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Abstract

One starting point for the analysis and design
of a control system is the block diagram
representation of a plant. Since it is nontrivial
to convert a physical model of a plant into
a block diagram, this can be performed
manually only for small plant models. Based
on research from the last 40 years, more and
more mature tools are available to achieve this
transformation fully automatically. As a result,
multi-domain plants, for example, systems
with electrical, mechanical, thermal, and fluid
parts, can be modeled in a unified way and
can be used directly as input–output blocks
for control system design. An overview of the
basic principles of this approach is given, and
it is shown how to utilize nonlinear, multi-
domain plant models directly in a controller.
Finally, the low-level “Functional Mockup
Interface” standard is sketched to exchange
multi-domain models between many different
modeling and simulation environments.
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Introduction

Methods and tools for control system analysis
and design usually require an input–output block
diagram description of the plant to be controlled.
Apart from small systems, it is nontrivial to
derive such models from first principles of
physics. Since a long time, methods and tools are
available to construct such models automatically
for one domain, for example, a mechanical
model, an electronic, or a hydraulic circuit. These
domain-specific methods and tools are, however,
only of limited use for the modeling of multi-
domain systems.

In the dissertation (Elmqvist 1978), a suitable
approach for multi-domain, object-oriented
modeling has been developed by introducing a
modeling language to define models on a high
level based on first principles. The resulting
differential-algebraic equation (DAE) systems
are automatically transformed with proper algo-
rithms in a block diagram description with input
and output signals based on ordinary differential
equations (ODEs), where the algebraic variables
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have been eliminated and all derivatives are
explicitly solved for.

In 1978, computers were not powerful enough
to apply this method on systems with more as
a few hundred equations. In the 1990s the tech-
nology has been substantially improved, many
different modeling languages appeared (and also
disappeared), and object-oriented modeling was
introduced in commercial simulation environ-
ments.

In Table 1, an overview of the most important
standards, languages, and tools in the year 2019
for multi-domain modeling is given:

• The Modelica language is a standard from
the Modelica Association (2017). The
first version was released in 1997. The

language is accompanied with the Model-
ica Standard Library (https://github.com/
modelica/ModelicaStandardLibrary) – an
open-source Modelica library with about 1600
model components and 1350 functions from
many domains. There are several free and
commercial software tools supporting the
Modelica language and the Modelica Standard
Library.

• The VHDL-AMS language is a standard from
IEEE (IEEE 1076.1-2017 2017), first released
in 1999. It is an extension of the widely used
VHDL hardware description language. This
language is especially used in the electronics
community.

• There are several (proprietary) vendor-specific
modeling languages, notably EcosimPro and

Multi-domain Modeling
and Simulation, Table 1
Multi-domain modeling
and simulation
environments

Environments supporting the Modelicar Language Standard (https://www.modelica.
org/)

Altair Activater https://solidthinking.com/product/activate

ANSYSr Twin Builder https://www.ansys.com/products/systems

Dymolar https://www.dymola.com/

JModelica.org https://jmodelica.org/

MapleSim https://www.maplesoft.com/products/
maplesim/

MWorks http://en.tongyuan.cc/

OpenModelica https://www.openmodelica.org/

OPTIMICAr Compiler Toolkit https://www.modelon.com/

Simcenterr Amesim https://www.plm.automation.siemens.com

SimulationXr https://www.simulationx.com/

Wolfram SystemModeler https://www.wolfram.com/system-
modeler/

Environments supporting the VHDL-AMS Standard (https://standards.ieee.org)

