates altered mitochondrial transmembrane

transport

To scrutinize the molecular alterations in skeletal muscle, an unbiased proteomic screening

approach was performed by 2D-DIGE from whole tissue of LM and TD and subsequently

from isolated mitochondria of each specimen. The isolation procedure resulted in accumu-

lated and predominantly undestroyed mitochondria as confirmed by western blotting and

transmission electron microscopy (Supplementary material S1 File Figure A). The proteins

found to be differentially expressed in progressing disease were mostly allocated to cytosol and

mitochondria (Fig 3A). As early as in ELVD, a total of 12 proteins were more expressed com-

pared to CTRL and afterwards identified (Table 1) in LM. 2 of 4 enzymes reaching the prede-

fined fold change ELVD/CTRL (FC) above 2, which is deemed to be of physiologic relevance,

were both part of glycolysis (glyceraldehyde-3-phosphate-dehydrogenase FC 2.3x; the rate lim-

iting enzyme pyruvate kinase FC 2.1x). In HF compared to CTRL, the concentrations of 4

cytosolic proteins were altered (Table 2), of which creatine kinase (M-type) reached the FC

threshold (FC 2.9x). Additionally, 4 proteins of the cytoskeleton and 2 enzymes of the electron

transport chain (ETC) exceeded a FC>2. The picture of up-regulated catabolic enzymes was

furthermore equally displayed and confirmed by the results from TD (Tables 3 and 4, Fig 3B).

In TD, the proportion of catalytic activity even increased from ELVD to HF.

As integral membrane proteins are difficult to isolate from the lipid bilayer by standard

lysis puffer[40] and might therefore be missed by our proteomic approach, we set out to scruti-

nise their abundance and activity by additional methods: Western Blotting revealed a down-

regulated expression of complex IV in LM of the ELVD and HF group (Fig 3C), which did not

translate into impaired activity of this complex (Fig 3D). Together, the results of the proteomic

screening approach revealed an early shift to catabolism in LM and TD. Particularly, the gly-

colysis pathway was stressed. Predominantly cytosolic catabolic enzymes were more abundant,
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whereas ETC complexes remained equally expressed except for complex IV, whose reduced

expression level did however not translate into functional relevance. Thus, the cytosolic set-up

favouring increased energy production was not matched by corresponding alterations of the

mitochondrial proteome. Since pyruvate produced by glycolysis is actively transported across

the inner mitochondrial membrane, we wondered, whether the transmembrane transport of

metabolites between the cytosol and the mitochondrial matrix could be hit in heart failure

induced LM sarcopenia and explain our results.

Pathway-focused gene expression analysis confirms altered mitochondrial

translocation system

As the screening proteomic approach generated the hypothesis of altered mitochondrial trans-

membrane transport system in tachycardiomyopathy-induced sarcopenia, a gene expression

analysis was conducted and focused on mitochondrial transport (GO:0006839), mitochondrial

protein import (GO:0030150), protein targeting to mitochondrion (GO:0006626), fatty acid

transmembrane transport (GO:1902001) and β-oxidation (GO:0006635). The results compar-

ing HF to CTRL confirmed the hypothesis of an altered mitochondrial transmembrane

transport of substrates (Table 5). Transporters of matrix-targeted preproteins showed

Fig 3. The cytosolic enzymatic set-up of skeletal muscle shifts to catabolic dominance very early in heart failure development. In progressive,

tachypacing-induced heart failure, alterations of mainly the cytosolic enzymatic set-up occurred early (A) and were characterised by homogenous

catabolic dominance in LM and TD (B). Despite the cytosolic shift to catabolism, the mitochondrial metabolic enzymes were barely affected: the

expression levels of the mitochondrial ETC complexes were not correspondingly more abundant. Complex IV was even less expressed (C), which did

however not translate to an altered enzymatic activity (D). A, B: Allocation (A) and molecular function (B) of the proteins, whose concentrations were
altered in ELVD and HF compared to CTRL. C: #p<0.05 Bonferroni post-test for p<0.05 (1-way ANOVA); relative protein levels after stain-free total
protein normalization.D: all values standardised to citrate synthase. A, B: n(CTRL/ELVD/HF) = 4/4/7. C,D: n = 4 for all shown groups. CTRL: control.
ELVD: early left ventricular dysfunction.HF: heart failure. LM: limb muscle. TD: thoracic diaphragm. C I-V: ETC complex I-V. ETC: electron transport
chain.

https://doi.org/10.1371/journal.pone.0225937.g003
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inhomogeneous results of a less expressed outer membrane transporter (Metaxin2 FC -1.3x)

and part of the PAM complex (GrpE FC -1.5x), with slightly more expressed inner membrane

translocases (TIMM17 FC 1.2x; TIM 8A FC 1.4x; TIMM10 FC 1.3x). The expression of

enzymes facilitating the import of fatty acids into mitochondria was increased (SLC25A20 FC

1.6x; CPT1B FC 2.2x, p<0.05), whereas components of the malate-aspartate shuttle were less

expressed in HF (SLC25A12 FC -1.6x; SLC25A13 FC -1.7x; p<0.05). Together, data suggest

a transmembrane transport, which favours the supply with fatty acids to intramitochondrial

β–oxidation and affects adversely the translocation of reducing equivalents (malate-aspartate

shuttle).

