
 

MH-FA-56-FB03_v1.3 
 

DLR-IB-FA-BS-2019-151 

 
Development and characterization 
of elastic hinges for large-area, 
ultra-light, deployable space 
structures 
 
Masterarbeit 

 
Daniel Robert Müller 
 
 
 
 

  





Institut für Faserverbundleichtbau und Adaptronik

DLR-IB-FA-BS-2019-151

Development and characterization of elastic hinges for

large-area, ultra-light, deployable space structures

Zugänglichkeit:

Stufe 2 DLR intern zugänglich: analog „allgemein zugänglich", allerdings ist

dieser in ELIB nur für intern zugänglich abzulegen.

Braunschweig, August, 2019 Der Bericht umfasst: 150 Seiten

Abteilungsleiter: Prof. Dr.-lng. Christian Huhne

}—. • ^-^--^^y

Autoren: Daniel Robert Müller

^
Autor 2 / Betreuen

Dipl.-Ing. Martin Eckhard Zander

Deutsches Zentrum
DLR für Luft- und Raumfahrt

MH-FA-56-FB03 vl.3





 
 

16.06.2019 

 

 

 

 

 

Master Thesis No. 19-055 

 

Development and characterization of elastic 

hinges for large-area, ultra-light, deployable 

space structures 

 

Daniel R. Müller 

 

Advisor DLR: Martin E. Zander 

Deutsches Zentrum für Luft- und Raumfahrt (DLR) 

 Institut für Faserverbundleichtbau und Adaptronik 

 

Advisor ETH Zürich: Michael Kölbl 

Laboratory of Composite Materials and Adaptive Structures (CMAS) 

 

IDMF – Laboratory of Composite Materials and Adaptive Structures 

Prof. Dr. Paolo Ermanni 

ETH Zürich 

  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ETH Zürich 
IDMF - Laboratory of Composite Materials and Adaptive Structures 
LEE O 203 
Leonhardstrasse 21 
8092 Zürich 
 
Telefon: +41 (0)44 633 63 02 
 
www.structures.ethz.ch 



Abstract   i 

 

Abstract 

Even though they are mostly out of sight, it is hard to imagine modern life without any satellites provid-

ing us with GPS signals, radio communication or data for weather forecasts. For economic reasons, 

these space structures need to be lightweight and packaged to a small volume. Hence, large areas need 

to be folded and packed during launch. Different approaches are studied within the Joint Deployable 

Space Structures project between the German Aerospace Center (DLR) and the National Aeronautics and 

Space Administration (NASA). A sub-project focuses on membranes for small satellites, where solar sails, 

photovoltaic arrays, sunshields or drag sails are interesting applications. This thesis is placed within this 

sub-project and focuses on the deployment method and stiffening structure of such a membrane. In-

spired by foldable insect wings, different geometries of elastic hinges are developed, parametrized and 

their parameters are optimized. Their performance is evaluated by a finite element (FE) model. The elas-

tic hinges are produced by a 3D printer using the fused deposition modeling (FDM) principle. An appro-

priate test rig has been developed and calibrated with sample material specimens. It is independent of 

other commercial test rigs and only needs a data acquisition system, power supply and a LabVIEW capa-

ble computer. Designing the test rig has been challenged by the small reaction torques of the speci-

mens, which showed the need for a very precise torque sensor and a good bearing of the moving parts 

in the test. The test station is able to measure the reaction torque of specimens during the folding as 

well as the deployment phase. Various different geometries and model sizes can be tested with this new 

test rig. 

The designed test shows repeatable results and the experimental data of the tests have been collated 

with the FE simulations. The FE model has been adapted to the test results of the so-called Torsion 

Hinge design in order to provide correct values for further geometries. Tests on the insect wing inspired 

Z-shape, oval-shape straight, tilted and spring designs showed a good match with the adapted FE model. 

Another big challenge was the optimization part. The calculation of an optimal solution of a para-

metrized model uses a lot of time and the model needs to be stable for very different parameter combi-

nations. In addition, it has been shown that the optimization of the parametrized models is highly de-

pendent on the parameter boundaries. Unfortunately, not all models could be optimized as far as in-

tended. Nevertheless, good solutions have been found for all models, which could be tested. It could be 

shown that the four bio-inspired hinges do not differ very largely regarding their reaction torque to 

weight ratio. Still, the oval-shape spring and tilted models show a slightly better performance. There-

fore, the oval-shape tilted model might be a good choice for in-plane folding as its rods are shifted, lead-

ing to a more compact folding. In addition, the spring model could be used at the connection to the sat-

ellite structure where the hinge would be outside of the fold line, leading to a compact stowage. An 

exemplary design of such a complete structure is shown, whereas the hinges are connected to each 

other with rods, which are extensions of the hinges’ rods. The complete stiffening structure composed 

of hinges and rods shall be printed directly onto the membrane. If these rods are bonded to the mem-

brane, they might also work as rip-stoppers to confine possible rips in the membrane due to hits of 

space debris or other particles in space. 
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Zusammenfassung 

Obwohl meistens unbeachtet, ist es schwer sich ein Leben ohne Satelliten vorzustellen, die uns mit GPS-

Signalen, Telekommunikation oder Daten für Wettervorhersagen versorgen. Aus wirtschaftlichen Grün-

den müssen diese Weltraumstrukturen leicht und möglichst klein sein. Deshalb müssen grossflächige 

Strukturen während des Starts gefaltet und verstaut werden. Das Deutsche Zentrum für Luft- und Raum-

fahrt (DLR) und die National Aeronautics and Space Administration (NASA) untersuchen verschiedene 

Methoden dazu im gemeinsamen Projekt Joint Deployable Space Structures. Ein Unterprojekt setzt den 

Fokus auf Membranen für kleine Satelliten. Interessante Anwendungen dabei sind Sonnensegel, Photo-

voltaikelemente, Sonnenschutzschirme oder Bremssegel. Die vorliegende Arbeit ist in diesem Unterpro-

jekt untergebracht und fokussiert sich auf die Entfaltungsmethoden und Versteifungsstrukturen solcher 

Membranen. Inspiriert durch faltbare Insektenflügel werden verschiedene Geometrien für elastische 

Gelenke entwickelt, parametrisiert und die Parameter optimiert. Die Leistungsfähigkeit wird mittels 

eines Modells der finiten Elemente (FE) evaluiert. Die elastischen Gelenke werden mit einem 3D Drucker 

im Fertigungsverfahren der Schmelzschichtung (engl. Fused Deposition Modeling, FDM) hergestellt. Es 

wurde ein entsprechender Teststand entwickelt und mit Materialprobenmustern kalibriert. Der Test-

stand ist unabhängig von kommerziellen Testanlagen und benötigt einzig ein Datenerfassungssystem, 

Stromzufuhr und einen LabVIEW-fähigen Rechner. Eine grosse Herausforderung bei der Entwicklung des 

Teststandes war das kleine Reaktionsmoment der Prüfkörper, was einen sehr präzisen Drehmoments-

ensor und eine gute Lagerung der sich drehenden Teile benötigte. Der Teststand kann das Reaktions-

moment der Prüfkörper während der Phasen der Faltung und der Entfaltung aufzeichnen. Zahlreiche 

verschiedene Geometrien und Modellgrössen können mit diesem Teststand getestet werden. 

Der entwickelte Teststand zeigt wiederholbare Resultate und die Experimente wurden mit den FE-

Simulationen abgeglichen. Das FE-Modell wurde an die Testresultate der sogenannten Torsionsgelenke 

(engl. torsion hinge) angepasst um korrekte Werte für weitere Geometrien zu liefern. Tests mit den 

durch Insektenflügel inspirierten Designs Z-Form (engl. Z-shape), Oval-Form gerade (engl. Oval-shape 

straight), schräg (engl. Oval-shape tilted) und Feder (engl. Oval-shape spring) zeigen gute Übereinstim-

mungen mit dem angepassten FE-Modell. 

Eine weitere grosse Herausforderung war der Teil der Optimierung. Die Berechnung der optimalen Lö-

sung eines parametrisierten Modells benötigt viel Zeit und das Modell muss für sehr unterschiedliche 

Parameterkombinationen stabil bleiben. Dazu konnte gezeigt werden, dass die Optimierung der para-

metrisierten Modelle sehr von den Randbedingungen abhängig ist. Allerdings konnten nicht alle Modelle 

so weit optimiert werden wie zuerst gedacht. Trotzdem wurden für alle Modelle gute Resultate erzielt. 

Es konnte gezeigt werden, dass sich die vier durch die Natur inspirierten Gelenke in Bezug auf ihr Reak-

tionsmoment-zu-Gewicht-Verhältnis nicht allzu gross unterscheiden. Dennoch schnitten die Modelle 

Oval-Form Feder und Oval-Form schräg leicht besser ab. Deshalb wäre das Modell Oval-Form schräg 

eine gute Wahl für das Falten in der Ebene, da seine Stäbe verschoben sind, was zu einer kompakteren 

Faltung führt. Dazu könnte das Modell Oval-Form Feder an der Verbindung zur Satellitenstruktur be-

nutzt werden wo das Gelenk aussen an der Faltlinie zu einer kompakten Verstauung führen würde. Ein 

Beispieldesign einer solchen kompletten Struktur wird am Ende dieser Arbeit gezeigt, wobei die Gelenke 

durch Stäbe, welche Verlängerungen der Gelenkstäbe sind, miteinander verbunden werden. Die Gesam-

te Stützstruktur aus Gelenken und Stäben soll direkt auf die Membran gedruckt werden können. Dabei 

könnten durch einen Einschlag durch Weltraumschrott oder andere Gegenstände hervorgerufene Risse 

in der Membran eingeschlossen und daran gehindert werden sich auszubreiten. 
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1 Introduction 

Today, space is a widely used environment not only for space exploration itself as is done for example 

with the Hubble space telescope, but also for daily use. Imagine no satellites providing earth with infor-

mation about the earth’s atmosphere for meteorological weather predictions. In addition, today’s 

communication or positioning systems are relying on satellite communication. However, catapulting a 

satellite into space is very expensive. To lift a payload of one kilogram to the lower earth orbit (LEO) 

where for example the International Space Station ISS is located, costs about 8900 USD with an Ariane 5 

ECA and between 9500 to 13400 USD with an Atlas V. Even with a Falcon 9 from SpaceX reusing some 

parts of the spacecraft, it costs about 2150 USD per kilogram payload to lift it into LEO. [1] 

To lower the price of launching but also decreasing the fuel consumption during the spacecraft’s service 

life, the aim is to design lighter structures for every part of a spacecraft. Some structures like solar arrays 

or antennas cannot be reduced in their dimensions due to their purpose. To optimize their functions 

their areas need to be as large as possible which is contradictory to the mass saving goals explained 

before. Therefore, the stabilizing structures need to be as lightweight as possible. Thus, membrane 

dominated structures have been found being lightweight and package efficiently for launch. [2] 

However, these packaged structures need to be deployed in space to achieve their desired geometry 

and be able to perform their tasks according to their requirements. Such structures include solar arrays, 

large antennas, solar sails, sunshields and other large structures that are used to collect, reflect or 

transmit any kind of radiation. Especially for small satellites which are used more and more today due to 

their lower payload, these structures need to be packed during lift-off and then deployed when the sat-

ellite has reached its orbit. 

Today, deployment is commonly done by external power like electrical motors or inflation. These mech-

anisms are only used during deployment and add unnecessary and unwanted weight to the spacecraft. 

Therefore, a goal of current research is to generate and conserve the deployment forces on earth by the 

use of elastic deformation of a structure. [3] The stored intrinsic elastic energy in a folded structure 

would then be released in orbit to deploy the structure. 

What is also important to consider for large area structures is that in the range of satellite orbits there 

are many micrometeoroids and especially lots of orbital debris. Collisions between such debris and the 

satellite structure can cause damage to the membrane and therefore the structure need to be able to 

withstand such impacts. This means that tears or rips need to be stopped by the structure itself by use 

of rip-stops. [3] Again, to reduce the overall structure’s weight, the rip-stop mechanism should be in-

cluded in the membrane reinforcing structure, which is responsible for the elastic deployment. 

Concluding those aspects, one can summarize that the large membrane structures need to be devel-

oped such that they can be packed efficiently, deploy under stored elastic energy and have an inherent 

rip-stop mechanism in order to be cost-effective and durable. 
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1.1 DLR-NASA joint project 

The decreasing size of satellites also leads to adapting its subsystems. To increase the performance of 

small satellites, new methods for packaging and deployment of large structures need to be developed. 

Nowadays, boom concepts are used for deployment, which are designed for large satellites with large 

equipment. Downscaling these boom designs for small satellites leads to manufacturing issues due to 

restricted packing capacity. To outrun this problem, boom and array deployment concepts for small 

satellites, such as solar sails, solar shields or drag sails shall be developed in a DLR-NASA joint project 

started in 2016. The project is especially focusing on booms with a reliable deployment in the range of 5 

to 20 meters length which can be stowed in small satellites as for example a 3U CubeSat1. [5] 

The goal of the project is to advance at least one boom concept to a technology readiness level (TRL) of 

six and to overcome the lack of predictable, testable and reliable technology for small satellite deploya-

ble booms. [5] 

1.2 Aim of Thesis & Approach 

This thesis is placed within a sub-project of the above-described collaborative project. The goal is to 

develop a small membrane structure suitable for CubeSat applications. Possible applications for those 

structures are drag sails, solar sails or solar shields. However, the final application of the membrane is 

not yet specified and will depend on the results of this project. The new deployment method should 

overcome the downscaling problem of the boom structures. Those new foldable and deployable struc-

tures follow the ideas of nature whereby tree leafs and insect wings are an inspiration to bionic and 

planar distributed structures. 

The main objectives of this sub-project are [6]: 

- Developing a stiffening structure for a membrane. This structure needs to be lightweight and in-

tegrated into or distributed onto the membrane such that the membrane can be packed and 

stowed inside a CubeSat. 

- Developing a lightweight and low-volume deployment method and examining the potential of 

self-deployment through stored intrinsic energy. 

Previous works have shown that elastic hinges seem to be a promising solution for future deployable 

satellite structures. In his master’s thesis at DLR, Jannic Völker proposed different elastic hinge configu-

rations and made qualitative tests [6]. He found a so-called Torsion Hinge configuration, which can be 

folded and then reopens itself after being released from folding. His results will be further investigated 

in the present thesis. To do so, the torsion hinge will be the basis for improving an existing finite ele-

ment (FE) model from Jannic Völker. In addition, a test stand will be designed to validate the FE simula-

tion results. 

Hence, the aim of the present thesis is to design a test stand applicable to test the force and torque 

reaction of the elastic hinges together with their respective angle change during their folding and de-

ployment. The resulting information should then be integrated into the existing FE model to improve its 

predictions. Then, the FE model should be adapted to different elastic hinge configurations in order to 

find the best hinge configuration regarding opening angle and reaction forces and torques. The chosen 

hinges should then constitute the basis for an initial rod and hinge placement on a planar field in order 

to build a demonstrator for the new elastic-hinge-based deployment technique studied in the present 

                                                           
1 A CubeSat is a standardized small satellite with dimensions of 10 x 10 x 10 cm and a maximum weight of 1.33 kg 
(3 lbs) per unit (1U). [4] Therefore, a 3U CubeSat can weigh up to 4 kg and has dimensions of 30 x 10 x 10 cm. 
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work. The obtained information in this thesis should present a basis for a deployment demonstrator, 

which should be tested in a parabolic flight campaign by DLR and NASA in 2020. 

The main goal of this thesis is to extend and adapt an existing finite element model for the folding and 

deployment of elastic hinges. The model should be collated with experimental data to characterize the 

mechanical properties of different elastic hinge configurations or shapes. To do so, an appropriate test 

stand should be developed and constructed. The boundary conditions and load introduction of the test 

and the FE model should be consistent. Therefore, the FE simulations can be verified. 

The major tasks can be subdivided into the following: 

1. Carry out a literature research on deployable space structures and bionic structures and their 

mechanisms, as well as bending test methods. 

2. Develop a test stand for a realistic bending test, based on the literature research about testing 

methods. 

3. Extend and adapt an existing FE model of elastic hinges according to the developed test stand. 

4. Print prototypes of the elastic hinges with 3D printers. 

5. Perform tests with the prototypes on the test stand and collate the results with the FE model. 

6. Make suggestions on how to implement the elastic hinges as structural elements into the overall 

structure. 
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2 State of the art 

This thesis is confronted with several different backgrounds and with a wide range of subjects. To ac-

count for that, a systematic literature research has been conducted. The state of the art of deployable 

satellite structures is examined first, followed by the development of different approaches to folding 

and deployment techniques as well as different testing techniques. 

2.1 Deployable Satellite Structures 

2.1.1 Solar Arrays 

Compared to the service life of a satellite, the sun is an unlimited energy provider. Therefore, every 

space structure that needs more energy than can be supplied by an inherent battery is equipped with 

solar arrays. Those arrays are most often bigger than the space structure itself, which means that the 

arrays need to be deployed in orbit. To be able to do this, the solar arrays need to be flexible and to save 

payload cost, they also need to be lightweight. Therefore, important characteristics for solar panels in 

space applications are the power-to-mass ratio (W/kg) and its volume during launch (W/m3 folded). 

Different thin film solar cells have been developed. An example is the process of printing solar cells onto 

a substrate which is foldable, developed at the Massachusetts Institute of Technology (MIT) [7]. 

An example for using such a deployable solar array is the International Space Station (ISS). Its solar cells 

on a thin flexible body have been folded in a zigzag-shape and where then pulled apart by a truss when 

having reached the orbit. The reinforcement of the solar cells has been done by hinge bands, which are 

located between the solar cells (white parts in Fig. 2-1). The ISS solar arrays can also be retracted and re-

stowed. [8] 

  

Fig. 2-1: Folded solar arrays of the ISS [9] Fig. 2-2: Hubble Space Telescope with deployable 
solar array [10] 

Another example for this type of system is the Hubble space telescope, which also uses this kind of ten-

sioned blanket solar array for the initial arrays (See Fig. 2-2). The difference is that for the Hubble tele-

scope the blanket was unrolled from a cylinder, pulled by two booms. However, vibrational disturbances 

have been observed soon after deployment, which could not be controlled to all extent. Therefore, me-

chanically and thermally redesigned solar arrays have been installed during the first service mission. [11] 

This problem is typical for thin structures and membranes possessing low natural frequencies and low 

damping rate. In addition, by pointing one side of the membrane to the sun, the large thermal loads 

increase the possibility of disturbances. 
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An alternative folding and deployment technique has been developed by the company Orbital ATK for 

the solar arrays UltraFlex and MegaFlex. The flexible solar arrays are folded like an accordion and look 

like a closed-circle handheld fan in the deployed state as can be seen in Fig. 2-3. The MegaFlex has been 

developed for NASA´s Solar Electric Propulsion systems and is an evolution of the UltraFlex aboard the 

recent mission to Mars called “InSight”. [12] 

 

Fig. 2-3: Deployment Sequence of the MegaFlex solar array [13] 

2.1.2 Solar Sail 
In order to increase possible future mission duration and distance, solar sails could be an elegant form 

of propulsion. Unlike state-of-the-art propellants, solar sails do not need reaction mass but gain mo-

mentum from impacting photons, the packages of which the sunlight is composed. The idea is the same 

as for sailing boats with the only difference that the impinging wind is replaced by the impacting pho-

tons, called radiation pressure. As the photons are vanishingly small the solar sail must have a large sur-

face to intercept a large number of photons and has to be extremely lightweight such that the accelera-

tion due to the photon impact can get as high as possible. Then, the propulsion system is only limited by 

the service life of the sail membrane in space. [14] 

An exemplary mission using a solar sail was the “Interplanetary Kite-craft Accelerated by Radiation of 

the Sun” (IKAROS) mission which was launched in 2010 by the Japan Aerospace Exploration Agency 

(JAXA) onto a Venus transfer orbit and was only accelerated through radiation pressure. In addition, 

JAXA also used the deployed solar sail as a base for thin-film solar cells killing two birds with one stone. 

[15] 

A typical configuration for solar sails consists of four booms deploying from the spacecraft in an X-

configuration leading to a rectangular deployed sail as can be seen in Fig. 2-4. 

  

Fig. 2-4: Artists illustration of NASA´s NanoSail-D [16] Fig. 2-5: Boom during deployment [8] 
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The deploying booms usually have a “double-omega” cross-section when deployed. Stowed, they are 

flat and rolled until they are unrolled by an external trigger (i.e. motor) changing their cross-section back 

to the “double-omega” as can be seen in Fig. 2-5. Together with or shortly after the booms, the mem-

branes connected to the tip of the booms are pulled out of the spacecraft. 

2.1.3 Drag Sail 
To decrease the amount of orbital space debris in Earth’s orbit, a satellite orbiting the earth should be 

deorbited after its service life. To do so, one could deploy a drag sail to enlarge the spacecraft’s area, 

increasing the aerodynamic drag. As a satellite mission can take up to 10 to 15 years, these drag sails 

need to be stowed for a long time. Hence, finding appropriate materials and mechanisms still working 

after such a long stowing time is a big challenge. 

Apart from the different usage and deployment time during its life cycle, drag sails have a similar archi-

tecture as solar sails, differing only in the membrane properties and stability requirements. [6] 

2.1.4 Solar Shades 

Solar shades, also called sunshields or thermal shields, are used to block radiation coming from the sun 

or warm heat emitting spacecraft subsystems. One example to mention is the thermal protection of 

sensitive optical instruments such as infrared telescopes. The solar shades not only prevent the tele-

scope from disturbing sunlight but also act as barriers blocking radiant transfer of heat to the instru-

ment. An example for such an application is the James Webb Space Telescope (JWST) (See Fig. 2-6). This 

telescope is a large infrared space telescope, which means that the installed instruments work primarily 

in the infrared range of the electromagnetic spectrum. The goal of the JWST is to peer back over 13.5 

billion years and see the first stars and galaxies of the early universe. Additionally, the atmosphere of 

extrasolar planets should be observed. [17] 

 
(A) Cold, space-facing top 

 
(B) Warm, sun-facing bottom 

Fig. 2-6: Different views of artist’s illustration of the JWST [18] 

The JWST had several difficulties during its development and therefore had numerous delays and cost 

overruns. Just recently, the launch needed to be delayed again due to rips in the sunshield [19]. A new 

launch date is set for March 2021. [20] 
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2.2 Folding & deployment techniques of lightweight structures 

As already seen in the previous chapter, several folding and deployment techniques have been used for 

space structures. This chapter gives an overview of possible folding and deployment techniques and 

designs including bioinspired techniques. 

2.2.1 Folding techniques of technical areas 
There are several methods to get a repeatable folding scheme but, in the end, it depends on the de-

ployment method, the available stowing volume and how the structure will be folded. Simple folding 

techniques as the “Z-Folding” for the ISS solar arrays (Fig. 2-1) or the “Fan-folding” (Fig. 2-3) have al-

ready been used on space missions. A more complicated folding process is the Miura-Ori folding, a fur-

ther stage of the well-known Origami. The difference from normal folding is that the angle between the 

folding lines is not 90°. This leads to the advantage that a movement in one direction directly leads to 

the same movement in the other direction. A general folding process is shown in Fig. 2-7. A major draw-

back of Origami structures is that they only have one degree of freedom, not associated with a stiffness 

during folding and unfolding. Therefore, the mechanisms are purely kinematic and cannot have load-

bearing functions. [21] 

  

Fig. 2-7: Miura-Ori folding process [22] Fig. 2-8: Wrapping around a hub folding pattern [22] 

Another membrane folding technique used for OrigamiSat-1 is the wrapping around a hub method as 

shown in Fig. 2-8. This technique has further been improved by Arya et al. [23]. To avoid local buckles 

and wrinkling leading to deformation, they introduced a wrapping method with slipping folds, which 

allow for both rotation and translation along the axis of the fold as can be seen in Fig. 2-9. By using this 

technique, one can fold and wrap membranes very tightly while still accommodating the thickness of 

each strip. What is important is that the connections between the sheets, where the folds take place are 

stiff enough (Fig. 2-10). The developed packaging concept is based on the slipping folds connecting the 

strips to each other. The fold pattern has equally spaced squares, alternating between mountain and 

valley folds. This produces a star-like shape and has four arms as shown in Fig. 2-11 (c). By wrapping 

those arms around a cylinder, one gets a very tense packed cylindrical form. [23] 
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Fig. 2-9: Packaging concept consisting of two steps: 1. Z-
folding with slipping folds, 2. Symmetric wrapping [24] 

Fig. 2-10: Slipping folds with hinged connection (left) 
and ligament fold (right) [25] 

 

  

Fig. 2-11: Packaging concept according to Arya et al. [23] Fig. 2-12: Demonstration of packaging concept using a 1m x 
1m, 50 µm-thick Mylar membrane. Packaged, the cylinder has 

a diameter of 51mm and is 40mm high [23] 

2.2.2 Deployment techniques of technical elements 

A simple method to deploy a structure is the use of a motor. However, this adds unnecessary mass and 

volume. One can also inflate the packed structure by using an inflation gas, as done by NASA´s ECHO 

balloon satellites deploying a 0.67 meter diameter packed container to a 30 meter diameter balloon. 

[26] 

Using centrifugal forces for an even deployment around a rotatable axis has been used for the already 

mentioned IKAROS Mission to deploy its solar sail. A drawback of this technique is that fuel is needed to 

initialize the spin and that a rotating spacecraft might lead to disadvantages. [15] 

Another possibility are deployable booms. As described in section 2.1.2, the boom is pressed flat and 

rolled around a cylinder. When the boom is deployed, it unrolls from the cylinder and changes its cross-

section to form a rigid boom. The cross-section does not necessarily need to be the “double-omega” but 

can also have different cross-sections as shown in Fig. 2-13. Simplifying or downscaling the boom design, 

the boom can be reduced to only one arc instead of the two opposing arcs in the boom (Fig. 2-15). This 

design is called “Tape Spring” and can be used as a tape spring hinge as can be seen in Fig. 2-14. 
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Fig. 2-13: Different typical boom cross-sections: (A) Single 
open-section. (B) Closed omega-section. (C) Biconvex section. 

(D) Trac boom (two c-shapes bonded together) [27] 

Fig. 2-14: Opposite sense bending of tape spring [28] 

  

Fig. 2-15: Side view of partially coiled tape spring [29] Fig. 2-16: The CoilABLE boom by ATK [30] 

Truss booms are much stiffer and provide a higher strength than tubular booms. They have proven their 

reliability and efficiency for many space missions in the last years (see Fig. 2-16). The idea is that contin-

uous carbon fiber longerons can be elastically coiled into a box for stowage. During deployment, the 

coiled longerons will either be uncoiled by a motor at the bottom of the box or the stowed package will 

rotate itself for deployment. A major drawback is that they require a box for packaging which normally 

exceeds the allowable volume on a small satellite and therefore will not be studied further in this thesis. 

Very recent studies also showed progress on the investigation of shape memory alloys (SMA) and elec-

troactive polymers (EAP). An SMA can be deformed and stays in that new form until it is heated and 

then returns to its initial shape. There are one-way SMAs keeping their original shape independent of 

the following temperatures as opposed to two-way SMAs, which can change their shape again by cool-

ing back. [31] Hill et al. [32] studied a thin film of Nickel Titanium (NiTi) added to membranes as a de-

ployment method. 

