Enhance capability of Enterprise Systems using Integration Manager

Verri Kuswanto Faculty of Saint, Buddhi Dharma University, Tangerang - Indonesia Email: verrikus@gmail.com

Abstract - Many organization acquire disparate Enterprise Systems in operational. The effort to integrate different Enterprise Systems is needed for satisfying business requirements and agile organization. The agile organization is one of the operational strategies for achieve work efficiency. The fact is many organization still need more time for managing information decision to support making for management. This is the challenges and issues that need to be enhance capacity of Enterprise Systems. This study aims to identify key technologies using integration manager for enhance capacity of Enterprise Systems.

Keywords: Performance, Enterprise Systems, Integration Manager Module.

I. INTRODUCTION

Information Systems has been progressing in achieving work effectiveness and work efficiency in the industrial world as a reason for consideration. The one of tools that can be used to support business processes and functions of Enterprise Systems is using Integration Manager. Integration Manager is a tool processing the data into information in the Enterprise Systems. Integration Manager has a matrix which improves the performance of Enterprise Systems for planning to become more functional, planning emphasis on improving the overall enterprise business. Integration Manager through the implementation of Enterprise Systems, some functional integrate manager contained in the master data and transaction data operations are cornerstones of the availability of the report to plan accurately and quickly, so that existing resources can switch to controlling in accordance with the role and function, however the role integrate manager gives impact for increase application integration and change the way of working to become more optimal so it was decided to build a development Enterprise Systems.

The purposes of this study were to serve three goals. First, was to identify some key technologies for Enterprise Systems. Second, was to find the definition of all key components. Third, the study would give information about the challenges for Integration Manager. This study was to answer the research questions:

- a. What are key technologies for Enterprise Systems?
- b. What are challenges for Integration Manager?

Santo F. Wijaya School of Information Systems, Bina Nusantara University, Jakarta - Indonesia Email: santofw@binus.ac.id

II. THEORITICAL BACKGROUND

2.1 Data sets

Business process is an absolute obligation must exist in every organization with managed business data later as management information Systems [1]. as well as in manufacturing companies in this stage is developing and using an integrated application which processes is interrelated and each department will be analysis each department is delivered to the business objectives achieve. The size and complexity of industrial applications continue to grow, such as: the amount of data increase exponentially. There is increasing need to integrate OLAP (Online Analytical Processing), knowledge discovery, data mining functions and data sources for decision support, information integration and other business needs [15: 17]. Application specific middleware, such as: data mining middleware will be increasingly developed and deployed for industrial information Systems integration. Enterprise Systems have impact enhanced revenue opportunities and increase the market can be described the results of action and decision handed down by a focus based on the Systems [2]. We focus on internal business processes to see the parts of the systems that is better than the using a integrate manager. This prediction about the findings that occur with the use of Enterprise Systems which will be adjusted in the category of the SWOT analysis and TOWS Matrix [3]. Integrating of various industry applications are an ongoing task for industry enterprises that are adopting new technologies and embedded devices [12]. Some new trends in this area include: As web services, SOA and ESA are being increasingly applied to complex integration tasks that involve both existing and legacy applications, there is an increased need to ensure Quality of Service (QoS) in the integration process [14].

2.2 Sequence process procedure

Methods of measurement are sorted efficiently done by two steps, information on the reference journal and interviews with the method group discussion forum [4]. as a reference recommendations and action development and analysis with SWOT analysis [5]. In the first step, the collect references Enterprise Systems Substitution with a integration manager, any reference managed and compared to make a summary of the effects other second step is the discussion forum among fellow employees to discuss the results of the questionnaire because of the findings that there should be a change in the decision to back the development and action, then based on the SWOT analysis is split into 4 matrix [6] then be in a position to know that now exist and will happen in every decision.

2.3 Integration Manager Systems

Business Process Reengineering (BPR) is the changing of organizations business process by following business process of Enterprise Systems [7]. The changes in business process systems, then how to work instead of using the current user is replaced with the integration manager [8]. And a user key functions become more effective, efficient to focus on training [9]. Therefore, It need understand about Enterprise Application Integration (EAI). EAI approaches is shown in Table 1.

