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Variable Order Block Method for Solving Second Order 
Ordinary Differential Equations 

(Kaedah Blok Peringkat Berubah untuk Penyelesaian Persamaan Pembezaan Biasa Peringkat Kedua)

ZARINA BIBI IBRAHIM, NOORAINI ZAINUDDIN*, KHAIRIL ISKANDAR OTHMAN, 
MOHAMED SULEIMAN & ISKANDAR SHAH MOHD ZAWAWI

ABSTRACT

This paper proposed 2-point block backward differentiation formulas (BBDF) of order 3, 4, and 5 for direct solution 
of second order ordinary differential equations. These methods were derived via backward difference interpolation 
polynomial with two solutions are produced simultaneously at each step. All the three different orders of 2-point BBDF is 
implemented in variable order scheme. The scheme utilizes the local truncation error, which is generated by the single 
order of 2-point BBDF method. Numerical results are presented to illustrate the validity of the proposed scheme.
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ABSTRAK

Kertas ini membangunkan formula 2-titik blok pembezaan kebelakang (FBPK) peringkat 3, 4, dan 5 untuk menyelesaikan 
persamaan pembezaan biasa peringkat kedua. Kaedah ini diterbitkan melalui polinomial interpolasi beza kebelakang 
dengan dua penyelesaian diberikan secara serentak untuk setiap langkah. Ketiga-tiga peringkat 2-titik FBPK dijalankan 
dengan skema peringkat berubah. Skema ini menggunakan ralat pangkasan setempat, yang dijanakan oleh setiap peringkat 
kaedah 2-titik FBPK. Keputusan berangka ditunjukkan untuk menggambarkan kesahihan skema yang dicadangkan. 

Kata kunci: Kaedah blok; masalah nilai awal; PBB peringkat kedua; peringkat berubah

INTRODUCTION

In recent years, studies on higher order Ordinary 
Differential Equations (ODEs) have been done vigorously. 
Some examples of higher order ODEs can be seen in the 
orbit equations, satellite tracking and fluid dynamics. 
The popular approach to solve higher order ODEs is by 
reducing it into a system of first order. This approach will 
increase the number of equations to dn, where d and n are, 
respectively, defined as order and number of equations 
in higher order form. The equations were later solved by 
the first order solver, for example the method based on 
backward differentiation formula (Ibrahim et al. 2007).

This paper considered second order ODEs as follows,

	 	 (1)

in the interval x ∈ [a, b]. 
	 The direct approach to higher order ODEs is believed 
to offer speed and accuracy advantages (Gear 1967). 
There are various direct solvers discussed in the literature. 
For instance, Runge-Kutta method (Ismail et al. 2016), 
Runge-Kutta-Nyström method (Chawla & Sharma 1985), 
hybrid method (Jator 2010; Kambo et al. 1983), additive 
parameters method (Sesappa Rai & Ananthakrishnaiah 
1996), and block method (Chien et al. 2018; Ismail et 
al. 2018; Waeleh & Majid 2017; Zainuddin et al. 2014), 

to name a few. Block method were first introduced by 
Milne (1953) as a means of obtaining starting values for 
predictor-corrector schemes. Fatunla (1991) then proposed 
the block method that directly solve special form of (1). 
The derivation was carried out based on the order definition 
which ensure the method is of order three or four. Since 
then an enormous amount of studies has been done on 
solving (1) or its special form directly in block term (Jator 
2013, 2010; Jator & Li 2009; Ibrahim et al. 2012; Ismail 
et al. 2018; Sagir 2013; Waeleh & Majid 2017; Zainuddin 
et al. 2014). Our intention is to derive the 2-point block 
backward differentiation formulas (BBDF) using variable 
order scheme for solving (1). The proposed method solves 
such problem directly and produce two approximated 
solutions concurrently for each successful integration step. 

