
Simple Spreadsheet Test Case Application to Test
Spreadsheet Formula in End-User Software

Engineering

Noprianto
Doctor of Computer Science
Bina Nusantara University

Jakarta, Indonesia
nop@noprianto.com

Benfano Soewito
Master in Computer Science
Bina Nusantara University

Jakarta, Indonesia
bsoewito@binus.edu

Ford Lumban Gaol
Doctor of Computer Science
Bina Nusantara University

Jakarta, Indonesia
fgaol@binus.edu

Harco Leslie Hendric
Spits Warnars

Doctor of Computer Science
Bina Nusantara University

Jakarta, Indonesia
shendric@binus.edu

Abstract—Using spreadsheet software, users may do some
forms of programming using formula and function. However,
formula definition is often considered correct after tested with
only one or few inputs. This may be fine with simple formula,
but for more complex ones, more testings should be performed,
in order to prevent solution that riddled with errors. However,
writing a formula test case in spreadsheet software is not a
simple task, mainly because there is no standard way to do
that. In this paper, a simple spreadsheet test case application is
proposed. User can define a formula, with many input variants,
along with expected results. After that, application will
generate a spreadsheet document, with all the needed contents
for testing, along with test result. That way, user may re-check
the formula and make necessary modifications (then run the
test, again). Using this method, a formula can be tested first,
with many input as needed, before it put in real document. All
of these will impact in more productive programmers, with less
time spent for debugging.

Keywords—spreadsheet, formula, spreadsheet test case,
testing, end-user software engineering, end-user programming

I. INTRODUCTION

In spreadsheet application, users may work with raw
tabular data, which can be processed with formula and
function. One formula can be applied to one or more input,
but testing is often performed only for one input variant. If
there is no error, and the result is considered correct, then the
formula is applied to more data, optionally by dragging the
mouse. Furthermore, if there is no errors shown, then the
formula is considered valid. This is applied to real data.

However, such real data may not provide all the
possibilities to prove that one formula is correct. Only when
users can write test cases for many input variants, they can be
sure that one formula is correct. This is particularly true for
complex formula definition.

But, writing test cases is not a simple task. Users may
populate the data with some dummy or test data, but it will
only test if there is any error when a formula is applied to all
data. There is no verification, compared with expected result.
Meanwhile, writing an expected result along with all the data
and formula will populate the worksheet with unneeded
contents. Putting the test case in another worksheet may
work, but modifying a formula also means modifying all the
test cases, manually.

All of these could be complex in end-user software
engineering, where requirements and specifications are
implicit, and testing or verification is overconfident [9].
Therefore, an easy to use test case tool could be useful to test
a formula with several input data before it put in real
document. With more testing, programmers could be more
productive [6].

II. LITERATURE STUDY

Programming is defined as the process of planning or
writing a program. A program itself is defined as a collection
of specifications that may take variable inputs, and that can
be executed or interpreted by a device with computational
capabilities [9]. Based on this definition, tools being used in
programming are not limited to programming languages, but
also covers spreadsheet software with formula or function
development, database tools with programmable features,
report generators, web authoring tools, and many others.

Based on the goal, there are professional programmers
and end-user programmers. The former is being paid to ship
and maintain software overtime, while the latter write
program to support some goal in their own domain of
expertise. Thus, end-user programming is a programming to
achieve the result of a program primarily for personal use.
This is contrast with professional programming whose goal
of producing code for others to use [9].

In end-user programming, experience is an independent
concern. It is important not to conflate end-user
programming with inexperience [9]. A professional
programmer with years of experience can also become an
end-user programmer, for example when writing program for
personal use, using new technology or tool.

In similar context, it is also important not to relate end-
user programming with the usage of simple or not serious
programming languages. Scientists may use C programming
language in some personal research projects (end-user
programming) and professional programmers may use plain
HTML to create commercial website [9].