Compared to SMA’s changing shape due to a temperature change, EAP change their shape in response 

to electrical stimulation and are therefore also called artificial muscles. However, the technology has not 

been developed enough such that it could be incorporated into a space application without a substantial 

increase in development resources. [33] 

The deployment technique, which will be studied further in this thesis, is using a structure under ten-

sion, working like a spring. Mini rods with elastic hinges distributed over a membrane, which are ten-

sioned while being folded, are an example for such a structure. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwip-OGakpzeAhUSJVAKHX9GAvMQjRx6BAgBEAU&url=https://www.sciencedirect.com/science/article/pii/S0094576510000743&psig=AOvVaw1t5jDwVKsxMyXWcJ694wqQ&ust=1540369524712337
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2.2.3 Folding and unfolding of insect wings 

An inspiring example of a self-deploying or self-folding structure is coming from nature. Some insect 

groups as beetles or earwigs are able to fold and deploy their hindwings with a large unfold-to-fold ra-

tio. The reason why many insects fold their wings is straightforward. If the wings of soil and ground liv-

ing insects would always be deployed, they would quickly be damaged by water, dirt and other external 

factors. To protect the fragile wings, they are stowed under leathery or firm forewings, also called teg-

mina or elytra, respectively. Still, it is important for many insects to have relatively large wings to be able 

to disperse and find new habitats. To do so, the wings of those insects are usually longer than their ab-

domen and the forewings, which means that they have to be folded and stowed under the forewings. To 

maintain the insect’s maneuverability, the stiff forewings need to be smaller than the total abdomen, 

which requires the wings’ folding pattern to be even better. The solutions to maintain both of these 

conflicting requirements, the protection and the maneuverability, brought up some complex folding 

techniques in insects. A very impressive example is the earwig (Dermaptera) as its package ratio is re-

ported to be in the order of 1:10 [34] up to 1:18 [35] compared to the deployed wing. [36] 

  

Fig. 2-17: Earwig unfolding its wings. (A) Both wings are fold-
ed and the cerci begin the process of deploying the right 

wing. (B) The right wing is completely unfolded while the left 
wing is still in the phase of deployment. [37] 

Fig. 2-18: Circumferential crossing vein exhibiting a 
reduced degree of sclerotization (red arrow) [35] 

Fig. 2-17 shows an earwig unfolding its right wing. The folding scheme is so complicated that it needs 

more than a single muscle to unfold the wing (see Fig. 2-27 for the folding scheme). It has been shown 

that elasticity in the wing’s veins is used to perform this cyclic activity [34]. Haas et al. [37] describe that 

the folding is achieved by intrinsic elastic forces. Resilin, a rubberlike protein has been found as being 

the major aspect for folding and preventing material fatigue during the multiple folding and unfolding 

cycles. It is assumed that the wing folding is driven by elastic recoil of the anisotropically distributed 

resilin on either the lower or upper sides of broadened vein patches in the intercalary and radiating 

veins [38]. Opposing bending directions are also due to a different placement of a layer of resilin. It has 

been suggested that the wing hinge ligaments can take up compressive as well as tensile forces and 

contribute to the kinetic energy storage at the maximum wing deflection and the wing acceleration dur-
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ing the downstroke by elastic recoil [38]. In addition, resilin also stores the energy to keep the mid-wing 

mechanism in the locked position during flight. The mid-wing mechanism is bistable and is used to lock 

the wing in its unfolded state. [37] 

Fig. 2-18 shows that along the folding line, the circumferential crossing vein exhibits a reduced degree of 

sclerotization (hardening). Therefore, the folding can be done without plastic deformation of the wing 

[35]. Even more interesting is the shape of the broadened vein patches in the intercalary and radiating 

veins (see Fig. 2-27). The base structure has a round or oval shape and the vein patches exhibit a large 

variability of the placement of leading and trailing veins. In some patches, the leading and trailing veins 

are on one line and parallel to each other, while in other patches the two veins are strongly shifted and 

tilted up to about 40°. The shifting and tilting also induces that the vein patches are not circular any-

more but tilted as well. This might lead to a better stress distribution along the fold line, as the vein 

patches might not only be bent but are able to move out of plane and rotate. 

Other beetle species (Coleoptera) have been investigated in Geisler et al [39]. It could be shown that 

most fold lines of the various beetle species belonging to the order of Coleoptera try to avoid folding the 

veins. The fold lines are therefore mostly along the veins, only folding the wing membrane (Fig. 2-19). 

However, to be able to fold the wing parallel to the insect’s body a fold line passing through the veins is 

needed as it is achieved without fatigue damage in earwigs with the broadened vein patches. The Cole-

optera have developed a somewhat different structure. Some of the veins are reduced in cross section 

as for the circumferential crossing veins in earwigs, however, not a clear design structure can be ob-

served. There are veins that are L-shaped, some are more Z-shaped and some are more bulky and 

broadened at the fold line resulting in a kidney-shape (Fig. 2-20 & Fig. 2-21). 

The Z-shaped hinge has also been observed in the wasp-beetle Clytus [40], where the wing rotates 

around the so-called costal hinge (Fig. 2-22). This rotation is mechanically preferred over pure bending 

as the stresses are distributed over the whole length of the middle part of the Z while in pure bending 

the stresses are only distributed through the small cross-section. 

A very different approach has been found in drone flies and desert locusts, where the veins exhibit an 

annular shape, which decreases the vein cross-section in between two adjacent annuli. This makes the 

veins more flexible and reduces the bending strain and therefore also the bending stress. Vacuum 

cleaner hoses are daily-use example for this design approach. [41] 

 

Fig. 2-19: Wing of a Coleoptera beetle species (Chelorrhina polyphemus). Solid lines indicate mountain 
folds and dashed lines indicate valley folds [39] 
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Fig. 2-20: Wing joint and folding pattern of a beetle Mono-
chamus sartor F. (adapted from [39]) 

Fig. 2-21: Wing joint and folding pattern from a beetle 
Prionus coriarius (L.) (adapted from [39]) 

 

  

Fig. 2-22: Diagram of wing folding pattern in the wasp-beetle 
Clytus [40] 

Fig. 2-23: Annulate cross-vein in a drone fly (Eristalis tenax) 
(A) and a desert locust (S. gregaria) (B). Scale bars: 0.5 mm. 

[41] 

Haas [36] treated the folding mechanisms of the earwigs and developed a mathematical description for 

them. He distinguishes between creases, which are single folding lines, and folds, which are used for the 

whole wings. A fold of a wing means a crease, which runs across the whole wing. Therefore, a fold nor-

mally consists of several mechanisms with multiple creases. There exist two kinds of creases. A valley 

crease, also called concave and depicted as “-“ in figures, and a mountain crease, called convex and de-

picted as “+” in figures. A mechanism consists of a knot where the creases intersect. Haas studied knots 

with four creases. For a mechanism to be foldable, it cannot have any combination of convex and con-

cave creases. Haas states, that “the absolute value of the difference between the number of convex and 

concave folds must equal 2”: [36] 

 |𝑛𝑐𝑜𝑛𝑣𝑒𝑥 − 𝑛𝑐𝑜𝑛𝑐𝑎𝑣𝑒| = 2 (2.1) 

His basic model is depicted in Fig. 2-24 where the four possible configurations and their individual creas-

es are shown. The mechanisms are named “+-type” if there are three convex creases around the knot 

and “-type” in case there are three concave creases. It is clear that every mechanism will have a differ-

ent movement. 
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Fig. 2-24: The basic mechanisms of a four-crease knot [36] Fig. 2-25: Exemplary angular movement of the line OD 
from Fig. 2-24 in a bistable system (i.e. type 1 mecha-
nism). The angles only add up to 300°. The forbidden 

range is shaded gray. [36] 

Haas then calculated the angular movement of the crease “OD” from Fig. 2-24 for all mechanisms and 

increased the complexity of the problem by adding more knots to a mechanism. There are two rules 

pointed out. First, for a mechanism to be able to fold completely (all four panels lie in a parallel plane) 

the angles of non-adjacent sectors must add up to 180°. Second, to unfold the mechanism into one sin-

gle plane the sum of all angles must add up to 360°. [36] 

By measuring the angles between creases for different insects, it has been found that none of the two 

rules is followed. This means that the insects are not able to fully unfold and fold their wings. Therefore, 

they will always have slightly curved wing shapes. An interesting finding of Haas’s calculations with the 

total sum of angles not equal to 360° is that this might be a stiffening mechanism. If the angles do not 

add up to 360°, the structure will form a kind of pyramid. A “forbidden range” exists, where the opening 

angle cannot be calculated. The mechanism cannot overcome this range except by external help if there 

is intrinsic elasticity in the mechanism, as is in a wing membrane. Therefore, the mechanism becomes 

bistable and the bistability can be exploited as a stiffening mechanism. Fig. 2-25 shows the bistable situ-

ation by the sudden change in the angle corresponding to the z-axis before and after the forbidden 

range. A snapping from one stable state to another is therefore shown. [36] 

Comparing the stated folding rules and their consequences with real insect wings, Haas found that the 

sum of non-adjacent angles “almost always did not match 180°” [36]. This means that the insects are 

not able to fully fold their wings. This can be explained by looking at the possible space between the 

abdomen and the elytra. This space is not rectangular but more round. This means that a fully folded 

and flat wing would not use all the space available (Fig. 2-26, A). In addition, non-complete folding (Fig. 

2-26, B) might have a positive effect during unfolding. By unfolding the wing, the elytra is lifted and the 

wing can slightly expand due to the inner tensions generated by the non-complete folding. This initial 

stimulus might help to overcome the first few degrees of the unfolding. This might be important be-

cause it has been shown that the first few degrees of unfolding are the most difficult in the whole un-

folding process. [36] 
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Fig. 2-26: Schematic cross section of the abdomen of a beetle. A completely folded wing does not occupy the whole 
space available (A), whereas a slightly unfolded wing does (B). [36] 

Fig. 2-27 shows a schematic dorsal view of an unfolded left hind wing of the common earwig. One can 

see the fold lines. Their directions are marked with cv (concave) and cx (convex) as already introduced 

before. The earwig possesses radiating veins running from the ulnary area to the outer wing margin and 

intercalary veins emerging near the ring fold and also running to the outer wing margin. The radiating 

veins are close to the fold lines but move away from them by getting closer to the ring fold. After the 

ring fold, both sorts of veins lie between the radiating fold lines. Both sorts of veins broaden at the loca-

tion where they cross the ring fold, forming broadened areas. The veins are all connected by the circum-

ferential vena spuria. [36] 

The diameter of the veins tends to decrease from the base to the tip, which also decreases the bending 

torque. This reduces the torque of inertia and therefore the energy required as well as stresses generat-

ed in oscillation during flight and it makes the wing-tip more flexible and more easily deflected by exces-

sive forces and unpredicted impacts. The connection of the radiating and intercalary veins with the cir-

cumferential veins can also be seen as a kind of truss-lattice mechanism. The circumferential veins hold 

the radial veins apart and serve as struts, loaded in compression. The radial veins are either in compres-

sion or in tension, depending on the direction of the wing forces. [41] 

The wing of the earwig folds in a complicated manner and has four stages and is well explained in [36]. 

1. The large fan-like area of the wing folds fan-wise with folding lines between the radiating and in-

tercalary veins. 

2. The apical (upper) part of the wing bends downwards at a line between the outer apical area 

plus the squama and the inner apical area plus the base of the radiating veins and ulnary area. 

3. The radiating and intercalary veins bend upwards along the ring fold. 

4. The ulnary area bends downwards relative to the squama and encloses the folded fan-like area. 

It should be kept in mind that the steps are not done one after another, but in one process. 
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Fig. 2-27: Schematic of unfolded left hind wing of Forficula auricularia (common earwig) in dorsal view [36] 

The relaxed position of the earwig’s wings is the folded one. This is in contrast to the goal of this thesis 

where the deployed structure should be the relaxed and the folded one the tensioned position in order 

to use the tension for unfolding. Still, it is interesting to know about the mechanisms that keep the wing 

unfolded because they might bring some inspiration to stiffening mechanisms in the considered applica-

tion. 

There are two mechanisms doing so. The first is the concave longitudinal fold (CLF) which is depicted in 

Fig. 2-27. The CLF can snap into its concave form when the wing is stiffened and it counteracts the in-

trinsic elasticity that wants to fold the wing. It could be shown that the elasticity securing the CLF comes 

from the surrounding membrane. In addition, the absolute value of the difference between the number 

of convex and concave folds at the knot where the CLF crosses the convex crease between the squama 

and the ulnary is equal to zero: 

 |𝑛𝑐𝑜𝑛𝑣𝑒𝑥 − 𝑛𝑐𝑜𝑛𝑐𝑎𝑣𝑒| = 0 (2.2) 

This gives a criterion where it is easily possible to differentiate between folding creases with the differ-

ence of two and the creases for stiffening with zero crease difference at a knot. 

The second stiffening mechanism is the so-called “Flügelmittelgelenk” (FMG, wing central joint). This is 

the region where the outer apical area, the inner apical area, the ulnary area and the squama adjoin. It 

could be shown that the angles around the FMG only add up to 350°. Therefore, and because of the 

elasticity of the membrane, the FMG is bistable and important for stiffening the wing. The central area 

of the FMG, the Zwischenfeld, is “significantly less sclerotized than its surrounding area” [36]. This 

means that the Zwischenfeld is less stiff than its surroundings. Haas demonstrates the effect of the more 

compliant Zwischenfeld with two paper models, both not adding up to 360° at their knot (Fig. 2-28). The 

second model has a rhombic cutout, representing the Zwischenfeld (Fig. 2-28 B). By comparing the ef-
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fort needed to snap each model from one stable position to the other, it seems to be much easier to 

snap the one with the cutout. Therefore, it is assumed that the function of the Zwischenfeld is to reduce 

the forces needed to overcome the bistability and therefore reduce local stresses at the FMG. 

  

Fig. 2-28: Exemplary structure to show the function of the 
Zwischenfeld (Zw). In model (A) it is difficult to snap from one 
stable position to the other. In (B), with the cutout represent-

ing the Zwischenfeld, this can be done much easier. [36] 

Fig. 2-29: Schematics of the force relations in an un-
folded (A) and partly folded (B) wing section. The radial 
(R) and intercalary (I) veins point in opposite directions. 

(C) Hypothetical case of broadened areas pointing in 
the same direction. [36] 

Fig. 2-27 also showed broadened areas of the radiating and intercalary veins. Haas could show that the 

radiating veins actively bend dorsally (to the back), and the intercalary veins actively bend ventrally (to 

the abdomen) seen from the unfolded wing. This has a positive effect during the fan-like part of the 

wing folding. A schematic explication of this effect can be seen in Fig. 2-29. The top image shows an 

almost completely unfolded wing. Each vein generates a force FR in and perpendicular to the broadened 

area. This force bends the part depending on its direction. FR can be split into a horizontal component FH 

and a vertical component FV. Since the fan is folded in the horizontal plane, only FH is important. The 

magnitude of FR changes with the extension of the veins and depends on the situation. 

In the unfolded wing (Fig. 2-29, A), FH is small compared to FV. The vertical forces counteract each other 

and the horizontal forces sum up to the fan-wise folding force. If the fan is already partly folded (Fig. 

2-29, B), the horizontal forces increased by decreasing the vertical forces. Still FV counteract each other 

and FH add up getting larger the more the fan is folded. Therefore, FH has the largest value in the com-

pletely folded wing. If the broadened areas of the radiating and intercalary veins would all bend in the 

same direction, the horizontal forces would counteract and the vertical forces would add up (Fig. 2-29, 

C). With this set-up it would not be possible to achieve a folding. [36] 

A very recent study showed the possibility of replicating the explained mechanism with 4D printing. 

Faber et al. [21] proposed printing stiff faces with PLA or ABS connected by joints made out of an elas-

tomeric component (TPU) by using fused deposition modeling (FDM). By doing so, they could prepro-

gram the folding pattern by printing the samples directly in the folded state. They could also tune the 

energy barrier between the bistable states of being folded or unfolded by using simple geometrical and 



18  State of the art 
 

 

material properties. With this approach, they could build a gripper, which can hold a specimen without 

constant actuation as depicted in Fig. 2-30. In addition, they could rebuild a foldable model of an ear-

wig’s hindwing (Fig. 2-31). [21] 

Their approach was to rebuild the function of the resilin. Depending on the through-thickness distribu-

tion of resilin in the earwig’s joints, a different spring type can be characterized. A symmetric distribu-

tion can be substituted by an extensional spring and an asymmetric distribution leads to a rotational 

spring. The authors wanted to explore the role and capabilities of extensional springs to create multista-

ble folding systems. They found that the extensibility of the joints facilitates folding of complex patterns 

and makes it possible to get closer to “bioinspired features that were previously out of reach.” [21] They 

especially investigated the mid-wing mechanism consisting of four facets and being responsible for the 

bistability of the wing. They modeled the four-facet cell by connecting the rigid facets with rotational 

and extensional springs at each joint. Therefore, they could tune the bistability mechanism by simply 

adapting the spring constants and the missing angle at the facets’ knot. This ability to tune the energy 

barrier between the bistable states by only using geometrical and material properties might allow the 

manufacturing of spring origami structures, which are able to change their shape quickly, only triggered 

by an environmental stimulus. [21] 

 
(A) Open state 

 
(B) Closed state 

Fig. 2-30: Bistable gripper in open, first stable state (A) and closed, second stable state (B) [21] 

 

 
(A) Unfolded 

 
(B) Folded 

Fig. 2-31: 4D-printed artificial earwigs hindwing unfolded (A) and folded (B) [21] 

In this thesis, another bioinspired spring origami approach to elastic deployment will be studied. The 

idea is printing a vein-structure onto the membrane with FDM. The vein-structure consists of rods con-

nected by elastic joints. A qualitative test showed that deployment with this idea might be successful 

and that the strain energy can be used for a self-deployment of the structure. [42]  
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2.2.4 Rip-Stop 

The here-studied structures will need to keep their stability and stay functional in a harsh environment. 

Micrometeorites or space debris can hit the structures and induce holes in the tensioned membrane. 

These holes need to be stopped quickly before the membrane gets ripped apart and would lose its func-

tionality. An example for such a rip-stop mechanism are thermal spot bondings, where layers of the 

membrane and reinforcing stripes are thermally bonded together. These stripes form a pattern where a 

rip is kept within a given grid area. The thermal spot bonding has been used for the JWST. [17] 

Another possibility is to use fused deposition manufacturing to print rip-stop patterns directly onto the 

membrane. This has been investigated in [42]. The idea is that the load carrying structure should also be 

used as a rip-stop device in order to diminish non-structural mass on the membrane. This has also been 

inspired by mechanisms from nature. Dragonflies and other insects can tolerate the loss of a wing area 

of up to 30% and can still have predation success, even though the flight behavior was clearly influenced 

[43]. This indicates a rip-stop mechanism in these wings because only few cases have been reported 

where a rip resulted in complete inability to fly. One can see the rip-stop pattern as being the wing vein 

framework in the insect’s wings where the veins are thicker than the membrane and therefore prevent 

the rips on the membrane from growing outside the confined area of the surrounding veins [42]. The 

same idea is proposed in [2] by directly printing the reinforcing structure with FDM onto the membrane. 

Tests showed that a higher tear resistance than neat film of equivalent mass could be achieved and that 

such rip-stop structures could stop rip propagation for a certain load and strain. [2] 

2.2.5 Synthesis of folding & deployment techniques 
Different deployment methods, stiffening structures and packaging methods have been compared by 

Jannic Völker [6] in his master thesis at DLR. His findings where that 3D printing of rods onto the mem-

brane seems to be the most promising method for the investigated type of application. The rods form-

ing a pattern need hinges at the fold lines to avoid permanent deformation. Therefore, these hinges 

have been defined as critical components because they will be the key component for folding and de-

ployment. The hinges need to be able to fold elastically without any plastic and therefore permanent 

deformation. In addition, they need to inhibit enough energy after being folded such that they deploy 

themselves after being released. Hence, for the self-deployment the hinges need a high stiffness and a 

high opening force or torque. [6] 

2.2.6 Elastic Hinges 
Traditionally stiff or rigid parts, which are connected with hinges, are used when a mechanism is devel-

oped. An example is a door on its hinge. However, as seen in section 2.2.2, in nature a different idea 

from rigid parts connected at joints appears as most moving things in nature are merely flexible than 

stiff and the motion comes from bending these flexible parts. When the mechanism is bent, strain ener-

gy is stored which can either be an advantage or a disadvantage. For the idea investigated in this thesis, 

this strain energy would be an advantage because the compliant element integrates both a spring and a 

hinge function into one component. This component has an initial position where it will go back to when 

it is unloaded. This function will be used by deploying the folded structure. [44] 

Two important ideas need to be kept in mind when designing compliant mechanisms: fatigue life and 

stress relaxation. Because the motion of a compliant mechanism comes from bending flexible parts, 

stresses are experienced at the bending locations. When this motion is repeated many times during its 

lifetime, fatigue loads will appear allowing the joint to deteriorate. The mechanisms must be designed in 

such a way that their expected lifetime is set below their fatigue point. This is not expected to be an 
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issue in this thesis because the compliant mechanism will only be folded and deployed a few times dur-

ing ground qualification and will then be deployed once during service life. Therefore, the endured 

stress cycles will not induce fatigue. The second point however might have a significant impact on the 

deployment of the satellite structure. Stress relaxation appears in certain materials when they are held 

under stress for an extended period of time or if they are exposed to elevated temperatures. If the 

mechanism is held in such a state it can take on the new shape associated with the stressed position and 

be released from stresses over time. This would mean that it also loses the elastic energy and might not 

deploy as expected. [44] 

The four primary ways to influence the flexibility of a mechanism are material properties, geometry, 

loading as well as boundary conditions. As the loading and the boundary conditions are given by the 

application and material properties are restricted by available printers and suitable printing materials 

the only property to focus on, is geometry. There, reducing the torque of inertia of the element in bend-

ing is a common way to increase its deflection. Another possibility is increasing the length of the ele-

ment in bending. Without increasing the stress in the element this will increase the deflection. However, 

it may also decrease the stiffness, which might be disadvantageous. Arranging deflecting members in 

series can also increase the deflection. [44] 

As the elastic hinges have been defined as key components for the deployable structure they have been 

investigated more deeply by Jannic Völker in his Master’s thesis [6]. He compared different 3D printing 

methods, printers and printing materials. His findings are that FDM with materials such as Durable or 

Nylon seem to work best for the considered application. 

It could be shown that bending a simple rod would lead to permanent deformation inhibiting full de-

ployment. Thus, various hinge designs have been developed to reduce the bending radii leading to lower 

bending stresses and strains. These designs are presented in Fig. 2-32. As these designs are based on 

decreasing the cross-section at the center of bending this would weaken the rods and the smaller sec-

tion parts might break before the rod itself. To overcome this, changing from bending to torsion has 

been proposed with the designs in Fig. 2-33. These torsional hinges have the advantage that the length 

of the twisted rod, also called Torsion Rod can be adjusted to material characteristics and folding re-

quirements. 

The torsional hinge has first been introduced by Jacobsen [45]. He called the torsion hinge Lamina 

Emergent Torsional (LET) Joint. This joint is made from a single planar layer but is able to withstand large 

angular deflections by providing rotational motion out of its plane. The symmetry of the joint with two 

torsion rods as shown in Fig. 2-33 (B) allows that each torsion rod experiences less than the total hinge 

motion and therefore reduces the stress in the individual members. [45] This Lamina Emergent Torsional 

Joint and related methods have been patented [46]. 

Since the function of the stiff rod and the elastic hinge are different, the possibility of combining two 

materials has also been investigated. In order to accomplish this, stiff material (grey) was used for the 

rods and flexible material (yellow) was used for the hinges. This can be seen in Fig. 2-34. A drawback of 

this method is that the flexible material reduces the overall stiffness and that the connection between 

the two materials is a possible weak spot due to manufacturing imperfections at the bonding during 

printing. 
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(A): Wide-and-Flat Hinge (B): Bowl Hinge (C): O-Hinge 

Fig. 2-32: Bending Radii Difference Designs [6] 

 

   
(A): Small Torsion Hinge (B): Long Torsion Hinge (C): Oval Hinge 

Fig. 2-33: Torsional Hinge Designs [6] 

 

    
(A): O2-Hinge (B): Filled O-Hinge (C): Parabola-Hinge (D): O4 -Hinge 

Fig. 2-34: Multiple Material Designs [6] 

Tests with different printers and printing materials have shown that the O2-Hinge, the filled O-Hinge 

and the torsion hinge had sagging angles under its own weight (SOW-angle) below 5° and showed a 

good reopening angle of around 170°. The torsion hinge has been chosen for further FEM analysis and 

optimization by J. Völker [6] as it is much simpler to manufacture and to analyze because it is made out 

of only one material. Furthermore, a filled O-hinge requires more material increasing its mass. 

J. Völker [6] performed an initial finite element analysis of the torsion hinges with the materials Nylon 

and Durable. The used model and its boundary conditions are shown in Fig. 2-35. The left rod (purple) is 

fixed on the backside all along the area except for the 5 mm closest to the torsion rod (orange). On the 

same area on the right rod (green), a pressure is applied to the surface towards the positive z-direction. 

This pressure moves with the surface and therefore with the displacement of the rod. A linear elastic 

material model has been chosen, given that the hinges should stay in the elastic regime. The analysis did 

not include any contact conditions. Hence, it was possible that opposing parts moved inside each other 

during folding which is not physical. Nevertheless, it is stated that the results are accurate enough for an 

improvement of the design. The specimens were named after the width (w) of their torsion rod (B2_w), 

which appeared to have the most influence on the results. It has been found that a thin torsion rod 

(B2_l) strongly decreases the von Mises stress. As this goes along with a significant reduction of stability 

and reopening force, multiple thin torsion rods could be used. This brought up the idea of the so-called 

2 Torsion Rods Hinge (2TR-Hinge) which has two thin torsion rods besides each other (Fig. 2-36). A mod-

el of a 2TR-Hinge has been calculated and compared to a normal torsion hinge with the same dimen-

sions. The only difference was that two torsion rods have been introduced with 0.3 mm space in be-
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tween. It could be shown that maximum von Mises stress increased by 10 % but that the reopening 

force could be doubled with this approach. [6] 

  

Fig. 2-35: Parameters and boundary conditions of the torsion 
hinge model [6] 

Fig. 2-36: CAD model of a 2TR-Hinge [6] 

The most important characteristic, the reopening angle could not yet be provided by the analysis. Nev-

ertheless, tests with printed specimens with the same parameters as the ones analyzed with FE showed 

good reopening angles for Nylon and confirmed a correlation between reopening angle and maximum 

von Mises stress. The reopening angles for the Durable material where not as good as expected and 

deployment took place very slowly. This indicates a small reopening force. In addition, the parts could 

not be printed as precise as expected. This was due to curvatures after separating the specimens from 

the platform for the Durable material printed with a Form 2 printer and printing limitations on the Mark 

Two printer, which thickened small parts so that they could be printed. [6] 

In conclusion to Völker´s work it can be stated that the Durable material takes too long to reopen and 

that the printing quality is not as good as expected. On the other hand, printing Nylon has the drawback 

of requiring thicker parts for precise hinges. However, Nylon still seems to be a good material for the 

validation tests. 
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2.3 Existing Test Mechanisms 

The elastic hinges need to be tested in order to define their mechanical properties not only by FEA but 

through experimental results as well. The experimental results are important in order to collate the FE 

model and to be able to make better predictions on the hinges and their systematic implementation 

into a deploying structure in the future. The motion of an elastic hinge and its stiff rods during folding 

can be described as a bending because the two rods connected by the hinge are folded together with 

the center of rotation at the mid-position of the hinge (Fig. 2-37). 

 
(A) Initial, flat position 

 
(B) Final, bent position 

Fig. 2-37: Schematics of initial and final position of rods and connecting hinge during folding 

There are many different possibilities to test this sort of bending. This section will describe possible test-

ing methods already developed by other researchers. 

One of the most common test methods to determine flexural or bending properties of bars with a rec-

tangular cross-section is the three-point bending test (Fig. 2-38, left). This test is standardized and the 

corresponding standard for three-point bending of unreinforced and reinforced plastics and electrical 

insulating materials is called ASTM D 790 [47]. The specimen rests on two supports and is loaded in its 

center. According to the standard, the specimen is deflected until rupture occurs in the outer surface of 

the specimen or until a maximum strain of 5% is reached. In this thesis, the goal is to fold the specimens 

completely while remaining in the elastic regime. Therefore, the specimens shall not break and the 

strain will go higher than 5%. Hence, this simple and common test is not well suited for large defor-

mations as required for the considered tests in this thesis. A similar test is the four-point bending test 

(Fig. 2-38, right) described in the ASTM D 6272 standard [48]. The only difference is that two load intro-

duction points are used with the four-point bending test instead of only one as for the three-point bend-

ing test. According to ASTM D 790: “the basic difference between the two test methods is in the location 

of the maximum bending torque and maximum axial fiber stresses. The maximum axial fiber stresses 

occur on a line under the loading nose in 3-point bending and over the area between the loading noses 

in 4-point bending.” [47] 

 
(A) Three-point flexure 

 
(B) Four-point flexure 

Fig. 2-38: Schematics of flexure tests [49] 
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Fernandez and Murphey [50] investigated test methods for large deformation bending of thin high 

strain composite flexures. They describe that the three-point and four-point bending tests are not suita-

ble for large elastic deformations because they could not adapt to large configuration changes. [50] 

Therefore, they investigated other, more developed flexure tests for large deformations. 

The first test is called Simple Vertical Test and is shown in Fig. 2-39 (A). The specimen is fixed vertically 

onto the holding blocks by a tape. This tape acts as a hinge allowing specimen rotation and therefore 

the specimen is compressed and rotates into a U-shape when compressed. This permits large displace-

ments and applies a uniform bending torque and curvature onto the center region of the specimen. [51] 

A drawback of this method is that the simple vertical test is prone to gravity-induced horizontal lateral 

loads that induce shear distortions at large curvatures. This problem is especially pronounced for stiff 

coupons requiring a stronger fixture at the holding blocks. [50] 

In another test, the Platen Test, U-shaped specimens are placed between two flat compression plates 

(See Fig. 2-39 B). The plates are driven together and therefore the specimen’s curvature increases. This 

testing method, however, is better suited for curved specimens. The curved specimens are flattened by 

clamps as shown in Fig. 2-40. This is not ideal for specimens with a smaller radius. Flat coupons show a 

non-circular curvature and therefore a non-perfect torque distribution. Hence, this testing method is 

well suited for determining an upper limit on maximum coupon curvature or strains at failure but not for 

pure bending states. Furthermore, the steel strips, which hold the specimens flat, might come into con-

tact for very small specimen radii, which stops the test without getting the maximum curvature before 

failure. [50] 

To overcome the mentioned drawbacks of the beforehand explained test methods, an improved test 

fixture has been designed which generates a uniform stress state transitioning from flat to fully curved 

at the coupon grips. This test method is called Large deformation four-point bending (LD-FPB) and is 

shown in Fig. 2-39 (C). Both ends of the specimen are clamped to a cart. As the load is increased and the 

load cell is driven downward, the carts rotate and bend the sample (Fig. 2-41). Still, the LD-FPB has some 

drawbacks regarding clamping. Clamping the specimen’s edges results in stress concentrations, which 

might lead to failure at the grips. In addition, the LD-FPB needs precision-machined and polished com-

ponents, which make this, test method relatively expensive. [50] 

   
(A): Simple Vertical Test (B): Platen Test (C): Large Deformation 4-point Bend-

ing Test (LD-FPB) 

Fig. 2-39: More developed flexure tests for large deformations [50] 
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Fig. 2-40: Test set-up for biaxial bending of CFRP specimen: 
(A) Initial Stage. (B) Spring rule added to attach specimen. (C) 

Readily installed test. [52] 

Fig. 2-41: Progressive schematic views of the LD-FPB during a 
test [53] 

Combining the advantages and rejecting the disadvantages of the discussed testing methods, Opterus 

R&D developed the so-called “Column Bending Test” (CBT) because it resembles a column under axial 

compression. Fernandez & Murphey [50] further developed the CBT in order to test ultrathin laminates. 

