SEISMIC PERFROMANCE ON MULTI-STOREY PRECAST BUILDINGS (IBS) IN MALAYSIA SUBJECTED TO LONG-DISTANT EARTHQUAKE EXCITATION

DISEDIAKAN OLEH :

DR NOR HAYATI ABDUL HAMID PROF IR DR SITI HAWA HAMZAH MOHD IKMAL FAZLAN BIN ROSLI@ROZLI NORLIYATI MOHD AMIN

MEI 2010

KUMPULAN PENYELIDIK

DR NOR HAYATI ABDUL HAMID KETUA PROJEK

Tandatangan

PROF IR DR SITI HAWA HAMZAH AHLI

Tandatangan

MOHD IKMAL FAZLAN BIN ROSLI@ROZLI AHLI

NORLIYATI MOHD AMIN AHLI

Ыþ

- Tandatangan

ABSTRACT

Seismic performance of the reinforced concrete buildings in Malaysia need to examine their structural components under earthquakes excitation. The sub-assemblage of fullscale precast hollow core slabs together with supporting beams are designed, constructed, calibrated and tested under vertical cyclic loadings. The incremental drifts are applied at the end of the cantilever slabs. The load failure, mode of failure and structural damages are recorded and observed during experimental work. Initially, the cracks start from the joints and propagated on top of the slabs and finally, the slab snapped at middle together with delimination of the bottom fibre of the slab. Another experimental work is conducted on three sets of half-scale beam-column joint with different arrangements of reinforcement bars at the joints. These specimens are attached to the foundation beams and clamped to strong floor using eight high yield threaded rods of diameters 30mm. The specimens are designed, constructed and tested under reversible vertical cyclic loading until collapse. The joint with cross-bracing suffers the least damage as compare to others joints. By using the same specimens, the next step is to design the column-foundation joints under lateral cyclic loadings. Tension lateral cyclic loading is applied at top of the column with drifts of 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5% at 2 cycles for each drift. Similar pattern of cracks and damages observed during experimental work as compared to the actual damages occurred during earthquake excitation. The first damage is due to unconfined concrete occurred between foundation beam and beamcolumn joint. The second damage is due to plastic hinge zone mechanism which occurs at column-foundation interfaces. These damages are due to the insufficient of longitudinal bars, the spacing between the stirrups are wider and spalling of concrete (low

TABLE OF CONTENTS

.

		Page
	ABSTRACT	i
	TABLE OF CONTENT	iii
	LIST OF TABLES	vii
	LIST OF FIGURES	viii
	CHAPTER ONE: INTRODUCTION	1
1.1	Background of study	1
1.2	Problem Statement	5
1.3	Objectives of Study	8
1.4	Scope and Limitation of Work	9
1.5	Significant of Study	10
	CHAPTER TWO : SEISMIC PERFROMANCE OF A CANTILEVER PRECAST HOLLOW CORE SLAB SUBJECTED TO QUASI-STATIC VERTICAL CYCLIC LOADING	12
2.1	Introduction	13
2.2	Findings from Previous Research	15
2.3	Connection Detailing from Past Research	20
2.4	Connection Detailing Between A Cantilever Hollow Core Slab and	29
	Supporting Beam	
2.5	Construction of the Specimen	31
2.6	Experimental Setup and Instrumentation	
2.7	Visual Observation and Experimental Results	38
	2.7.1 Visual Observation of Cracks	38
	2.7.2 Hysteresis Loops of Cantilever Slab	40

	2.7.3	Stress-strain Relationship of Reinforcement Bars in the Connection	41
	2.7.4	Equivalent Viscous Damping	42
2.8	2.8 Conclusion and Recommendation		44
	Referen	nces	

CHAPTER THREE : SEISMIC PERFROMANCE OF REINFORCED CONCRETE BEAM-COLUMN JOINTS UNDER QUASI-STATIC VERTICAL CYCLIC LOADING

3.1	Introduction	49
3.2	Structural Damages Following an Earthquake	50
3.3	Beam-Column Joints	53
3.4	Monolithic Beam Analogy	57
3.5	Proposed Procedure for Moment-Rotation Analysis for Ductile Connections	60
3.6	Construction of Specimens	66
3.7	Experimental Set-up	71
3.8	Visual Observation on the Connection Damage	73
3.9	Experimental Results and Analysis	75
3.10	Discussion	78
3.11	Conclusion and Recommendation	81
	References	

CHAPTER FOUR : IN-PLANE SEISMIC PERFORMANCE OF COLUMN UNDER TENSION 83 LATERAL CYCLIC LOADING

4.1	Introduction	84
4.2	Problem Statement	85
4.3	Finding From Previous Research	88
4.4	Theoretical Background	91
4.5	Concrete Confinement by Reinforcement Bars	96