End-user programmers is also important based on data
pictured in figure 1. In year 2006, in United States, there
were only 3 million professional programmers, compared
with 12 million people who said they do programming at
work, and over 50 million spreadsheet and database users [4].

2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS), Yogyakarta, Indonesia

978-1-5090-5130-4/16/$31.00 ©2016 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Binus University Repository

https://core.ac.uk/display/286376776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

End-user programming has become a widespread
phenomenon [5].

Spreadsheets are particularly interesting because they
provide computational techniques that match users' tasks
(that shield users from low-level details of programming) and
their table-oriented interface (that serves as a model for
application) [11]. Although spreadsheets are considered for
small scratch pad applications, they are also used to develop
many serious applications. A survey conducted in 2003
found that 47% mid-size companies use stand-alone
spreadsheet for planning and budgeting [12]. Spreadsheets
are used in almost all businesses [13].

Fig. 1. U.S. users in 2006 and those who do forms of programming
(adopted from [4]).

Related with end-user programming, there is end-user
development. Lieberman et al. [10] defined end-user
development as a set of methods, techniques, and tools that
allow users of software systems, who are acting as non-
professional software developers, at some point to create,
modify, or extend a software artifact. According to that
definition, focus is not put only on the creating a new
program.

This is also in line with software engineering process,
where programming is just a part of the whole activities. As
defined by IEEE Standard 610.12, software engineering is
the application of systematic, disciplined, quantifiable
approaches to the development, operation, and maintenance
of software.. Therefore, if only the programming activity is
concerned, then quality of software developed by end-user
programmers may not be considered, resulted in new
software (which empowers end-users) that may riddled with
errors. These errors may not catastrophic, but their effects
can matter [4].

TABLE I. QUALITATIVE DIFFERENCES BETWEEN END-USER AND
PROFESSIONAL SOFTWARE ENGINEERING

Software Engineering Activity End-user Professional

Requirements Implicit Explicit

Specifications Implicit Explicit

Reuse Unplanned Planned

Testing / Verification Overconfident Cautious

Debugging Opportunistic Systematic

Adapted from: [9]

Considering the quality issue, another research area, end-
user software engineering, has emerged. As professional
software engineering, end-user software engineering still
involves systematic and disciplined activities that address
software quality issues, but all of these activities are
secondary to the goal of the program. Because of this goal,
amount of attention given to software quality concerns is
different with professional software engineering [9].

Furthermore, qualitative differences between end-user
software engineering and professional software engineering
are listed in Table 1.

III. RELATED WORKS

One of popular methods for testing spreadsheet is the
What You See Is What You Test [15], implemented in
Forms/3. The WYSIWYT method can provide visual
feedback about the “testedness” of a spreadsheet [16], and
can be applied to individual cells. Automated test generation
is also possible [8]. This method can also be extended with
several tools such as GoalDebug and AutoTest for
debugging, and automated test generation, respectively [1].
WYSIWYT method is really useful for very serious
spreadsheet testing, particularly for individual cell test.

Another utility that can help end users is UCheck, a unit
reasoning system that allows end users to identify and correct
errors in their spreadsheets [2]. In other way, to allow users
to work safely with tables based on templates, Gencel, an
extension to Excel, can be used [7]. Both can be used to work
with 'correct' spreadsheet.

Users need validating the unit correctness of Excel
spreadsheet can also use XeLda. This tool highlights cells if
their formulas process values with incorrect units [3].

IV. PROPOSED METHOD

We want to make testing a formula in spreadsheet easier,
by using an application that can be used to write test cases for
spreadsheet formula. This application does not require any
spreadsheet software to be installed in the system, in order to
generate test cases. It will run as standalone graphical user
interface application. To make it easier for users, it comes
with simple user interface: the only needed inputs are the
formula definition, where to put formula result, where to put
comparison between formula and expected result, and one or
more test cases along with expected result.