The specimen is fixed vertically on each side to an upper and a lower arm, respectively. These arms are 

pinned at their ends with the pin axis offset from the specimen’s neutral axis. This creates a bending 

torque when the arms are driven together (Fig. 2-42 & Fig. 2-43). The specimen’s axial stress is negligible 

compared to the bending stress generated in the specimen. This introduces a mostly uniform stress 

state and simple kinematic analyses are needed to estimate the torques and the curvature. Compared 

to the LD-FPB the curvature at the grips is reduced and therefore the specimens should not fail at the 

grips. In addition, a larger volume of material is subjected to high stress compared to the platen test, 

which provokes more precise results. [50] 

Unfortunately, the CBT still exhibits a major drawback: the influence of gravity. As the test is positioned 

vertically, the weight of each fixture arm decreases or increases the reaction force at the upper and 

lower pin, respectively. Due to the symmetry of the system, this error can be corrected by simply adding 

or subtracting the weight of one arm depending if the load is measured at the upper or lower pin, re-

spectively. During the test, the arms will move closer to a horizontal position. There sagging of the test 

fixture under gravity influence appears leading to shearing distortion in the specimen (Fig. 2-45). To 

avoid this one could try to keep the test fixture mass as low as possible and minimize the ratio between 

the center of mass of the fixture arm and the pin-to-pin separation by keeping the test fixture center of 

mass close to the loading pin. A free body diagram of the situation is shown in Fig. 2-44. [50] 

  

Fig. 2-42: CBT fixture with a thin specimen clamped during 
bending test [50] 

Fig. 2-43: Idealization of the CBT showing all test parameters 
involved [50] 
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Fig. 2-44: Free body diagram of CBT system [50] Fig. 2-45: Worst case gravity-induced sagging on CBT fixture [50] 

After having investigated and experienced this unfavorable effect of gravity of the CBT, Opterus R&D 

developed a new design, which is completely weight-balanced. The so-called “Counter-Weight Balanced 

CBT” (CWB CBT) is double symmetrical about the loading pin axis. This means that the center of mass of 

the fixture coincides with the load application point at the pin which means x=0 in Fig. 2-44. Hence, the 

gravity induced shear force and torque are zero and the fixture is freed from gravity loading effects. The 

test fixture is shown in Fig. 2-46. [50] 

 

 Fig. 2-46: CWB CBT fixture at different stages of rotation during a test. Initial (A), Intermediate (B) & Final stage (C). [50] 

Even though, the CWB CBT seems to be a good solution for large deformation flexure further possible 

test methods will be discussed. A very simple method could be the well-known column buckling. The 

Euler buckling case 2 with both ends pinned is shown in Fig. 2-47. As the hinge is designed to be much 

more compliant than the stiffer rods, the specimens would buckle at the position of the elastic hinges. 

After buckling, the test could go on, decreasing the distance of the load introduction point and the fixa-

tion until they come together and the specimens are folded. This method however, cannot control the 

buckling direction and initial imperfections would have a large influence on the test results because 

each of the small 3D-printed specimens is expected to have different deficiencies due to printing imper-

fections. 
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Fig. 2-47: Buckling with both ends pinned, Euler buck-
ling case 2 [54] 

By investigating elastic mechanisms to replace rigid body mechanisms, flexure hinges are a field of re-

search in mechanical engineering. As opposed to rigid body mechanisms, there is a relocation of the axis 

of rotation by bending flexure hinges. To predict the path accuracy of the mechanism it is important to 

investigate this relocation of the axis of rotation. For this reason a corresponding test stand has been 

developed. The idea of the test stand could not only be used to investigate the relocation of the axis of 

rotation but also to measure folding forces and the corresponding angles by folding an elastic hinge 

mechanism. The test stand fixes the specimen on one side and a force tappet pushes the other side of 

the specimen, which induces the bending. During the complete test, the position of the elastic hinge is 

measured with an optical method. The realized test stand with a close-up of the load introduction sys-

tem is shown in Fig. 2-48. [55] 

 

Fig. 2-48: Test stand to investigate the relocation of the axis of rotation by bending flexure hinges. (A) Test stand. (B) 
Load introduction. (C) Deflected specimen. [55] 

Most of the time the flexure hinges are used for cyclic engineering applications where the fatigue be-

havior of the compliant joints is important to know. To be able to experimentally verify the life cycle of 

these hinges, Schoenen built a fatigue test bench [56]. As the flexure hinges change the position of the 

axis of rotation during deflection, the axis of rotation shall not be fixed because this might lead to addi-

tional stresses in the joints and falsify the test results. As a consequence, a single staggered shear loop 

has been chosen as a mechanism to move the joints with a predefined angle. The continuous movement 

of the relapsing component number 3 in Fig. 2-49 is done by an upstream powered non-displaced crank 

mechanism. To get a higher performance of the test it is possible to fix six specimens onto the same 

mechanism as shown in Fig. 2-50. A drawback of this test stand is that the maximum angle of deflection 
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is defined by the dimensions of the slider-crank system and therefore a complete bending of the hinge 

might not be possible. [56] 

  

Fig. 2-49: Schematic mechanisms of fatigue 
test stand [56] 

Fig. 2-50: Built fatigue test stand with possibility to test 6 specimens at a 
time (Adapted from [56] 

Another possibility would be to only test discrete positions during the folding process. This means that 

only a fixed number of positions are tested and results are not continuous during folding but only avail-

able at a discrete number of points. Such a test has been developed by Seçkin et al. [57]. They tried to 

build a test stand as simple as possible and with available materials and tools to be easily reproduced by 

others. They have two fixed positions, the initial undeformed hinge and a position with the hinge folded 

to 45 degrees. The second, deformed position is simply fixed by a stud mounted onto the mechanism 

(an Allen key in Fig. 2-51). The two configurations can be seen in Fig. 2-51. [57] 

 
(A) Hinge in tension 

 
(B) Free hinge 

Fig. 2-51: Fixed position bending test system with hinge in tension (A) and free hinge (B) [57] 
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3 Finite Element Simulation & Optimization 

One goal of this thesis is to collate experimental data with a finite element model in order to get a mod-

el that can further predict the behavior of different elastic hinge designs. To do so, the FE model needs 

to be adapted to experimental results obtained with the test stand developed in this thesis. This chapter 

describes the generation of the FE model as well as its outcomes. Furthermore, new elastic hinge de-

signs have been developed and parametrized. They have been optimized by using FE results. The opti-

mization procedure and its results are described in section 3.3. 

3.1 Model generation & mesh convergence study 

The finite element model developed in this thesis is based on an initial script written by Jannic Völker 

during his master’s thesis at DLR [6]. However, numerous changes needed to be done to adapt the 

boundary conditions of the test stand and to adjust new modelling ideas. The entire FE model is written 

in ANSYS APDL, a parametric design language that works like a programming language. Writing input 

files with APDL has the advantage that no user inputs are needed during the calculations and therefore 

the calculations are repeatable and can be automated. The used modeling approach is shown in a 

flowchart in Fig. 3-1. 

As parameter studies and optimizations of the model are intended, the model needed to be para-

metrized. To do so, the geometrical dimensions of the model are used as variables, which are read by 

the FE script. The geometry is then built up by keypoints defined by these variables. 

During post-processing, the bending angle as well as the final reaction force and reaction torque are 

calculated. In addition, displacements in x- and z-direction and the equivalent von Mises stresses are 

stored in external data files for all substeps. These data files can be read by other post-processing soft-

ware. 

 

Fig. 3-1: Flowchart of FE modeling approach 

The boundary conditions are assigned as closely to the real ones as possible and in the coordinate sys-

tem as shown in Fig. 3-2. The left-hand side of the specimen is clamped and on the right-hand side, a 

prescribed displacement is applied. The prescribed displacement is calculated such that the model gets 

fully folded at the end of the simulation time. This means that the right-hand side moves towards the 
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left-hand side on a circular path until their ends get in touch. Therefore, the outermost line of nodes of 

the right-hand side gets a prescribed displacement, 𝑈, of a half-circle defined in small steps with the 

respective X- and Z-coordinates as in equation (3.1). 

 
𝑈𝑋 =

𝐿𝑡𝑜𝑡

2
∗ cos(𝑛 ∗ 𝛼) −

𝐿𝑡𝑜𝑡

2
 

𝑈𝑍 =
𝐿𝑡𝑜𝑡

2
∗ sin(𝑛 ∗ 𝛼) 

(3.1) 

Where 𝐿𝑡𝑜𝑡 defines the diameter of the displacement circle and is the total length of the specimen from 

left to right and 𝑛 is the increment’s number. 𝛼 is defined as 𝛼 =
𝛽

𝑁
 in radians, with 𝛽 the prescribed 

angle of the final displacement and 𝑁 the number of displacement increments. 

The influence of gravity is added to the whole model. This is the same as the real specimens will experi-

ence during the experiments. All evaluated models have been manufactured from Nylon with material 

properties shown in Tab. 3-1. 

Tab. 3-1: Material properties of Nylon [58] used in FE model 

Material property Symbol Value 

Young’s modulus E 940 MPa 

Poisson’s ratio ν 0.4 

Density ρ 1.1 g/cm3 

Maximum yield stress Rp0.2 31 MPa 

 
The described modelling approach has been the same for all subsequent models including the optimiza-

tion models. The only difference is that during folding of some torsion hinge models the two torsion 

rods get into contact during folding and are sliding on each other. Therefore, after meshing the geome-

try, two contact pairs have been created. Each of the contact pairs is composed of the inward-facing 

area of one torsion rod (Fig. 3-3, red area for the first contact area) and the edge on the inside of the 

folding pattern of the other torsion rod (Fig. 3-3, blue line for the associated contact line) and vice versa. 

During folding, first one edge gets into contact with the face of the other torsion rod and detaches again 

after a certain angular displacement of the specimen. However, then the edge of this other torsion rod 

gets into contact with the face of the first torsion rod. The contact has been modelled as a frictional 

contact with a friction coefficient of 0.2 which is the friction coefficient of the modeled material [59]. 

 

 

Fig. 3-2: Boundary conditions for torsion hinge model (the 
same boundary conditions have been applied to all models) 

Fig. 3-3: Contact pair definition for torsion hinges 
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A mesh convergence study has been performed with the torsion hinge model TH-19-5-30-2-2. During 

this mesh convergence study, stress singularities appeared at the hard edges where the different rods 

connect. This can be seen in Fig. A-1 - Fig. A-3 in Appendix A.1 for the finest mesh used during the mesh 

convergence study. One can clearly see that the stress is much larger close to the hard edges compared 

to the stress at some distance away from the hard edges. 

An idea to overcome this was to introduce fillets in order to avoid, if possible, or at least alleviate these 

stress singularities. The filleted volumes are assigned with a different mesh size than the simple rods. 

During the mesh convergence study, this has been smaller or equal to the global mesh size, as the most 

important stresses will appear in the filleted volumes and the total number of nodes can be reduced by 

only refining the mesh where needed. 

However, adding fillets at the hard edges increased the stress singularities even more. Even for the same 

mesh size, the maximum von Mises stress increased by almost 25%. When refining the fillet areas, these 

local stresses increased even more. This can be explained by the small fillet radius applied. The fillet 

radius needed to be small enough such that fillets at the inside of the torsion rods could have been cre-

ated. However, for the used model TH-19-5-30-2-2 there is only a space of 1 mm between the two tor-

sion rods leading to a maximum fillet radius that ANSYS is still able to create of 0.5 mm. This induces 

that the elements at the fillets needed to be smaller than this fillet radius, which was not favorable for a 

smooth mesh. Even for a very fine mesh, which took a very long time to calculate, some edges appear at 

the fillet areas creating other local stress singularities and increasing the maximum stress again. This is 

shown in Fig. A-4 - Fig. A-6 in Appendix A.1, where the maximum von Mises stress is 50 % higher than 

the solution with the finest mesh without fillets. Comparing the results for the maximum total displace-

ment (Fig. 3-4) and the reaction force (Fig. 3-5) one can see that the models with and without fillets only 

have minor differences, especially pronounced for a coarse mesh. The reaction force is an important 

result for this study, because it can be measured during the experiments, whereas the stress cannot be 

measured directly and it can only be approximated by whether or not plastic deformation has occurred. 

In addition, the comparison of the two models shows that without fillets the convergence in both dis-

placement and reaction force is much smoother and even a coarse mesh has less deviation in the results 

compared to a fine mesh. This shows that the model without fillets is more stable than with fillets. 

As introducing fillets did not improve convergence but only increased the calculation time without add-

ing more precision for other results like the reaction force, the fillets have been discarded and the tor-

sion hinge models have been modelled with hard edges keeping in mind that stress singularities might 

appear. In addition, the stresses at the surrounding nodes closest to the one experiencing the maximum 

stress are also stored in the data files. This is a common method when experiencing stress singularities. 

The stress one element away from the singularity is considered being the maximum stress as singulari-

ties are not physical and should not be taken into account while post-processing FE results [60]. 

Fig. 3-6 shows the normalized results for the minimum displacement in X-direction (UX_Min; minimum 

because displacement is in negative X-direction), maximum displacement in Z-direction (UZ_Max), the 

maximum von Mises equivalent stress (SEQV_Max) and the reaction force in Z-direction (F_Z) (see Fig. 

3-2 for coordinate definition). The results are all normalized with respect to the corresponding solution 

of the coarsest mesh. One can see, that for the mesh with 9072 nodes (global mesh size of 0.4) all re-

sults converged, except for the von Mises stress, which has a singularity. Therefore, this mesh is as-

sumed as being converged. The subsequent hinge models are not expected to show such stress singular-
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ities due to their smoother geometry. They will have a similar size too. Therefore, the mesh size found in 

the mesh convergence study can be adopted for all considered models. 

  

Fig. 3-4: Comparison of maximum total displacement for 
model with fillets and without fillets 

Fig. 3-5: Comparison of reaction force for models with fillets 
and without fillets 

 

 

Fig. 3-6: Normalized results for model without fillets 
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3.2 Simulations of torsion hinges 

Finite element simulations have been done on all tested elastic hinges. After comparing the results with 

the experimental data, the models have been adapted such that they can predict results for further 

model changes without the need of verifying the results with experiments. This subsection shows the 

results of the finite element simulations for all investigated torsion hinges. For all models, the most in-

teresting results for comparison with experimental data are made available in this subsection. These 

include displacement, reaction force and reaction torque as well as equivalent von Mises stress during 

each simulation. As observed in section 5.2.2, the tested specimens did not have the exact same dimen-

sions as prescribed. In addition, as seen in section 5.3, due to geometrical reasons, the specimens could 

not be fully folded in the test stand during the experiments. Therefore, the geometries and prescribed 

displacements of the FE models have been adapted such that their results can be compared with the 

experiments. 

The first model is the torsion hinge TH-19-5-30-2-2 which has been used for the mesh convergence 

study. It has already been tested during the preliminary tests. The model TH-19-5-30-2-2 has been test-

ed with two different printing configurations, an individual print, where every specimen has been print-

ed onto the build plate individually and an assembly print, where always eight specimens have been 

printed and held together with area increasing cylinders to increase the adhesion with the build plate. 

The assembly print configuration showed better printing qualities and its dimensions are closer to the 

prescribed values. 

Fig. 3-7 shows the prescribed displacement during the simulation with the bending angle on the X-axis. 

This is the region with the prescribed displacement. During the experiments, it is also the bending angle, 

which will be the measure of displacement. As the specimen is bent circular-wise in negative X-direction, 

UX tends towards the negative of the total specimen length and UZ increases until the angle of 90° and 

then decreases again such that the specimen is fully folded in the end, describing a circular displace-

ment. This displacement is the same for all subsequent models with the only difference that it is 

adapted to the total specimen length such that the models can be fully folded. 

The equivalent von Mises stress is steadily increasing during the simulation (Fig. 3-8). The increase is 

almost linear because the material model is linear and the applied boundary conditions (prescribed dis-

placement) only change linearly. 

As described above, stress singularities appear at the stress peaks. Therefore, the stress at the nodes 

around the node with the maximum stress is averaged in order to get a smoother stress distribution and 

to remove the high peak stress of the singularity. This new maximum stress is subsequently called aver-

aged maximum von Mises stress around the maximum (σvM, avg. max). 

The reaction forces in x- and z-direction at the nodes where the prescribed displacement has been ap-

plied change in a nonlinear way (Fig. 3-9). This can be explained by the fact that the forces are bound to 

the global coordinates and the investigated nodes move in a half circle. Therefore, the local x- and z-

axes are not parallel to the global axes. However, in this study it is important to know the opening force 

of the specimens which is the total reaction force calculated by vector addition of the forces in x- and z-

direction. The force in y-direction is a parasitic out-of-plane force which cannot be measured in the test 

stand. For the torsion hinge models it is zero as they do not show any out of plane movement during 

bending. However, the total force is still not increasing linearly which might be due to the large deflec-

tion and therefore appearing geometrical nonlinearities. 
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Fig. 3-7: Displacements of TH-19-5-30-2-2 during simulation Fig. 3-8: Von Mises stress of TH-19-5-30-2-2 during simula-
tion 

 

 

Fig. 3-9: Reaction forces of TH-19-5-30-2-2 during simulation 

The reaction torque is calculated from the reaction force with equation (3.2): 

 
𝑀𝑟𝑒𝑎𝑐𝑡,𝑓𝑖𝑛𝑎𝑙 = 𝐹𝑟𝑒𝑎𝑐𝑡,𝑓𝑖𝑛𝑎𝑙 ∗

𝐿𝑡𝑜𝑡

2
 (3.2) 

Where 𝐿𝑡𝑜𝑡 is the total specimen length from left to right as explained in the previous section. 

To be able to compare the model’s efficiency of reaction force and weight with other models, the total 

model volume has been calculated. The total model volume is calculated with ANSYS by summing up all 

element volumes. The total mass is the volume multiplied with the material specific density of Nylon (ρ 

= 1100 kg/m3 [58]). 

The simulated values for all torsion hinge models are presented in Tab. 3-2. The averaged stress around 

the maximum von Mises stress shows that there exists a stress singularity, as its value is smaller by 6.35 

to 20.51 % compared to the maximum. However, this difference can be accepted, as it is not the main 

goal to get the exact stress value but to get the reaction torque, which can then be compared with the 

experimental data. The mesh convergence study showed that the reaction torque converged well. 
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Tab. 3-2: Results for FE simulations of all torsion hinge models 

Model 
Maximum von 
Mises stress 
[MPa] 

Avg. stress at 
maximum 
[MPa] 

Final reaction 
force [N] 

Final reaction 
torque [mNm] 

Total model 
mass [mg] 

TH-19-5-30-2-2: 
Assembly Print 
Configuration 

96.276 82.830 5.602 120.443 676.31 

TH-19-5-30-2-2: 
Individual Print 
Configuration 

81.581 76.399 4.811 103.437 661.93 

TH-28-6-30-2-1.5 51.722 43.644 0.956 29.636 385.44 

TH-28-4-30-1-1.5, 
trod = 1.5 mm 

34.030 27.051 0.453 13.590 453.64 

TH-28-4-30-1-1.5, 
trod = 2 mm 

41.258 36.909 0.671 20.130 586.07 

 

When comparing the values of the individual print and the assembly print configuration of the model 

TH-19-5-30-2-2 it can be seen that the individual print model achieved slightly smaller values for all re-

sults parameters. This is due to the fact that the individually printed specimens showed a larger offset 

from the prescribed dimensions and are therefore slightly smaller and more compliant resulting in less 

stress and less reaction force. 

The models TH-28-6-30-2-1.5 and TH-28-4-30-1-1.5 are thinner than the TH-19-5-30-2-2 and therefore 

more compliant. This is resulting in lower stresses and reaction forces. 

Model TH-28-4-30-1-1.5 has been tested and simulated in two different configurations, one where the 

whole specimen has the same height and one where the rods are thickened in order to investigate the 

influence of the rods. These rods have a thickness of 2 mm resulting in a much larger stiffness of the 

rods. This increases the overall stiffness of the model and therefore the stress but also the reaction 

force. 

Tab. 3-3 shows the performance of each torsion hinge model. The performance has been defined as the 

ratio of the reaction torque and the total model mass. This shows how much reaction torque can be 

expected by the hinge model in relation to the added weight when using it as a deployment method. It 

can be seen that the model TH-19-5-30-2-2 performs much better than the other models. It compen-

sates its higher weight with a much larger reaction torque. 

Tab. 3-3: Reaction torque to weight ratio for all torsion hinge models 

Model 
Reaction torque / total 
model mass [Nm/g] 

TH-19-5-30-2-2: Assembly Print Configuration 0.178 

TH-19-5-30-2-2: Individual Print Configuration 0.156 

TH-28-6-30-2-1.5 0.077 

TH-28-4-30-1-1.5, trod = 1.5 mm 0.030 

TH-28-4-30-1-1.5, trod = 2 mm 0.034 
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3.3 Optimization of elastic hinge design 

To improve the mechanical properties of the elastic hinges and to find alternatives for the patented 

torsion hinge, various designs need to be tested and their properties need to be compared. The goal is 

to find an optimal hinge design, which has a high stiffness and can still be folded such that it has no plas-

tic deformation. In addition, it needs to be lightweight. The hinge designs mentioned in section 2.2.6 

have already been compared in [6]. It has been shown that the torsion hinge has a good performance. 

However, the foldable wings of insects show different design patterns, as shown in section 2.2.3. These 

insect wings have evolved over thousands of years and the evolution brought up very efficient designs. 

However, the insect wings are not purely mechanical parts, but they are incorporated into a living body. 

This means that differences in blood pressure inside the insect’s veins or external forces from legs are 

able to change the behavior of the foldable structure. As the here-studied deployment mechanism 

should deploy itself without external inputs, but only with the stored internal energy, the studied insect 

vein design needs to be adapted to the different boundary conditions. Therefore, the design of the in-

sects’ wing veins is studied further in this chapter. Then, a base body for each biological design will be 

developed which will further be optimized with the help of a parameter study with ANSYS. 

Tab. 3-4: Overview of elastic hinges for wing folding in insect wings (picture source section 2.2.3) 

Design 
Name 

Species Comments Picture Schematics 

Round- / 
Oval-
shape 

Earwig (Forficu-
la auricularia) 

Not the same 
shape on the 
whole wing, some 
connecting rods 
are shifted or 
tilted.  

 

L-shape 
Beetle (Mono-
chamus sartor 
F.) 

Reduced cross-
section at fold 
line 

 
 

Z-shape 

Beetle (Mono-
chamus sartor 
F.) & wasp bee-
tle (Clytus) 

Rotation around 
central rod 

 
 

Annular 
shape 

Drone fly (Eris-
talis tenax) & 
desert locust (S. 
gregaria) 

Increases flexibil-
ity in between 
two adjacent 
annuli 

 
 

Tab. 3-4 shows an overview of different elastic hinges used for wing folding in insect wings. More details 

about the different vein designs can be found in section 2.2.3. All discussed insect wing veins contain 

resilin, which is a rubberlike protein preventing material fatigue [34]. It is not the goal to rebuild the 
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same structure containing resilin but a good approach might be to introduce a second, very flexible ma-

terial at the center of the hinges in order to get enough overall stiffness, but only low stresses. Also, the 

resilin is often distributed anisotropically [34], which might be recreated by changing the cross-sectional 

area of the elastic hinges. 

Comparing the vein structures in Tab. 3-4 with respect to further 3D-printing possibilities and design 

approach, two vein designs can be removed from further investigations. The L-shape needs to have a 

reduced cross-section at the fold line, thus working similarly to the “wide-and-flat hinge” or a pure rod 

from section 2.2.6 for which no satisfactory results have been shown. The annular shape design will also 

be removed from further investigations because a fully round structure with different cylinder cross-

sections would be difficult to manufacture with FDM and even more difficult to fix onto a membrane 

due to the small bonding area. The round- or oval-shape and the Z-shape seem to be promising starting 

points for a further analysis. They both include an out of plane displacement during folding, distributing 

the stresses over a larger distance than pure folding. The pure mechanical capabilities of these two vein 

shapes will further be optimized in this section. To start off, a topology optimization after the theory of 

Bendsøe and Kikuchi [61] will be made. This optimization will be done with the analysis system “Topolo-

gy Optimization” incorporated in ANSYS Mechanical. 

3.3.1 Topology optimization 

3.3.1.1 Introduction to topology optimization 

This subsection explains the basic ideas of topology optimization after Bendsøe and Kikuchi [61], the 

most common topology optimization method. The goal of an optimization of mechanical structures is 

most often to get the stiffest structure while ending up with a lightweight product. This means that an 

algorithm has to decide which parts of an initial mechanical structure are important or load-bearing and 

which parts could possibly be removed. To do so, topology optimization is a good approach as it is well 

established for minimum compliance design, leading to a maximum stiffness under the applied loads 

and boundary conditions [62]. It is based on finite element models and checks whether elements need 

to be retained or if they could possibly be removed. However, checking every possible combination of 

elements would not be practical or is even impossible as the number of different possibilities 𝑛𝑃 in-

creases exponentially with the number of finite elements 𝑛: [62] 

 𝑛𝑃 = 2𝑛 (3.3) 

To overcome this, Bendsøe and Kikuchi [61] introduced a homogenization method by altering the objec-

tive function continuous. This is done by introducing a distribution function, called density. This density 

is able to vary continuously between a minimum value of zero and a maximum value of one. This ren-

ders the problem from checking every possible combination of elements in the design space to control-

ling the density of each individual element, thus enormously simplifying the number of possible solu-

tions. The element density shows how much the individual element is stressed compared to the overall 

model. If the density tends to go to zero, the element is not stressed much and is therefore obsolete. On 

the other hand, if the density tends to go to one, the element is highly stressed and is very important for 

the overall structure to be able to bear the applied loads. 

Maximizing the stiffness can be passed onto a global objective function by minimizing the work 𝑊 done 

by the external forces 𝑟 onto the displacements 𝑢: 
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min 𝑊 = 𝑢𝑇𝑟 (3.4) 

The displacements depend on the stiffness 𝐾 of the system as: 

 𝐾𝑢 = 𝑟 (3.5) 

The structural stiffness depends on the individual stiffness of each finite element. This means it depends 

on the Young’s modulus 𝐸 of each element. This is where the homogenization takes place [61]: 

 𝐸 = 𝐸0𝜌𝑝 (3.6) 

Where: 

- 𝐸0: reference stiffness value corresponding to the used material 

- 𝑝: 3 ≤ 𝑝 ≤ 4, justified by material modelling considerations and to push Young’s modulus 

against the bounds of zero or one more quickly. 

- 𝜌: density distribution function, 𝜖 ≤ 𝜌 ≤ 1 with ε a small number close to zero 

Thus, the Young’s modulus of each element will tend either to zero or to one, depending on its density 

distribution function. However, it stays a continuous function where well-known optimization methods 

as gradient optimization or penalty methods can be used to optimize it. 

An example of a simple topology optimization is shown in Fig. 3-10. The beam is clamped on the left-

hand side and pushed by a pressure on the right-hand side. The goal of the optimization was to mini-

mize the compliance under the constraint to retain 30% of the initial mass. 

In ANSYS Mechanical, topology optimization is a built-in analysis system. First of all, one has to give an 

initial model to the solver. This defines the workspace of the algorithm, as it cannot add material, but 

only remove it. Then, the boundary and loading conditions need to be applied to the model and it needs 

to be meshed. It is important to keep in mind, that the homogenized topology optimization is mesh-

dependent as it optimizes the density of each individual element. If the mesh changes, also the final 

result might change and is therefore influenced by the initial meshing. After preparing the model as for 

a normal FE calculation, the optimization space has to be defined. Important geometries that should not 

change, like areas with boundary conditions or certain holes for bolts for example, can be excluded from 

the optimization and they will keep their initial geometry. Furthermore, the objective function needs to 

be defined. This is mostly minimizing the compliance but could also be minimizing the mass. The re-

strictions need to be added for the optimization. There are several different possibilities for restrictions. 

The most common one is to specify a certain percentage of mass that should be kept compared to the 

initial model. Other restrictions could be symmetries, extrusion directions or to specify a certain maxi-

mum value for global equivalent stress that should not be exceeded in the final model. 

After reaching convergence in the optimization model, each element still has an individual density value. 