Generating a hypothesis by multi-omics approach—Linking altered

enzymatic set-up of LM to PGC-1α pathway and desensitised natriuretic

peptide signalling

Considering the previous results, the synopsis of muscle-fibre-type shift, boosted glycolytic

flux and reduced expression of ETC enzymes suggested suppressed PGC-1α signalling (cf. dis-

cussion section), which is under physiologic conditions known to be linked to natriuretic pep-

tide signalling[14]. As in heart failure natriuretic peptide signalling is desensitised[15], we

hypothesised, that desensitisation affects similarly LM. Indeed, the ratio of serum BNP to tis-

sue cGMP in LM increased markedly (Fig 4A), whilst natriuretic peptide receptor A (NPR-A)

Table 1. Identified proteins comparing ELVD to CTRL in limb muscle.

Identified Protein NCBI UniProtID Orthologue MOWSE FC p-value Allocation Function

Creatine kinase M-type gi|

126723370

P00563 CKM 146 1.4 <0.001 Cytosol Energy transduction

Troponin T, slow skeletal muscle gi|

149016651

Q7TNB2 TNNT1 173 1.6 0.015 Cytoskeleton Muscle contraction

Pyruvate kinase isozymes M1/M2

isoform 1

gi|

307548866

P11974 PKM 241 2.1 0.017 Cytoplasm Glycolysis

Glyceraldehyde-3-phosphate

dehydrogenase

gi|

126723533

P46406 GAPDH 270 2.3 0.04 Cytosol Glycolysis

Myosin light chain 3 gi|

291393583

G1T375 MYL3 475 1.9 0.025 Cytosol Muscle contraction

Aldehyde dehydrogenase 2,

mitochondrial

gi|

291406975

G1SUY2 ALDH2 386 1.4 0.025 Mitochondrial

matrix

Degradation of aldehyde derivatives,

ethanol detoxification

Phosphoglucomutase gi|1942196 P00949 PGM1 84 1.6 0.031 Cytoplasm Glycogenolysis

Heat shock 27kDa protein 2 gi|

291383898

G1T4G1 HSPB2 107 1.2 0.033 Cytoplasm,

nucleus

Positive regulation of catalytic activity

Glycerol-3-phosphate

dehydrogenase 1

gi|

291389121

P08507 GPD1 160 1.5 0.035 Cytoplasm Glycerol-3-phosphate shuttle

rCG29479, isoform CRA_a gi|

149034378

-� ZNF709 80 2.3 0.038 Nucleus Transcriptional regulation

Cytoplasmic beta-actin gi|

291413356

P68135 ACTA1 832 4.6 0.04 Cytoskeleton Skeletal muscle thin filament assembly

Aconitase 2, mitochondrial gi|

291410318

G1TUX2 ACO2 115 1.9 0.030 Mitochondrial

matrix

Tricarboxylic acid cycle

NCBI: NCBI account number. MOWSE: probability-based Molecular Weight SEarch score signifying the significance of protein-identification by peptide mass

fingerprint as -10�log10(p-value), thus a score>67 corresponds to a p-value<0.05. Orthologue: orthologue genes in rabbits and humans, looked up by the BetterBunny

tool v2.3 (11/2015). FC: fold change ELVD/CTRL. p-value: p-value for testing the expression levels ELVD versus CTRL (student’s t-test). ELVD: early left ventricular

dysfunction. CTRL: control.

�identification by MALDI-MS/MS in other species than rabbit.

https://doi.org/10.1371/journal.pone.0225937.t001
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Table 2. Identified proteins comparing HF to CTRL in limb muscle.