Output of this application is in Office Open XML
(ISO/IEC 29500) spreadsheet, with .xlsx file name extension.
Number of sheets in this document will depend on number of
test cases entered by user, plus one summary worksheet. In
first sheet, there will be summary which shows failed or
passed test cases. If there is any mismatch between formula
calculation result and expected result, it will be reported.
That way, users may recheck the formula and make
necessary modifications, then run the test, again.

This also promotes test-driven development style (where
test cases are written before the actual codes), but applied to
spreadsheet. Rust, Bishop, and McDaid [17] have concluded
that this methodology has the potential to improve the
development of spreadsheet.

This application is implemented using Python
Programming Language, using Openpyxl library (for

2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS), Yogyakarta, Indonesia

working with Office Open XML spreadsheet) and PySide
(for user interface). To make it accessible for wider audience,
it will be released as free/open source software, and may be
downloaded from https://github.com/nopri/code.

Fig. 2. Simple Spreadsheet Test Case Application.

In Figure 2, we illustrate that we want to test one trivial
formula (=A1+A2), whose result is put on cell A3. These are
two first inputs in this application:

• Formula: this is where we can input the formula to
be tested. It must be a valid spreadsheet formula, as
understood by compatible spreadsheet software. We
use =A1+A2 formula, but any valid formula will do.

• Result On Cell: this is the cell, where we actually
want to put the formula. If we enter A3 in this field,
then, in generated spreadsheet document, value of
A3 will be =A1+A2.

Let’s take a look at Cell Name column in Figure 2 (we
will get back to Assert Result On Cell field later). This is
where we can input all the cells involved in defined formula.
In =A1+A2 formula, at least we have to specify A1 and A2
cells. And, don't forget to specify where we want to put the
value, that is expected as correct result, which is A4 in this
illustration.

Using values from Case 1 column, value of A1 cell will
be 1, an value of A2 cell will be 2. Based on what defined as
“Formula” and “Result On Cell”, value of A3 cell will be
=A1+A2. And, value of cell A4 will be 3 (because we enter
and expect this value). In this test case, value of both A3 and
A4 cell will be 3. In other words, what we expect (3, in A4
cell) and what the result (3, in A3 cell, because 1+2=3) are
the same. So, this test case will pass.

Then we get back to “Assert Result On Cell” field. In
Figure 2, we enter A5. Basically, it means that, we want to
test whether value of A3 cell (the formula) and A4 cell (the
expected result) are the same, then put the comparison in A5
cell. That way, value of A5 will be =A3=A4 formula. Based
on values from Case 1 column, since A3=A4, then value of
A5 will be 1. It means that, what we expect and result of
formula are identical.

As another example, test case 3 illustrates wrong
expected result (because A4 cell in Case 3 should expect 11,

not 10). Normally, the subject of testing is the formula (that
is the reason why test cases are written). However, on the
other side, we should also provide correct test cases. This
erroneous test case is shown, only to illustrate the test
summary, not how spreadsheet testing should be done.

In the spreadsheet-like table interface, user can input cell
names (which should be related with formula definition, as
mentioned). Test cases, along with their expected results, can
be specified, and will be read and processed, column by
column, until empty cell is found. Each test case will be put
in its own worksheet.

When user clicks the “Generate” button, a spreadsheet
document will be generated. When this file is opened in
compatible spreadsheet software, user can view the test result
in first worksheet (Result). Number of failed and passed tests
will be shown, along with individual test case result, as
shown in Figure 3. Each test case will be automatically
named as [<worksheet name>] <cell name>, and will be put
in column A, starting from second row. Actual comparison
result will be put in column B. If everything is working as
expected, then column B, for every test case line in
corresponding column A, will show value of 1, and number
of failed test cases should be zero. In Figure 3, we can see
that there is one failed test and two passed tests.

Fig. 3. Test result (Office Open XML spreadsheet), with one failed test
and two passed tests.