AMS Designer https://www.cadence.com/

ANSYSr Twin Builder, Simplorerr https://www.ansys.com/products/systems

Saber https://www.synopsys.com

SMASHr https://www.dolphin-integration.com

SystemVisionr https://www.mentor.com/products/sm/

Environments supporting vendor-specific multi-domain modeling languages

EcosimPror https://www.ecosimpro.com/

gPROMS https://www.psenterprise.com/products/
gproms

Simscape https://www.mathworks.com/products/
simscape

20-sim https://www.20sim.com/

Open-source environments supporting other multi-domain modeling languages

Modia https://github.com/ModiaSim

https://github.com/modelica/ModelicaStandardLibrary
https://www.modelica.org/
https://www.modelica.org/
https://solidthinking.com/product/activate
https://www.ansys.com/products/systems
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https://www.openmodelica.org/
https://www.modelon.com/
https://www.plm.automation.siemens.com
https://www.simulationx.com/
https://www.wolfram.com/system-modeler/
https://www.wolfram.com/system-modeler/
https://standards.ieee.org
https://www.cadence.com/
https://www.ansys.com/products/systems
https://www.synopsys.com
https://www.dolphin-integration.com
https://www.mentor.com/products/sm/
https://www.ecosimpro.com/
https://www.psenterprise.com/products/gproms
https://www.psenterprise.com/products/gproms
https://www.mathworks.com/products/simscape
https://www.mathworks.com/products/simscape
https://www.20sim.com/
https://github.com/ModiaSim
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gRPOMS for modeling of thermodynamic
processes, Simscape from MathWorks as an
extension to Simulinkr, MAST the underlying
modeling language of Saber (Mantooth and
Vlach 1992), and the language of 20-sim,
which supports bond graphs (Karnopp et al.
2012). Bond graphs are a special graphical
notation to define multi-domain systems based
on energy flows. It was invented in 1959 by
Henry M. Paynter.

• Modia and its supporting packages form an
open-source prototyping platform based on
the Julia programming language (Bezanson
et al. 2017). Modia is the name of a Julia
package that supports a modeling language
called “Modia language” as a domain-specific
extension of Julia and provides algorithms
to symbolically transform Modia models into
DAE systems that can be numerically solved
by standard DAE integrators. The Modia lan-
guage and the new algorithms used in the
Modia package are intended as inspiration
for the development of the next Modelica
generation.

In section “Modeling Language Principles”, the
principles of multi-domain modeling based on
a modeling language are summarized. In sec-
tion “Models for Control Systems”, it is shown
how such models can be used not only for sim-
ulation but also as components in nonlinear con-
trol systems. Finally, in section “The Functional
Mockup Interface”, an overview about a low-
level standard for the exchange of multi-domain
systems is described.

Modeling Language Principles

Schematics: The Graphical View
Modelers nowadays require a simple to use
graphical environment to build up models. With
very few exceptions, multi-domain environments
define models by schematic diagrams. A typical
example is given in Fig. 1, showing a simple
direct current electrical motor in Modelica.

In the lower left part, the electrical circuit
diagram of the DC motor is visible, consisting
mainly of the armature resistance and inductance
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Multi-domain Modeling and Simulation, Fig. 1 Modelica schematic of DC motor with mechanical load and heat
losses
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of the motor, a voltage source, and component
“emf” to model in an idealized way the electro-
motoric forces in the air gap. On the lower right
part, the motor inertia, a gear box, and a load
inertia are present. In the upper part, the heat
transfer of the resistor losses to the environment
is modeled with lumped elements.

A component, like a resistor, rotational inertia,
or convective heat transfer, is shown as an icon in
the diagram. On the border of a component, small
rectangular or circular signs are present repre-
senting the “physical ports.” Ports are connected
by lines and model the (idealized) physical or sig-
nal interaction between ports of different compo-
nents, for example, the flow of electrical current
or heat or the rigid mechanical coupling. Com-
ponents are built up hierarchically from other
components. On the lowest level, components are
described textually with the respective modeling
language (see section “Component Equations”).

Coupling Components by Ports
The ports define how a component can interact
with other components. A port contains a defi-
nition of the variables that describe the interface
and defines in which way a tool can automatically
construct the equations for the connections. A
typical scenario is shown in Fig. 2 where the ports
of the three components A, B, C are connected
together at one point P.

When cutting away the connection lines, the
resulting system consists of three decoupled com-
ponents A, B, C and a new component around
P describing the infinitesimally small connection
point. The balance equations and the boundary
conditions of the respective domain must hold at
all these components. When drawing the connec-
tion lines, enough information must be available
in the port definitions so that the tool can con-
struct the equations of the infinitesimally small
connection points automatically.

To summarize, the component developer is
responsible that the balance equations and bound-
ary conditions are fulfilled for every component
(A, B, C in Fig. 2), and the tool is responsible that
the balance equations and boundary conditions
are also fulfilled at the points where the compo-
nents are connected together (P in Fig. 2). As a

consequence, the balance equations and bound-
ary conditions are fulfilled in the overall model
containing all components and all connections.

In order that a tool can automatically construct
the equations at a connection point, every port
variable needs to be associated to a port variable
type. In Table 2, some port variable types of
Modelica are shown. Hereby it is assumed that
u1; u2; : : :; un; y; v1; v2; : : : ; vn; f1; f2; : : :, fn,
s1, s2; : : : ; sn are corresponding port variables
from different components that are connected
together at the same point P.