DERIVATION OF 2-POINT BLOCK BACKWARD 
DIFFERENTIATION FORMULAS 

The derivation of the 2-point block backward differentiation 
formulas (BBDF) is based on backward difference 
interpolation polynomial. The approximation at two 
points, i.e. xn+1 and xn+2 are computed simultaneously by 
using the values of the preceding blocks (Figure 1). To 
apply the variable order scheme, three different orders of 
2-point BBDF is derived. As the order of 2-point BBDF is 
distinguished by the number of interpolating points, three 
different back values are used in derivation step. 
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	 The interval [a, b] is first divided into a series of block, 
with each block containing two points. The formula of 
k, k = 3, 4, 5 back values 2-point BBDF are derived from 
the set of interpolating points {(xn–2, yn–2), …, (xn+2, yn+2)}, 
{(xn–3, yn–3), …, (xn+2, yn+2)} and {(xn–4, yn–4), …, (xn+2, 
yn+2)}, respectively. Subsequently, the backward difference 
interpolation polynomial,  Pk(x) which interpolates 
equation (1) at k back values is given by:

	 ,	 (2)

where  .

	 The corrector formulas of  and yn+1 are defined by 
differentiating (2) once and twice, i.e.  j = 1, 2 at x = xn+1 
to obtain:

	 	 (3)

where  
	
	 The method of generating function is used for finding 
the general relation of the coefficients δj,m, j = 1, 2. The 
resulting coefficients of δj,m, for j = 1 and j = 2 are tabulated 
as follows:

	 j = 1;	 	 (4)

	 j = 2; 

(5)

	 The corrector formulas at the point x = xn+1 which are 
  and yn+1 are generated respectively by substituting δ1, m 

and δ2, m into (3). For the formulas of 2-point BBDF with k 
= 3, the interpolation points {(xn–2, yn–2), …, (xn+2, yn+2)} are 
used. Therefore, the derivation of  is derived with k = 3 
and j = 1. The respective coefficients of δ1, m are substituted 
into (3) as follows:

 		  (6)

	 Letting , the first corrector formula for 
2-point BBDF with k = 3 is defined. The corrector formula 
of yn+1 is derived by using similar approach as (6) by 
substituting δ2, m with k = 3  and j = 2 into (3).

(7)

	 Following equation (1),  and after we 
simplified the term for yn+1, the corrector formula for yn+1 
is as follows:

	 . 	 (8)

	 The corrector formulas of  and yn+1 for k = 4 and
k = 5 are derived by applying similar approaches as (6) 
and (7). 
	 For the derivation of the corrector formula at the 
second point, i.e. x = xn+2, (2) is differentiated once and 
twice, i.e. j = 1, 2 with x = xn+2.

	

		  (9)

	 Subsequently, the formulas for the coefficients γj, m, 
j = 1, 2 after we adopted the generating function strategy 
are as follow;

	 j = 1;	 	 (10)

	

	
	 j = 2;	 	 (11)

FIGURE 1. The interpolating point for 2-point BBDF
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	 The corrector formulas of  and yn+2 are then easily 
derived by applying the similar approach as to obtain the 
corrector formulas of  and yn+1. The formulas of 2-point 
BBDF for k = 3, 4, 5 are tabulated in Table 1.

CONVERGENCE AND STABILITY ANALYSIS

The basic properties of any linear multistep method (LMM) 
comprises the convergence, consistency and zero stability. 
The convergence of the LMM is confirmed if it is consistent 
and zero-stable. To accommodate the discussion on the 
convergence of the proposed method, it is convenience to 
express it in its general form.
	 The standard LMM for the second order ODEs can be 
written as:

	 	 (12)

and .