If detail of a test case is needed, user can go to its
corresponding worksheet, as shown in Figure 4 and Figure 5.
In Figure 4, everything is working as expected. Formula

2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS), Yogyakarta, Indonesia

result (A3 cell) and expected result (A4 cell) are identical.
We can see that formula =A1+A2 returns the correct result
(A3=3), because value of A1 cell and A2 cell is 1 and 2,
respectively. And, the most important one, comparison
formula in A5 cell returns 1. This value is referenced in
Result worksheet, in cell B2, as shown in Figure 3.

And, since we purposely put an erroneous expected result
in Case 3, we can see that the comparison formula returns 0,
in Figure 5. This also referenced in Result worksheet, in cell
B4, as shown in Figure 3.

Fig. 4. Worksheet test_1 illustrating formula result and comparison.

Fig. 5. Worksheet test_3 illustrating comparison.

In Figure 2, we illustrate a trivial formula, =A1+A2, that
should always “correct”. But, as a formula might get more
and more complex, involving deep nested function calls, and
so on, at some point, we might unsure whether a formula is
still “correct”. This is where this application might be useful,
since we can test a formula using several test cases. If we
maintain a number of test cases with their own expected
result, then any changes to the formula should still return
values as expected.

Below is the algorithm (for main functionality only) when
“Generate” button is clicked:

• Value of each required inputs is checked for valid
format. This, however, only applied to cell name.
Value of formula definition is only checked for
empty value, and the actual interpretation is left for
spreadsheet engine.

• File dialog for output file name, will be shown. It is
possible to save test cases result to as many files as
needed.

• For each column (which represents individual test
case):

• Get the expected result cell. If this cell is
empty, then the iteration is stopped, assuming
that there is no more test case to generate. If no
expected result is specified, then it will be
pointless because no comparison could be
done, hence, no more test case must be
assumed.

• Create a new worksheet.

• For each row in current column:

• Get cell name (first column). If this value
is empty or invalid (according to cell name
format), then iteration is stopped, assuming
invalid input.

• If row number is equal to zero, then
comparison formula (=<cell_1>=<cell_2>)
will be put in target worksheet, according
to 'Assert Result On Cell' value.

• For another cells, put the corresponding
value in specified cell. Value checking is
done mainly to detect its type. If it looks
like number, then it will be put as number
(in spreadsheet document). Otherwise, it
will be put as text. This is needed because,
currently, for simplicity, each input in this
program is interpreted as text. Type
detection is done by trying to convert a
value to a floating point number (if the
conversion is successful, then it is a
number).

• Put a summary line to “Result” worksheet. To
refer a cell in another worksheet, we will use
=<worksheet_name>!<cell> formula.

• Put summary on failed and passed tests using
CountIf function. A test will be passed if cell value
comparison between expected result and formula
result is 1.

• Save the workbook into specified output file name,
and show the information dialog. Program will not
quit at this phase, so different test cases (based on
current values), could be specified, and saved to
another output file.

V. DISCUSSION

In this paper, to ease the testing of a spreadsheet formula,
we propose a test case application. While we do not relate
end-user programmer as inexperience, we argue that by using
a test case application, testing a spreadsheet formula would
be easier.

This application is still in early development phase. Many
useful features are still lacking. For example, user cannot
save the test cases into a file, and load them later. This is a
useful feature because test cases could be very complex, and
typing them again every time the formula is changed (or to
be tested) is time consuming and error prone. This feature
should be implemented in the next version.

Another feature that might be useful is allowing user to
specify the type of value entered for each test case. As
mentioned in proposed method, type detection will be

2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS), Yogyakarta, Indonesia

performed for each value. If a value looks like a number,
then it will be put as a number in spreadsheet document. In
certain condition, this might be not the expected behavior.

And, we can also add the formula parser, mainly to
evaluate the syntax of defined formula. That way, formula
whose errors in syntax will not be processed. Certainly, since
this is not a spreadsheet application, after the syntax is
already correct, we will not interpret the formula. This should
be left to spreadsheet engine. After all, this is only a test case
application.