It is clear, that it is not the idea to build porous specimens after the optimization. Therefore, a threshold 

value for the density needs to be specified. Elements with an individual density, which is lower than the 

   

(A) Initial Model (B) Solution after 12 iterations (C) Final solution after 24 iterations 

Fig. 3-10: Topology optimization of a beam under axial pressure 
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threshold, shall be removed from the structure and elements with a density higher than the threshold 

shall be fully filled with material. In ANSYS Mechanical it is recommended to remove elements with a 

density lower than 0.4 and to keep elements with a density higher than 0.6. In between 0.4 – 0.6 it is 

case dependent. However, the default threshold is set to 0.5. It has also been found that restrictions like 

the retainment percentage of mass are obeyed with a retaining threshold of 0.5. 

3.3.1.2 Topology optimization approach 

In order to do a topology optimization of a fully filled model between the two opposing rods, a starting 

model and the restrictions need to be defined. This subsection defines the setup for the topology opti-

mization and shows its results. First, the objective function and restrictions are defined. Second, the 

starting model is designed and explained. 

The objective function for the optimization model is minimizing the compliance in order to get a stiff 

hinge design, which is able to store enough energy to deploy itself after release. Restrictions are made 

either on the value of maximum stress or the amount of retained material compared to the initial mod-

el. The maximum equivalent von Mises stress in the model shall not exceed the admissible stress of the 

material to stay in the elastic regime. Another restriction is that the lower area of the structure needs to 

stay flat in order to be able to print on a build plate or bond it onto a membrane. Therefore, the exclu-

sion regions for the optimization are the areas where the boundary conditions are applied and the area 

parallel to the xy-plane in negative z-direction (see Fig. 3-11 for initial model and coordinate system). A 

summary of the setup for the topology optimization is shown in Tab. 3-5. 

Tab. 3-5: Setup for topology optimization 

 Parameter Value 

Objective Function Compliance Minimum 

Restrictions 

Von Mises Stress 𝜎𝑣𝑀𝑖𝑠𝑒𝑠 < 𝜎𝑎𝑑𝑚 

Mass 
𝑚𝑓𝑖𝑛𝑎𝑙 = 𝑥 ∗ 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙, where 𝑥 describes the 

percentage of retained material 

Exclusion region 
Areas of boundary condition & area parallel 
to the xy-plane in negative z-direction 

The initial model has been designed as shown in Fig. 3-11. The two opposing rods are connected by a 

block with size 40 x 20 mm. The left-hand side of the model is clamped and a displacement is applied 

onto the right-hand side such that the model gets folded. The displacement is highly nonlinear and 

therefore this nonlinearity should be accounted for. However, the optimization solver in ANSYS Work-

bench is not able to do this and is therefore not very well suited for large displacements. In addition, this 

nonlinearity issue also induced that the restrictions on the maximum von Mises stress did not reach 

feasible solutions, but only somehow randomly scattered elements in the domain area. Still, some re-

sults could be obtained by using the mass restriction. Fig. 3-12 shows the results for a mass restriction of 

20% compared to the initial mass. All the outer material has been removed by the algorithm, making the 

solution model thinner where it is bent. In addition, the flatter central part is broadened towards the 

center of the model. This result reminds of the mentioned “wide-and-flat hinge” from section 2.2.6. 

However, it has been shown that this design is not suitable for the considered application. 

By trying to oblige the algorithm to change the load path, a hole has been introduced into the initial 

model and the height has been increased as shown in Fig. 3-13. Restraining the solver to 8% of the final 

mass reached the solution in Fig. 3-14, which reminds of the oval-shaped hinges in earwigs. 
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These two results show that one cannot simply let the topology optimization solver guess for a solution 

from a too large solution space. In addition, the geometry of both solutions is very similar to already 

known hinge possibilities. This and the fact that the topology optimization solver in ANSYS Workbench is 

not well suited for large displacements brings up the conclusion, that further optimization of the chosen 

vein shapes needs to be done in a different way, namely a optimization of parametrized designs as per-

formed in section 3.3.3. 

  

Fig. 3-11: Initial model for topology optimization Fig. 3-12: Result for a mass restriction of 20% of the initial mass 

 

  

Fig. 3-13: Initial model with central hole for topology 
optimization 

Fig. 3-14: Result with initial hole for a mass restriction of 8% of the 
initial mass 
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3.3.2 Parameter study & sensitivity analysis 

In order to optimize the oval-shape and the Z-shape hinges observed in foldable insect wings, the hinges 

have been designed using as few independent parameters as possible. Further, the influence of these 

parameters onto the mechanical properties of the hinge have been investigated with a full factorial pa-

rameter study and a sensitivity analysis. This section describes the hinge parametrizations and the re-

sults of the parameter studies starting with the simpler model of the Z-shape and then describing three 

different versions of the oval-shape, the so-called straight, tilted and spring models (Fig. 3-15). 

 

Fig. 3-15: Overview of parametrized hinges: Z-shape, oval-shape straight, tilted & spring (from left to right) 

The Z-shape is a simple geometry to parametrize and only needs five parameters to be fully defined. Fig. 

3-16 shows a drawing of the hinge design. The used parameters are: 

- t: Thickness 

- w:  Width 

- L1: Length of the two rods 

- L2: Length of the central part 

- R: Radius of curvature of the connection between the rods and the central part 

 

Fig. 3-16: Parametrization of Z-shape hinge 

First of all, one can see that the model is point-symmetric about the origin, which facilitates the para-

metrization. As the final application of the investigated hinges is not yet defined, the rod length cannot 

be defined so far and will not be changed during the parameter study. Furthermore, the two rods have 

been made three times as wide and 1.5 times as thick as the actual hinge in order to increase their stiff-

ness. With this cross-sectional area increase, the rods reach a stiffness, which is about ten times the 

stiffness without the enlargement. This approach shall focus the parameter study onto the hinge itself, 

removing the influence of the rods due to their individual bending. 
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The Z-shape hinge works similarly to the torsion hinge. It gets twisted during folding and therefore, it is 

already clear that the longer the central part, L2, the more compliant the model gets. However, to get 

the influence of every individual parameter and their combination, a full factorial parameter study has 

been made. To do so, two distinct values have been chosen for every parameter and every possible pa-

rameter combination has been evaluated. This leads to a so-called 2-k factorial experimental design. 

This design needs 2k experiments, where k is the number of parameters. With such an experimental 

design, it is possible to determine the influence of every individual parameter as well as their interac-

tion, also called sensitivity analysis. 

As already mentioned, L1 is kept constant during this parameter study and therefore the Z-shape hinge 

has four changing parameters leading to 2𝑘 = 16 FE simulations. These simulations have been automa-

tized with the programming language Python. A script has been written which finds every possible pa-

rameter combination of each of the two parameter values. Then, for each parameter combination, the 

corresponding prescribed displacement as well as a text file containing the parameter values are written 

into the respective folder. After preparing the needed information, the script runs the ANSYS APDL input 

file and saves the final results. The workflow of the Python script is shown in Fig. 3-17. 

 

Fig. 3-17: Workflow of Python script for parameter studies 
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The results of the parameter study have been evaluated with the software Minitab, a statistical software 

that is able to evaluate factorial designs of experiments. Fig. 3-18 shows a Pareto diagram of the stand-

ardized effect of the individual parameters and the interactions of two parameters with regard to the 

maximum von Mises equivalent stress in the Z-shape hinge. It can be seen, that the interactions be-

tween parameters for the Z-shape model are very low and therefore do not need to be investigated 

further. In addition, an order of the individual influence of each parameter is made by the Pareto dia-

gram. One can see, that the order of the four most important parameters is: 𝐿2 > 𝑤 > 𝑅 > 𝑡. The same 

Pareto diagram has been made with regards to the reaction force at the nodes where the prescribed 

displacement is applied. This is shown in Fig. 3-19. The influence of the parameter interaction is low as 

well and the order of the four most important individual parameters is: 𝑤 > 𝑡 > 𝐿2 > 𝑅. Hence, an 

optimization algorithm does not necessarily need to account for parameter interactions because their 

influence on the two target variables maximum von Mises equivalent stress and reaction force at dis-

placed nodes is low. However, optimizing this model is not simple because the parameters influence the 

von Mises stress and the reaction force in the same direction, which means for example that by increas-

ing L2, both the stress and the reaction force decrease but the goal, is to only decrease the stress while 

keeping the force high or even increase it. 

  

Fig. 3-18: Pareto diagram for standardized effects with regard 
to maximum von Mises equivalent stress for Z-shape hinge 

Fig. 3-19: Pareto diagram for standardized effects with regard 
to reaction force at displaced nodes for Z-shape hinge 

The oval-shape models need more parameters to be fully determined than the Z-shape model. The 

straight version of the oval-shape model uses 8 parameters: 

- t: Thickness 

- w:  Width 

- L: Length of the two rods 

- R1: Large radius of the center 

- R2: Smaller radius at the connection between hinge and rod 

- D1: Axial displacement of center of large circle 

- D2: Axial displacement of the center of the smaller circle 

- Rfillet: Radius of fillets at rod-hinge connection 
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Fig. 3-20: Parametrization of oval-shape straight hinge 

In Fig. 3-20, D1 is set to zero and not shown in the drawing in order to start with a symmetric model. It 

defines the axial displacement of the large center circle defined by R1. For D1 larger than zero, the cen-

ter circle would be shifted along the horizontal axis by the value of D1. However, it appeared that this 

does not have a significant influence on the maximum stress or reaction force values. Therefore, it will 

be fixed in subsequent optimizations. 

With the same Python script as explained in Fig. 3-17, the 2𝑘 = 64 FE simulations have been executed, 

where again, the length of the rod has been fixed and also the fillet radius has not been altered because 

it does not affect the zone of interest, which is the central part of the hinge. This is true for all following 

models. Evaluating the Pareto diagrams of the standardized effects again shows the sensitivity of the 

parameters on the model’s reaction (Fig. 3-21 & Fig. 3-22). 

 

Fig. 3-21: Pareto diagram for standardized effects with regard to maximum von Mises equiv-
alent stress for oval-shape straight hinge 
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Fig. 3-22: Pareto diagram for standardized effects with regard to reaction force at displaced 
nodes for oval-shape straight hinge 

For the oval-shape straight hinge, the influence of the interactions is still very low but some interactions 

are more important than individual parameters. For the maximum von Mises stress, the most important 

parameters can be ordered as: 𝑅1 > 𝑡 > 𝑤 > 𝑅1 ∗ 𝑅2, whereas for the reaction force it is:  𝑤 > 𝑡 >

𝑅1 > 𝑡 ∗ 𝑤. In addition, one can see that the parameter D1 has almost no influence at all and D2 only 

has a small influence on the reaction force but almost none on the maximum stress. On the interaction 

plots (Fig. 3-23 & Fig. 3-24) one can see the direct influence of each combination of interaction. For the 

reaction force, the corresponding blue and red lines indicating the low and high value of the second 

interacting parameter, are very close to being parallel except for 𝑡 ∗ 𝑤. This means that almost no inter-

action occurs. However, for the equivalent stress, the lines of 𝑅1 ∗ 𝑅2 are not parallel at all and cross 

each other which means that there is a negative interaction in between those two parameters. It can be 

seen, that increasing R1 has more influence when R2 is kept smaller. 

 

Fig. 3-23: Interaction plot for adjusted means with regard to maximum von Mises equivalent 
stress for oval-shape straight hinge 
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Fig. 3-24: Interaction plot for adjusted means with regard to reaction force at displaced 
nodes for oval-shape straight hinge 

Similar to the oval shape straight model, the tilted version of the oval-shape model needs 8 parameters 

as well: 

- t: Thickness 

- w:  Width 

- L: Length of the two rods 

- R: Radius of the central part 

- X: Axial displacement of center circle 

- Y: Vertical displacement of center circle 

- D: Distance between center of circle and inside hinge part 

- Rfillet: Radius of fillets at rod-hinge connection 

 

Fig. 3-25: Parametrization of oval-shape tilted hinge 

One can see in Fig. 3-25 that the wider part of the hinge does not perfectly follow the drawn circle. This 

is due to the fact that the circle is used to define points along its circumference, but the model is built 

with splines containing these points but also others in order to have a smooth model and therefore 

slightly deviating from the circle. 

The Pareto diagrams for the oval-shape tilted model are shown in Appendix A.2. Ordering the parame-

ters according to their influence for the four most important parameters or interactions between them 
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for the maximum stress gives: 𝑅 > 𝑡 > 𝑅 ∗ 𝑌 > 𝑅 ∗ 𝑋 ∗ 𝑌, and for the reaction force:  𝑡 > 𝑤 > 𝑌 > 𝑅. 

One can see that for the stress, the interaction between 𝑅, 𝑋 and 𝑌 seems to be important, as they are 

ranked third and fourth of the most influential parameters or combinations. However, already 𝑅𝑌 only 

has about 40 % of the influence of 𝑅 whereas 𝑅𝑋𝑌 only gets about 25 %. Still, for further optimizations, 

these parameters might be important for reaching good results. 

Last but not least, the third model of the oval shape model, the spring version needs 7 parameters (Fig. 

3-26): 

- t: Thickness 

- w:  Width 

- L: Length of the two rods 

- R: Radius of the spring elements 

- Y1: Vertical displacement of the first spring element 

- Y2: Vertical displacement shift of the second spring element compared to the first element 

- Rfillet: Radius of fillets at rod-hinge connection 

 

Fig. 3-26: Parametrization of oval-shape spring hinge 

The results of the parameter study for the oval-shape spring model are also shown in Appendix A.2. As 

for the other models, the four most influential parameters or parameter combinations can be obtained 

from the graphs in Fig. A-11 and Fig. A-12. One can see, that the order for the maximum stress is: 𝑤 >

𝑅2 > 𝑤 ∗ 𝑅1 ∗ 𝑌1 > 𝑅1 ∗ 𝑌1, and for the reaction force: 𝑤 > 𝑤 ∗ 𝑅2 ∗ 𝑌2 > 𝑤 ∗ 𝑌2 > 𝑡 ∗ 𝑤. As for the 

oval-shape tilted model, parameter interactions that are highly ranked appear for both the maximum 

stress and the reaction force. Again, their influence is only in the range of 35 % to 40 % compared to the 

influence of the most important parameter. However, one can see in Fig. A-13 and Fig. A-14 that these 

parameter interactions are important, as there exist strong counter-interactions. This means that the 

influence of a change in one parameter can strongly depend on the value of the second parameter. In 

addition, a change of the second parameter might increase the value of the response function depend-

ing on the first parameter, even though by changing it itself it would decrease this value. 
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3.3.3 Optimization of parametrized hinges 

The hinges introduced and studied in section 3.3.2 have been optimized regarding their most influential 

parameters. Therefore, a Python script has been written which runs an FE simulation in ANSYS, reads 

the results and compares them to the objective function of the optimization and its boundary condi-

tions. Then it changes the values of the geometrical parameters and runs the next FE simulation until 

the solution has converged or the maximum time or iteration number has been reached. Fig. 3-27 shows 

the optimization process, including the Python functions and sub-functions. 

To be able to start an optimization including FE simulations in ANSYS some preparations need to be 

done. The Python script needs to know where the ANSYS executable is stored on the hard-drive and in 

which working directory the simulations should take place. Then, global variables such as the maximum 

allowable stress or the maximum specimen length are defined and a folder where future results are to 

be stored is created. Furthermore, the objective function, its boundary conditions and parameter 

bounds need to be defined. In addition, the maximum number of iterations as well as the maximum run 

time need to be outlined. Then, the optimization can start at the prescribed starting point. The starting 

point defines the parameter values of the design variables for the first FE simulation. Afterwards, the 

prescribed displacement steps are calculated. This displacement, together with the parameter values, is 

concatenated with the two text files, which define the FE model. All this data is then stored as an input 

file in the working directory. This input file is run by ANSYS. After finishing the FE simulation, it is 

checked if ANSYS has converged and the results file has been written. If so, the results file is copied into 

the results folder. If, for any reason, no results file has been written, the error file as well as the input 

file are copied into the results folder. With this, one can check what caused the problem at a later stage 

without interrupting the optimization process. In order to know how to proceed with the optimization, 

the maximum von Mises stress as well as the final reaction forces are read from the results file. If no 

results file has been written, the optimization variable is set to a very large value (i.e. 1’000’000) in order 

to show the algorithm that an inadequate point has been reached where no best solution will be found. 

Finally, the files written by ANSYS are deleted to save space. With the known information from previous 

calculation steps, the optimization algorithm defines the next parameter set and a new loop is started. 

The simulations stop when convergence is reached or the maximum run time or maximum number of 

iterations has been attained. 
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Fig. 3-27: Flow chart of optimization process 

3.3.3.1 Optimization algorithm and approach 

In order to find a good optimization algorithm and impose a well defined objective function with its cor-

responding boundary conditions, different approaches have been made using optimization algorithms 

from the Python packages NLOPT [63] and MIDACO [64]. The initial optimization approaches have been 

done on the different parametrized hinges. The used objective functions were to minimize the maxi-

mum stress in order to not get plastic deformation, minimize the ratio of volume to the reaction force in 

order to have a small and therefore lightweight model with a large reaction force and last but not least 

to maximize the reaction force itself. 

As neither analytical objectives or boundary functions nor analytical gradients of these functions existed, 

optimization algorithms without a gradient approach have been chosen in order to save calculation time 

that would be needed by approximating the gradients with finite differences. However, not many of the 

NLOPT algorithms can handle inequality constraints which where needed for the here-posed problem. 

Therefore, only the algorithms COBYLA (Constrained Optimization BY Linear Approximations) [63] and 

ISRES (Improved Stochastic Ranking Evolution Strategy) [63] could be tested from the NLOPT library. 

The COBYLA algorithm is a variation of the Simplex algorithm. Its documentation states that: “It con-

structs successive linear approximations of the objective function and constraints via a simplex of n+1 
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points (in n dimensions), and optimizes these approximations in a trust region at each step” [63]. The 

ISRES algorithm is a global optimization algorithm, which would be preferable if a local minimum has 

been reached. 

Initial optimization attempts showed that the COBYLA algorithm exhibited a fast convergence. For the 

various models less than 50 iterations where needed to get close to the optimum and less than 100 iter-

ations where needed to reach convergence. However, it was not clear if it was only a local minimum as 

the used algorithm cannot escape local optima. 

The ISRES algorithm has not been successful, as it used too many iterations and proceeded changing the 

parameters somehow randomly. Also, in literature describing the algorithm it is stated that the im-

provement regarding efficiency and effectiveness made with this algorithm for some problems might 

come at the cost of being trapped in a local minimum for other problems [65]. 

A promising algorithm is the MIDACO algorithm (Mixed Integer Distributed Ant Colony Optimization). 

This solver can be used for many different problems and it can handle equality and inequality con-

straints in addition to the lower and upper bounds of the variables. It works as a “derivative-free, evolu-

tionary hybrid algorithm that treats the problem as a black-box which may contain critical function 

properties such as non-convexity, discontinuities or stochastic noise.” [64] These are promising proper-

ties for the unknown function used in this thesis. In addition, the MIDACO algorithm implements a very 

efficient parallelization strategy, which is simple to use. This might improve the calculation time drasti-

cally. [64] 

Preliminary optimization passes showed that the MIDACO algorithm needs more iterations to converge 

than the COBYLA algorithm does. However, its performance seemed to be better regarding constraint 

violations and trapping into a local minimum. When the algorithm has a converged solution it disperses 

the parameters again to get a new starting point. A drawback of MIDACO is that it only supports four 

parameters with the free version, which has been used. However, the parameter studies described in 

section 3.3.2 showed the parameter’s influence and therefore, the four most influential parameters 

regarding stress and reaction force could be used to vary whereas the remaining parameters could be 

fixed. 

Regarding the objective function, it has been shown that minimizing the maximum stress did not reach a 

good performance in the converged solution regarding reaction force and therefore the reaction force 

for opening the specimen after folding might not necessarily be enough. Furthermore, the ratio of the 

specimen volume to the reaction force ended up with an optimal solution, which had a small volume, 

but also the reaction force was not high enough. Finally, the best solution was to maximize the reaction 

force under the constraint that the maximum stress shall be smaller than a certain level while the total 

specimen length shall be smaller than a maximum specimen size. 
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The mathematical formulation of the optimization problem used in the following optimization is shown 

in equation (4.5): 

 𝑚𝑖𝑛  −𝐹𝑟𝑒𝑎𝑐𝑡(𝑥𝑖) 𝑖 = 1, … , 𝑛 

(3.7) 

   s.t.     𝑔1 = 𝜎𝑚𝑎𝑥,𝑚𝑜𝑑𝑒𝑙 − 𝜎𝑚𝑎𝑥 ≤ 0  

        𝑔2 = 𝐿𝑚𝑜𝑑𝑒𝑙 − 𝐿𝑚𝑎𝑥 ≤ 0  

 
       𝑔𝑘 = 𝑥𝑖 − 𝑥𝑗 ≤ 0 

∀𝑖, 𝑗 = 1, … , 𝑛; 
∀𝑘 = 3, … , 𝑚 

        𝑥𝑙,𝑖 − 𝑥𝑖 ≤ 0 𝑖 = 1, … , 𝑛 

        𝑥𝑖 − 𝑥𝑢,𝑖 ≤ 0 𝑖 = 1, … , 𝑛 

where, 

- 𝐹𝑟𝑒𝑎𝑐𝑡:  Reaction force 

- 𝑔:  Inequality constraint 

- 𝐿𝑚𝑜𝑑𝑒𝑙:  Total length of model 

- 𝐿𝑚𝑎𝑥:  Maximum allowable length 

- 𝑚:  Number of inequality constraints in addition to stress & length constraints 

- 𝑛:  Number of parameters 

- 𝜎𝑚𝑎𝑥,𝑚𝑜𝑑𝑒𝑙: Maximum von Mises stress of current model 

- 𝜎𝑚𝑎𝑥:  Maximum allowable stress 

- 𝑥𝑖:  𝑖-th model parameter out of 𝑛 parameters 

- 𝑥𝑙,𝑖:  Lower bound of parameter 𝑖 

- 𝑥𝑢,𝑖:  Upper bound of parameter 𝑖 

The additional inequality constraints, 𝑔𝑘, are not used by all models. They are only confining the param-

eters if in some models one parameter is not allowed to be larger than other parameters in order for the 

model to build up a correct specimen geometry. The same stress and length limits have been applied to 

all models and the other boundary conditions and bounds have been adjusted to each model individual-

ly. The stress limit has been defined as 20 MPa regarding the material yield stress of 31 MPa and apply-

ing a safety factor of 1.55. Therefore, not plastic deformation shall occur in the optimized models. The 

length limit has been set to 60 mm. Both values can be changed at a later stage when more information 

about the used material and maximum model size is known. 

After having compared the different optimization algorithms the MIDACO solver will be used for further 

optimization of the parametrized hinges. The justification is that the MIDACO solver should be able to 

emerge from local minima and because it can be parallelized without large effort. 
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3.3.4 Optimization results 

This subsection shows the results from the parameter optimization of the four considered models. For 

every model, two independent optimizations have been made, starting from two individual starting 

points. The used parameters and their starting points, the model’s geometrical bounds and the addi-

tional boundary conditions, 𝑔𝑘, if they have been needed, are shown. Convergence is shown for each 

design and the best solutions are presented and discussed. Every independent optimization has been 

run until 3000 iterations have been calculated or until a maximum simulation time of five days has 

passed, whichever came first. 

As already defined in the parameter study, the length of the rods, L1 for the Z-shape model and L for the 

oval-shape models, has been fixed to 10 mm and the rods have been stiffened with a larger thickness 

and width than the rest of the model. This has been done because the goal was to study the hinge itself 

without a large influence of a deformable rod. 

The total specimen length of the Z-shape design has been defined as 𝐿𝑚𝑜𝑑𝑒𝑙 = 2 ∗ 𝑤 + 𝐿2 + 2 ∗ 𝑅 

which was constraint with the maximum allowable length 𝐿𝑚𝑎𝑥 = 60 𝑚𝑚. The Z-shape model did not 

need any additional geometrical boundary conditions. 

Tab. 3-6 shows the parameters’ lower and upper bounds, the starting points and the best solutions of 

these starting points for all subsequent optimized models. 

It can be seen that the two best solutions do not correspond to the exact same parameter values. Espe-

cially the radius R shows a large difference. Therefore, the number of iterations might not be enough to 

overcome a local minimum. With the same starting points, two additional optimization runs have been 

executed in order to see if they converge towards the same results. It appeared that the parameter val-

ues of the solutions are almost the same, except for the L2 value for the second starting point, which 

shows a difference of 7%. The same is true regarding the resulting maximum von Mises stress and the 

reaction force as shown in Tab. 3-7 where almost the same values have been obtained for the optimiza-

tion runs 1 & 2 for both starting points. The stress distributions of the best models of each design are 

depicted in Fig. A-15 to Fig. A-20. 

Comparing the resulting maximum von Mises stress, reaction force and specimen volume in Tab. 3-7 

between the two runs for each of the same starting points one can see that the second optimization 

runs provided slightly better results for all parameters except the maximum von Mises stress. However, 

the stress is still lower or equal the prescribed bounding value. The relative difference for the thick Z-

shape model is therefore calculated between the second runs of both starting points. Subsequently, 

there exist only one run per starting point and the relative difference will be calculated from the values 

between these two starting points. 

As the volume has not been considered during the optimization, it is only shown to get a complete over-

view of the model. It is clear that for a final use of any of the hinges, a small volume and therefore a 

small mass is important for a space structure. However, during this initial optimization, the goal was to 

find elastic hinges with a large reaction force. Therefore, the solution from starting point I, run 2 is con-

sidered as being the best solution of the four optimization runs for the Z-shape model. It shows the 

highest reaction force and reaction torque of the four solutions while keeping the maximum von Mises 

stress below the threshold of 20 MPa. 
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Tab. 3-6: Definition of optimization variables and best solution values for all models 

Model Var. 
Lower 
Bounds 
[mm] 

Upper 
Bounds 
[mm] 

Starting 
Point I 
[mm] 

Best Solution I 
[mm] 

Starting 
Point II 
[mm] 

Best Solution II 
[mm] 

Z-shape 
thick 

 Run 1  Run 2  Run 1  Run 2 

t 1.00 10.00 1.00 9.54  9.56 2.00 10.00  10.00 

w 1.00 10.00 1.00 1.87  1.87 5.00 1.51  1.51 

L2 1.00 60.00 40.00 6.85  6.85 35.00 6.12  5.70 

R 1.00 30.00 5.00 21.89  21.88 10.00 17.10  17.10 

Z-shape 
thin 

t 1.00 2.00 1.00 2.00 2.00 1.20 

w 1.00 10.00 1.00 1.02 5.00 1.07 

L2 1.00 60.00 40.00 7.85 35.00 6.10 

R 1.00 30.00 5.00 9.80 10.00 8.22 

Oval-
shape 
straight 
thick 

t 1.00 10.00 3.14 9.21 1.00 8.97 

w 1.00 10.00 2.94 1.87 34.27 11.82 

R1 1.00 50.00 10.48 34.27 20.00 41.64 

R2 1.00 40.00 4.29 11.82 10.00 14.58 

Oval-
shape 
straight 
thin 

t 1.00 2.00 2.00 1.60 1.00 1.00 

w 1.00 10.00 4.00 1.00 2.00 1.00 

R1 1.00 15.00 12.00 15.00 15.00 14.53 

R2 1.00 15.00 8.00 15.00 10.00 3.06 

Oval-
shape 
tilted 

t 1.00 10.00 1.00 1.00 2.00 1.00 

R 10.00 20.00 10.00 15.87 15.00 16.06 

X 1.00 2.50 1.00 2.50 2.00 2.50 

Y 1.00 5.00 2.00 5.00 3.00 4.41 

Oval-
shape 
spring 

w 1.00 10.00 1.00 1.00 2.00 1.00 

R 10.00 20.00 18.00 19.12 20.00 17.83 

Y1 1.00 20.00 8.00 7.72 12.00 3.46 

D 1.00 20.00 4.00 3.63 6.00 1.00 
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Tab. 3-7: Results for best solutions for all optimized models 

Model 
Starting 
Point 

Max. von 
Mises stress 
[MPa] 

Reaction 
force [N] 

Reaction 
torque 
[mNm] 

Volume 
[mm3] 

Z-shape 
thick 

I, Run 1 19.90 4.71 154.65 3014.95 

II, Run 1 19.99 4.02 111.90 2299.23 

I, Run 2 19.91 4.73 155.08 3012.66 

II, Run 2 20.00 4.15 115.65 2291.96 

Relative 
difference 

0.45 % -12.26 % -25.43 % -23.92 % 

Z-shape 
thin 

I 20.00 0.31 6.26 265.66 

II 20.00 0.24 4.54 158.69 

Relative 
difference 

0.00 % -22.58 % -27.48 % -40.27 % 

Oval-shape 
straight 
thick 

I 19.61 3.14 76.48 4345.81 

II 18.33 3.88 105.18 3256.02 

Relative 
difference 

-6.53 % 23.57 % 37.53 % -25.08 % 

Oval-shape 
straight 
thin 

I 25.01 0.25 6.94 289.16 

II 20.00 0.08 1.18 126.50 

Relative 
difference 

-20.03 -68.00 -83.00 -56.25 

Oval-shape 
tilted 

I 33.32 0.28 7.37 146.30 

II 33.70 0.29 7.47 147.02 

Relative 
difference 

1.14 % 3.57 % 1.36 % 0.49 % 

Oval-shape 
spring 

I 20.64 0.37 10.64 167.43 

II 18.60 0.44 12.32 159.17 

Relative 
difference 

-9.88 18.92 % 15.79 % -4.93 % 

 

Fig. 3-28 shows the results for each iteration regarding maximum von Mises stress and reaction force for 

the optimization run 1 of the first starting point. One can see that the algorithm is converging for both 

the stress and the reaction force. In the beginning, the algorithm changed the parameters largely to get 

to know their influence on the results. Then, these parameters are only changed slightly and therefore a 

converging look appears in the figure. However, one can see that the best solution is not the last one. 