	 Following (12), the 2-point BBDF can be written in 
matrix difference equation as follows:

	 	 (13)

where Aj, Bj and Dj are mr by 1 matrices with m denotes 
the m-th order ODEs and r is the block size. The linear 
difference associated with (13) is given by:

	 	 (14)

	

	 By expanding the functions y(x + h(j – (k – 1))),  yʹ(x 
+ h(j – (k – 1))) and  f (x + h(j – (k – 1))) about the point 

TABLE 1. The 2-point BBDF for k = 3, 4, 5 

k yn–4 yn–3 yn–2 yn–1 yn yn+1 yn+2 h3fn+1 h2fn+2

3

0 0 0 0

yn+1 0 0 0 – 0

0 0 – 3 – 4 0 0

yn+2 0 0 – – 0 0

4

0 – 1 – 2 0 0

yn+1 0 – – 0 – 0

0 – 5 5 0 0

yn+2 0 – – 0 0

5

– – – 0 0

yn+1 – – – 0 – 0

– – –6 0 0

yn+2 – – 0 0
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x by using Taylor series, and by collecting the terms in 
power of h gives:

 		  (15)

where the constant Cq is defined as:

	 (16)

	 Aj, Bj and Dj are equivalent to coefficients of 
  and fn+j–(k–1), respectively. 

	 According to Henrici (1962), the LMM for second order 
ODEs has order p if C0 = C1 = … = Cp+1 = 0, and Cp+2 ≠ 0. 
Cp+2 is the error constant. Applying methods in Table 1 into 
(13), the order and error constant for each k are tabulated 
as in Table 2. 
	 Therefore, the 2-point BBDF with k = 3, 4, 5 are order 
of 3, 4, 5, respectively.
	 To justify the convergence of methods in Table 1, the 
following definition is referred.

Definition 1 The block method (13) is said to be consistent 
if it has order p ≥ 1.
	 Following this, one of the criteria for convergence is 
assured as all the three derived methods has order greater 
than one. To guarantee the zero stability of the proposed 
method, the following definitions are referred.

Definition 2  The block method is zero-stable provided the 
roots Rj of its first characteristic polynomial satisfy |Rj| ≤ 1, 
j = 1(1)k and for those roots with |Rj| = 1, the multiplicity 
must not exceed 2 (Fatunla 1991).

Definition 3  The LMM is said to be absolutely stable if the 
roots of the characteristic equation are in moduli less than 
one for all values of the step length h.
	 The zero stability of the 2-point BBDF is determined 
by imposing the following test equation into Table 1.

	 yʺ = θyʹ + μy,       θ, μ ∈ ℜ. 	 (17)

	 Subsequently, the coefficients are rearranged and 
rewritten in the matrix form as follows:

	 A0zm =  Aizm–i,       n = 2m,	 (18)

where A0 and Ai are 4 by 4 matrices.

	

	 	 and

	

	

	 The determinant of the matrix A0R
3 –  AiR

3–i implying 

the stability function, L(R, H1, H2) of the method. Setting 
H1 = h2μ and H2 = hθ, the stability function of the 2-point 
BBDF for k = 3, 4, 5 are obtained.

TABLE 2. Order and error constant for 2-point BBDF

Method Order p Error constant Cp+2

k = 3 (3   3   3   3)T

k = 4 (4   4   4   4)T

k = 5 (5   5   5   5)T
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	 k  =  3 ;      	
	

			 

					   

(19)

	 k = 4;  	
	

		

(20)

	
	 k = 5;  
   	

	 (21)

	 Zero stability is concerned with the stability of LMM 
as h approaching zero. As h tends to 0, the coefficients  
H1, H2 in (19), (20), and (21) tends to 0. Subsequently, the 
first characteristic polynomials for the 2-point BBDF are 
interpreted as:

	 k = 3;   	 (22)

	 k = 4;   

	 (23)

	 k = 5;	

		  	 (24)

	 By solving (22), (23) and (24), the roots R are obtained 
as follows:

	 k = 3;	|R|	 =	0, 0, 0, 0, 0, 0.0270270, 1, 1.

	 k = 4;	|R|	 =	0, 0, 0, 0, 0.0967175, 0.0119531, 1, 1.

	 k = 5;	|R|	 =	0, 0, 0, 0, 0, 0, 0, 0.4209068, 0.0283803,
				    0.0283803, 1, 1.
		   