By releasing this application as free/open source
software, we hope that anyone can improve this application,
to make it more useful.

However, we also realize that test case application is
really just a tool. If testing is performed with few or not
representative input data, then there is no more additional
benefit, compared with just populate a worksheet with
dummy data. Verification is the key, just like any unit testing
in any programming language.

VI. REFERENCES
[1] R. Abraham and M. Erwig. GoalDebug: A spreadsheet debugger for

end users. In Proceedings of the 29th international conference on
Software Engineering (pp. 251-260), IEEE Computer Society, May
2007.

[2] R. Abraham and M. Erwig. UCheck: A spreadsheet type checker for
end users. Journal of Visual Languages & Computing, 18(1), 71-95,
2007.

[3] T. Antoniu, P. A. Steckler, S. Krishnamurthi, E. Neuwirth, and M.
Felleisen. Validating the unit correctness of spreadsheet programs. In
Software Engineering, 2004, ICSE 2004. Proceedings. 26th
International Conference on (pp. 439-448), IEEE, May 2004.

[4] M. Burnett. What is end-user software engineering and why does it
matter?. In End-User Development (pp. 15-28), Springer Berlin
Heidelberg, 2009.

[5] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and C.
Wallace. End-user software engineering with assertions in the
spreadsheet paradigm. In Proceedings of the 25th international
conference on Software engineering (pp. 93-103), IEEE Computer
Society, May 2003.

[6] H. Erdogmus. On the effectiveness of test-first approach to
programming, 2005.

[7] M. Erwig, R. Abraham, S. Kollmansberger, and I. Cooperstein.
Gencel: a program generator for correct spreadsheets. Journal of
Functional Programming, 16(03), 293-325, 2006.

[8] M. Fisher II, G. Rothermel, D. Brown, M. Cao, C. Cook, and M.
Burnett. Integrating automated test generation into the WYSIWYT
spreadsheet testing methodology. ACM Transactions on Software
Engineering and Methodology (TOSEM), 15(2), 150-194, 2006.

[9] A.J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M.
Erwig, C. Scaffidi, J. Lawrance, H. Lieberman, and B. Myers. The
state of the art in end-user software engineering. ACM Computing
Surveys (CSUR), 43(3), 21, 2011.

[10] H. Lieberman, F. Paternò, M. Klann, and V. Wulf. End-user
development: An emerging paradigm. (pp. 1-8), Springer Netherlands,
2006.

[11] B.A. Nardi and J.R. Miller. The spreadsheet interface: A basis for end
user programming. Hewlett-Packard Laboratories, 1990.

[12] R.R. Panko. What we know about spreadsheet errors. Journal of
Organizational and End User Computing (JOEUC), 10(2), 15-21,
2005.

[13] S.G. Powell, K.R. Baker, and B. Lawson. Errors in operational
spreadsheets. Journal of Organizational and End User Computing
(JOEUC), 21(3), 24-36, 2009.

[14] S.G. Powell, K.R. Baker, and B. Lawson. A critical review of the
literature on spreadsheet errors. Decision Support Systems, 46(1),
128-138, 2008.

[15] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. What you see is what
you test: A methodology for testing form-based visual programs. In
Proceedings of the 20th international conference on Software
engineering (pp. 198-207). IEEE Computer Society, April 1998.

[16] K.J. Rothermel, C.R. Cook, M. Burnett, J. Schonfeld, T.R. Green, and
G. Rothermel. WYSIWYT testing in the spreadsheet paradigm: An
empirical evaluation. In Software Engineering, 2000. Proceedings of
the 2000 International Conference on (pp. 230-239). IEEE, 2000.

[17] A. Rust, B. Bishop, and K. McDaid. Investigating the potential of
Test-Driven Development for spreadsheet engineering. arXiv preprint
arXiv:0801.4802, 2008.

2016 11th International Conference on Knowledge, Information and Creativity Support Systems (KICSS), Yogyakarta, Indonesia