This means, that the algorithm still slightly changed the parameters in the end, but did not get a better 
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result. All the Z-shape optimizations stopped after 800 to 1300 iterations due to the time limit of five 

days. This might be an explanation for the differences between the optimization results. 

 

Fig. 3-28: Stress and reaction force for each iteration of the thick Z-shape model optimization run 1, starting point I 

The resulting optimized model of the Z-shape design is very large and heavy compared to the already 

developed torsion hinges. Even if the large weight of one specimen could be compensated with its large 

reaction force needing less hinges for the same membrane size, the packaging would not be good 

enough as the hinges are very thick compared to the torsion hinges. Therefore, the upper bound of the 

parameter t has been changed to 2.00 mm and the total model length, 𝐿𝑚𝑜𝑑𝑒𝑙, and width, 𝑊𝑚𝑜𝑑𝑒𝑙, have 

been set to 𝐿𝑚𝑜𝑑𝑒𝑙 = 𝑤 + 2 ∗ 𝐿1 + 2 ∗ 𝑅 < 60  and 𝑊𝑚𝑜𝑑𝑒𝑙 = 2 ∗ 𝑤 + 𝐿2 + 2 ∗ 𝑅 < 30𝑚𝑚 , respec-

tively. With these adaptations the maximum design space is comparable with the other models and 

therefore also the reaction forces are expected to be in the same order of magnitude. With the adapted 

bounds, the thinner models have been optimized again from two starting points with the results shown 

in Tab. 3-6. 

Again, the resulting parameter values show differences even though the optimization runs calculated all 

of the demanded 3000 iterations for both starting points. Also, the resulting reaction forces and torques 

differ largely (see Tab. 3-7) which means that the optimization algorithm was not able to overcome local 

minima in the given amount of time even though it seems that it converged four times and restarted 

itself after having converged. This can be seen in Fig. 3-29 where the peaks in stress and reaction force 

indicate a new starting point as the algorithm tries to find out the sensitivity of the parameters at a new 

point. The best solution has been found after the fourth restart. One can see, that the best solution ap-

peared quite early in this restart and the algorithm did not find a better solution afterwards and there-

fore starting a next restart which has been interrupted as the prescribed maximum number of iterations 

has been reached. 

Comparing the volumes with the models below, the volume of result II would match better. However, at 

the moment, the optimization has been set up regarding reaction force and therefore the results of 

starting point I have been chosen to be better as it shows much larger reaction force and reaction 

torque. 
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Fig. 3-29: Stress and reaction force for each iteration of the thin Z-shape model optimization run I 

Similar findings have been made with the oval-shape designs. The diagrams showing the maximum 

stress and reaction force all behave similarly to Fig. 3-28 and Fig. 3-29 depending on the number of iter-

ations. 

The total specimen length for the oval-shape straight model has been defined as 𝐿𝑚𝑜𝑑𝑒𝑙 = 2 ∗ (𝐿 +

𝑅2 + 𝐷2) which was constraint with the maximum allowable length 𝐿𝑚𝑎𝑥 = 60 𝑚𝑚. According to the 

parameter study of this model, the parameters D1 and D2 have very little influence on the result. There-

fore, they have been fixed at 𝐷1 = 2 𝑚𝑚 and 𝐷2 = 5 𝑚𝑚. For geometrical reasons two additional 

boundary conditions have been introduced to this model as shown in equation (4.6). These conditions 

are needed in order to get a reasonable and functional geometry. 

 
𝑔3 =

𝑅1

3
− 𝑅2 ≤ 0 

(3.8) 
 𝑔4 = 𝑅2 − 𝑅1 ≤ 0 

Here, the differences of the solutions of the two different starting points is much larger than for the 

previous model. This is due to the fact, that the oval-shape straight FE model has a more complicated 

geometry and has more difficulties in converging or at least takes more time until each model is con-

verged. Therefore, only a small number of 431 and 319 iterations could be calculated. Hence, the algo-

rithm could not converge in such a small number of iterations and large differences in between the two 

starting points have been expected. 

Comparing the resulting maximum von Mises stress, reaction force and specimen volume (Tab. 3-7) it is 

shown that the second starting point provided much better results for all stress, reaction force and vol-

ume. 

Fig. 3-30 shows the results for each iteration regarding the maximum von Mises stress and reaction 

force for the better second starting point. One can see that the algorithm did not fully converge after 

the small number of iterations and still changed the geometrical parameters, which is shown with the 

large scatter of the data points. To converge this model, more time would have been required. 
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Fig. 3-30: Stress and reaction force for each iteration for the oval-shape straight model optimization run I 

Again, as for the Z-shape model, the resulting oval-shape straight models are too large and thick to 

achieve a good packaging for the envisioned CubeSat demonstrator. Therefore, the upper bounds have 

been adapted in the same manner as for the Z-shape model and optimization runs have been done 

again with two starting points. The new upper bound for t has been set to 2.00 mm and the upper 

bounds for R1 and R2 have been set to 15.00 mm. This gave the resulting parameter values shown in 

Tab. 3-6. 

The differences in runs for the parameter values as well as the reaction force, reaction torque and vol-

ume are enormous (see Tab. 3-7). However, this time it is not due to local minima but because the first 

optimization run only calculated 700 simulations whereas the second optimization run calculated 2600 

simulations. In this short time, the first optimization did not find a feasible solution as the maximum von 

Mises stress is above the allowed 20 MPa. Therefore, it also has a much larger reaction force. The sec-

ond optimization reached a feasible solution, however, the reaction forces and torques are very small. 

The solution of the first optimization will be taken as the better solution as the stress is still smaller than 

the stress which appeared in some of the FE simulations of the tested torsion hinges in section 3.2 and 

6.1 where they showed a maximum von Mises stress of more than 30 MPa without getting a permanent 

deformation during the experiments. The convergence diagrams have a similar shape as shown in Fig. 

3-30 for the unconverged first starting point and in Fig. 3-29 for the second starting point, where it is 

clear that the values are different. However, not all convergence diagrams are shown for simplicity. 

Regarding the oval-shape tilted model, the parameters w and D have been fixed to w= 1 𝑚𝑚 and 𝐷 =

5 𝑚𝑚. The total specimen length has been defined as 𝐿𝑚𝑜𝑑𝑒𝑙 = 2 ∗ (𝐿 + 𝑅) which was constraint with 

the maximum allowable length 𝐿𝑚𝑎𝑥 = 60 𝑚𝑚. Some geometrical boundary conditions have been 

needed for this model as well. However, as they corresponded to the fixed parameter D, these condi-

tions have been introduced directly into the lower and upper bounds definition, which simplified the 

problem. 

The two starting points for the oval-shape tilted model almost converged towards the same solution 

except for the parameter Y that shows a larger relative difference (Tab. 3-6). However, regarding the 

maximum von Mises stress and the reaction force and reaction torque, the two best solutions are al-
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most the same (Tab. 3-7). The second starting point provided slightly better results regarding reaction 

torque, while the volume is almost the same. 

It is important to see that both optimization runs could not satisfy the boundary condition that the max-

imum von Mises stress should be lower than the threshold of 20 MPa. In addition, except for R, the pa-

rameter values went towards their upper and lower bounds. This indicates that the fixed maximum 

specimen length might be too small for the oval-shape tilted model and the bounding box needs to be 

adapted to lower the stresses in the model. However, the experiments showed that the given stress 

threshold can be surpassed without getting a permanent deformation during the experiments (see sec-

tion 5.3). Hence, the result of the second starting point will still be included in the further studies. 

The last considered model is the oval-shape spring model. For this model the total specimen length has 

been defined as 𝐿𝑚𝑜𝑑𝑒𝑙 = 2 ∗ (𝐿 + 𝑅) which was constraint like all models above. Also for this model, 

additional geometrical boundary conditions have been needed 

 𝑔3 = 𝐷 − 𝑌1 ≤ 0 
(3.9) 

 𝑔4 = 𝑌1 + 𝑤 − 𝑅 ≤ 0 

The large differences, especially in Y1 and D (Tab. 3-6) can be explained with the fact that the first opti-

mization only reached 562 iterations while the second optimization run reached 1327 iterations. The 

second optimization run found the best solution after getting out of the first local minimum, which nev-

er happened, with the first optimization run. Therefore, it is clear that the two results cannot be the 

same. In addition, the first optimization has not yet been able to find a feasible solution regarding the 

stress constraint, while the second optimization run clearly achieved this. Hence, comparing the result-

ing maximum von Mises stress, reaction force and specimen volume in Tab. 3-7 one can see that the 

second starting point provided much better results. 

3.3.4.1 Summary of optimization results 
Tab. 3-8 shows an overview of the parameter values and the maximum von Mises stress, reaction force, 

reaction torque and total model mass of the best solution of each model. One can see that the models 

can be split into two categories, very stiff, large models and compliant, small models. The thick Z-shape 

and oval-shape straight models are able to get a much higher reaction torque than the rest of the mod-

els. However, they are also much larger and therefore heavier. Both differences are in the order of one 

magnitude. This gives ratios between the reaction torque and the total model mass between 0.022 and 

0.070. Hence, all ratios are in the same order of magnitude. This shows that the reaction torque behaves 

proportionally to the specimen volume. The large designs are not favorable for a good packing design 

and therefore the Z-shape and the oval-shape straight models have been optimized in a second optimi-

zation loop with changed geometrical bounds. As the goal of every space application is to be as light-

weight as possible, the lighter and smaller models are preferred. However, it is not yet clear if their reac-

tion force will be enough to be able to open a folded membrane. To ensure this, the exact application 

and a generative first version of an assembled hinge system needs to be defined. This is envisioned for 

subsequent research to this work. A draft concept is developed and described in section 7. 

While only studying the small and more compliant designs, the oval-shape tilted and spring models 

show a ratio, which is much higher, compared to the Z-shape and the oval-shape straight models (more 

than the double for the tilted model and more than the triple for the spring model). Therefore, the oval-
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shape tilted and the oval-shape spring models should be favored while choosing among the here-

investigated designs and their solutions are marked green in Tab. 3-8. 

Tab. 3-8: Summary of optimization results 

Model Changed Parameters [mm] 

Max. 
von 
Mises 
Stress 
[MPa] 

Reaction 
force 
[N] 

Reaction 
torque 
[mNm] 

Mass 
[mg] 

Reaction 
torque / 
total 
model 
mass 
[Nm/g] 

Z-shape thick 
t w L2 R  

9.56 1.87 6.85 21.88 19.91 4.73 155.08 3313.93 0.047 

Z-shape thin 
t w L2 R  

2.00 1.02 7.85 9.80 20.00 0.31 6.26 292.23 0.021 

Oval-shape 
straight thick 

t w R1 R2  

8.97 2.32 41.64 14.58 18.33 3.88 105.18 3581.62 0.029 

Oval-shape 
straight thin 

t w R1 R2  

1.60 1.00 15.00 15.00 25.01 0.25 6.94 318.08 0.022 

Oval-shape 
tilted 

t R X Y  

1.00 16.06 2.50 4.41 33.70 0.29 7.47 161.72 0.046 

Oval-shape 
spring 

w R Y1 Y2  

1.00 17.83 3.46 1.00 18.60 0.44 12.32 175.09 0.070 
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4 Design and evaluation of a new test stand 

4.1 Concept determination 

This section describes possible methods and solutions for developing a well-suited testing method for 

the investigated elastic hinges. Ideas from state-of-the-art testing mechanisms and other inspirations for 

possible testing methods are collected, explained and subsequently listed in a morphological box. From 

this box, individual elements can be combined to generate new concepts for a test mechanism. These 

concepts are explained and evaluated. 

First of all a list of requirements needs to be done in order to know what to look for in a test design. The 

test needs to present a realistic load introduction as would appear during folding and deployment of the 

structure. Simple measurements of the applied forces or the reaction forces or torques during the test 

as well as the corresponding folding angle of the specimens need to done. External impreci-

sions/distortions should be avoided such that a high repeatability can be achieved. Regarding manufac-

turing and cost, the test should be of low complexity to avoid high expenses and to keep its reliability. A 

very important factor, especially when testing a large number of specimens, is that efficient testing 

needs to be possible to test a high number of parts in a short time. Last but not least, a high precision of 

the test is required to avoid erroneous values into the finite element simulation after comparing the 

results. The test stand needs to be designed in a way that small structures/specimens can be tested. The 

specimens will have a length in the range of 30 to 50 mm and a cross section of about 1 to 4 mm2 where 

clamping of the specimens should take place. The small size and the material properties of the speci-

mens predict only small forces appearing during the test. Therefore, already small errors in the designed 

test might have a big impact on the results. 

4.1.1 Partial Solutions 

The morphological box is divided into five different categories, which are explained in this section. The 

categories are the load introduction, how the deformation is applied, the measurement of force or 

torque, the measurement of the bending angle and the test format or device size. 

4.1.1.1 Load Introduction 

The movement for the elastic hinges is defined from a starting, non-stressed, planar state to a complete-

ly folded state. This deformation can be achieved by different load introductions and boundary condi-

tions. The most straightforward load introduction systems are explained in the following. 

Point Load Beam Bending 

Point load beam bending is a standard beam bending except that the hinge in the 

middle of the beam is the most compliant part leading to its deformation. If the 

load follows the end of the deflecting rod, the hinge will fold and the two rods will 

touch at the end of the deformation. 

 

Fig. 4-1: Point Load 
Beam Bending 

Distributed Load Beam Bending 

This is the same as the point load beam bending except that a distributed load is 

applied instead of a point load. This shows a more realistic load introduction as 

point loads do not exist in reality because every load introduction system has at 

least a small area and is not a single point. 

 

Fig. 4-2: Distributed 
Load Beam Bending 
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Central Beam Torsion 

During central beam torsion, a torque is applied in the center of the beam, which 

is the center of the elastic hinge. The torque is increased until the two beam-ends 

touch and the specimen is completely folded. 

 

Fig. 4-3: Central Beam 
Torsion 

Oblique Bending 

Oblique bending is similar to point load bending. The difference is that the load is 

not introduced perpendicularly to the straight beam but with a different angle 

leading to a slightly different deformation. Nevertheless, with oblique bending the 

specimens can be fully folded if the load follows the deflecting beam. 

 

Fig. 4-4: Oblique 
Bending 

Three-Point Bending 

In three-point bending, a load perpendicular to the beam is applied in its center, 

which is also the center of the elastic hinge. The beam is kept in place by fixations 

at both its ends, which are fixed vertically, but are able to move horizontally. 

 

Fig. 4-5: Three-Point 
Bending 

Four-Point Bending 

Four-point bending is almost the same as three-point bending except that two 

load introduction points are used. These load introductions are symmetrically 

distributed and are positioned near the center of the beam. 

 

Fig. 4-6: Four-Point 
Bending 

Beam Bending from Two Sides 

In this load introduction system, the beam is held in its center and therefore at the 

elastic hinge. Then the load is introduced perpendicularly to the beam at both its 

ends and in the same direction. When the loads follow their respective beam end, 

this also leads to a complete folding. 

 

Fig. 4-7: Beam Bend-
ing from 2 Sides 

Offset Buckling 

Introducing the load parallel and in the cross-sectional center of the beam will 

lead to a buckling. By displacing the parallel load from the cross-sectional center, a 

torque is introduced leading to a bending. If the loads follow their respective 

beam-ends this will again lead to a complete folding. 

 

Fig. 4-8: Offset Buck-
ling 

4.1.1.2 Application of deformation 
This subsection defines the possibilities on how to apply a flexural or bending deformation onto a flex-

ure hinge with one stiff rod on each side of the hinge. 

Standard Testing Machine 

Most of the time bending tests are done with standard static universal test machines manufactured for 

example by ZwickRoell or Instron. A 3-point bending test for example can easily be done with such a 

machine. This test is even defined in an ASTM Standard [47]. Standard test machines are expensive but 

usually available at laboratories, which work on material testing. 

Motor Device 

It is clear that a standard testing machine is also brought to motion by a motor. Nevertheless, the motor 

should be taken as a separate possibility for a deformation application because it can be used in several 

different configurations. By using a stepper motor for example, one always knows the position of the 
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motor without the need of extensive external measurement devices and installations. This might simpli-

fy the design of a new testing device. 

Tensioned spring 

A spring in tension can actuate a mechanism by using the inherently stored energy. The tensioning of 

the spring does not always need to be done by a machine but could also be done by hand before the 

start of the test. The stored energy could then actuate a possible testing device. 

String 

Instead of a load cell in a standard test machine a string could be used to pull a specimen and inducing 

flexure. The string could for example be fixed on the specimen and then be furled onto an axle by a 

turning motor. The furling would shorten the remaining string length and induce a pulling force. It is 

important to note that a string might expand elastically depending on its cross-section and material 

properties. The elastic deformation of the string should be taken into account during the test or it 

should be ensured that it is much less than the specimen’s deformation and therefore could be neglect-

ed. 

4.1.1.3 Force / Torque measurement 
During the test one wants to measure the reaction force or torque of the specimen during its flexure. 

This can be done with different mechanisms and is dependent on the used testing device and configura-

tion. 

Load Cell of Testing Machine 

Standard universal testing machines already have a load cell installed that can measure the reaction 

force. These load cells can normally be calibrated and connected to the test program, which comes to-

gether with the universal testing machine. There also exist load cells with different resolutions. 

Force Sensor 

Force sensors or force sensitive resistors vary their resistance depending on how much pressure is ap-

plied to the sensing area, which is often circular and can be relatively small. The harder the force, the 

lower the resistance in the sensor will be. Standard force sensitive resistors can measure applied forces 

in between 100 g to 10 kg. These sensors are simple to use and relatively cheap compared to more so-

phisticated load cells. 

   

Fig. 4-9: Example of force 
sensitive resistor [66] 

Fig. 4-10: Example of a torque sensor [67] Fig. 4-11: Example of a strain gauge [68] 

 

https://cdn.sparkfun.com/assets/parts/2/9/6/7/09375-1.jpg
https://www.kistler.com/de/produkt/type-9049/
https://tacunasystems.com/zc/strain-gauges/omega-uniaxial-strain-gauge-sgt-3f-350-ty43-350-ohm
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Torque Sensor 

To measure a quasi-static or dynamic torque around an axis, a torque sensor is needed. Torque sensors 

are quite sophisticated, like load cells of a testing machine, and therefore also expensive. A torque sen-

sor consists of two steel plates where several shear sensitive quartz plates are built in between. The 

crystal axes of the individual quartz plates are tangential to the circumferential direction and therefore 

produce an electric charge that is proportional to the torque applied. Such torque sensors also come 

with a test program to read the produced data. 

Strain Gauge for Torque on Shaft 

Strain gauges are sensors whose resistance vary with applied force. The tension is converted into a 

change in electrical resistance, which can be measured. Strain gauges are among the most important 

sensors of the electric measurement technique to measure mechanical quantities. Normally, strain 

gauges are used to measure strain in a single direction. However, one can still get the applied torque by 

using material mechanics theory and placing the strain gauge appropriately. Then, taking advantage of 

the proportionality between the measured strain and the applied torque, the torque can be specified. 

Strain gauges are a relatively cheap way to measure deformations and with some background infor-

mation it is possible to measure torques. 

4.1.1.4 Angle Measurement 

In addition to the force, the corresponding folding angle is also important to know. The folding angle can 

be measured by either optical measurement or an inherent measurement depending on the test config-

uration. 

Digital Image Correlation 

Digital Image Correlation (DIC) is a non-contact optical technique for displacement and strain. At least 

two calibrated cameras take pictures of the deforming specimen. The only thing that is needed on the 

specimen is a unique and randomly generated pixel block. The pixels are then tracked by the system. As 

the cameras are both calibrated and their position is known to the processing program, the surface posi-

tion and displacement can be measured and full field 2D and 3D deformation vector fields and strain 

maps can be built up. This method is much more accurate than manual measurement methods but 

needs an expensive imaging system and the corresponding software. 

Motor Position 

An inherent angle measuring system is the angular position of the motor. If the motor is directly used to 

induce a bending, its angular position can tell about the flexural angle. By using a stepper motor the 

angular position can simply be tracked by knowing the number of steps and the passing angle per step, 

which is mostly 1.8° or 0.9° for special stepper motors. The step angle is always given on stepper mo-

tors. 

Protractor 

A protractor is a simple measurement tool and works like a triangle ruler from primary school. The angle 

can be measured by placing the midpoint of the protractor onto the vertex of the angle. Then one side 

of the angle needs to be lined up with the zero line of the protractor and the angular degrees can be 

read where the other side of the angle crosses the number scale. 
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Laser Distance Sensors 

As their name says, laser sensors need a laser as a light source. The ray of these sensors is very focused 

and can easily be leveled and positioned because of the clearly visible light point. To measure angles, 

this sensor type recognizes the position of an object. To do so it uses a triangulation method or recog-

nizes the light travel time. 

The triangulation method works as follows. By changing the distance between the sensor and the object 

also the position of the focused light point on the light receiving element (CMOS) is changed. The posi-

tion of the light point on the CMOS is then used to determine the position of the object. The laser needs 

to be leveled onto the object. The reflected light of the object is bundled by a receptive lens and is 

mapped onto the light receiving element. If the distance changes, the bundled light will be reflected at a 

different angle and the position of the light point on the light receiving element changes. [69] 

The method of the recognition of the light travel time works differently. The distance is calculated by 

measuring the time that passes between sending and receiving a light impulse. It is unaffected by mate-

rial or surface properties. Therefore, the distance 𝑌 is calculated as follows [69]: 

 
𝑌 =

𝑐 ∗ 𝑡

2
 (4.1) 

Where c is the speed of light and t is the time between sending and receiving the light signal. 

These sensors are very precise and a corresponding software can read the results. 

  

Fig. 4-12: Schematics of triangulation method (Adapted 
from [69]) 

Fig. 4-13: Schematics of light travel time method (Adapted 
from [69]) 

4.1.1.5 Test Format / Device Size 

Standard Testing Machine 

As already described above, universal testing machines are common in material research laboratories 

and are often used for standardized tests. Regarding test format or the size of a device, a standard test-

ing machine is normally relatively large and heavy. Therefore, it is not easily transportable and the tests 

always need to be done in the specific laboratory where the testing machine is available. In addition, 

normally a laboratory does not have several testing machines but only one and a reservation is needed 

to be able to use the machines, which requires proactive organization. 

Tabletop Device 

A tabletop device would overcome the drawback of the limited availability of the standard testing ma-

chine. By having a compact and simple tabletop device tests can be done without organizing machines 

far in advance. The drawback of such a device is the uncertainty of its precision because it is normally 

developed and built in-house without the amount of resources a testing company can provide. 
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4.1.2 Morphological Box 

Dividing the set of partial solutions from section 4.1.1 into columns and splitting their corresponding 

categories into rows, a morphological box can be obtained (Fig. 4-14). A morphological box can help 

finding new concepts by combining different principles. 

 
Fig. 4-14: Morphological box of partial solutions for test stand. Picture source Section 4.1.1 and [70–79] 

Found partial solutions marked with orange (section 4.1.3.1) & blue (section 4.1.3.2) arrows 
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4.1.3 Combination of Concepts 

In this section, partial solutions from the morphological box are combined to fit together and to create 

new testing concepts in addition to the testing mechanisms found in literature and described in section 

2.3. It is possible that several solutions of the same category need to be chosen in order to create an 

appropriate testing device. 

4.1.3.1 Motor-driven bending 

The concept motor-driven bending follows from the chosen partial solution possibilities of Tab. 4-1 and 

is shown with the orange arrows in Fig. 4-14. 

Tab. 4-1: Chosen partial solutions for motor-driven bending 

Category Solution 

Load Introduction 2. Distributed Beam Bending 

Application of Deformation 2. Motor Device 

Force / Torque Measurement 3. Torque Sensor 

Angle Measurement 2. By Motor Position 

Test Format / Device Size 2. Tabletop Device 

The specimen is clamped on one side as in normal beam bending. A load introduction block is connected 

to a motor. As the motor center is positioned in the center of the specimen, while turning the motor 

also the load block turns and the turning block acts as a rotating load introduction. This bends the spec-

imen. When the motor revolved half of a turn, the specimen is folded completely and the motor shall 

stop rotating. A torque sensor placed between the motor’s rotating axis and the fixation for the load 

block can measure the reaction torque of the specimen onto the load block. If the motor is a stepper 

motor, the number of steps the motor has done times the step angle of the motor results in the elapsed 

angle. For normal stepper motors, the step angle is 1.8°. If a more precise resolution is needed, half 

steps can be done or the angle can be measured by a different external device as for example a laser 

distance sensor as an alternative. 

Advantages and Disadvantages: 

 Considered load introduction results in a realistic bending 

 Simple measurement of torque with torque sensor 

 Different possibilities for angle measurement 

 Only few parts needed which results in a simple, low cost but still reliable testing device 

 With appropriate fixtures, the test achieves a good repeatability and efficient testing 

 Precision cannot be evaluated as it is an in-house built test 

 Influence of external imprecisions or gravity is unknown 

Overall, this test concept would result in a relatively simple tabletop device with some drawbacks re-

garding precision requirements because it is a self-built test where no comparable test results could be 

found in literature. 

 

Fig. 4-15: Schematics of motor-driven bending 
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4.1.3.2 Motor-driven pulling 

Motor-driven pulling is a concept associating the chosen partial solution possibilities as shown with the 

blue arrows in Fig. 4-14. Tab. 4-2 summarizes the chosen partial solutions. 

Tab. 4-2: Chosen partial solutions for motor-driven pulling 

Category Solution 

Load Introduction 5. 3-pt Bending 

Application of Deformation 2. Motor Device & 4. String 

Force / Torque Measurement 3. Torque Sensor 

Angle Measurement 4. Laser Distance Sensor 

Test Format / Device Size 2. Tabletop Device 

In this test device, the specimen is pinned to a slider on each end. The sliders can only move in the direc-

tion parallel to the undeformed specimen. A string is placed around the specimen in its center. The 

string is then connected to the shaft of a motor by keeping perpendicularity to the undeformed speci-

men. As the motor is turning its shaft, the string is coiled up and its free length is shortened. The short-

ening string pulls the specimen and folds it as the sliders come together. Therefore, the test works simi-

lar to a three-point bending with the difference that the center of the specimen is pulled by the string 

instead of pushed by the load introduction block. The reaction torque can be measured with a torque 

sensor on the motor as for the motor-driven bending. The corresponding angle is measured by laser 

distance sensors as explained in section 4.1.1.4. 

Advantages and Disadvantages: 

 Load introduction results in a realistic bending even though in the considered application the 

bending will be done at the ends of the specimens and not induced in their center 

 Simple measurement of torque with torque sensor 

 With appropriate fixtures, the test achieves a good repeatability and efficient testing 

 Precision cannot be evaluated as this is an in-house built test 

 Only few parts needed but sliders might induce imprecisions due to frictional influence 

 Thin string might expand as well during test, leading to errors 

 Influence of other external imprecisions or gravity is unknown 

This test concept would result in a relatively simple tabletop device. However, several factors might 

influence the test results leading to an unknown precision. 

 

Fig. 4-16: Schematics of motor-driven pulling 

 

  



Design and evaluation of a new test stand   69 

 

4.1.4 Evaluation 

In this section, the different test mechanisms already existing and discussed in section 2.3 as well as the 

newly created concepts are compared and rated in an evaluation matrix. To do so, evaluation criteria 

have been defined as shown in Tab. 4-3. 

As not all criteria are equally important, every possible pair combination of these criteria has been com-

pared and it has been decided which of the pair is more important. This brought up a ranking and with it 

weighting factors for each criterion. The sum of all the weighting factors equals to one. 

The individual criteria and their corresponding weighting factors are shown in Tab. 4-3. 

Tab. 4-3: Evaluation criteria and weighting factors 

Evaluation Criterion 
Weighting 
Factor gi 

Realistic Load Introduction 0.17 

Measurement of Force/Torque 0.19 

Measurement of Angle 0.17 

Influence of external imprecisions 0.11 

Repeatability 0.19 

Complexity 0.03 

Cost 0.00 

Efficient Testing 0.06 

Precision 0.08 

Sum: ∑gi 1.00 

 

One can immediately see that the criteria “Cost” achieved a weighting factor of zero. This is due to the 

fact, that by knowing what test possibilities exist, it is clear that there will not be very large differences 

in cost. In addition, it is difficult to know their exact cost to be able to compare them. As the weighting 

factor is zero, this criterion could be removed because it does not have any influence on the results. Still 

it is kept to show that cost are important for the test mechanism but as the differences between the 

individual test mechanisms will be small, it does not influence the final decision. 