	 Following this, the zero stability of the 2-point BBDF 
is guaranteed since all the roots of first characteristic 
polynomials satisfy the Definition 2.

IMPLEMENTATION OF VARIABLE ORDER 2-POINT BBDF

This section describes the implementation of 2-point BBDF 
method using modified Newton iteration technique. The 
2-point BBDF can be generalized as:

	 	 (25)

where W1, W2, V1, V2 are the back values. As the 2-point 
BBDF is a block method, it required simultaneous 
implementation of formulas at the points xn+1 and xn+2. 
We apply the same derivation techniques of the Newton 
iteration matrices as proposed in Ibrahim et al. (2012). The 
notations i and i–1 are used to differentiate the number of 
iterations. Given as follows are the corresponding matrices 
that need to be solved in the iteration process. 

(26)

and followed by

	 .	 (27)
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	   and  are the increments that will be added 
to the old iterations of  and , respectively. These 
increments are solved by LU decomposition.  Jn+1, n+2 and 

 are the Jacobian of fn+1, n+2 with respect to yn+1, n+2 and 
, respectively. The implementation is started with the 

lowest order of 2-point BBDF, i.e. order 3. As the initial 
conditions only provide the values for yn–2 and , the 
values of  and  are needed in implementing the 
2-point BBDF of order 3. Therefore, the sequential direct 
second order Euler method is used at the initial stage of 
integration. Subsequently, the following steps are carried 
out;

Step 1: P: the predicted values of  and  are 
computed by using the predictor formula; Step 2: E: the 
predicted values are used to find ; Step 3: C: the 
iteration matrices in (26) and (27) are applied to find the 
increments of  and ; Step 4: E: the corrected 
values of  and  are used to evaluate the values 
of ; Step 5: repeat steps 3 and 4.
	 We used two stages of the Newton iteration, i.e. i = 
1, 2. After the second iteration, the local truncation error 
LTEk–1 of order k, k = 3, 4, 5 are estimated. These LTEk–1 are 
used to determine the order for the next integration step. 
The estimation of LTEk–1 is given by:

	 	 (28)

	 Thus, if the method of order 3 is used, the LTE2 is 
approximated by the difference of yn+2  from 2-point BBDF 
of order 2 and 3. All the three LTEs are calculated and the 
highest will determine the order for the next integration 
step. The LTEk–1, k = 3, 4, 5 are given by,

	 	 (29)

 		

	 (30)

	 	 (31)

RESULTS AND DISCUSSION

To validate the competency of the proposed variable order 
scheme, the numerical performances of variable order 
2-point BBDF method is compared with single order 2-point 
BBDF (order 3, 4, 5). All 2-point BBDF codes are written 
in C++ language. All problems are demonstrated in the 
interval x = [0,10]. The following abbreviations used in 
the tables indicates the following;

H : Step size (specified by user); VOBBDF : variable 
order 2-point BBDF; O3 : 2-point BBDF of order 3; O4 : 
2-point BBDF of order 4; O5 : 2-point BBDF of order 5; 
MAXE : Maximum error attained; AVE : Average error 
attained; TIME : Computation time in second.

The maximum error is calculated as follows:

	 MAXE = 	 (32)

where . As two approximations are 

given simultaneously, t = 1 and 2 equivalents to first and 
second solutions, respectively. (y(xi))t is the t-th component 
of the exact solution and (yi)t is the t-th component of 
computed solution at xi, N is the number of equations in 
the system and STEP is the total number of steps. Mixed 
error test is used where A=1, B=1. 