Identified Protein NCBI UniProtID Orthologue MOWSE FC p-

value

Allocation Function

Myosin-1 gi|

296201252

G1TKS9 MYH1 106 2.2 0.022 Myofibril Muscle contraction

Desmin gi|

284005349

G1SEF9 DES 878 1.8 0.037 Sarcolemma Muscle contraction

Creatine kinase M-type gi|

126723370

P00563 CKM 589 2.9 0.001 Cytosol Energy transduction

Glycerol-3-phosphate dehydrogenase 1 gi|

291389121

P08507 GPD1 253 1.8 0.024 Cytosol Glycerol-3-phosphate shuttle

Myosin alkali light chain 3 gi|

291393583

G1T375 MYL3 475 1.9 0.027 Cytosol Muscle contraction

Cytoplasmic beta-actin gi|

291413356

P68135 ACTA1 213 4.5 0.049 Cytoskeleton Skeletal muscle thin filament

assembly

Myosin-4 gi|

157954424

Q28641 MYH4 194 2.5 0.047 Myofibril Microtubule-based

movement

ATP synthase subunit d, mitochondrial gi|

291413480

G1T9N2 ATP5PD 90 2.6 0.003 Mitochondrial inner

membrane

Part of ATP synthase

Cytochrome b-c1 complex subunit 2,

mitochondrial

gi|

291390734

P34863 UQCRC2 216 2.0 0.007 Mitochondrial inner

membrane

Part of complex III, ETC

ATP synthase subunit alpha,

mitochondrial

gi|

291394323

G1SKT4 ATP5F1A 699 1.7 0.027 Mitochondrial inner

membrane

Part of ATP synthase

Pyruvate kinase PKM isoform 2 gi|

307548868

P11974 PKM 115 1.4 0.039 Cytosol Glycolysis

Cytochrome c oxidase subunit 5A,

mitochondrial

gi|

655887883

G1TZN7 COX5A 172 1.5 0.045 Mitochondrial inner

membrane

Part of complex IV, ETC

NCBI: NCBI account number. MOWSE: probability-based Molecular Weight SEarch score signifying the significance of protein-identification by peptide mass

fingerprint as -10�log10(p-value), thus a score>67 corresponds to a p-value<0.05. Orthologue: orthologue genes in rabbits and humans, looked up by the BetterBunny

tool v2.3 (11/2015). FC: fold change HF/CTRL. p-value: p-value for testing the expression levels HF versus CTRL (student’s t-test). HF: heart failure. CTRL: control.

ETC: electron transport chain. ATP: adenosine triphosphate.

https://doi.org/10.1371/journal.pone.0225937.t002

Table 3. Identified proteins comparing ELVD to CTRL in thoracic diaphragm.

Identified Protein NCBI UniProtID Orthologue MOWSE FC p-

value

Allocation Function

Cytochrome c oxidase subunit 5A,

mitochondrial

gi|

558121230

.� COX5A 84 1.3 0.019 Mitochondrial inner membrane Part of complex IV, ETC

Fatty acid-binding protein gi|

291399415

G1T7R1 FABP3 384 1.7 0.033 Cytoplasm Intracellular transport of

long-chain fatty acids

Cytochrome b-c1 complex subunit

Rieske, mitochondrial

gi|

655882729

P34863 UQCRFS1 600 2.8 0.012 Mitochondrial inner membrane Part of complex III, ETC

Glyceraldehyde-3-phosphate

dehydrogenase

gi|

126723533

P46406 GAPDH 412 3.0 0.018 Cytosol Glycolysis

Creatine kinase S-type gi|

555985457

.� CKMT2 246 2.9 0.019 Mitochondrial inner membrane /

intermembrane space

Energy transduction

Adenylate kinase 2, mitochondrial

isoform X2

gi|

655879866

G1SG80 AK2 219 2.3 0.019 Mitochondrial intermembrane

space

ADP biosynthetic process

NCBI: NCBI account number. MOWSE: probability-based Molecular Weight SEarch score signifying the significance of protein-identification by peptide mass

fingerprint as -10�log10(p-value), thus a score>67 corresponds to a p-value<0.05. Orthologue: orthologue genes in rabbits and humans, looked up by the BetterBunny

tool v2.3 (11/2015). FC: fold change ELVD/CTRL. p-value: p-value for testing the expression levels ELVD versus CTRL (student’s t-test). ELVD: early left ventricular

dysfunction. CTRL: control.

�identification by MALDI-MS/MS in other species than rabbit.

https://doi.org/10.1371/journal.pone.0225937.t003
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as main receptor of natriuretic peptides was down regulated in ELVD and still more in HF

(Fig 4B). The expression of NPR-B was decreased in HF, BNP’s clearance receptor NPR-C was

not altered during disease progression. The relationship between BNP and its main receptor

NPR-A (Fig 4C) mirrored the attenuated cGMP response (Fig 4A), whereas the ratio of the

receptor NPR-A and the second messenger cGMP did not change. Together, resistance to

natriuretic peptide signalling in LM of HF was confirmed and might be largely due to

decreased expression of its main receptor.