All test mechanisms and concepts are evaluated by giving points to each evaluation criterion. The points 

are given from 0 (bad) to 10 (very good). By multiplying the points for each criterion with its correspond-

ing weighting factor and summing up all the weighted points, the final evaluation of each mechanism is 

realized. Therefore, each mechanism can achieve between 0 and 10 points in total, with 10 being the 

best possible result. The resulting evaluation matrix is shown in Fig. 4-17. 
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Fig. 4-17: Evaluation Matrix for Test Design 
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The resulting weighted values and the ranking of each test method is shown in Tab. 4-4. 

Tab. 4-4: Resulting weighted values and ranking of each test method 

Test Name 
Weighted 
Value 

Ranking 

3-point & 4-point Bending 6.28 7 

Simple Vertical Test 5.64 9 

Platen Test 5.53 10 

Large def. 4-pt Bending LD-FPB 7.03 4 

Column Bending Test (CBT) 7.47 2 

Counterweight-Balanced CBT 7.78 1 

Column Buckling 4.42 11 

Motor-driven bending 7.47 2 

Motor-driven pulling 6.75 5 

Axis of Rotation Test 6.11 8 

Life Cycle Test Elastic Hinge 6.36 6 

Tension Test of Elastic Hinge 4.42 12 

 

“Column Buckling” and “Tension Test of Elastic Hinges” have the lowest overall rating. For “Column 

Buckling” this is because the load introduction is not very realistic compared to the real application. In 

addition, the deformation is not well controlled as the buckling can take place in any direction. There-

fore, the repeatability and the precision suffer. The main drawback of “Tension Test of Elastic Hinges” is 

that the reaction force and angle are not continuously measured but only at discrete points. 

Further, the “Platen Test”, “Simple Vertical Test”, “Axis of Rotation Test”, “3-point & 4-point Bending 

Test” and “Life Cycle Test Elastic Hinges” are not very well suited for the considered application. This is 

mainly because of external imprecisions and shear distortion influences, as well as issues regarding large 

deformation known from literature. Also, the “Axis of Rotation Test” and “Life Cycle Test Elastic Hinges” 

do not yet have a realistic load introduction and significant configuration changes would be needed. 

“Motor-driven pulling” and “Large deformation 4-pt bending” achieve good results. Their drawbacks are 

the relatively high complexity and especially for the “Motor-driven pulling” the uncertainties regarding 

external imprecisions because it would be a newly developed test method with no comparison possibili-

ties. 

The best-rated test mechanisms are the “Counterweight-Balanced Column Bending Test”, the “Column 

Bending Test” and the “Motor-driven bending”. The CWB-CBT has the best overall rating because it is an 

efficient, high precision and repeatable test. In addition, it is well described in literature and relatively 

simple to realize. Compared to the “Counterweight-Balanced” CBT, the normal CBT has an even simpler 

design and implementation by only lacking some gravitational issues. This keeps the normal CBT inter-

esting as a good test mechanism. The “Motor-driven bending” however, scores with its realistic load 

introduction and simplicity, as well as the simple measurement of the bending angle through the posi-

tion of the stepper motor. 

The evaluation results are very close and the two second ranked mechanisms only got a lower rating by 

4% compared to the maximum rating value achieved by the CWB CBT. Such a small difference is not 

significant as the evaluation results might slightly change if somebody else would have assessed the test 

mechanisms. Therefore, one cannot simply decide for the best-rated test mechanism for the hinge test-
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ing. Other factors, which have not been assessed in the evaluation matrix as for example the test format 

or device size might be considered as well. It is much simpler to have a tabletop device where tests can 

be done anytime and almost anywhere than to use a universal testing machine, which is only available 

at certain times and needs a reservation. However, designing a tabletop device results in a bigger effort 

as if one could use a universal testing machine and only design the fixture mechanisms. 

Concluding the evaluation, developing a tabletop device following the idea of the motor-driven bending 

has been chosen as it achieved the second place in the overall ranking with a weighted value not far 

from the best-ranked test mechanism. The advantage of the all-time availability could hardly be sur-

passed. 
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4.2 Test stand design 

After deciding for the motor-driven bending test, the test stand had to be fully developed and pro-

grammed starting from a basic sketch of first ideas. The basic idea of the test is shown in Fig. 4-18. A 

motor induces rotation into an arm. This arm pushes a punch onto the specimen. The specimen itself is 

clamped on the other side. The rotation of the arm and therefore the punch induces a bending of the 

specimen. The test will be stopped when the motor has fulfilled half a turn (180°) and the specimen is 

completely folded. 

 

Fig. 4-18: Simplified idea of motor-driven bending test device 

Finally, the designed test stand looks as shown in Fig. 4-19. It can be split into two separate assemblies, 

the rotating part and the clamping part. These two parts are then connected together by the large verti-

cal support and supported by an additional smaller vertical support as shown in Fig. 4-19. 

 

Fig. 4-19: Complete assembly of developed test stand  

The rotating part of the test stand includes the motor and its baseplate, the torque sensor, the rotating 

arm and its punch (Fig. 4-20). To remove possible rotational causes of disturbances and non-parallelity 
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for the torque sensor, the sensor has been placed in between the motor fixation and a block-bearing 

unit as shown in Fig. 4-21. The self-aligning coupling in between the motor and the torque sensor is re-

sponsible for removing minor manufacturing tolerances in order to have a straight shaft between the 

motor and the torque sensor. On the other side of the sensor, the torque-bearing shaft is placed in be-

tween two block-bearing units to fix the shaft such that it is perfectly horizontal in between the punch 

deforming the specimens and the torque sensor measuring the torque during deformation. All parts are 

built symmetrically and the weight of the punch is counterbalanced by bolts on the other side of the 

rotating arm in order to have a balanced system with as few external torques as possible. 

  

Fig. 4-20: Rotating part of test stand Fig. 4-21: Rotating part of test stand, side-view 

To achieve good quality results a high precision torque sensor from Burster (type 8661) has been used in 

this test stand. This sensor is especially built for rotating applications and measures the torque without 

transmission contact. [80] The sensor consists of three elements, the measuring shaft, an electronics 

box and the sensor unit (Fig. 4-22). As a torque deforms the torsion shaft, the mounted strain gauges 

elastically and reversibly elongate. Proportionally to the elongation, their electrical resistance changes. 

Four strain gauges are arranged as a Wheatstone bridge circuit and are supplied with a DC voltage. Thus, 

the output voltage of the strain gauges changes proportionally to the applied and measured torque. The 

output voltage has been calibrated by the supplier. With the help of the calibration certificate, the out-

put voltage can be converted to the applied torque. The used sensor has a range of ±1 Nm and has an 

output signal of ±10 V at its nominal value. The sensor range has been chosen based on the results from 

the preliminary tests where a maximum torque of 0.288 Nm has been obtained whereas the aim is to 

increase the specimen’s reaction force and therefore also their reaction torque. The sensor has a rela-

tive tolerance in sensitivity of 0.1% of its full scale [80]. As the sensor has been calibrated in 20% steps in 

the calibration certificate, the precision of the sensor is 0.2 mNm. 

In addition, the torque sensor has an integrated angular displacement measurement system with an 

encoder disc with 1024 increments per revolution. Two measurement channels are placed with a phase 

shift of 90°. By using the four-edge decoding to read all the rising and falling edges one can increase the 

resolution and reach a precision of: 

 
𝛼 =

360°

1024 𝐼𝑛𝑐𝑟.
∗

1

4
= 0.08789° 𝐼𝑛𝑐𝑟.−1 (4.2) 
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Fig. 4-22: Section through torque sensor [81] 

The clamping part (Fig. 4-23) is built up by a lower fixture block positioned on an item aluminum profile. 

Two linear guide rails (igus drylin NK-02-17-01 [82]) are fixed to the lower fixture block on one side and 

to the top block on the other side. In between, the upper fixture block is bolted onto the sliders of the 

linear guide system. To clamp a specimen, it is placed onto the alignment block which itself is placed 

into the pocket of the lower fixture block. Then the fixation bolt is tightened until the upper fixture block 

is pressed onto the specimen fixing it in between the upper and the lower fixture blocks (Fig. 4-24). 

  

Fig. 4-23: Clamping part of test stand Fig. 4-24: Fixed specimen 

To ensure that all the tested specimens are placed and fixed in the same manner, the alignment block is 

placed into the pocket of the alignment jig as on Fig. 4-25. Then, the specimen is aligned along the upper 

block of the alignment jig and fixed to the alignment block with a tape. Afterwards, the alignment block 

and the specimen are removed from the alignment jig and placed into the pocket of the lower fixture. 

To simplify this process, the upper fixture has to be held at a distance far enough to be able to handle 

the alignment block at the lower fixture. To do so, a fixation has been developed and produced with a 

3D printer. This fixation can be placed into the central bore of one of the linear guide rails. Like this, the 

upper fixture block cannot move against the lower fixture block anymore (Fig. 4-26). 
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Fig. 4-25: Alignment of specimen onto alignment block Fig. 4-26: Fixing the upper fixture block with a fixation to 
change specimen 

Connecting the rotating and the clamping part together onto two different sides of a vertical support, 

the test stand has only to be adjusted to the specimen size. It is important that the center of the speci-

men and therefore the center of the elastic hinge is aligned with the rotational axis of the motor. To do 

so, the aluminum profile of the clamping part can be moved until this is accomplished. Furthermore, the 

pin acting as punch needs to be bolted to the rotating arm at the corresponding bore, depending on 

specimen size. A completed alignment of the test stand is shown in Fig. 4-27. 

  

Fig. 4-27: Clamped and aligned specimen, initial set-up Fig. 4-28:Position switch (blue) for initial adjustment of hori-
zontal position of rotating arm (green) 

In order to have a repeatable starting point of the rotating arm, a mechanical switch mechanism has 

been introduced. This is shown in Fig. 4-28. To home the starting position, the rotating arm (green) is 

driven slowly towards the mechanical switch (blue). Once the switch is pressed, the motor is immediate-

ly stopped and the motor’s angular position counter is homed to its starting zero position. The switch 

has been placed such that the rotating arm is exactly horizontal at the end of the homing sequence. This 

placement can be done with a self-leveling laser while moving the switch fixture (grey) on the item pro-

file. 
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4.3 Test stand software 

The program to control the motor and to collect and store data is based on the LabVIEW program used 

in the preliminary tests and has been introduced in [83]. The basic initial program has been adapted to 

the requirements of the new test stand and new functions have been introduced. The LabVIEW program 

can be split into three subprograms. These are the motion control, data collection and switch control. 

The user interface, called front panel in LabVIEW, is depicted in Fig. 4-29. The front panel has an input 

field where the user can enter the code needed for the motor motion and then needs to push the “EN-

TER” button. The commands are explained just besides the motor motion control panel. On the right-

hand side, the output of the motor is shown. There, all motion commands and replies of the motor are 

written. Data can be collected by activating the “Acquire Data” button and the data acquisition system 

(DAQ) can be stopped by switching the “Stop DAQ” button. The LED called “Switch” will turn on if the 

position switch is pressed by the rotating arm. Additionally, the graphs show real time data of the angu-

lar position, force and torque sensor data. The force sensor will not be used during the tests in this the-

sis; nevertheless, the program is configured, such that it could also include force sensor data. The force 

and torque sensors can be zeroed with their respective zero adjustment field. 

 

Fig. 4-29: Front panel of test stand program 

The motion control program is shown in Fig. A-21 in Appendix A.4. It checks if there has been an input 

by the user. Then, it inspects if the input has been “start” or “back”. If so, the subprograms for the fold-

ing or unfolding motion are executed, respectively. If the input has been a normal motor command, the 

motor performs it until there is a new input. The subprograms “start” and “back” initiate the motor mo-

tion from deployed to folded or vice versa by turning the punch which folds or unfolds the specimen. 

Data is saved by the data collection subprogram (see block diagram in Fig. A-22). It takes the inputs from 

the data acquisition system (NI-DAQ) and filters the information. If the button “Acquire Data” is pushed, 

the collected data is written into a new text file. The subprograms “start” and “back” automatically acti-

vate this button and always save the data to a text file. 

Another separate subprogram is the switch control (block diagram in Fig. A-23). It checks if the mechani-
cal position switch is pushed or not. When the rotating arm touches the switch and activates it, the mo-
tor stops immediately and its position is homed, setting the position counter to zero. This homed posi-
tion is the starting and the final position for every folding and unfolding process. 
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5 Experiments and Mechanical Characterization 

Different experimental testing has been done during this thesis. In order to define an appropriate meas-

urement range for a new test stand, preliminary tests have been done with an already existing test 

stand, which had been built for a different purpose and was adapted to the current needs. Then a new 

test stand has been developed, validated and experiments have been carried out. This section explains 

the preliminary as well as the mechanical tests with the new test stand and shows their results. 

5.1 Preliminary Testing 

An initial test has been performed on already existing 3D printed hinges to verify the order of magnitude 

of the simulations made by Jannic Völker [6] and to choose appropriate sensors regarding measurement 

range and precision. The goal of this test was not to get exact values for bending angles and forces but 

to choose the order of magnitude of the latter. An already existing test stand could be used (Fig. 5-2). 

The test stand has been developed by Nils Gerrit Kottke in his semester thesis at DLR/iAF. [83] 

The test stand is based on the item building kit system and a linear unit from IGUS. The linear unit is 

driven by a servomotor and data are collected through laser triangulation for the deflection and a force 

sensor. The used laser has a linearity of 0.25% in the measurement range of 250 mm and a precision of 

50 µm [84]. The force sensor is an S-Form sensor based on strain gauges. It features a nominal force of 

20 N and an accuracy class of 0.1% [85]. The control and data acquisition has been done by using an 

already existing LabVIEW application. The application is able to acquire synchronized data from the 

force sensor and the laser triangulation. The actuation of the motor is also done through LabVIEW. Sig-

nal inaccuracies are eliminated by a Butterworth low-pass filter of third order with a cutoff frequency of 

5 Hz. Fig. 5-2 shows the total test stand and important parts are depicted in Fig. 5-3. 

The specimens are fixed by a 3D-printed clamping fixture on one side. They have all been placed such 

that one of their arms is fixed completely, only leaving 1 mm of free length. This means that only the 

free arm and the elastic hinge where free to bend. A triangular punch is fixed onto the force sensor. The 

sensor is driven downwards by the linear unit which results in specimen bending. 

Three different configurations have been tested. For the first, the punch has been placed at the center 

of the free arm. Then, the specimen has been bent to an angle of approximately 55° where the punch 

lost direct contact with the specimen due to geometrical reasons. The only difference from the first to 

the second test is that for the second test, the punch has been placed as close to the hinge as possible 

leading to a higher bending angle before losing contact with the specimen. The configuration for the 

third test is different. The specimens are fixed as explained before but they are manually bent over 180°. 

The punch is placed at a distance of 6 mm from the hinge on the free arm measuring the reaction force 

from bending the specimens. Then, the punch is moved upwards releasing the bending state and de-

creasing the reaction force. The test is stopped when the free arm is not touched by the punch any-

more. This third test sequence is expected to be the most accurate regarding maximum force and bend-

ing torque because it can measure the fully bent state. For all tests, the maximum force and the transla-

tion of the punch during the test has been recorded. 

Torsion hinges, O-hinges and Oval-hinges printed from Nylon and Durable printing filament have been 

tested. In total, 15 different hinge designs have been tested. A name code describing the hinge design 

was assigned to each specimen. The name code is built up as follows: D-L1-L2-W-T-H. D is the design 

name, which means in those tests either TH (Torsion Hinge) or RD (Round, as the O-hinge and the oval-
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hinge are both basically round hinges with different lengths and widths). The rest of the name code are 

geometrical dimensions explained in Fig. 5-1. 

  

Fig. 5-1: Specimen design with geometry naming Fig. 5-2: Test stand during testing 

 

 

Fig. 5-3: 3D-Model of used test stand for preliminary tests 

5.1.1 Results from preliminary tests 

Test 1 has been performed on 15 different hinge designs. Therefore, the measured forces strongly vary 

from 0.06 N up to 0.88 N (Fig. 5-4). This large range is mostly influenced by the material parameters, 

hinge cross-section and hinge design. Regarding hinge dimension parameters, the width W has a large 

influence on the reaction force. The larger the width, the smaller the reaction force. This can be seen in 

Fig. 5-5, where torsion hinge designs with the same parameters for L1, L2 and T are shown. TH-20-4-48-

1-2 and TH-20-4-48-1-1.5 even have a larger specimen height, which should stiffen the specimen be-

cause it will influence the torque of inertia with its third power. Nevertheless, the width W has a larger 

influence because by increasing W from 40 mm to 48 mm the force is only increased by 4.6% while dou-

bling the specimen height. The force even decreases by 9.9% while still increasing the specimen height 

by 50%. The width influence can even be seen better by keeping all other dimensions the same. By in-

creasing the width from 40 mm to 45 mm (an increase of 12.5%) decreases the force by 74.7%. 
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Fig. 5-4: Maximum force reached during bending up to ≈ 55° 
for all specimen types (torsion hinges black, round hinges 

blue) 

Fig. 5-5: Influence of width parameter W on maximum force 
during bending up to ≈ 55° for comparable specimen types 

Fig. 5-6 shows that the maximum force is not reached at the end of the bending Test 1. This is clearly 

due to the preliminary character of the test itself. As the punch is driven downwards, it only gets into 

orthogonal contact with the specimen at the beginning of the test. During the test, the punch is not 

loaded orthogonally but also perceives shear loads which transmits as bending torque to the force sen-

sor. Therefore, at larger bending angles the force sensor does not measure the correct load anymore 

but only a part of it which is shown in the decrease of force at the end of the experiment in Fig. 5-6. In 

addition, the punch is sliding on the specimen while being pushed downwards. This can be seen by the 

oscillations on the force curve. The initial and final states of the test are shown in Fig. 5-7 where one can 

see the non-orthogonality between specimen and punch at the end of the test. 

  

Fig. 5-6: Exemplary force diagram for specimen type TH-20-4-
48-1-1.5 with individual specimen reaction force and averaged 

force for bending during Test 1 

Fig. 5-7: Initial state and end of ≈ 55° bending during 
Test 1 

Test 2 shows that the force increases strongly when bending is increased. Therefore, 3 specimens that 

have already been tested during Test 1 have consecutively been placed in the test stand such that it was 

possible to get a larger deflection. To do so, the punch has been placed as close to the hinge as possible 

to be able to keep the contact for a higher bending radius. By increasing the bending from 55° to 70°-80° 

deflection (depending on specimen design) the measured forces increased strongly by a factor between 

2.1 to 3.2 (Fig. 5-8). This shows, that the force will increase the more the specimen is bent. 
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Fig. 5-8: Increase of maximum force when bending angle is 
increased for chosen specimens 

Fig. 5-9: Exemplary force diagram for specimen type TH-19-
5-33-2-2 with individual specimen reaction force and aver-

aged force for release during Test 3 

To observe the maximum bending force another series of tests has been done. Test 3 shows the reac-

tion force while unloading the fully bent specimen. Reaction forces range from 0.85 N up to 12.01 N (Fig. 

5-11). It can be seen that for the torsion hinges, the fully bent reaction force is larger by a factor of 13.5 

to 28.2 compared to the 55° bending (Fig. 5-10 black bars). For the round hinges, this factor is smaller 

(6.6 – 9.1) (Fig. 5-10 blue bars). The bending torque has been calculated by multiplying the measured 

force with the half-length of each individual hinge (dimension L2) plus 6 mm. This has been done like 

this because the force sensor has been placed 6 mm away from their hinge in order to be as far away as 

possible but still be able to measure for a long time span without losing contact to the specimen. The 

obtained torques are in the range between 6.6 up to 102 mNm (Fig. 5-13). This large variety imposes the 

need of a torque sensor with a measurement range which is large enough but still very precise for tor-

ques in its low measurement range. 

 

Fig. 5-10: Ratio of reaction force between full bending and 55° bending for every specimen (tor-
sion hinges black, round hinges blue) 

The same influence of the width parameter W can be drawn from Test 3. By increasing W the force 

decreases strongly (Fig. 5-12). During Test 3 the force decreased by 72.3% while increasing W by 5 mm 

(12.5%). The decreasing factors comparing TH-20-4-40-1-1 and TH-20-4-45-1-1 are very similar for Test 1 

(74.7%) and Test 3 (72.3%). This proves the strong influence of W during the complete folding process. 

It can also be seen that for both Test 1 and Test 3 the influence of the size and material parameters on 

abolute values are not as large for the round hinges as for the torsion hinges. For both tests the absolute 

reaction forces are comparable in between the specimens. This is due to the very low absolute forces 
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measured. The only differing specimen is RD-25-10-28-2-1.5 which has a strong oval form and a larger 

reaction force. 

Fig. 5-9 shows that the maximum force is measured when the specimen is completely folded. During 

opening, the force decreases drastically until it reaches zero when the punch loses contact with the 

specimen. The same conceptual flaws as already explained before are included in this test sequence. A 

permanent deformation could be observed for some of the specimens after the force has been released. 

One of the goals of this thesis is to avoid this permanent plastic deformation as much as possible such 

that the hinges can fully open and therefore are able to deploy a main structure. 

  

Fig. 5-11: Maximum opening force during release of fully 
folded specimens for all specimen types (torsion hinges black, 

round hinges blue) 

Fig. 5-12: Influence of width parameter W (value red shaded 
in specimen name [mm]) during release of fully folded speci-

mens for comparable specimen types 

 

 

Fig. 5-13: Maximum reaction torque during release of fully folded specimens for all specimen 
types (torsion hinges black, round hinges blue) 
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5.1.2 Conclusions from preliminary tests 

The tests showed that the test stand which will be developed in this thesis needs to be able to differ 

very small loads during the beginning of the folding process (0.06 N – 0.88 N at ≈55°) and much larger 

loads at the end of the complete folding (0.85 N – 12.01 N). In addition, a large variety of models leads 

to a large range of expected forces to be measured. The measured force of the stiffest model was more 

than 14 times higher than the force of the most compliant specimen, independent of the bending angle. 

The simulation results from J. Völker [6] showed that for a torsion hinge model TH-20-2.6-45-0.8-2 made 

out of Nylon filament material a pressure of 33 kN/m2 is expected. This implies a force of 1 N. Compara-

ble specimens from the tests show a much larger reaction force during Test 3 with 1.99 N for TH-20-4-

45-1-1 and 5.69 N for TH-20-4-48-1-2. However, as observed during these preliminary tests, an increase 

of W (here from 45 to 48 mm) should decrease the force. The same is true for increasing L2. Hence, the 

reaction force of the tested specimen TH-20-4-48-1-2 should be smaller than the simulated model TH-

20-2.6-45-0.8-2. 

Regarding the simulation result of a Durable filament torsion hinge (TH-15-2.4-47-0.7-1.5) a pressure of 

35 kN/m2 is expected which leads to a force of 0.53 N. Here, no similar specimens have been available. 

To conclude the preliminary tests, one can state that the FE results are lower by an important factor but 

that the order of magnitude is correct. This will help defining the test stand and especially its sensors. 
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5.2 Mechanical testing 

Having developed a test stand for the experimental bending of elastic hinges, tests have been per-

formed. This section explains the test procedure, specimen design & manufacturing and shows the re-

sults from the mechanical testing. 

5.2.1 Test procedure 
For all specimen designs explained in section 5.2.2, 15 individual specimens have been tested with the 

newly developed test stand. The new test stand has been calibrated and used for several sets of tests on 

different specimens. Fig. 5-14 shows the test procedure which has been followed for the new test stand. 

This section explains this procedure starting with commissioning and shows the obtained results. 

 

Fig. 5-14: Test procedure 

 

5.2.2 Specimen Design & Manufacturing 

To get various data from different specimen dimensions, different specimen designs have been chosen 

to test. The first set of specimens are all torsion hinges with different rod and torsion hinge lengths and 

different thicknesses at the hinge or the rods. To compare the influence of the rod stiffness on the total 

hinge displacement two specimen designs have been considered (TH-28-4-30-1-1.5) such that all dimen-

sions are the same except for the rod height, which is 33% larger for one design. Another design has 

almost the same dimensions except that its thickness is doubled on all rods and hinges (TH-28-6-30-2-

1.5). Then, to be able to compare the results from the newly designed test with the preliminary tests, 

two already tested designs have been chosen to be tested again. The first one has been arbitrarily cho-

sen from all the already tested designs (TH-20-4-40-1-1) and the second one is the design that reached 

the highest forces during the preliminary tests (TH-19-5-30-2-2). The results of all these tests shall be 

used to adapt the finite element model to the test stand and its boundary conditions and loads. 

All specimens have been manufactured with a 3-D printer using the FDM-method. The used printer was 

an Original Prusa i3 MK3S 3D printer. The used material was a Nylon filament (PA6) from Markforged 
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[58]. This material has initially been chosen due to the results of J. Völker in his Master thesis [6] and 

due to its high flexibility. However, printing Nylon has some major drawbacks, which made manufactur-

ing of the specimens difficult. The material is transparent, which makes the printers light sensors for 

controlling the printing process useless. In addition, the material is highly flexible even in its filament 

state and therefore it appeared that too much material has been pushed into the nozzle and blocked it 

such that the printing process had to be stopped and the nozzle needed to be cleaned. Last but not 

least, Nylon does not adhere very well to the printers build plate. By applying glue from a glue stick, the 

adherence could be increased but delamination still appeared for some prints at their outermost mem-

bers. 

Before printing the specimens, the optimal printing temperature for the specimens had to be found. To 

check the printing temperature, cubes have been printed at different temperatures. Then, they have 

been checked for printing quality. It appeared that a temperature between 260° C and 265° C worked 

well with the used filament. All subsequent prints have been done with a nozzle temperature of 262° C. 

Another issue during printing is that even if the specimens stick to the build plate, curvatures appear at 

their ends. This can be explained due to material retraction during cooling of the individually printed 

layers. To overcome this problem, cylinders have been added to all specimen ends as shown in Fig. 5-15. 

The cylinders have two functions. As they have a larger area than the specimens themselves, they in-

crease the adherence on the build plate. In addition, they work similar to risers in casting, such that the 

shrinking retraction is moved away from the ends of the specimen towards the cylinders. It could be 

shown that printing with these added cylinders, results in flatter specimens with a higher printing quali-

ty than printing individual specimens. The cylinders are cut from the specimens after printing. In addi-

tion, it has been found that heating the build plate to 75° C worked best regarding adherence to the 

build plate. 

After printing, the specimens have been measured with an electronic caliper in order to check the print-

ing quality. The large dimensions like the rod lengths have been printed very precise. However, manu-

facturing defects have been observed regarding the thickness and the width of some models, which are 

dimensions with a large influence regarding bending stiffness. Therefore, the subsequent FE models 

needed to be adapted to the measured geometries. Tab. 5-1 shows the desired values and the mean of 

the actually measured values for the rod thickness, trod, and the hinge thickness, thinge. The standard de-

viation in between a model has been lower than 0.03 mm for all models. Therefore, one can say that the 

manufacturing error was repeatable and the mean values can be considered. It can be seen that for rod 

thicknesses of 1.50 mm, the printer had difficulties in producing the exact dimensions as the actual val-

ue had a larger offset for this dimension. However, this is only true when the whole specimen had a 

thickness of 1.50 mm whereas the offset is very small for the model where the rods are 2 mm thick and 

the hinge is 1.50 mm thick which is also the model showing the most precise printing. 

Tab. 5-1: Desired and actual values for thickness for all torsion hinge design specimens 

Model 

Desired Value [mm] Actual Value [mm] 

trod thinge trod thinge 

TH-19-5-30-2-2: Assembly Print Configuration 2.00 2.00 1.93 1.91 

TH-19-5-30-2-2: Individual Print Configuration 2.00 2.00 1.92 1.84 

TH-28-6-30-2-1.5 1.50 1.50 1.31 1.26 

TH-28-4-30-1-1.5, trod = 1.5 mm 1.50 1.50 1.38 1.29 

TH-28-4-30-1-1.5, trod = 2 mm 2.00 1.50 1.96 1.47 
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For the optimized models, printing with the explained assembly print design showed precise values for 

most of the dimensions. However, there could still be measured some inaccurate values which are 

shown in Tab. 5-2. It is important to note that the optimization results have been done with the desired 

values. However, to be able to compare the experimental results with the FE simulations, the FE model 

parameters have been adapted to the actual values. Therefore, it might appear that some values of the 

optimization and the final FE simulation may slightly differ. 

Tab. 5-2: Desired and actual values for inaccurate dimensions for optimized hinge designs 

Model Dimension Desired Value [mm] Actual Value [mm] 

Z-shape thin thinge 2.00 1.95 

Oval-shape straight whinge 2.32 2.46 

Oval-shape straight thin whinge 1.00 1.05 

Oval-shape spring thinge 1.00 0.96 

Oval-shape tilted on foil thinge 1.00 0.91 

 

  

Fig. 5-15: Printing specimens with the assembly design, add-
ing connecting cylinders to increase flatness of specimens 

Fig. 5-16: Overview of all specimen models (only one torsion 
hinge model is shown for simplicity): torsion hinge (A), Z-

shape thin (B), oval-shape spring (C), straight thin (D), tilted 
(E), tilted on foil (F), straight thick (G) & Z-shape thick (H) 

The printing process not only induced some inaccurate dimensions but also other defects. Most of the 

specimens showed little material add-ons and thin threads after printing as is shown in Fig. 5-17, where 

the Z-shape model is shown as an example. This might be explained with the small specimen dimensions 

and especially with the used filament. The printing quality might be improved with a more precise 3D 

printer and a higher quality filament. 