Table 1. Overview of the strengths and weaknesses ofEnterprise Application Integration (EAI) approaches [11]

Integration Approach	Strength	Weakness
Data Shares data between multiple data sources	Simple to implement Inexpensive to implement Consistent data Minimum changes to the source or target applications Provides access to wide range of data	Does not invoke business logic
Object Integrates objects distributed	Integrate business logic Reusable	Complex Difficult approach

throughout the enterprise		
Process Business process modeling and integration	Real time tracking and analysis of business process Dynamic process optimization and adjustment Process evaluation	Complex to architect Expensive to implement
User Interface Build new interface by re- mapping old interface	Easy to implement Requires minimum change to existing application	Tightly coupled application Synchronous communication Difficult to maintain Cannot scale Doesn't take place at actual interconnection
Application Interface Exposes an interface for sharing business functionality	Invokes application functionality	interface Exposes an interface for sharing business functionality Invokes application functionality Tightly coupled application Synchronous communication Require same API for both application

Table 2. SI Stakeholders, Concerns, Influences, and Needed Resources

Stakeholder	SI Concerns	Influences	Metrics	Needed Resources
Project	Cost and schedule for	Input : Systems customer	Earned Value,	Funding
Manager	performing SI	Output : Funding priorities	schedule	
Systems project	Performance, behaviors,	Input : Project Manager	Requirement	Customer use cases,
Engineer	operability, physical, electrical	Output : Subsystems engineering	satisfaction,	functioning Systems
	restrictions, and functionality of	priorities and allocation	performance	(subsystems), tested
	integrated Systems		parameters	interfaces
Mission	Safety, reliability,	Input : Customers environment	Temperature range,	Thermal analyses,
Assurance	contamination, physical stress	Output : Component selection,	total dose,	shock and vibe test
	tolerance of integrated Systems	EMI/EMC, grounding, personnel and	shock/vibe,	results, reliability
		equipment safety, test requirements	FMECas & FTAs,	test results
			EMI/EMC	
	-		susceptibility	
Validation and	Assurance that integrated	Input :Mission goals and formal	Performance	Integrates Systems,
verification	Systems meets user needs	requirements	characteristics,	test equipment, test
	(Validation) and that the	Output : test definition, test execution	measure of test	software
	Systems is correctly designed	and result certification	completion	
	and meets requirements			
	(verification)			
Subsystems	Ensure subsystems interfaces	Input : Systems constraints and	Physical variables in	Subsystems test
Engineer	works with other subsystems	performance requirements	range, satisfy	workbench, test
	and human roles	Output : Compliant design	performance	software, MCAD
			requirements	tools
Software	Ensure software interfaces with	Input : Hardware and human	Software behavior is	Software
Engineer	hardware and human roles	constraints	predictable	development and
		Output :Complaint design		test environment
Electronics	Ensure electronics are "correct	Input :Subsystems constraints	Electronics satisfy	EDA tools

Engineer	by construction and compatible	Output : Complaint design	interconnection and	
	with subsystems requirements		thermal	
			requirements	
Human Factors	Ensure that human interactions	Input :Interaction requirements,	Human acceptance	HIS tools, MMI
Engineer	with subsystems are consistent,	Human Systems integration (HSI)	(usability, utility)	prototyping tools
	inspect able , with manageable	constraints		
	cognitive load and acceptable	Output : Manageable cognitive load,		
	error rates	acceptable error rates		

III.RESEARCH METHOD

3.1 Data Collection

Master Data

Dalam sample yang akan di ambil ini adalah data master dan transaksi opersional yang terjadi pada Argo Manunggal Group, dimana data akan di integrasikan pada integrasi manager. Kemudian data tersebut akan di mapping kedalam template integration manager yang telah di sesuaikan pada baris dan kolom yang dibutuhkan.

Object

Master data dan transaksi yang terjadi dalam beberapa periode terakhir dalam penerapan Systems enterprise Systems yang di implementasikan di Argo Manunggal Group

Class ID	Custo mer ID	Customer Name	Address ID	Address code	Accounts Receivables	Sales
KL	3995	A&A SERVICES	НО	HOUSE # 353 (1S/T FL), RO	11310100-UMM-TEX-APT-TGR	41101002-UMM-TEX-APT-TGR
KL	1097	DANDONG FOREMART GARMENT	НО	27, ZHEN YANG DONG STREET	11310100-UMM-TEX-APT-TGR	41101002-UMM-TEX-APT-TGR
KL	3591	A&A GARMENT, CV	НО	KAWASAN PANGKALAN TRUK	11310100-UMM-TEX-APT-TGR	41101002-UMM-TEX-APT-TGR
KL	5287	AAN CECEP	НО	JAKARTA	11310100-UMM-TEX-APT-TGR	41101002-UMM-TEX-APT-TGR
KL	4075	AB BLAKLADER	НО	BOX 124	11310100-UMM-TEX-APT-TGR	41101002-UMM-TEX-APT-TGR
KL	1214	ABADI	НО	JAKARTA	11310100-UMM-TEX-APT-TGR	41101002-UMM-TEX-APT-TGR