Combined RAS-/NEP-inhibition prevents loss of protein content in

cardiac-induced LM myopathy

In consequence, we hypothesised that a loss in LM protein content as surrogate of cachexia

could be prevented by combined RAS-/NEP-inhibition. Similar to the descriptive animal

Table 4. Identified proteins comparing HF to CTRL in thoracic diaphragm.

Identified Protein NCBI UniProtID Orthologue MOWSE FC p-

value

Allocation Function

Pyruvate Kinase gi|

109157779

P11974 PKM 451 2.0 0.008 Cytosol Glycolysis

NADH-ubiquinone oxidoreductase 75 kDa

subunit, mitochondrial

gi|

291392087

G1T359 NDUFS1 459 1.4 0.013 Mitochondrial inner

membrane

Part of complex I,

ETC

Fructose Bisphosphate Aldolase gi|

160286558

P00883 ALDOA 517 1.3 0.039 Cytoplasm Glycolysis

Malate dehydrogenase, cytoplasmic gi|

291386712

G1SQG5 MDH1 400 1.5 0.048 Cytoplasm Tricarboxylic acid

cycle

NCBI: NCBI account number. MOWSE: probability-based Molecular Weight SEarch score signifying the significance of protein-identification by peptide mass

fingerprint as -10�log10(p-value), thus a score>67 corresponds to a p-value<0.05. Orthologue: orthologue genes in rabbits and humans, looked up by the BetterBunny

tool v2.3 (11/2015). FC: fold change HF/CTRL. p-value: p-value for testing the expression levels HF versus CTRL (student’s t-test). HF: heart failure. CTRL: control.

ETC: electron transport chain.

https://doi.org/10.1371/journal.pone.0225937.t004

Table 5. Pathway-focused gene expression analysis comparing HF to CTRL in skeletal muscle.

Gene FC

(HF/CTRL)

Function

Caveolin2 -1.9 Mitogenesis

Fission 1 1.2 Fission

Carnitine palmitoyltransferase 2 2.4 Long chain fatty acid oxidation

Metaxin 2 -1.3 Mitochondrial translocation

GrpE-like 2 -1.5 PAM complex

TIMM17B 1.2 Mitochondrial translocation

Tim 8 A 1.4 Mitochondrial translocation

TIMM 10 1.3 Mitochondrial translocation

SLC25A12 -1.6 Translocation of amino acids

SLC25A13 -1.7 Translocation of amino acids

SLC25A20 1.6 Carnitine shuttle.

CPT1B 2.2 Beta oxidation. Rate limiting step.

MSTO1 -2.2 Fusion/Fission

CTRL: control. HF: heart failure. FC: fold change. PAM-complex: presequence translocase-associated motor (import of preproteins to the mitochondrial matrix).

TIMM: mitochondrial import inner membrane translocase. SLC: solute carrier family. CPT1B: carnitine palmitoyltransferase IB. MSTO1: protein misato homolog 1.

https://doi.org/10.1371/journal.pone.0225937.t005
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Fig 4. During heart failure progression, skeletal muscle exhibits an attenuated BNP/NPR-A/cGMP signalling and declining expression levels

of natriuretic peptide receptors. In heart failure, skeletal muscle was desensitized to BNP as shown by an increased ratio of serum BNP to LM

tissue cGMP (A). The expression levels of natriuretic peptide receptors A and B in LM decreased with disease progression (B). It was accompanied

by an increased ratio of serum BNP to NPR-A and B expression in LM (C, D), mirroring the extend of reduced BNP/cGMP-quotient (A). As the

ratio between NPR-A/B and the second messenger cGMP remained stable (E, F), the reduced cGMP response to BNP in LM is suggested to be

largely due to reduced expression of natriuretic peptide receptors. A: n = 3; �p<0.05 unpaired t-test. B: n = 4 for each group with the assay run in
triplicate. All fold changes are referenced to the corresponding CTRL. Shown are the geometric means with the according 95%CI. �p<0.05 unpaired t-
test on the log fold changes (ΔΔCT). C,D: n = 3/3/2 CTRL/ELVD/HF. E, F: n = 4 for each group. C-F: Shown are mean and standard deviation. All
fold changes are referenced to CTRL. ��p<0.01, ���p<0.001 unpaired t-test. CTRL: control. ELVD: early left ventricular dysfunction.HF: heart
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study, congestive heart failure was again provoked by incremental tachypacing during 30 days.