 

Fig. 5-17: Printing defects for the Z-shape model 
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5.2.3 Calibration & preparations 

In order to ensure high quality test results, a high precision torque sensor from Burster (type 8661) has 

been used. This sensor has a precision of 0.1% of its calibrated scale. As it has been calibrated in 20% 

steps of its full scale, the measurement precision is 0.2 mNm. 

The overall test stand has been calibrated in two steps. First, to remove any external influence, tests at 

different rotational speeds have been made without any applied load and the torque has been meas-

ured with various calibration weights. Therefore, the frictional influence onto the measured torque as 

well as other influence due to the test stand design could be measured. These influences need to be 

subtracted from the torque measured during the experiments. The angle measurement can be investi-

gated internally as both the motor and the torque sensor are able to measure the angular position. This 

is done to ensure a correct angle measurement for all tests. 

The motor has an encoder disc with 3000 increments [86] and therefore an angular precision of 0.12° 

per increment. In addition a gear reduction of exactly 133.530864:1 [87] is mounted on top, increasing 

the precision largely to a minimum angle of 0.0009° per increment. This is considerably more precise 

than the 0.08789° per increment for the torque sensor (section 4.2). However, the angle is measured 

simultaneously by both position sensors and their data can be compared if any measurement issues 

should appear. 

The second calibration step of the test stand has been done by testing standardized samples and com-

paring the results with hand calculations and FE simulations. This ensures that further test results on 

more sophisticated models are reliable and repeatable. 

5.2.3.1 Sensor calibration 
Even though, the sensor used is a high precision instrument, it needed to be checked if the sensor is able 

to measure correct when it is built into the overall test stand. To do so, frictional influence has been 

measured by rotating the test several half turns as it would be done during the tests. No additional load 

has been applied. If the test would have been perfect, the torque should be zero during all movements. 

Therefore, the measured torque values can be assumed being introduced due to frictional influence and 

non-perfect geometries, which induce asymmetries. This “zero torque” needs to be subtracted from the 

torque measured during the experiments. Fig. 5-18 shows the “zero torque” obtained by rotating the 

motor from the starting position at zero degrees to 180° and back for 16-times. The small deviation in 

between the different rotations show that this “zero torque” is a repeatable measure, which needs to 

be subtracted from further test results. It can be seen, that there exist amplitude peaks at both starting 

phases at 0° and 180°. This might be explained with the change from static to dynamic friction or an 

acceleration of the motor that is unfavorable. For further simplicity in removing this “zero torque”, the 

folding and unfolding phases are split into two data sets. Then, the acceleration peaks are split again 

from their respective phase. These four data sets are approximated by second order functions for the 

peaks and third order functions for the steady phases. All functions have the corresponding angle as 

function parameter. The found coefficients of each function are stored for the data analysis of further 

test results where the “zero torque” can be approximated by calculating the respective function with 

the corresponding angle and subtracting the found torque from the measured data. 
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Fig. 5-18: “Zero torque” measured during sensor calibration 

In addition to measuring the “zero torque”, the sensor has been calibrated to the overall test stand by 

using calibration weights covering the entire measurement span of the sensor. The measured data has 

been compared to the nominal value of the corresponding weight and differences have been analyzed. 

Fig. 5-19 & Fig. 5-20 show the measured sensor values during the calibration process and the corre-

sponding nominal values of the different calibration weights. 

It could be shown that the achieved precision is very high and the relative error compared to the nomi-

nal value is shown in Tab. 5-3. The error is lower than 2% for all measurements which is assumed to be 

precise enough. The veering part is due to the placement of the calibration weights by hand during the 

torque measurement, therefore only the steady state results should be used for comparison. 

Tab. 5-3: Relative Errors of nominal and measured torque 

Weight Relative Error 

500 g 0.71 % 

200 g 1.23 % 

100 g 1.25 % 

50 g 1.70 % 

20 g -0.14 % 

10 g -1.27 % 

5 g -1.80 % 

  

Fig. 5-19:  Torque measured during sensor calibration for 
calibration weights of 500 g, 200 g, 100 g & 50 g 

Fig. 5-20:  Torque measured during sensor calibration for 
calibration weights of 20 g, 10 g & 5 g 
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Regarding the angle measurement, Fig. 5-21 shows that the measured angles during the frictional 

torque test by both position encoders of the motor and the torque sensor are only differing in the range 

of the precision of the torque sensor. Therefore, one can state that the angular measurement of both 

sensors is correct. As the motor has a higher angular resolution its data will be used for subsequent tests 

in order to have the most precise results. 

 
 

Fig. 5-21: Angles measured during sensor calibration 

By subtracting the “zero torque”, the measured torques have been adapted to the test stand design and 

therefore the results will be as precise as possible. A further calibration step has been done by testing 

sample material specimens, which could be compared with results from both hand-calculations and FE 

simulations. 
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5.2.3.2 Sample material specimens 

To ensure the reliability and repeatability of the test stand, sample material specimens have been tested 

and the results have been compared with hand calculations and an FE analysis. The sample material 

specimens could be obtained from the German reference office for proficiency testing and reference 

materials (Deutsches Referenzbüro für Ringversuche und Referenzmaterialien, DRRR). The specimens 

were made out of polycarbonate (PC) and the geometry of the specimens has been a simple rectangular 

solid (Fig. 5-22) [88]. This could be used to do hand calculations according to the cantilever beam bend-

ing theory. The specimens have been clamped on one side over a length of 58 mm such that only 70 mm 

of their full length has been left free. In the following subsection, L is the free length of the beam. Tab. 

5-4 shows the material properties and dimensions of the reference specimens. 

Tab. 5-4: Material properties and dimensions of reference specimens 

Material property Symbol Value 

Young’s modulus E 2200 MPa [89] 

Poisson’s ratio ν 0.37 [90] 

Density ρ 1.2 g/cm3 [89] 

Maximum yield stress Rp0.2 60 MPa [89] 
 

Dimension Symbol Value 

Beam Length L 70 mm 

Width b 12.7 mm 

Height h 3.2 mm 

 

 

Fig. 5-22: Sample material specimen 

It is clear that the sample specimens cannot be fully bent due to their design, which brings up a much 

higher bending stiffness than the further investigated and tested specimens will have. In order not to 

surcharge the torque sensor, only a part of the final half turn has been tested and calculated. This circu-

lar part has been defined as 1/50 of a full circle, leading to a z-displacement of 𝑤 = 8.7733 𝑚𝑚 with: 

 
𝑤 =

𝐿

2
 sin (𝛼) (5.1) 

With L, the beam length and α, the bending angle (𝛼 =
360°

50
= 7.2°) 

Hand-calculations have been made according to the Euler-Bernoulli and the Timoshenko beam theory 

with the prescribed z-displacement and a torque of inertia of: 

 
𝐼 =

𝑏ℎ3

12
= 34.68 𝑚𝑚4 (5.2) 
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Euler-Bernoulli Beam Theory 

The simplest approximation of beam bending is the Euler-Bernoulli beam theory. It states that involving 

equilibrium equations and a 1-D stress-strain relationship, the curvature of the beam can be calculated 

as: 

 
𝑤′′(𝑥) = −

𝑀𝑦(𝑥)

𝐸𝐼
 (5.3) 

Integrating equation [3] two times and applying the respective boundary conditions the deflection of a 

clamped beam (B.C.: 𝑤(𝑥 = 0) = 0 & 𝑤′(𝑥 = 0) = 0) with a point load at the free end in positive z-

direction as depicted in Fig. 5-23, can be calculated as: [91] 

 
𝑤(𝑥) =  −

1

𝐸𝐼
(
1

6
𝐹𝑥3 −

1

2
𝐹𝐿𝑥2) (5.4) 

It is clear that the maximum bending w(x) takes place at the free end where x = L, which gives the equa-

tion for wmax, the maximum deflection: 

 
𝑤(𝑥 = 𝐿) = 𝑤𝑚𝑎𝑥 =

𝐹𝐿3

3𝐸𝐼
 (5.5) 

Where the force F is found with: 

 
𝐹 =

3𝐸𝐼𝑤𝑚𝑎𝑥

𝐿3
= 5.8544 𝑁 (5.6) 

According to the free body diagram in Fig. 5-24, the force F induces a torque My at the clamping: 

 𝑀𝑦 = −𝐹𝐿 = −409.81 𝑚𝑁𝑚 (5.7) 

Which brings up the maximum bending stress σb with equation (6.8): 

 
𝜎𝑏 = −

𝑀𝑦

𝐼
𝑐 = 18.91 𝑀𝑃𝑎 (5.8) 

Where c is the distance from the neutral axis to the investigated point. The maximum bending stress is 

found where c is largest and therefore c is half the beam height (h/2). 

 

Timoshenko Beam Theory 

As the Euler-Bernoulli beam theory does not account for shear deformation during bending, Timoshen-

ko introduced a more precise beam theory. This theory states that for a clamped beam at x=L, the de-

flection can be calculated with equation (6.9): [92] 

 
𝑤(𝑥) =

𝑃𝑥

2𝐸𝐼
(𝐿2 −

𝑥2

3
) −

𝑃(𝐿 − 𝑥)

𝜅𝐴𝐺
−

𝑃𝐿3

3𝐸𝐼
 (5.9) 

Where: 

- A: cross-sectional area of the beam 

- G: shear modulus (𝐺 =
𝐸

2(1+𝜈)
) 

- Κ: Timoshenko shear coefficient (𝜅 =
10(1+𝜈)

12+11𝜈
) [92] 
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Solving equation (6.9) for the force P in the same coordinate system as on Fig. 5-23 and setting it at the 

free end of the beam at position x=0 one can calculate the force responsible for the prescribed deflec-

tion with equation (6.10): 

 𝑃 = −
𝑤𝑚𝑎𝑥

𝐿
𝜅𝐴𝐺

−
𝐿3

3𝐸𝐼

= 5.8643 𝑁 
(5.10) 

There is only a very small difference between the results of the two beam theories in this example. This 

can be explained with the small beam dimensions and the small applied forces. 

 
 

Fig. 5-23: Schematics of the beam bending situation Fig. 5-24: Free body diagram of the beam 

 

Finite Element Simulation 

Another approach for calculating the beam deflection and the corresponding force is a finite element 

simulation of the test. To do so, an FE model of the sample specimens has been developed. The same 

geometry as already explained above has been built and the identical boundary conditions have been 

applied such that the specimen is clamped on 58 mm on its left-hand side and a displacement of 8.7733 

mm in positive z-direction on its right-hand side is prescribed. In addition, to approximate reality even 

better, gravitational forces have been applied on the whole body in the same manner as the tested 

specimens will be exposed to. 

 

Fig. 5-25: Boundary conditions of FE model 

A mesh convergence study has been made which checks if the mesh is fine enough. Fig. 5-26 shows the 

normalized results of the displacement Uz, stress in x-direction Sx and the equivalent von Mises stress 

SEQV. The values are all normalized to the corresponding result obtained with the coarsest mesh. One 

can see that with a mesh of almost 10’000 nodes the slopes of the two stress resultants are strongly 

decreasing and that the mesh is converged at this stage, even though the stress increases while further 

refining the mesh. This can be explained by the fact that the stress gets more and more localized while 

refining the mesh as its elements get smaller. 
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One can see this in Fig. 5-28 & Fig. 5-29, where the results of a global mesh size of 0.5mm (finest mesh 

in convergence study) for the stress Sx are shown. The maximum stress appears to be a line concentrat-

ed at the location where the beam is clamped. The finer the mesh, the more the stress gets concentrat-

ed towards the clamping and is therefore distributed over fewer elements, which increases the stress. 

This is not physical, as the stress would increase to infinity when refining the mesh even more. However, 

one can see in Fig. 5-26 that the normalized values can be assumed to be converged at the mesh re-

finement with about 10’000 elements as the slope of the simulated values decreases strongly at this 

point. In addition, Fig. 5-27 shows that at this stage of refinement the maximum stress of Sx is very close 

to the calculated bending stress with the Euler-Bernoulli beam theory. 

  

Fig. 5-28: Results for Sx with the finest mesh used in the mesh 
convergence study 

Fig. 5-29: Enlargement of results for Sx from Fig. 5-28 

The converged model corresponds to a global mesh size of 1 mm and obtains the results as in Fig. 5-30 

and Fig. 5-31. The maximum bending stress Sx is 19.42 MPa whereas the reaction force at the right-hand 

side of the specimen where the displacement has been prescribed sums up to 6.25 N in z-direction, 

bringing up a reaction torque of 437.50 mNm. Comparing the stress and reaction force with the values 

obtained with the beam theories one can see that the FE results are higher for both variables. The stress 

obtained with the FE model is 2.70 % higher and the force is 6.76 % higher than the Bernoulli beam the-

ory and 6.58 % higher than the Timoshenko beam theory. However, it needs to be considered that the 

beam theories are built up on simplifying hypotheses and the FE model should be able to predict the 

test results more precise. 

  

Fig. 5-26: Normalized results of mesh convergence study Fig. 5-27: Comparison of maximum stress in x-direction and 
bending torque 
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Fig. 5-30: Results for Sx with the converged mesh size of 1 mm Fig. 5-31: Enlargement of results for Sx from Fig. 5-30 

 

Tests 

To be able to verify the test stand 15 individual sample specimens have been clamped with the clamping 

device and tested to the prescribed deflection. The deflection has been obtained by rotating the motor 

by 8012 increments following equation (6.11): 

 
𝑁𝑖𝑛𝑐𝑟 =

𝑁𝑖𝑛𝑐𝑟,𝑚𝑜𝑡𝑜𝑟𝑋

50
= 8012 (5.11) 

Where: 

- Nincr,motor: Number of increments of motor inherent angle sensor per turn (Nincr,motor = 3000 [86]) 

- X: reduction ratio of gear unit (X = 133.530864:1 [87]) 

The specimens have been placed such that the start of the free length has exactly been in the center of 

the rotational part of the test stand (Fig. 5-32). Therefore, one could ensure that the measured torque 

could directly be compared with the calculated and simulated results. 

 

Fig. 5-32: Sample material specimen installed in test stand 

The results of the experiments are shown in Fig. 5-33. One can directly see that the maximum on the 

mean curve of the experimental results is between the calculated values from beam theory and FE simu-

lations. The mean maximum torque has been 419.35 mNm. 
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In addition, the torque increases almost linearly, which can be explained with the fact that the bending 

of the beam is not too large. This has been assumed for using the Euler-Bernoulli beam theory. One can 

see a slight hysteresis during the release of the beams. This might be because during release, even 

though the tests have been done at low speeds, the test mechanism precedes the specimen as the 

mechanism controls the movement and therefore reduces the measured torque. 

Fig. 5-33 shows the standard deviation between the 16 specimens marked onto the mean curve. The 

standard deviation at the maximum torque is 7.25 mNm, which is 1.73 % of the maximum torque. This 

shows that the newly designed test stand is able to reproduce repeatable test results. 

Only the reaction torque has been measured directly. However, the torque arm has been defined as 

being 70 mm and therefore the reaction force can be calculated as 5.99 N. By applying equation (6.8), 

one can also approximate the bending stress as 19.35 MPa. 

 

Fig. 5-33: Experimental results for bending torque of sample material specimens with theo-
retical level lines 

Comparison 

Tab. 5-5 summarizes the results for the sample material specimens. Comparing the results of the differ-

ent approaches one can see, that the experimental results lay in between the theoretical beam theory 

and the FE simulation. All results are close to each other with a maximum difference in reaction torque 

of 6.33 % between the Euler-Bernoulli beam theory and the FE model. The experimental test results 

show a torque smaller by 4.15 % compared to the FE model. These results show that the new test stand 

is able to produce good quality results and could be validated by this test. 

Tab. 5-5: Comparison of results for sample specimens 

Result variable 
Euler-Bernoulli 
beam theory 

FE model 
Experimental 
test results 

Bending stress σb (or Sx) [MPa] 18.91 19.42 19.35 

Reaction force [N] 5.8544 6.25 5.99 

Reaction torque [mNm] 409.81 437.50 419.35 
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5.3 Results of torsion hinges 

In order to compare and verify the finite element model for the investigated hinges, five different tor-

sion hinge models have been tested (see Fig. 5-34 for the tested models & Fig. 5-35 for an overview of 

the complete test stand during testing). The nomenclature of the specimens is the same as for the pre-

liminary tests and is explained again in Fig. 5-36 for simplicity. 

 

Fig. 5-34: Overview of all torsion hinge models: TH-19-5-30-2-2 Assem-
bly Print (A), TH-19-5-30-2-2 Individual Print (B), TH-28-6-30-2-1.5 (C), 

TH-28-4-30-1-1.5, trod = 1.5 mm (D), TH-28-4-30-1-1.5, trod = 2 mm (E) 

The model TH-19-5-30-2-2 has already been tested in the preliminary tests and has therefore been cho-

sen to be able to compare the results. It seemed to be a good choice as its test results from the prelimi-

nary tests showed a good performance resulting in the maximum torque of all tested specimens during 

the preliminary tests. Model TH-19-5-30-2-2 has been tested with two different sets. For the first set, 

the specimens have been printed individually. The second set has been printed with the method ex-

plained in section 5.2.2, where cylinders connect specimens in order to achieve flatter and more precise 

parts. These two sets have been tested in order to investigate the influence of the printing quality. 

To get more experimental data, the models TH-28-6-30-2-1.5 and TH-28-4-30-1-1.5 have been intro-

duced. The difference between these two models lies in the width of the torsion rod (parameter W in 

Fig. 5-35). TH-28-6-30-2-1.5 has a width of 2 mm, which is the double of TH-28-4-30-1-1.5 in order to 

investigate this parameter. The last set of specimens is also a TH-28-4-30-1-1.5 with the only difference 

that the rods with length L1 have a thickness of 2 mm, which is 1/3 thicker than for the standard TH-28-

4-30-1-1.5 and increases the bending stiffness of the rod by a factor of 2.37. This is to investigate the 

influence of the rod thickness onto the overall folding behavior.  

 
 

Fig. 5-35: Overview of complete test stand during testing Fig. 5-36: Geometry and naming parameters for torsion 
hinge models. Nomenclature: TH-L1-L2-W-T-H 
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For each model, 15 specimens have been tested up to a bending angle of 150°. The bending angle has 

been constrained by the thickness of the rods. It has been defined such that the rods never touch in 

order to avoid falsified results due to any contact reaction. 

The experimental results of all torsion hinges are summarized in Tab. 5-6. 

The model TH-19-5-30-2-2 showed to be a stiff model, which is not easy to fold in the test stand. Some 

of the specimens did not follow the folding pattern but slipped away from the punch. Therefore, a notch 

has been introduced at the punch such that the specimens are not able to slip out but need to follow 

the folding sequence. Fig. 5-37 shows that during the loading phase the torque increases quickly until a 

certain point where the bending of the hinge dominates the bending of the total specimen. At this point 

of inflection, the torque increases less quickly which shows a lower stiffness of the specimen when a 

certain angle has been reached and the hinge folding dominates the overall behavior. This behavior 

appears during the unloading phase as well. However, this is only true for some specimens. This can be 

explained as some specimens still slipped out of the notch during unloading and therefore did not follow 

this stiffness change inflection point. This is also an explanation why the standard deviation increases 

largely at the end of the experiments (Fig. 5-37). However, the mentioned inflection point is less strong 

during the release phase than during the folding phase. This brought up the question if the printed pol-

ymer specimens need an initial bending in order to put the 3D printed material fibers in place. It might 

be that due to the manufacturing principle where fibers are placed in layers with the 3D printer, the 

polymeric chain molecules need a stretch forming and alignment of the fibers. After the specimen is 

bent once, the fibers are aligned and therefore, the inflection point is reduced. Therefore, and also be-

cause the final hinges need to be folded more than once as they need to withstand a certain number of 

tests before being used in a space structure, the same specimens have been tested again after resting 

for several hours. 

Fig. 5-38 shows the individual test results and the mean curve with its standard deviation of all tests 

during the second test phase. It is obvious that no sliding occurred at all and therefore the standard 

deviation at the end is much smaller than for the first test sequence. In addition, the inflection point 

during folding is much smoother and does not exist at all during the release phase. This shows that the 

specimens adapted to the folding and some deformations occurred even-though they are not observa-

ble as the specimens return to their initial flat state after a certain time. By comparing the maximum 

values of the mean torque for both test runs one can see that the maximum torque diminished from 

56.28 mNm to 55.30 mNm from the first to the second test run. This is a reduction of 1.77%. On the 

other hand, the standard deviation at the most important point where the maximum torque has been 

measured diminished from 5.01 mNm to 3.87 mNm and the average standard deviation during the 

whole experiment was reduced from 2.03 mNm to 1.12 mNm. As the reduction in torque is not too large 

but the repeatability increases drastically all further specimens will also be tested in two test sequences 

and the results will be compared again. 
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Fig. 5-37: Experimental results for bending torque of TH-19-5-
30-2-2 (Assembly Print Configuration) (Experiment 1) 

Fig. 5-38: Experimental results for bending torque of TH-19-5-
30-2-2 (Assembly Print Configuration) (Experiment 2) 

A visco-elastic behavior has been observed during the tests. It can be seen in both Fig. 5-37 and Fig. 5-38 

that the torque is constantly zero at the end of the tests. This shows a deformation. The specimens are 

not directly fully deploying to their flat state and therefore no load is acting on the torque sensor indi-

cating the zero torque. Fig. 5-39 shows the specimen’s deformation after deployment where the punch 

is back at the initial location without being in contact with the rod of the hinge. However, after only a 

few minutes, the specimens went back to their initial flat state without any external loads (Fig. 5-40). 

This shows that the deformation is not purely plastic but merely a visco-elastic behavior which appears 

in most polymers. Therefore, the waiting time should be large enough in order to alleviate these possi-

ble visco-elastic strains before testing the specimens again. However, it must be noted that the resulting 

short-time angle of the deformed specimen is higher after the first test than after the second test (see 

Tab. 5-6). This is astonishing, as it could be assumed that deforming the specimens induces small re-

maining strains, which should be responsible for an even larger deformation at the end of the second 

test run. However, apparently the specimens could fully recover and an initial bending even helped for a 

better deployment in the subsequent test run. 

  

Fig. 5-39: Visco-elastic deformation of specimen Fig. 5-40: No deformation observable after leaving the speci-
men for 2 minutes 

Like the assembly print configuration of the TH-19-5-30-2-2 model, the individual print configuration 

showed problems with sliding even by using the notch at the punch. Here, also the second experiments 

run did not improve as much as for the assembly print configuration (see Tab. 5-6). In addition, the in-

flection point did not change as drastically as for the assembly print configuration. In addition, some 

specimens still slided away from the notch during the release phase which can be seen in the large 
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standard deviation at the end of the experiment in Fig. 5-42. This might show that the waiting time in 

between the two tests should not be too long (here it was more than 10 hours) or otherwise the materi-

al behaves as if it would almost have no pre-bending at all. This assumption is based on the findings of 

the first test. During the first tests, all specimens have been folded and deployed three times. Here, one 

can see from Fig. 5-41 that the standard deviation and the curvature at inflection point (red circle in Fig. 

5-41) decrease as expected from the previous subsection. In addition, one can see that the maximum 

torque decreases slightly while folding several times. The maximum torques decrease from 47.58 mNm 

to 44.94 mNm to 43.22 mNm and the standard deviation at the maximum torque increments decrease 

steadily from 4.72 mNm to 2.97 mNm to 2.35 mNm. This shows a fast stress relaxation in the material 

that appears during the experiments. This finding is important for future studies of the hinges where 

also long-term folding behavior needs to be studied. 

 

Fig. 5-41: Experimental results for bending torque of TH-19-5-30-2-2 (Indi-
vidual Print Configuration) (Experiment 1) 

 

Fig. 5-42: Experimental results for bending torque of TH-19-5-30-2-2 (Indi-
vidual Print Configuration) (Experiment 2) 

The model TH-28-6-30-2-1.5 is less stiff than the TH-19-5-30-2-2 model because it is thinner. Therefore, 

a smaller torque could be expected as shown in Tab. 5-6. In addition, the standard deviation could be 

decreased with the second experimental run, however, already the first experiments showed a satisfy-

ing standard deviation. It can also be seen in Fig. 5-43 that no sliding occurred. This might be due to the 

lower stiffness of this model which is favorable for the folding in the test stand. The same factor might 

also explain why the inflection point is almost non-existent for both the folding and the deploying phase. 
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For all tests, the measured torque falls quickly during the initial phase of the deployment. This has not 

been observed for any of the TH-19-5-30-2-2 models. Therefore, it might be that more compliant mod-

els need a short time to adapt to the release phase, and the punch moved too fast, even though the 

tests have been done with a low rotational speed. The small increase after the fall also appears for all 

specimens and might show that the specimens caught up with the punch and push fully against it. An-

other explication for the quick fall might be that during the short time in between the end of the folding 

and the start of the deployment, the stress relaxation already influenced the measured torque. 

 

Fig. 5-43: Experimental results for bending torque of TH-28-6-2-1.5 (Experiment 1) 

The model TH-28-4-30-1-1.5 with rod thickness trod = 1.5 mm has the same thickness on all rods. Due to 

the smaller width of the torsion rods, it is even more compliant than the models above and reaches less 

opening torque. The experimental results show a similar behavior as for the model TH-28-6-30-2-1.5, 

including the quick fall at the beginning of the unloading phase and the almost non-existence of the 

inflection point. An interesting point for this model is that the mean maximum torque is higher for the 

second test run than for the first. However, the difference is small and within the range of the standard 

deviation. Still, this shows that the specimens could fully recover from the visco-elastic strains acquired 

during the first test sequence. 

In contradiction to this, one can see that the remaining short-time angle after the deformation is larger 

for the second test run. Therefore, one might assume that a permanent deformation has occurred. This 

model is the only model where an increase of the remaining short-time angle could be observed. How-

ever, the increase is very small and within the range of the standard deviation. This means that not too 

many conclusions should be drawn from this measure as all specimens went back to the initial state 

after only a few minutes. 

Compared to the model TH-28-4-30-1-1.5 with rod thickness trod = 1.5 mm, the same model with rod 

thickness trod = 2 mm has an increased rod stiffness and therefore a higher torque could be expected. 

The average maximum torque of the two test runs is 1.62 times higher than the same value for the pre-

vious model with an overall thickness of 1.5 mm. However, increasing the rod thickness from 1.5 mm to 

2.0 mm increased the rod’s stiffness 2.37 times as the thickness influences the bending stiffness with its 

third power. This shows that stiffening the rods could increase the reaction torque. However, the stiff-

ness increase of the individual rods has been much higher than the overall increase in stiffness. 
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Tab. 5-6: Experimental results of torsion hinge models 

 
 



Experiments and Mechanical Characterization   103 

 

5.4 Results of optimized hinge models 

The resulting designs from the parameter optimization in section 3.3.4 have been tested on the test 

stand. As the models have been optimized with the found material factor from the experiments and FE-

simulations of the torsion hinges, it is expected that the test results should not be too far apart from the 

FE-simulations, except if the factor would be highly dependent on the geometry. The experimental re-

sults for all optimized hinges are presented in this section. 

As explained in section 3.3.4, two different models of the Z-shape design have been found with the op-

timization, a large but stiff model and a small, compliant model. Both models have been tested and 

compared with their corresponding FE model. The results are shown in Tab. 5-7. 

Tab. 5-7: Experimental results of all optimized models 

 

The thick model could only be bent up to an angle of 110°. For a higher angle, the two rods would have 

touched due to their thickness. In addition, due to its size, the fixation as well as the punch rod needed 

to be adapted in order to get appropriate constraints. Fig. 5-44 shows a specimen in the test stand with 

the fixation adaptations (green parts). 

  

Fig. 5-44: Thick Z-shape specimen in test stand with adapted 
fixation (green parts) 

Fig. 5-45: Thin Z-shape specimen during testing 

The thin Z-shape models have been tested up to an angle of 125°. Here, it is important to notice a strong 

reaction force in the direction of the punch rod (see Fig. 5-45). It is due to the bending of the curves of 

the specimen. These parts would naturally prefer to straighten up instead of being bent, which causes a 

strong force in the axis of the white arrow in Fig. 5-45. This reaction force could not be measured be-

cause it was not in the direction of the torque sensor but it could be seen during the tests that the spec-

imens wanted to slide out of the small pocket in the punch rod. 
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It is interesting to compare the two models regarding their short time angle of deformation. This is the 

angle at which the punch rod does not touch the specimens anymore during the release phase. This 

happens because the specimens show a deformation directly after the end of the test. Few minutes 

later, the specimens turned back to their initial flat state. However, comparing the angle for the thick 

and the thin model, the thin model shows a much larger deformation directly after the test, even 

though they should have a very similar stress according to the FE results. 

As for the Z-shape model, the oval-shape straight model consists of two solutions. They have been test-

ed with the same maximum angles as the two Z-shape models (Fig. 5-46 & Fig. 5-47). The thin specimens 

where prone to slide out of the pocket in the punch rod at the end of the folding process due to large 

circumferential reaction forces. Therefore, the fixation at the punch rod has been adapted as in Fig. 

5-47. A block is put onto the punch rod, which clamps the specimen and prevents it from sliding out.  