Problem 1: Fang et al. (2009),

	 y1(0) = 1,     (0) = 0,      y2(0) = ε,     (0) = 5,

where ε is equal to 10-3 and the exact solutions are given 
as  y1(x) = cos (5x) + ε sin (x2) and y2(x) = sin (5x) + ε cos 
(x2). By comparing the results of variable order 2-point 
BBDF and single order 2-point BBDF methods, the variable 
order scheme gives lowest maximum and average error. 
Although the improvement in maximum error is not 
much different than single order methods, it is shown 
that the variable order scheme is capable to give better 
approximation compared to single order methods (Table 3).

Problem 2: Lambert and Watson (1976),

	 y1(0) = a + f (0),     (0) = fʹ (0),

	 y2(0) = f (0),           (0) = λa + fʹ (0),
		
where f (x) is chosen to be e–0.05x, whereas the parameters 
a and λ are equivalent to 20 and 0.1, respectively. The 
exact solutions are y1(x) = a cos (λx) + f (x) and y2(x) = 
a sin (λx) + f (x). As the step size decreases, the variable 
order 2-point BBDF gives least maximum and average error. 
Improvement in accuracy for variable order scheme is due 
to the changing of order mechanism which is depend on 
LTE. At step size 10-2, the 2-point BBDF of order 4 has least 
maximum and average error. It can also be seen that the 
variable order 2-point BBDF has largest maximum error 
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because the variable order starts with order 3. In fact, the 
2-point BBDF of order 3 also has the highest average error. 
Although the proposed method gives largest maximum 
error, the average error become smaller. As the step size 
decreases, it shows that the variable order scheme improves 
the accuracy (Table 4).

Problem 3: Jator and Li (2009)

	 Lqʺ(t) + Rqʹ(t) +  q = E(t),

	 q(0) = 0,   i(0) = 0.

	 This is the linear ODEs for LRC series circuit. The 
notations L, C, and R indicates the inductance, capacitance 
and resistance, respectively. The parameter q(t) is the 
instantaneous charge at the time t, E(t) is the voltage, and 
i(t) is the current. The problem is solved with L = 1, R = 
20, C = 0.005, and E(t) = 150. The theoretical solution 
is  From Table 5, it 
is observed that variable order 2-point BBDF has lowest 
maximum and average error compared to single order 
2-point BBDF methods. 
	

TABLE 3. Numerical result for Problem 1

H METHOD MAXE AVE TIME

10-2

VOBBDF
O5
O4
O3

1.6644E-03
3.6701E-03
2.3996E-03
2.3185E-03

6.2225E-04
1.5501E-03
9.6153E-04
1.7790E-03

0.004777
0.004913
0.003470
0.003271

10-3

VOBBDF
O5
O4
O3

1.6696E-05
3.6745E-05
2.3969E-05
2.3245E-05

6.1271E-06
1.3616E-05
8.8273E-06
1.7060E-05

0.047174
0.034346
0.032382
0.031982

10-4

VOBBDF
O5
O4
O3

1.6764E-07
3.6746E-07
2.3977E-07
2.3256E-07

6.1402E-08
1.3441E-07
8.7929E-08
1.7292E-07

0.469456
0.326335
0.321272
0.325334

10-5

VOBBDF
O5
O4
O3

2.1612E-07
2.1699E-07
5.1404E-07
1.4518E-06

4.8313E-08
4.9141E-08
1.1700E-07
6.5668E-07

4.716317
3.251728
3.224124
3.243763

TABLE 4. Numerical result for Problem 2

H METHOD MAXE AVE TIME

10-2

VOBBDF
O5
O4
O3

8.5902E-03
6.2887E-03
5.0390E-03
8.2158E-03

2.0453E-03
2.7437E-03
1.6928E-03
4.1048E-03

0.001184
0.002384
0.001012
0.000894

10-3

VOBBDF
O5
O4
O3

2.8100E-05
7.7805E-05
5.0828E-05
3.9927E-05

9.5946E-06
2.2195E-05
1.4204E-05
2.6833E-05

0.011453
0.010420
0.008872
0.008606

10-4

VOBBDF
O5
O4
O3

3.5572E-07
7.7976E-07
5.0862E-07
4.8410E-07

9.6452E-08
2.1210E-07
1.3805E-07
2.6738E-07

0.114546
0.088663
0.093647
0.085900

10-5

VOBBDF
O5
O4
O3

5.3018E-09
8.3788E-09
1.1567E-08
2.8458E-08

1.6123E-09
2.7462E-09
3.5577E-09
1.5899E-08

1.148658
0.869764
0.870925
0.890549
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Problem 4: Denk (1993)