Seven animals were treated by a combined RAS-/NEP-inhibition, seven got placebo during the

pacing period. Treatment lowered the mean arterial pressure by 33.7%, showing efficacy of

combined RAS-/NEP-inhibition (Fig 5A). Left ventricular systolic dysfunction was established

in both groups (Fig 5B). Though fractional shortening did not differ between treatment and

failure. BNP: serum B-type natriuretic peptide level. cGMP: concentration of tissue cyclic guanosine monophosphate. NPR-A, B, C: natriuretic peptide
receptor A, B, C. LM: limb muscle.

https://doi.org/10.1371/journal.pone.0225937.g004

Fig 5. Combined RAS-/NEP-inhibition prevents loss of protein content in skeletal muscle independent of left ventricular function and

harmonises the regulation of β-oxidation. The blood pressure lowering effect demonstrated efficacy of combined RAS-/NEP-inhibition in the

animal study (A). Despite it did not avoid left ventricular systolic dysfunction (B), it prevented loss in skeletal muscle protein content (C).

Natriuretic peptide receptor B was more expressed in VPI treated animals than in the placebo group (both in end-stage heart failure), natriuretic

peptide receptor A tended to increase (D). A rescue of PGC-1α levels (E, F) is supposed to link natriuretic peptide signalling to fatty acid

metabolism, as the regulation of key enzymes of β-oxidation steps was harmonised (G). A: ����p<0.0001 Bonferroni post-test for ##p<0.01 two-way
ANOVA, n(Placebo/VPI) = 7/7. B, E: �p<0.05, ��p<0.01 unpaired t-test, n(CTRL/placebo/VPI) = 4/2/2. C: �p<0.05, n = 3 for each group. D: �p<0.05,

all fold changes are referenced to placebo. Shown are the geometric means with the according 95%CI. n(Placebo/VPI) = 7/7. E: relative protein levels
after stain-free total protein normalization. F: all fold changes are referenced to CTRL. Shown are the geometric means with the according 95%CI. G:

volcano plot, enzymes of β-oxidation (GO pathway 436.659, 436.660, 436.661), n = 4 animals for each group. n(CTRL/placebo/VPI) = 5/7/7. RAS-/
NEP-inhibition: combined inhibition of the renin-angiotensin-aldosterone system and neprilysin (omapatrilat). BL: baseline. CTRL: control.HF: heart
failure. VPI: omapatrilat, combined RAS/NEP-inhibitor. NPR-A, B, C: natriuretic peptide receptor A, B, C. PGC-1α: peroxisome-proliferator-

activated-receptor-γ-coactivator-1-α.

https://doi.org/10.1371/journal.pone.0225937.g005
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placebo group, LM protein content was preserved by combined RAS-/NEP-inhibition in

marked contrast to placebo (Fig 5C). It confirmed the hypothesis of the pharmacological inter-

vention study. NPR-B was more expressed in LM of HF-VPI animals than in the HF-placebo

group, NPR-A tended to increase (Fig 5D). Furthermore, RAS-/NEP-inhibition tends to res-

cue the expression levels of PGC-1α (Fig 5E and 5F). The regulation of key enzymes of β-oxi-

dation steps was harmonised (Fig 5G), matching the assumption of mediation by PGC-1α.

Discussion

Our study reports for the first time, that the animal model of tachypacing-induced heart failure

entails a generalized myopathy, occurring very early—even preceding a deterioration of sys-

tolic function. The progression from an early metabolic remodelling towards structural alter-

ations of skeletal muscle mirrors aspects of human disease[41]. In respect of previous animal

models of cardiac-induced myopathy[8,42–44], our model offers the unique possibility of

characterising the “pre-cachectic” state[7] and the timely dimension of disease. The multi-

omics approach confirmed previous data, provided new insights into the enzymatic remodel-

ling underlying futile substrate metabolism and led to a new hypothesis, linking heart failure

induced desensitisation of natriuretic peptide signalling to skeletal muscle catabolism. Concur-

rently, an interventional study validated a beneficial effect of combined RAS-/NEP-inhibition

on cardiac-induced myopathy.

Animal model—Translational implications

The typical human entity of tachycardia-induced heart failure can be fully resolved after cessa-

tion of the causal arrhythmia[45]. Diagnosis is often complicated by the reciprocal causal link

between arrhythmia and left ventricular dysfunction, as most structural heart diseases can lead

to arrythmia themselves[46]. In typical forms, effective interventional treatments of e.g. atrial

fibrillation[47] have been developed and proved clinical benefit in heart failure[48]. The

enduring complete reversibility is a rare characteristic beneath the other aetiologies of heart

failure syndrome[2], as coronary artery disease and most structural cardiomyopathies. They

induce cardiac remodelling and lead to a vicious cycle, that is further driven by excessive neu-

rohumoral stimulation[49]. Symptomatic heart failure affects more than 8% in the elderly

[50,51]. Despite optimal treatment recommended by the current guidelines[2], mortality is

reported about 17% during a follow-up period of 27 months in recent pharmacological studies

[52]. Albeit tachypacing-induced heart failure mimics an aetiology being nowadays curable in

humans, the tachypacing-induced heart failure model represents accurately the progressive

nature of heart failure[9,10,12] as well as the final common neurohumoral pathway of the

highly prevalent human heart failure syndrome[12,53–55]. These particular features qualify

especially this model for our current research purpose: other surgical procedures (e.g., ligation

of coronary arteries[44], transverse aortic constriction[42]) do not display a chronic and

gradual progression of heart failure induced myopathy as recently reviewed[8], albeit the

assessment of early alterations could indicate new diagnostic or even therapeutic aspects for

prevention[41].