  

Fig. 5-46: Thick oval-shape straight specimen during test Fig. 5-47: Thin oval-shape straight specimen during test with 
adapted punch rod fixation (black) 

 

 

Fig. 5-48: Experimental results for thin oval-shape straight specimen 

Again, as for the Z-shape model, the thinner model shows a larger deformation. Therefore, one could 

conclude, that the reaction force influences the final deformation directly after the end of the test while 

comparing the same design models. Fig. 5-48 shows the experimental data for the thin oval-shape 

straight model. It is important to see, that the inflection point seen for the stiff torsion hinge models 

does not appear at all and the curve is smooth during bending as well as in the release phase. This might 

be because for the optimized models, the hinge itself is larger and not as concentrated on a small area 
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as for the torsion hinges. Hence, there is not such a sharp change in stiffness but a smooth transition 

from overall specimen bending to hinge bending. All optimized models show similar curves. For simplici-

ty, only the curve of the thin oval-shape straight model is shown. 

The oval-shape tilted model has been tested up to an angle of 150°. During testing one can see that the 

two round parts deform out of plane, leading to a torsion in these parts which again reliefs the stresses 

in the specimens. In addition, the whole specimen slightly bends perpendicularly to the prescribed 

bending with the same results as the out of plane deformation. 

 

Fig. 5-49: Oval-shape tilted specimen in test stand prepared to start bending 

The bending axis of the spring model is perpendicular to the bending axis of all other models. However, 

when turning the specimens, they could be tested in the same test stand. 

Comparing the experimental data with the FE simulations one can observe, that the FE model predicts a 

larger reaction torque by 29.2 %. This can be explained with the observations made during the experi-

ments. In the FE model, the bending occurs purely in the bending plane. During the experiments, how-

ever, the two round parts shift and the specimens bend out of plane, which induces a decrease in reac-

tion torque in the bending plane. One can see in Fig. 5-51 that the specimen bends strongly and so does 

the rod that is in contact with the punch twisted. Therefore, the reaction torque is decreased. Two ap-

proaches might improve this test. First, a clamping at the punch would reduce the twist. Second, a more 

precise manufacturing process might produce more exact specimens where the two round parts would 

not shift anymore. 

  

Fig. 5-50: Oval-shape spring specimen during test (side view) Fig. 5-51: Out-of-plane displacement reducing reaction 
torque in bending plane (top view) 
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5.5 Results of hinge models directly printed on a foil 

The final goal of this subproject of the DLR-NASA joint project is to be able to directly print the hinges 

onto a membrane. Therefore, first experiments have been made moving towards this direction. The 

oval-shape tilted model has been chosen because it showed a good performance during the tests and 

has the best reaction force to weight ratio, except for the spring model, which works out of plane. The 

tilted model has been printed directly onto a foil. The chosen foil was a standard MAKROFOL® DE 1-4 

000000 produced by Covestro. It is a translucent extrusion foil based on Makrolon, a polycarbonate 

plastic. This foil has been chosen because it was quickly available and because for these initial tests, the 

material performance of the foil itself has been secondary. The material properties of the foil are listed 

in Tab. 5-8. 

Tab. 5-8: Material properties of Makrofol® DE 1-4 000000 [93] 

Material property Symbol Value 

Foil thickness t 175 µm 

Young’s modulus E 2200 MPa 

Poisson’s ratio ν 0.37 

Density ρ 1.2 g/cm3 

Maximum yield stress Rp0.2 70 MPa 

Coefficient of thermal expansion α 70 10-6/K 

Shrink (1h @ 130°C) S <0.4 % 

 

A good adhesion between the structure and the membrane is reached when pulling out of plane. How-

ever, during bending where the foil is inside, a peel off occurred and the specimens detached from the 

foil. Experience shows, that the peel off is always the biggest issue while bonding two materials. Here, 

no glue or adhesive has been used but the high temperature during the print welds the two materials 

together. This welding might be improved by using a higher temperature such that the material of the 

foil locally mingles with the printing material. Earlier research has shown that a robust printing on a pol-

ycarbonate film is possible. However, a foil with a different melting point and a much higher printing 

temperature has been used [3]. Unfortunately, this could not be tested due to material and especially 

printer limitations. Another method was to apply heat to the specimens from their backside (using a 

regular iron). To do so, the specimens have been laid flat on the printed side and then they have been 

ironed for a while. It could be observed that the foil got hot, as some small wrinkles have been intro-

duced. The bonding seemed to be better after ironing, however, it was not perfect yet and peel off 

could still occur. In addition, a thinner foil might improve the bonding quality due to its own decreased 

stiffness. In addition, ultrasonic welding might be a possibility to increase the bonding strength. Howev-

er, this would not be cost effective. Despite this bonding issue, the specimens could still be tested in the 

test stand when bending with the foil outside and the printed hinges inside. 

The comparably large thickness of the foil added an important stiffness to the whole specimen. In addi-

tion, the bonding has been done on the whole hinge, stiffening the hinge even more and preventing the 

specimens from the out of plane movement of the central part. The stiffness has been decreased by 

introducing cuts at the locations where the rods and the hinge are connected. This has been done in 

order to release the stress in the bonding, such that the bonding has been strong enough to endure the 

experiments without detaching the foil and the hinge. 

A maximum torque, which was higher than 3.5 times the maximum torque of the hinge solely, has been 

measured during the experiments. In addition, a deformation of the specimens occurred which did not 
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retreat even after letting the specimens sit for several hours. This is also shown in the maximum stress 

found in the FE simulation. The maximum von Mises stress increased largely and showed to be more 

than 30% higher than for the independent specimens. A too high stress would not be favorable in any 

application. However, the permanent deformation might be reduced by using a thinner foil or by using 

even bigger cuts or cutouts of the foil. This needs to be investigated in future work. 

Tab. 5-9: Experimental results of optimized model: Tilted printed on foil 

Variable Experimental Result 

Maximum Torque [mNm] 30.92 

Mean Standard deviation [mNm] 0.65 

Std. dev. at max. torque 0.71 

Ratio std. dev. at max. torque / max 
torque [%] 

2.30 

Short-time angle of deformation [°] 35.95 

 

Tab. 5-10: Results for FE simulations (150° bending) of optimized model: Tilted printed on foil 

Variable Symbol Value Unit 

Maximum von Mises stress on 
foil 

σvM,max,foil 52.31 
[MPa] 

Averaged maximum von Mises 
stress around the maximum on 
foil 

σvM,avg.max,foil 47.15 

[MPa] 

Maximum von Mises stress on 
hinge 

σvM,max,hinge 43.37 
[MPa] 

Averaged maximum von Mises 
stress around the maximum on 
hinge 

σvM,avg.max,hinge 36.75 

[MPa] 

Reaction force when fully bent Freact,final 1.28 [N] 

Reaction torque when fully 
bent 

Mreact,final 33.56 
[mNm] 

Total hinge model volume Vtot 133.79 [mm3] 

Total hinge model mass mtot 147.17 [mg] 

 

  

Fig. 5-52: Peel off during bending with foil inside Fig. 5-53: Permanent deformation of oval-shape tilted model 
printed onto foil after being folded in test stand 
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(A) (B) 

Fig. 5-54: Testing of the model oval-shape tilted solely (A) and printed on a foil (B); one image every ten seconds during folding 
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5.5.1 Some thoughts on the long-time behavior of polymer hinges 

Depending on the final application of the hinges, they will be stowed for a time period between several 

days and many years. Therefore, a long-time behavior of the hinges would be needed. This was not part 

of this thesis, however, a first observation has been made. A thin oval-shape straight specimen has been 

folded to an angle of 125° and then kept in this situation for two minutes. One could observe a drastic 

decrease in reaction torque during this time. However, the reaction torque behaved similar to a de-

creasing exponential curve: 

 𝑀𝑟𝑒𝑎𝑐𝑡 = 𝑥1 + 𝑥2 ∗ exp (𝑥3 ∗ 𝑡) (5.12) 

The data of the folded specimen could be fitted onto function (6.12) with a root mean squared error of 

0.080, which is less than 2.80 % of the difference between the largest, and the lowest data. Extrapolat-

ing this fitted function to a longer time, a limit value could be found. Comparing this limit value with the 

starting maximum torque when the specimen gets folded, the limit value is 25% lower than the starting 

torque and therefore the specimens have a considerable decrease in opening strength. However, two 

minutes of folding would not be enough to predict a very long time behavior. In addition, it is assumed 

that this behavior is highly dependent on the material and as the material will be changed for the final 

application it needs to be investigated more closely when more information about the application and 

the used materials are available. 
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6 Comparison and analysis 

This section compares the results of the FE-simulations and the experimental data. As the FE model is 

based on a linear elastic isotropic material, it is clear that the results of the FE model will not directly 

match the results from the experiments as the specimens are manufactured with FDM. Therefore, it 

cannot be assumed that the specimens are isotropic as the FDM process adds the filament layer by layer 

and the material properties of the specimens depend strongly on the printing quality and the inner layer 

adhesion. In addition, the used material was Nylon (polyamide, PA), whose material properties are high-

ly dependent on its moisture content, where the humidity decreases the mechanical properties [94]. 

Even though, the filament has been stored in a dry-box, the material was exposed to the environment 

during printing, testing and storage. However, for this thesis, it was important to see if a certain factor 

could be found matching the FE model with the experimental results. This will be discussed in the next 

subsections while comparing simulation results with experimental data for all tested specimen designs. 

6.1 Torsion Hinge Models 
The only value that can directly be compared from both the FE model and the test results is the reaction 

torque. Therefore, a direct comparison of the maximum reaction torque is shown in Tab. 6-1. Two test 

runs have been done with every specimen. It has been shown that the specimens fully recovered in be-

tween the two tests. Therefore, the average of the maximum reaction torque will be used subsequently. 

By taking the ratio of the test results and the results from the FE simulations one can see that the ratios 

are closely related. The mean of the ratios gives 0.465 with a standard deviation of 0.017 which is only 

3.66 % of the mean ratio. Therefore, the FE model behaves stiffer by a factor of 
1

0.465
= 2.15. Various 

mechanical material tests with 3D printed PLA have been done in literature [95, 96]. Specimens have 

been tested in tensile tests by investigating the behavior of the specimens’ Young’s modulus depending 

on the printing direction. A large difference in Young’s modulus has been measured. Calculating the 

ratio between the lowest and the highest Young’s modulus brings up a factor of 0.80 [95] and 0.91 [96]. 

In addition, comparing the printed parts’ flexural modulus with the highest Young’s modulus gives a 

factor of 0.76 [96]. Therefore, it has been shown that large variations in stiffness appear with 3D printed 

parts depending on their manufacturing process. Hence, regarding the FDM process on such small spec-

imens, as well as the influence of the environment on the used material, the factor found in the experi-

ments seems to be reasonable, especially because the standard deviation in between the different tests 

is very small. 

Therefore, the stiffness of the FE model needs to be decreased. As a linear material model has been 

chosen, this has been done by multiplying the material’s Young’s modulus with the factor 0.465. Tab. 

6-2 shows the maximum von Mises stress for the tested torsion hinge models and the averaged von 

Mises stress around the maximum after having adapted the material’s Young’s modulus. Fig. 6-1 shows 

the stress distribution for the model TH-28-6-30-2-1.5 with the initial Young’s modulus from the materi-

al datasheet and Fig. 6-2 shows the same model with the adapted modulus including the experimental 

material factor. The maximum stress decreased and the stress distribution got smoother, showing less 

stress singularities. Comparing the obtained stresses with the filament materials yield stress of 31 Mpa, 

one can see that only the TH-19-5-30-2-2 models surpass this yield stress. However, this is also the 

model with the highest stress singularities and the averaged von Mises stress around the maximum 

stress is only surpassed by 14 %. In addition, the experiments showed that the specimens all had a simi-

lar remaining short-time bending angle directly after the test and they returned to their initial state after 
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only a few minutes. Therefore, as the material is not a pure elastic material but more a visco-elastic ma-

terial, the material yield stress of 31 MPa can be retained and with a safety factor of 1.55, 20 MPa has 

been chosen as being the maximum allowable stress for the optimization of the new hinge models. 20 

MPa has been chosen to ensure that no plastic deformation will occur at all. In addition, less stress sin-

gularities have been expected for the optimized rounder models. This means that the material yield 

stress should not be exceeded at all. 

Tab. 6-1: Test & FE results of the reaction torque for all tested torsion hinge models 

Model 
Test Results 
[mNm] 

FE Results 
[mNm] 

Ratio: Test / 
FEM 

TH-19-5-30-2-2: Assembly Print Configuration 55.79 120.44 0.463 

TH-19-5-30-2-2: Individual Print Configuration 46.73 103.44 0.452 

TH-28-6-30-2-1.5 13.96 29.64 0.471 

TH-28-4-30-1-1.5, trod = 1.5 mm 6.07 13.59 0.447 

TH-28-4-30-1-1.5, trod = 2 mm 9.86 20.13 0.490 

Mean ratio 0.465 

 

Tab. 6-2: Maximum von Mises stress for all tested torsion hinge models with adapted stiffness 

Model 
Maximum von Mises 
stress [MPa] 

Averaged von Mises stress 
around the maximum [MPa] 

TH-19-5-30-2-2: Assembly Print 
Configuration 

44.71 35.42 

TH-19-5-30-2-2: Individual Print 
Configuration 

39.06 32.72 

TH-28-6-30-2-1.5 27.74 24.12 

TH-28-4-30-1-1.5, trod = 1.5 mm 15.82 12.57 

TH-28-4-30-1-1.5, trod = 2 mm 19.09 17.07 

 

  

Fig. 6-1: Von Mises stress for TH-28-6-30-2-1.5 with Young’s 
modulus from datasheet 

Fig. 6-2: Von Mises stress for TH-28-6-30-2-1.5 with adapted 
Young’s modulus 

Regarding the behavior of the torque during the folding procedure, Fig. 6-3 and Fig. 6-4 show that the 

torque does not behave exactly the same for the FE model with the adapted Young’s modulus and the 

test results. For the model TH-28-4-30-1-1.5, the results of the two experimental test runs are very 
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close. It can be seen that the test results and the results from the FE simulation are very close at the end 

of the folding procedure and all the lines are following each other closely. The only difference is the 

beginning of the folding procedure. The FE simulation behave similar to an exponential function while 

the tests resemble an opposing logarithmic function. The behavior of the test results has been explained 

with the fact that the whole specimen wants to bend initially until a certain load level is reached where 

the lower stiffness of the hinge induces that the specimen bends in its center and therefore loses stiff-

ness and with it less torque is needed for the same folding increment. On the other hand, during the FE 

simulation the specimens behave ideally and bend directly from the beginning on. This means that 

without the hindering overall specimen bending only a small torque needs to be applied to the speci-

men in order to be able to fold the specimens for small angles. 

The results of the model TH-19-5-30-2-2 behave different. First of all, the first test run strongly shows 

the already discussed inflection point whereas it is almost non-existent for the second test run results. 

Here, the FE simulation follows the test results in the beginning of the folding process and temporarily 

reaches a higher torque level during intermediate folding angles. At the end of the folding process all 

values are close to each other again. To conclude this subject, one can state that the final torques of the 

tests and the FE model with an adapted Young’s modulus are close to each other. During the folding 

process, differences in the load path appear. However, the differences are not the same for different 

models. This means that stiffness changes during folding cannot be predicted directly with the FE model. 

  

Fig. 6-3: Comparison of Torque during folding for TH-28-4-
30-1-1.5 (trod = 2.0 mm) 

Fig. 6-4: Comparison of Torque during folding for TH-19-5-
30-2-2 (Assembly Print) 
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6.2 Optimized Models 

As explained above, the optimized models have been modelled with the material factor found with the 

experimental data and FE simulations discussed in section 6.1. Therefore, it was expected, that the ex-

periments match the FE simulations closely. Tab. 6-3 shows the experimental and simulated reaction 

torque for all tested optimized models with regard to their experimental bending angle. It can be seen, 

that the experimental data and the FE simulations match well. With the exception of the thin oval-shape 

straight model, all other models behaved slightly more compliant in the experiments than simulated. 

This might be due to non-perfect boundary conditions such that the models are not perfectly con-

strained as they are in the simulations. An explanation for the smaller FE results value of the thin oval-

shape model might be that a different fixation at the punch rod has been introduced for this model in 

order to be able to test these specimens. However, only the oval-shape spring model shows a very large 

difference. The thin Z-shape model and the oval-shape tilted model directly printed on a foil show dif-

ferences around 9 % whereas the rest of the models appeared to have a difference around and below 5 

%. However, these deviations can be explained with observations made during the experiments. The 

thin Z-shape models showed a strong reaction out of the bending plane which could not be measured by 

the torque sensor (see Fig. 5-45). A similar behavior appeared for the oval-shape spring model, which 

also showed an out-of-plane movement reducing the measureable bending torque (see Fig. 5-51). In 

addition, the spring model is very susceptible for manufacturing deficiencies. The two areas, which get 

in contact during the folding process should be perfectly parallel and without surface irregularities. 

However, the used printing process was not able to produce such perfect parts and the irregularities 

made the specimens more compliant as the contact could not be achieved as perfectly as in the simula-

tions. The difference for the oval-shape tilted model directly printed on a foil can be explained with the 

fact that the bonding between the foil and the hinge model has not been perfect. Therefore, the speci-

men is more compliant than the FE model and shows a smaller reaction torque than simulated. Apart 

from these differences, the other models showed a good relation between experimental data and FE 

simulations. Therefore, one can assume that the geometry of the model does not have a large influence 

on the material parameter and that this material parameter has been well defined. However, it is still 

assumed that the influence of humidity onto the specimens’ material as well as the printing quality of 

the 3D printer have a large influence on this parameter. Therefore, similar experiments need to be done 

if the material or the manufacturing process is changed. 

Regarding the models’ efficiency, it needs to be stated that the bionically inspired hinges could not 

reach efficiencies as high as the best torsion hinge models. However, their opening reaction still showed 

satisfying results and they can be used for further applications without the need of using the patented 

torsion hinges. 

Tab. 6-3: Test & FE results of the reaction torque for all tested optimized models 

Model 
Test Results 
[mNm] 

FE Results 
[mNm] 

Relative diffe-
rence [%] 

Z-shape thick 106.38 111.54 4.85 

Z-shape thin 3.35 3.66 9.25 

Oval-shape straight thick 153.07 160.92 5.13 

Oval-shape straight thin 15.28 14.70 -3.80 

Oval-shape tilted 8.68 8.86 2.07 

Oval-shape tilted with foil 30.92 33.56 8.54 

Oval-shape spring 5.41 6.99 29.21 
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7 Implementation of hinges into foldable membrane structure 

Two possible designs for the implementation of the discussed hinges into a foldable membrane struc-

ture have been developed and are presented in this section. 

The first design is inspired by the Earwig as seen in section 2.2.3 (Fig. 7-1, A). Oval-shape tilted hinges 

are used for the radially spreading fold lines and oval-shape straight hinges connect the radial fold lines 

in circumferential direction. At the edge of the membrane, oval-shape tilted hinges are used too and the 

connecting rods are not straight anymore, as they where for the radial and circumferential fold lines. 

First, the membrane will be folded along its circumference (Fig. 7-1, B & C). The folding procedure is 

shown schematically in (Fig. 7-1, B – D), where the hinges have been replaced by general circles to im-

prove the understanding of the drawings. Then, it can be folded radially for several times until a small 

package is left (see Fig. 7-1, D for fold lines). Finally, this package can be folded by 90° such that it is par-

allel to one of the satellite’s surfaces. To do this, oval-shape spring hinges are used. Several of these 

hinges are placed parallel to each other and are connected by perpendicular rods (Fig. 7-3). The oval-

shape spring hinges are placed at the outside of the fold line such that they will be able to pull down the 

whole membrane package during the first stage of the unfolding process. 

  

(A) Initial design (B) Circumferential fold lines 

 
 

(C) Wing partly folded in circumferential direction (D) Radial fold lines 

Fig. 7-1: Wing design 1 (A) with schematic description of folding procedure (B – D) 

The second structure is inspired by tree leafs (see Fig. 7-2). Hence, there exists a central fold line as well 

as fold lines that spread from this center at a certain angle. Here, oval-shape tilted hinges have been 

chosen for the central fold lines. The circumferential fold lines are composed of oval-shape straight 

hinges. The heart of the structure is a large oval-shape straight hinge. This design first folds radially (Fig. 

7-2, B & C). Then, everything is folded out-of-plane at the large central oval-shape straight hinge until a 
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small package is obtained (Fig. 7-2, D). Finally, the package is folded towards the satellite and is aligned 

with one of the satellite’s surfaces with the same oval-shape spring arrangement as for the first design 

approach. 

 
 

(A) Initial design (B) First steps of folding procedure 

 

 

(C) Radial and out-of-plane folding at the same 
time 

(D) Final radial fold at large oval-shape straight 
hinge 

Fig. 7-2: Wing design 2 (A) with schematic description of folding procedure (B –D) 

In addition to the hinges’ principle function, providing the energy needed for the deployment, they 

might also work as rip-stoppers. The various hinges and rods form closed areas on the membrane. 

Hence, if one area gets damaged by an impact with space debris, the rip cannot grow larger than the 

area it is confined in, because the hinges and rods are much stiffer than the membrane and a rip in the 

membrane will not be able to overcome this barrier. To improve the rip-stop mechanism, one could 

decrease the confining areas by adding more rods. These additional rods should be thin and less stiff 

than the hinges in order not to prevent the folding procedure. Such rip-stop mechanisms have been 

studied in literature [3]. 

Fig. 7-4 shows a CubeSat with two fully deployed wings. For simplicity, both wing designs have been 

added to the CubeSat at the same time. However, in reality, using a symmetric arrangement might be 

preferable. 
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Fig. 7-3: Oval-shape spring hinges at connection to the satellite 

 

 

Fig. 7-4: Design study of CubeSat with deployable wings (right wing: Design 1; left wing: Design 2) 
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8 Conclusion and Outlook 

As numerous structures in most technological fields, satellite structures are getting smaller and lighter. 

This also calls for smaller membrane deployment and stiffening structures for space applications in or-

der to reduce mass and volume of such architectures. Elastic hinges, directly printed onto the chosen 

application’s membrane, might be a solution to this problem. The present work was done in order to 

gain more information about the behavior and design of such hinges. The goals of this thesis where to 

design and develop a test stand capable to represent experimentally how these hinges behave during 

folding and deployment, compare the experimental results with the corresponding finite element model 

and find optimal hinge designs adapted from bionical observations. 

To do so, a literature review about space structure architectures, folding mechanisms, elastic hinges, 

test methods and foldable insect wings and joints has been done. The gathered information was pro-

cessed and a test stand has been developed to test various hinge designs. This test stand has been cali-

brated with sample material specimens before using the investigated hinges. The experimental results 

of this test have been used to adapt the FE model in order to be able to predict the behavior of other 

hinge designs. Furthermore, hinge designs in foldable insect wings have been parametrized and these 

parameters have been optimized in a specified optimization domain. The found optimal solutions of the 

different hinge designs have been tested and their results have been compared to the simulations. Final-

ly, an exemplary design of how to implement these hinges into a membrane design has been shown in 

order to show the possibilities of such elastic hinges. 

8.1 Conclusions 

The work accomplished and the presented data and discussion in chapters 5 and 6 lead to the following 

conclusions. The designed test stand is reliable and gives repeatable results. It could be shown that the 

standard deviation in between specimens of the same design and the same specifications is between 3 

to 10 % with the exception of two models, which showed an unexpected out-of-plane movement during 

the tests. However, this could be improved even more with an improved fixation at the punch side. In 

addition, the exploitation of the test stand is simple and it can be adapted to many different configura-

tions, which is preferable to get quick results. 

Furthermore, collating the FE model with the experimental data showed that it is possible to find a ma-

terial and manufacturing factor that is repeatable. This facilitates further studies as the material model 

and its properties in the FE model can be kept simple without the need of going into deep microstruc-

tural studies for the printed materials. 

Directly printing the elastic hinges onto a foil is possible, however the available foil and printing proper-

ties could not prevent a peel off of the specimens while bending them with the foil inside. Nevertheless, 

it was possible to test this hinge-foil assembly with the foil outside, which showed a strong stiffening 

influence of the foil as it prevented the torsional movement of the hinge rods. 

Regarding design performance, it could be shown that there do not exist very large differences in per-

formance between the different bionically inspired hinges. However, omitting the thick models which 

are not applicable for thin structures, the oval-shape spring and tilted models showed the best reaction 

torque to weight ratio, which means that they can achieve a good opening performance by adding the 

least weight. However, the differences are small and therefore the choice for a hinge design is depend-

ent on the final application and structure design. For example, the oval-shape spring hinges could be 
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used as a link to the satellite structure itself whereas the oval-shape tilted hinges are well suitable for in-

plane folding of the membrane. 

When implementing the elastic hinges into an overall membrane structure, the hinges need to be con-

nected. This should be done by extending the hinges’ rods. If these rods are also directly bonded onto 

the membrane they can work as rip-stoppers, confining possible rips in the membrane due to space 

debris or other impacts. This would ensure that the overall structure could still carry out its task and that 

possible impacts with debris are not able to destroy the complete structure but only small parts of it. 

8.2 Future work 

The presented study showed that it is possible to use 3D-printed elastic hinges in order to fold and de-

ploy a membrane structure. In addition, the opening strength can be measured with the designed test 

stand. However, there are many different issues to be investigated by further research before a demon-

strator could be launched in a parabolic flight. If the experimental data needs to be even more precise, 

the fixation of the specimen on the punch rod side needs to be improved to have a better-constrained 

boundary condition and be able to constrain a possible out-of-plane movement. The next step regarding 

design and size is a more precise functional specification. This should include the overall membrane size 

and its application. Then, the final material for the hinges needs to be selected. It is only when the mate-

rial and the membrane’s application are defined that the hinges can be optimized further. A more con-

fined bounding box can be defined and even more optimization iterations can be done, as the designs 

are highly dependent on the bounding box. In addition, the long-time behavior of the material itself and 

the hinges needs to be evaluated according to their future mission. First tests in this work showed that it 

is possible to print the hinges directly onto a membrane. However, the adhesion was not yet sufficient. 

More research needs to be done in this field where it is important to include the final membrane such 

that an adequate bonding can be achieved depending on the membrane’s task. 

Finally, the last step before deploying a demonstrator is to improve the folding pattern. The folding pat-

tern can be defined together with the selection of compatible hinges and connection rods. Hinge de-

signs can be mixed and different hinges can be used for different folds as shown by the initial design in 

section 7. 
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A. Appendix 

A.1. Mesh convergence study 

 

Fig. A-1: Von Mises Stress for TH-19-5-30-2-2, mesh size: 0.25 

 

Fig. A-2: Close-up of von Mises Stress for TH-19-5-30-2-2, mesh size: 0.25 

 

Fig. A-3: Close-up of von Mises Stress for TH-19-5-30-2-2, mesh size: 0.25, 
maximum stress to plot: 80 MPa 
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Fig. A-4: Von Mises Stress for TH-19-5-30-2-2, global mesh size: 0.3, fillets: 0.1 

 

Fig. A-5: Close-up of von Mises Stress for TH-19-5-30-2-2, , global mesh size: 0.3, fillets: 0.1 

 

Fig. A-6: Close-up of von Mises Stress for TH-19-5-30-2-2, , global mesh size: 0.3, fillets: 0.1, 
maximum stress to plot: 100 MPa 
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A.2. Parameter study oval-shape tilted & oval-shape spring models 

 

Fig. A-7: Pareto Diagram for standardized effects with regard to maximum von Mises equivalent stress for oval-shape tilted 
hinge 

 

Fig. A-8: Pareto Diagram for standardized effects with regard to reaction force at displaced nodes for oval-shape tilted hinge 
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Fig. A-9: Interaction plot for adjusted means with regard to maximum von Mises equivalent stress for oval-shape tilted hinge 

 

Fig. A-10: Interaction plot for adjusted means with regard to reaction force at displaced nodes for oval-shape tilted hinge 
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Fig. A-11: Pareto Diagram for standardized effects with regard to maximum von Mises equivalent stress for oval-shape spring 
hinge 

 

Fig. A-12: Pareto Diagram for standardized effects with regard to reaction force at displaced nodes for oval-shape spring hinge 
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Fig. A-13: Interaction plot for adjusted means with regard to maximum von Mises equivalent stress for oval-shape spring hinge 

 

Fig. A-14: Interaction plot for adjusted means with regard to reaction force at displaced nodes for oval-shape spring hinge 
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A.3. Von Mises stress of optimized models 

  

Fig. A-15: Von Mises stress for best solution of thick model Z-
shape folded to 110° 

Fig. A-16: Von Mises stress for best solution of thin model Z-
shape folded to 125° 

  

Fig. A-17: Von Mises stress for best solution of thick model 
oval-shape straight folded to 110° 

Fig. A-18: Von Mises stress for best solution of thin model 
oval-shape straight folded to 125° 

  

Fig. A-19: Von Mises stress for best solution of model oval-
shape tilted folded to 150° 

Fig. A-20: Von Mises stress for best solution of model oval-
shape spring folded to 150° 
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A.4. Block diagrams of test stand software 

 

Fig. A-21: Block diagram of motion control subprogram 
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Fig. A-22: Block diagram of data collection subprogram 

 

 

Fig. A-23: Block diagram of switch control 

 