	 y(x) + κ2y(x) = κ2x,

	 y(0)= 10–5,  yʹ(0) = 1 – 10–5   κ = 314.16

	 The exact solution for this problem is y(x) = x + 10-5 

 In Table 6, the variable order 

2-point BBDF gives better approximation at the step size 
10-2. Surprisingly, the 2-point BBDF of order 5 fails to 
converge at step size of 10-2. Although the average error of 

variable order 2-point BBDF deteriorates at step size 10-3, 
the proposed method is capable to obtain smaller maximum 
and average error when the step size is reduced to 10-4 .

CONCLUSION

The 2-point BBDF of order 3, 4, and 5 has been implemented 
in single code with strategy of variable order scheme for 
solving second order ODEs directly. The LTE in the code 
is utilized to determine the order for next integration. 
Although most of the numerical results are comparable, 
it can be seen that the variable order 2-point BBDF has an 
advantage in accuracy especially when using finer step 
size. Since the numerical solution of ODEs using single 

TABLE 5. Numerical result for Problem 3

H METHOD MAXE AVE TIME

10-2

VOBBDF
O5
O4
O3

9.4043E-03
1.5422E-02
1.2100E-02
1.1910E-02

1.3948E-04
2.1420E-04
1.7632E-04
1.7476E-04

0.000489
0.001839
0.000565
0.000397

10-3

VOBBDF
O5
O4
O3

1.0443E-04
2.2434E-04
1.4856E-04
1.4447E-04

1.5845E-06
3.4050E-06
2.2536E-06
2.1925E-06

0.004566
0.005498
0.003891
0.003719

10-4

VOBBDF
O5
O4
O3

1.0534E-06
2.3131E-06
1.5111E-06
1.4675E-06

1.5959E-08
3.5044E-08
2.2894E-08
2.2261E-08

0.062477
0.039417
0.038098
0.037034

10-5

VOBBDF
O5
O4
O3

1.0534E-08
2.3192E-08
1.5157E-08
1.4630E-08

5.6940E-10
8.7165E-10
1.2482E-09
2.0207E-09

0.452739
0.379677
0.367684
0.379378

TABLE 6. Numerical result for Problem 4

H MAXE AVE TIME

10-2

VOBBDF
O5
O4
O3

1.1946E-01
NC

3.3204E-01
2.4045E-01

4.5480E-04
NC

3.0505E-03
6.4248E-04

0.000860
NC

0.000758
0.000582

10-3

VOBBDF
O5
O4
O3

3.2291E-03
2.3145E-03
2.1475E-03
3.7937E-03

1.3454E-03
4.4723E-04
9.7396E-04
1.4612E-03

0.010015
0.015149
0.006031
0.005719

10-4

VOBBDF
O5
O4
O3

1.7732E-05
3.8953E-05
2.5492E-05
2.4698E-05

2.1583E-06
5.9952E-06
3.9297E-06
4.2301E-06

0.078789
0.059315
0.056494
0.056253

10-5

VOBBDF
O5
O4
O3

1.7784E-07
3.9138E-07
2.5530E-07
2.4784E-07

2.7387E-08
6.0254E-08
3.9316E-08
3.2227E-08

0.736852
0.566079
0.565092
0.566000

*NC = Not Converge
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order methods is tedious, the variable order scheme can 
be an alternative solver. 
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