Our animal model mirrored some hallmarks of the human disease state: as in heart failure

patients, the fibre type distribution was altered with an augmented percentage of fast twitch

fibres[56]. The enzymatic set-up in LM and TD resembles metabolic shift to anaerobic glycoly-

sis, which can be seen in limb muscles of human heart failure patients by 31P magnetic reso-

nance spectroscopy[57].

An unsettled issue in human heart failure is the differentiation between effects of inactiv-

ity and systemic metabolic remodelling on skeletal muscle. In chronic, systemic diseases,
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patients tend to avoid physical exercise and inactivity causes skeletal muscle alterations itself

[58]. The proteomic signature of inactive skeletal muscle in humans at long term bed rest

has been recently reviewed[59]. It comprises a down-regulation of enzymes belonging to

oxidative metabolism. A study using 2-D DIGE in muscle biopsies of patients at long term

bed rest reports particularly decreased isoforms of aconitase[60]. This particular finding on

the level of the single enzyme aconitase as well as the whole picture of the down regulated

pathway of oxidative metabolism contrasts our results of elevated catabolism with increased

glycolytic flux and up-regulated aconitase. Thus, the proteome profile in our study can be

set apart from published proteomic signatures of atrophy. To a greater degree, our results

resemble aspects of cardiac-induced myopathy in humans, which is frequently characterised

by early catabolic dominance, particularly boosted glycolysis[41], preceding loss in function

[61].

To further scrutinise the role of inactivity in our model, TD was additionally evaluated.

Albeit TD is in life-long, constant use[62], heart failure patients suffer from a loss in respira-

tory muscle strength[63], which increases dead-space ventilation and aggravates ventilation-

perfusion mismatch during exercise[64]. Our animal model showed accordingly a general-

ised myopathy of LM and TD. Proteomics revealed a similar catabolic dominance in the

diaphragm.

Together, our model mimics aspects of skeletal muscle alterations in human heart failure.

Even if inactivity may have an additional effect on skeletal muscle in our model, the metabolic

remodelling of skeletal muscle seems to be induced by systemic alterations. In the translational

context, our animal model might provide additional value in respect of existing models, since

it allows for the experimental evaluation of early, systemic induced skeletal muscle remodelling

as well as of the progression from myopathy to heart failure provoked cachexia.

Remodelling of metabolic enzymes in heart failure induced sarcopenia—

Catabolic dominance and futile cycles

From a metabolic view, heart failure induced sarcopenia and cachexia is largely recognised as

state of catabolic dominance[65]: this is well mirrored by the increased expression or abun-

dance of enzymes catalysing glycolysis and β-oxidation in our HF group, which we could

already describe in an very early stage of heart failure development (ELVD) in line with recent

literature[41]. Beyond this broad term of catabolism, the transcriptomic and proteomic

screening substantiates the understanding of underlying enzymatic remodelling: the increased

abundance of pyruvate kinase can facilitate an augmented glycolytic flux, entailing an

increased cytosolic consumption of NAD+ to produce NADH. As the inner mitochondrial

membrane is impermeable to NADH/NAD+[66], NADH depends on the malate-aspartate

shuttle, that ensures the transmembrane transport of electrons to serve further energy produc-

tion (oxidative phosphorylation) and to replenish the cytosolic NAD+ pool for glycolysis[67].

Core enzymes of this shuttle were found decreased in our HF group. It is tempting to specu-

late, that the coincidence of decreased shuttling capacity and increased glycolytic enzymes

favours the regeneration of NADH by lactate dehydrogenase resulting in increased lactate lev-

els, not necessarily associated with hypoxia[68]. Consistently, lactate dehydrogenase activity is

increased in quadriceps of a heart failure model using ligation of the left anterior descending

coronary artery in rats[44]. In humans, exercise magnetic resonance spectroscopy of the flexor

digitorum superficialis muscle reported a lower intracellular pH at each workload in heart fail-

ure patients compared to healthy volunteers[69]. Consistently, our measurements showed an

increase in serum lactate concentrations. Elevated blood lactate levels have been known in

heart failure patients since 1958[70]. Despite marked progress in treatment regimens[2,71],
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elevated lactate is still part of the metabolic fingerprint of heart failure[72] and common in

patients admitted to hospital for heart failure[73].