Port variable types “input” and “output” define
the usual signal connections in block diagrams.
“Potential variables” and “flow variables” are
used to define standard physical connections. For
example, an electrical port contains the electrical
potential and the electrical current at the port,
and when connecting electrical ports together, the
electrical potentials are identical, and the sum of
the electrical currents is zero; see Table 2. These
equations correspond exactly to Kirchhoff’s volt-
age and current laws. “Stream variables” are
used to describe the connection semantics of
intensive quantities in bidirectional fluid flow,
such as specific enthalpy or mass fraction. Here,
the idealized balance equation at a connection
point states, for example, that the sum of the
port enthalpy flow rates is zero and the port

A B

C

P

P
A B

C

Multi-domain Modeling and Simulation, Fig. 2
Cutting the connections around the connection point P
results in three decoupled components A, B , C and a
new component around P describing the infinitesimally
small connection point
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Multi-domain Modeling and Simulation, Table 2 Some port variable types in Modelica

Port variable type Connection semantics

Input variables ui , output variable y u1 D u2 D : : :D un D y (exactly one output variable
can be connected to n input variables)

Potential variables vi v1 D v2 D : : :D vn

Flow variables fi 0 D
P
fi

Stream variables si (with associated flow variables fi ) 0 D
P
fi Osi I Osi D

(
smix if fi > 0

si if fi � 0

.0 D
P
fi /

Multi-domain Modeling
and Simulation, Table 3
Some port definitions from
Modelica

Domain Port variables

Electrical analog Electrical potential in [V] (pot.)
electrical current in [A] (flow)

Electrical multiphase Vector of electrical ports

Electrical quasi-stationary Complex electrical potential (pot.)
complex electrical current (flow)

Magnetic flux tubes Magnetic potential in [A] (pot.)
magnetic flux in [Wb] (flow)

Translational (one-dimensional mechanics) Distance in [m] (pot.)
cut-force in [N] (flow)

Rotational (one-dimensional mechanics) Absolute angle in [rad] (pot.)
cut-torque in [Nm] (flow)

Two-dimensional mechanics Position in x-direction in [m] (pot.)
position in y-direction in [m] (pot.)
absolute angle in [rad] (pot.)
cut-force in x-direction in [N] (flow)
cut-force in y-direction in [N] (flow)
cut-torque in z-direction in [Nm] (flow)

Three-dimensional mechanics Position vector in [m] (pot.)
transformation matrix in [1] (pot.)
cut-force vector in [N] (flow)
cut-torque vector in [Nm] (flow)

One-dimensional heat transfer Temperature in [K] (pot.)
heat flow rate in [W] (flow)

One-dimensional thermo-fluid pipe flow Pressure in [Pa] (pot.)
mass flow rate in [kg/s] (flow)
spec. enthalpy in [J/kg] (stream)
mass fractions in [1] (stream)

enthalpy flow rate is computed as the product of
the mass flow rate (a flow variable fi ) and the
directional specific enthalpy si , which is either
the (yet unknown) mixing-specific enthalpy smix

when the flow is from the connection point to
the port or the specific enthalpy si in the port
when the flow is from the port to the connection
point. More details and explanations are available
from Franke et al. (2009). In Table 3 some of the
port definitions are shown that are provided by

the Modelica Standard Library and the PlanarMe-
chanics library.

Component Equations
Implementing a component in a modeling lan-
guage means to define the ports of the component
and to provide the equations describing the rela-
tionships between the port variables. For exam-
ple, an electrical capacitor with constant capac-
itance C can be defined by the equations in the
right side of Fig. 3.
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Multi-domain Modeling and Simulation, Fig. 3
Equations of a capacitor component

Such a component has two ports, the pins
“p” and “n,” and the port variables are the elec-
trical currents ip; in flowing into the respective
ports and the electrical potentials vp; vn at the
ports. The first component equation states that
if the current ip at port “p” is positive, then the
current in at port “n” is negative (therefore, the
current flowing into “p” is flowing out of “n”).
Furthermore, the two remaining equations state
that the derivative of the difference of the port
potentials is proportional to the current flowing
into port “p.”