Table 3. Data Master customer

Table 4. Data master supplier

Customer Name	Address	Address column	Accounts Payable	Purchase
ANEKA STAINLESS	НО		21220000-UMM-TEX-APT-TGR	11510800-UMM-TEX-APT-TGR
BINO MITRA SEJATI PT.	НО		21220000-UMM-TEX-APT-TGR	11510800-UMM-TEX-APT-TGR
GETMAXS REFILL CENTER	НО		21220000-UMM-TEX-APT-TGR	11510800-UMM-TEX-APT-TGR
DAIKIN APPLIED SOLUTION IND.	НО		21220000-UMM-TEX-APT-TGR	11510800-UMM-TEX-APT-TGR
	ANEKA STAINLESS BINO MITRA SEJATI PT. GETMAXS REFILL CENTER	ID ANEKA STAINLESS HO BINO MITRA SEJATI PT. HO GETMAXS REFILL CENTER HO	ID ANEKA STAINLESS HO BINO MITRA SEJATI PT. HO GETMAXS REFILL CENTER HO	ID ID ANEKA STAINLESS HO BINO MITRA SEJATI PT. HO GETMAXS REFILL CENTER HO

Table 5. Data transaction sales

documentno	dateacct	term_code	bpartner	sales	opno	scno	curr	tax	totalamt	taxamt	grandtotal
0147/FDE/15	9/30/2015	T180	E00613	R03	2015/0282/E	2015/0033/E	USD	N	93214.57	0	93214.57
0150/FDE/15	9/30/2015	L001	E01751	R03	2015/0229/E	2015/0104/E	USD	N	27198.2	0	27198.2

Process

Dalam fungsi integrate manager proses ini dilambangkan dalam proses membaca template dengan melihat table dan column yang ada dalam tools integrate manager, dimana link tersebut ketika dijalankan maka akan otomatis mendistribusikan data dari isi template kemudian diteruskan langsung dalam database sehingga data tersimpan seperti menginput dalam Systems entry aplikasi enterprise yang digunakan.

Mobile integration manager and specification preparation :

- Menentukan primary key dalam setiap template dengan integrate manager
- Mapping column additional yang bisa bervariasi dengan variable yang sudah ditentukan
- Mapping destination primary key sebagai kunci akurasi data tanpa terjadi data sama disetiap integrate manager
- Jalankan dan proses akan terjadi secara otomatis

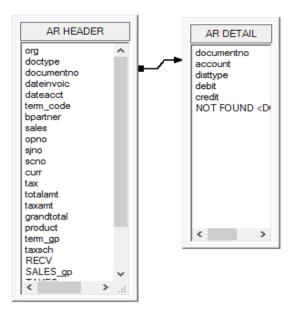


Figure 1. Literature process Integration manager

3.2 data integration manager and template upload in action performance.

Data can be linked to integration manager form of rows and columns that have been mapped to the needs of the Enterprise Systems that has been applied. Mapping component enhance integration manager is shown in Table 6

Table 6. Mapping Component enhance integration manager

 Systems

Integration		Module							
description	Financial	Sales	Purchase	Inventory	Production				
Master	\checkmark	V	\checkmark	\checkmark	V				
Transaction	\checkmark	\checkmark	\checkmark	\checkmark					
Proses									
Report									

🖶 File	Edit	View	Integration	Tools	Window	Help
--------	------	------	-------------	-------	--------	------

Module

In the integration manager maintaining enterprise security Systems, then there are some studies that need to be controlled and can be automatic maximized key function of how the enterprise user. Several modules can be maximized way of working with Systems integration manager is expected to assist in the rule of an integrated security Systems that is fixed.

The kinds of operational supporting reports, in getting the types of transactions in table 2, and therefore the routine operations can be maximized key user with the integration manager is a master and transaction, so as to maximize the integration manager Systems then the performance of key user is able to grow from point others outside the operational activities such as controlling the process and the resulting report.