Additionally, the revealed enzymatic remodelling might further aggravate futile substrate

metabolism as described for cancer cachexia[74]: As the proton of NAD+ + H+ contributes

to the proton-motive force in the mitochondrial intermembrane space and pyruvate delivers

more energy by means of ATP by being introduced to citric acid cycle and oxidative phosphor-

ylation, the conversion of glucose into lactic acid is an energy-inefficient process[75]. LM pro-

ducing lactate resembles much to the accelerated Cori cycle in cancer cachexia[76], a futile

cycle increasing unnecessary energy consumption: lactate produced by the tumour is regener-

ated to glucose by the liver consuming ATP. The regenerated glucose is recycled to the tumour,

which breaks it down to lactate again[77]. Together, our unbiased, hypothesis-free screening

approach generated a novel hypothesis, which our results and published data would congru-

ously fit and which is subjected to further experimental assessment.

PGC-1α and natriuretic peptides—Combined inhibition of RAS/NEP

ameliorates heart failure induced cachexia

Forming an overall perspective of the results so far, the histological and metabolic findings

drew the picture of an suppressed PGC-1α signalling, as PGC-1α exerts pleiotropic effects

[78], which are opposite to our findings: PGC-1α mediates the maintenance of normal

muscle fibre-type composition[79,80], suppresses the glycolytic flux[81] and increases the

expression of genes involved in oxidative phosphorylation[82]. Of particular note, PGC-1α
expression is linked to natriuretic peptides, pivotal cardiac hormones involved in heart fail-

ure disease[12,83]. Activation of NPR-A induces PGC-1α gene expression in a cGMP-depen-

dent manner in human myotubes[14]. Interestingly, with progression of heart failure the

functional effectiveness of natriuretic peptides becomes blunted as recently reviewed[15].

The ratio of cGMP to BNP is an adequate index of the effectiveness of BNP [15,84–87]. In

our study, LM showed a diminished responsiveness to BNP. Additionally, NPR-A-expres-

sion was decreased in LM during disease progression. Apart from reduced NPR-A expres-

sion [88], other mechanisms are known to diminish target organ responsiveness as receptor

desensitization[89,90] and inhibited downstream signalling[91]. To get an impression of the

effect size of the measured NPR-A-downregulation on the attenuation of the BNP/NPR-A/

cGMP pathway in heart-failure induced skeletal muscle remodelling the quotients serum

BNP to NPR-A expression as well as tissue cGMP to NPR-A were computed. The ratio of the

active hormone BNP to its main receptor increased remarkably (Fig 4C) and mirrored the

extend of pathway attenuation (Fig 4A), suggesting a relevant effect of the observed receptor-

downregulation. As the ratio between cGMP and NPR-A remained unchanged, a relevant

role of NPR-A desensitization or inhibited downstream signalling as alternative explanation

for blunted BNP/NPR-A/cGMP-signalling in heart-failure induced skeletal muscle remodel-

ling seems rather unlikely.

In conspectus of (I) the attenuated BNP/NPR-A/cGMP pathway in LM of HF animals, (II)

the published link between natriuretic peptide signalling and PGC-1α expression and (III) his-

tological, transcriptomic and proteomic hallmarks of reduced PGC-1α activity, we hypothe-

sised that a pharmacological intervention, increasing the availability of biological active BNP

without aggravating effector desensitization[15], increases PGC-1α expression and thus, ame-

liorates protein content of skeletal muscle as surrogate marker of catabolic dominance and

clinically, cachexia. For evaluating the hypothesis, an interventional study was designed, which

compared in the animal model of tachypacing-induced heart failure a group with symptomatic

heart failure treated with omapatrilat during 30days of pacing to a group fed with placebo.
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Omapatrilat is the leading substance of vasopeptidase inhibitors (VPI)[92], that inhibit the

angiotensin converting enzyme as well as the natriuretic peptides degrading enzyme neprily-

sin[12,93] and paved the way for angiotensin-receptor neprilysin-inhibitors[52]. VPI increased

PGC-1α-levels in LM of heart failure animals and prevented LM from protein loss, despite no

effect of VPI on left ventricular systolic function was seen in our sample. Summarising, based

on published literature and our transcriptomic and proteomic screening approach, our data

provide evidence for a hitherto unrecognised beneficial effect of combined RAS/NEP-inhibi-

tion on heart-failure induced cachexia, which further broadens the favourable effect spectrum

of NEP-inhibition in heart failure. It is tempting to speculate about substantial clinical rele-

vance, as mortality and the loss in quality of life due to muscle weakness and cachexia are fre-

quent and still coming to the fore[41] and a combination drug comprising NEP-inhibition

has recently been approved, marketed and recommended by current guidelines[2,52]. It ought

to be subjected to further clinical studies, whether the beneficial effect of NEP-inhibition on

skeletal muscle is transferrable to humans. Beyond pharmacological management, the results

might entail a further treatment option: PGC-1α is targetable by long-term physical activity

[94,95] and could additionally explain advantageous impacts of physical exercise on heart fail-

ure outcome[96,97].

