DEGRADATION BEHAVIOUR OF THIN FILM OPTICAL RESIN BASED ON EPOXIDISED SOY BEAN OIL UPON UV EXPOSURE

FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

DISEDIAKAN OLEH :

PROF MADYA DR RAHMAH MOHAMED EN AHMAD FAIZA MOHD

DECEMBER 2009

PROJECT TEAM MEMBERS

PROF MADYA DR RAHMAH MOHAMED Project Leader

/..... Signature

EN AHMAD FAIZA MOHD Project Member

.....

Tandatangan

TABLE OF CONTENT

	ACKNOWLEDGEMENT	v
	TABLE OF CONTENT	vi - xii
	LIST OF FIGURE	ix - xi
	LIST OF TABLE	xi — xii
	ABSTRACT	xiii
	CHAPTER	
1.0	INTRODUCTION	•
1.1	Background And Problem Statement	2 - 3
1.2	Significance Of Study	4
1.3	Objectives Of Study	5

2.0 LIRERATURE REVIEW

2.1	Application of epoxy resins in industries	7
2.2	UV Curable Polymer	10
2.3	Materials, apparatus and methods	11
2.4	Modification of Epoxidized Soybean Oils	12
2.5	Sample preparations	12
2.6	Characterizations and measurements	13
2.6.1	Oxirane oxygen content testing	13
2.6.2	FTIR analysis(Spectrum One,Perkin Elmer)	14
2.6.3	UV-visible (Model Lambda 35-Perkin Elmer)	14
2.6.4	TGA analysis	14

·---

3.0 RESULTS AND DISCUSSIONS

3.1	Characterization of uncured acrylated Epoxidized Soybean		
	Oil	16	
3.1.1	Oxirance oxygen content (%OOC)	17	
3.1.2	Numerical Magnetic Resonance NMR analysis		
	for uncured ESO	17	
3.1.3	Fourier transform infrared analysis for uncured		
	acrylated ESO	19	
3.2	Degradations characterization of cured acrylated		
	Epoxidized Soybean Oil	20	
3.2. 1	TGA Analysis	20	

ABSTRACT

Epoxidised soybean oil is a derivative of soybean oil having (epoxy) functional groups, which are products from epoxidation of carbon-carbon double bonds in soybean oil.Epoxidised soybean oils (ESO) are used as plasticizers, crosslinking agents, stabilizers and are intermediates for polyol production used in polyure thanes and plastics resin after the oxirane ring is opened by hydroxylation or alcoholysis.In this study, modified ESO had been used for various applications for surface coatings, composite and optical products. For light stabilized coating system, unsaturated monomer and UV absorber may be incorporated to increase uv stability and prevent prior degradation in transmission and thermal stability. Thermal stability through mass loss degradation profile was evaluated and analysed using thermal gravimetric analysis (TGA). Thermal kinietic profile with TGA showed faster reaction with high scan rate and degradation kinetic parameter taken at 600C showed higher Ea values for Photoinitor A as compared to Photoinitiator B type. FTIR analysis done revealed the formation of acrylated ESO and transmission is affected under sunlight exposure. As for degradation upon pH changes when immersed in water according to ASTM D5402. Acrylated resin was most resistant in 0.01M alkaline medium rather than in water and same molarity of acidic solution.