IV. RESULT AND DISCUSSION

This section is the summary and results of the study. We discuss for the answers to research questions :

4.1 Achieving Results Integration Manager and Solutions Enhance Performance Enterprise Systems.

Based on the findings in the implementation of integration manager at live by Enterprise System, users of the system which now is able to bridge the user key system Enterprise, there are several integration to many menus in the enterprise system. With the start of the many data that is not in though later on, create a template that is capable adjusted to the needs of key user, security mapping process the data as needed, these results are forwarded to the process of integration manager so that data is ready in the enterprise system. Improvement in Enterprise System becomes more real time and the actual integration process manager with this, so the Enterprise system capable in development and presented a report into the management through the mobile application and forwarded to system management dashboard.

lew D Open 🖻		Save F	Properties	Objects	Add Sour	파클 r ce Relationships	🐜 Add Dest.	Mapping	➡ Run
Customer		Fiek	ds Option	is					
Accounts			Field			Rule		Source	
Internet Information			Custo	mer ID		Use Source Field		Customer ID	
Intrast		Hold			Use Default				
Options			Inactiv	e		Use Default			
			Name U		Use Source Field		Customer Name		
			Short	Name		Use Default			
Name	Value		Statem	ient Name		Use Default			
Translation	No		Class	ID		Use Default			
Source Field	Customer II		Custo	mer Priority		Use Default			
Case Convers	ion No Convers	sion	Addre	ss ID		Use Source Field		Address Code	
Leading Space	s Remove		Ship T	o Address		Use Default			
Trailing Space	s Leave		Bill To	Address		Use Default			
String Truncat		Max Lengt	Statem	ent To Addre	55	Use Default			
If Null	Cancel Doc	-	Salesp	erson ID		Use Default			
	Sancerboo		Territo	ry ID		Use Default			
			User	efined 1		Use Default			

Figure 2. Integration Manager Enterprise System

4.2 Achievement of Current Integration Manager, Solutions System Enterprise and action performance.

TAMBAHKAN PENJELASAN! SEBELUM ADA TABLE

Table 7. Process likert scale integration manager Systems

More Increase

PIECES (Performance, Information, Economy, Control,

Efficiency, and Services criteria analysis shown the integration manager enhance Enterprise Systems with affordable price with can be concluded Enterprise Systems integration [14]. In the description master and transaction, there is a point that dominant changes the behavior of the Systems Enterprise in the company, with the integration manager tools More Increase operational in accuracy, information and data more stable, fast, accurate and reduces the workings of key user related operational data, the scale can get 90% increase in performance on an Enterprise resource planning Systems.

Increase

In point Likert scale are already able to represent an increase in points More Increase, because the role of Systems integration manager is acting as tools that increase the benefits of these tools are in the range of successful More Increase or so does not increase. In this point is not too obtrusive

Less Increase

Within the scope of integration is seen a description of the process, because the process is not so visible role of key user so that the user does not make the point so respect this process and less visible direct integration manager role.

Very Less Increase

This point shows an increase of very poor description improving the integration report, because the report is a result produced by the enterprise resource planning Systems.

 Table 8. Table Integration with the relationship Efficiency

 Working time

Integration)			
description	High Efficient	efficient	Less Efficient	Very Less Efficient
User	9	1	0	0
Key User	9	1	0	0
Manager	7	3	0	0
Management	9	1	0	9
Total	34	6	0	0

User and key user

By implementing integration manager, data maintained by the user can more quickly enter the Enterprise Systems with an accuracy of internal data with enterprise applications accordingly. This raises the efficiency of time is much that can be allocated for controlling the data

Manager

Withdrawal of reports and report processing in planning strategies in each department more quickly informed and submitted to the management to be carried out of decisions and actions as the basis for the exercise of the new planning.

Management

Integration manager needs to be developed and more intensive attention to raise more efficiency now running. Because of the performance impact and change the way work is expected to increase user confidence in running applications and using enterprise applications resource planning as the internal user data for a long time.

Based on the discussion in the previous chapter, it can be concluded with that derived by TOWS Matrix[10]:

Table 9. TOWS matrix integration manager challenges

	Internal Strentgh :	Internal Weakness :
External	SO	WO
<u>Opportuni</u>	1. Able to an increase	1. Prepared for the
<u>ties :</u>	in the number of	implementation
	orders.	integrate of the
	2. All orders will be	investment planning
	achieved through the	production Systems
	delivery process in	2. Prepared to be
	application	eliminated the old
	3. E-Faktur can be	Systems.
	directly run with	3. Find for the dashboard
	integrate upload	integrate Systems
External	ST	WT
Threats :	1. Perform additional	1. Doing Business
	qualified staff in the	Process Reengenering
	field of IT mindset	(BPR)
		2. Moving how to user
		work with new
		Systems

Keep holding advanced research at manufacture company related modules of Enterprise Systems and the expansion of other components of the measurement using the method of SWOT Analysis and TOWS Matrix advanced and COBIT so companies can see the results of measurement of information technology value of existing Enterprise Systems more thoroughly.