Limitations

Some limitations have to be carefully respected: the ratio of serum BNP to tissue cGMP is com-

monly deemed to represent the effectiveness of natriuretic peptide signalling[15,84–87,98].

Thus, BNP application elevates cGMP levels in experimental heart failure[87]. However, tissue

cGMP is also produced coupled to nitric oxide signalling or even independent of natriuretic

peptides and nitric oxide[99]. Together, it cannot be ruled out, that other signalling pathways

influence the BNP/cGMP-ratio. But aside from the BNP/cGMP-ratio, out initial suggestion of

desensitised natriuretic peptide signalling is additionally strengthened by elevated BNP and

decreased NPR-A. Together with all necessary caution in interpretation, the elevated ratio is a

congruent finding, fitting the altered natriuretic peptide signalling axis.

Concerning the treatment study, omapatrilat was given instead of the novel combination

drug sacubitril/valsartan[52]. Unfortunately, at the time we designed the trial and applied for

permission of the governmental animal care committee, sacubitril/valsartan was not available.

Due to very similar modes of action of NEP inhibition[100], a class effect appears likely, but

has to be validated in further studies.

Omapatrilat combines the inhibition of two modes of action: inhibition of ACE and of NEP

[92]. Hence, we cannot rule out a potential beneficial effect on skeletal muscles by ACE-inhibi-

tion with additive value to NEP-inhibition or even outperforming the NEP-inhibition. How-

ever, since NEP inhibition results necessarily in vivo in RAS-activation, NEP inhibition

requires unavoidably concomitant RAS-inhibition to be of any clinical benefit[101,102] and a

sole NEP inhibition in an in vivo study did not appear reasonable. Notwithstanding, published

work proved a mechanistic link between natriuretic peptides and PGC-1α in vitro[14], that

provided the basis of our in-vivo experiments. The beneficial effect was additionally indepen-

dent of left ventricular ejection fraction.

Neprilysin degrades further substrates apart from natriuretic peptides, e.g. oxytocin, gastrin

endothelin-1 and several others[103]. Thus, alternative effect pathways between VPI and miti-

gated protein loss than BNP/NPR-A/PGC-1α cannot be ruled out. With respect to these limi-

tations, our data cannot actually prove causality of reinforced BNP/NPR-A/PGC-1α-pathway

for ameliorated myopathy in heart failure, but they may contribute to the growing evidence

for this mechanistic path as discussed above[14].
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Conclusion

Tachypacing-induced heart failure entails a generalised myopathy, preceding deterioration of

systolic function. By mirroring the time perspective of cardiac-induced myopathy in humans,

the model provides a unique feature. The early hypercatabolic state of skeletal muscles com-

prises enzymatic remodelling, which renders the tissue prone to futile substrate metabolism. A

combined RAS-/NEP-inhibition ameliorates cardiac-induced myopathy independent of sys-

tolic function, which could be linked to stabilised NP/cGMP/ PGC-1α signalling.

Supporting information

S1 File. Table A: Gene lists for pathway-focused gene expression analysis: fatty acid

metabolism. Table B: Gene lists for pathway-focused gene expression analysis: Mito-

chondria. Table C: Gene lists for pathway-focused gene expression analysis: PPAR Tar-

gets. Figure A: Mitochondria were sufficiently isolated from whole LM tissue. (A) After

isolation of mitochondria, detecting specific proteins of mitochondrial matrix (Hsp60),

cytosol (β-actin), outer (VDAC) and inner (cytochrome c) mitochondrial membrane by

western blot validated the enriched number of mitochondria. (B) The isolated mitochondria

were in large majority undestroyed (aside from matrix oedema related to sample process-

ing), as visualised by transmission electron microscopy. Representative images of western
blot (A) and transmission electron microscopy (B). LM: limb muscle. CTRL: control animal.
PC: positive control (lysates of whole LM tissue from rats). ELVD: early left ventricular dys-
function.

(DOCX)

Author Contributions

Conceptualization: Alexander Dietl, Samuel Sossalla, Andreas Luchner, Christoph Birner.

Data curation: Alexander Dietl, Ingrid Winkel, Gabriela Pietrzyk, Astrid Bruckmann, Josef A.
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