4.3 The limitations

This study only information the key technologies integrate manager and challenges integrate manager for enterprise systems based on case study Argo Manunggal Group for general organizations. Therefore, the researcher have understood that this study has the limitation of this current research, such as: the search process was done manual for search journal and conference proceedings; the number of CSFs Issue COMPONENTS %

Frefuency Management Management support & commitment 7% 15 Organizational Business Process Reengineering 7% 16 Software System ERP performance 7% 15 Users User training and education 4% 10 Technology Integrating 4% 8 databases has restricted access from journal or conference proceedings publication, no determine and analyze to size of the organizations.

V. CONCLUSION AND FUTURE RESEACRH

IT Supply Management and IT Development Management can be concluded that the needs to the involvement of people actively with the Enterprise Systems is to determine the successful Enterprise Systems implementation. The beside that the needs to develop Enterprise Systems. It helps executives make decisions and ultimately improve the synchronization of business strategy and can be optimized to integrate all data and information flow of business processes.

Kesimpulan gak nyambung, kesimpulan dengan pembahasan untuk menjawab research question ini:

b. What are key technologies for Enterprise Systems?

b. What are challenges for Integration Manager?

Thus, we have concluded that key component of knowledge management in order for enhance performance of Enterprise systems with survey and specific industry is necessary for future research.

REFERENCES

- Barbara C. Mcnurlin, Ralph H. Sprague, Jr "Information Systems Management In Practice", Prentice Hall; Eighth edition (2009).
- [2] McLeod R Jr & Schell GP. (2007). Management Information Systems. (10th edition). New Jersey: Pearson Prentice Hall.
- [3] Heinz Weihrich, Professor of Management, TAHUN"The TOWS Matrix - A Tool for Situational Analysis" University of San Francisco.
- Jain, Vikas "A framework for sustainable ERP value TAHUN" " ProQuest, UMI Dissertations Publishing ISBN: 9780549687320 (2008).
- [5] Justyna PATALAS-MALISZEWSKA (2012) "ASSESSING THE IMPACT OF ERP IMPLEMENTATION IN THE SMALL ENTERPRISES" Foundations of Management, Vol. 4, No. 2. ISSN 2080-7279
- [6] Zare Zardeini Hosein, Ahmad Yousefie, & Seyyed Mohammad Tabatabaei Mehrizi (2014) "Evaluating and Ranking Performance by Combination Model of Balanced Scorecard and Ariadne Uncertain Estimate" journal of Asian Social Science; Vol. 10, No. 2.
- 7] Lin CC, Tsai WC & Shih DH (2008). A Study of Information Systems Reengineering as ERP Is Introduced to Businesses Adapting to the E-Business Era. In Innovative Computing Information and Control, 2008. International Conference
- [8] Sherry Finney & Martin Corbett (2007) "ERP implementation: a compilation and analysis of critical success factors", Business Process Management Journal, Vol. 13 Iss: 3, pp.329 – 347
- [9] Mahdavian M & Mostajeran F. (2013). Studying key users' skills of ERP Systems through a comprehensive skill measurement model.

The International Journal of Advanced Manufacturing Technology, 69(912), 1981-1999.

- [10] Zare Zardeini Hosein, Ahmad Yousefie, Seyyed Mohammad Tabatabaei Mehrizi (2014) "Evaluating and Ranking Performance by Combination Model of Balanced Scorecard and Ariadne Uncertain Estimate" journal of Asian Social Science; Vol.10, No. 2.
- [11] Al Mosawi A, Zhao L, & Macaulay L.A. (2006). A Model Driven Architecture for Enterprise Application Integration. In HICSS (Vol. 39, pp. 4-7).
- [12] He W & Da Xu L (2014). Integration of distributed enterprise applications: A survey. IEEE Transactions on Industrial Informatics, 10(1), 35-42.
- [13] Madni AM & Sievers M (2014). Systems integration: Key perspectives, experiences, and challenges. Systems, 17(1), 37-51.
- [14] BS Farroha and D Farroha (2007) "Policy-based QoS requirements in a SOA enterprise framework-an investigative analysis," IEEE Military Communications Conference, pp. 1-7.
- [15] VT Ravi, and G Agrawal (2009), "Integrating and optimizing transactional memory in a data mining middleware," 2009 International Conference on High Performance Computing (HiPC), 215 – 224.
- [16] B Liu, SG. Cao, and W. He (2011), "Distributed Data Mining for E-Business," Information Technology and Management, 12(1), pp. 1-13.
- [17] E Xu M WermuS and D Blythe Bauman (2011), "Development of an integrated medical supply information Systems," Enterprise Information Systems, 5(3), 385-399.
- [18] Wijaya Santo (2016), "Enhancing Performance of an ERP Systems with a Dashboard Systems". International conference on information management and technology page 5.