One important question is how many equa-
tions are needed to describe such a component?
For an input–output block, the answer is sim-
ple: all input variables are known, and for all
other variables, one equation per unknown is
needed. Counting equations for physical compo-
nents, such as a capacitor, are more involved: the
requirement that any type of component connec-
tions shall always result in identical numbers of
unknowns and equations of the overall system
leads to the following counting rule (for a proof,
see Olsson et al. 2008):

1. The number of potential and the number of
flow variables in a port must be identical.

2. Input variables and variables that appear dif-
ferentiated are treated as known variables.

3. The number of equations of a component must
be equal to the number of unknowns minus the
number of flow variables.

In the example of the capacitor, there are five
unknowns (ip , in, vp; vn, du/dt) and two flow
variables (ip , in). Therefore, 5� 2 D 3 equations
are needed to define the component in Fig. 3.

type Voltage = Real (unit="V");
type Current = Real (unit="A");

connector  Pin
Voltage v;

flow Current i;
end Pin;

model Capacitor
parameter Real C(unit="F");
Pin p,n;
Voltage u;

equation
0 = p.i + n.i;
u = p.v – n.v;
C*der(u) = p.i;

end Capacitor;

Multi-domain Modeling and Simulation, Fig. 4
Modelica model of capacitor component

subtype voltage is real;
subtype current is real;
nature electrical is

voltage across
current through
electrical_ref reference;

entity CapacitorInterface IS
generic(C: real);
port (terminal p, n: electrical);

end entity CapacitorInterface;
architecture SimpleCapacitor of

CapacitorInterface is
quantity u across i through p to n;

begin
i == C*u’dot;

end architecture SimpleCapacitor;

Multi-domain Modeling and Simulation, Fig. 5
VHDL-AMS model of capacitor component

Modeling languages are used to provide a tex-
tual description of the ports and of the equations
in a specific syntax. For example, in Modelica the
capacitor from Fig. 3 can be defined as shown in
Fig. 4 (keywords of the language are written in
boldface). In VHDL-AMS the capacitor model
can be defined as shown in Fig. 5.

One difference between Modelica and VHDL-
AMS is that in Modelica, all equations need to
be explicitly given, and port variables (such as
p.i) can be directly accessed in the model (Fig. 4).
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Instead, in VHDL-AMS (and some other model-
ing languages), port variables cannot be accessed
in a model, and instead via the “quantity .. across
.. through .. to ..” construction, the relationships
between the port variables are implicitly defined
and correspond to the Modelica equations “0 D
p.iC n.i” and “uD p.v � n. v.”

Simulation of Multi-domain Systems
Collecting all the component equations of a
multi-domain system model together with all
connection equations results in a DAE system:

0 D f.Px; x;w; y;u; t / (1)

where t 2 R is time, x.t/ 2 R
nx is a vector

which contains variables that appear differenti-
ated, w.t/ 2 R

nw is a vector of algebraic vari-
ables, y.t/ 2 R

ny is a vector of output variables,
u.t/ 2 R

nu is a vector of input variables, and
f 2 R

nxCnwCny is a vector of functions that
represent the right-hand sides of the equations
of the DAE system. The equations in (1) can be
solved numerically with an integrator for DAE
systems; see, for example, Brenan et al. (1996).
For DAEs that are linear in their unknowns, a
complete theory for solvability is available based
on matrix pencils, see, for example, Brenan et al.
(1996), and also reliable software for their analy-
sis (Varga 2000).

Unfortunately, only certain classes of nonlin-
ear DAEs can be directly solved numerically in a
reliable way. For example, there are DAEs where
no unique solution exists anymore when the step-
size of the integrator approaches zero. For such
systems step-size control is difficult, and numer-
ical integration may easily fail. Domain-specific
software, as, e.g., for mechanical systems, trans-
forms the underlying DAE system into a form
that can be more reliably solved using domain-
specific knowledge. Hereby, certain equations of
the DAE system are analytically differentiated,
and special integration methods are used to solve
the resulting overdetermined set of DAEs. In
multi-domain simulation software, the following
approaches are used:

(a) The DAE system (1) is directly solved
numerically using an implicit integration
method, such as a linear multistep method.
Typically, all VHDL-AMS simulators use
this approach.

(b) The DAE system (1) is symbolically trans-
formed in a form that is equivalent to a set
of ODEs, and then either explicit or implicit
ODE or DAE integration methods are used
to numerically solve the transformed system.
The transformation is usually based on the
algorithms of Pantelides (1988) and of Matts-
son and Söderlind (1993) or some variants
of them and might require to analytically
differentiate equations. Typically, Modelica-
based simulators, but also EcosimPro, use
this approach.

For many models both approaches can be applied
successfully. There are, however, systems where
approach (a) is successful and fails for (b) or vice
versa.

DAEs (1) derived from modeling languages
usually have a large number of equations but with
only a few unknowns in every equation. In order
to solve DAEs of this kind efficiently, both with
(a) or (b), typically graph theory and/or sparse
matrix methods are utilized. For method (b) the
fundamental algorithms have been developed by
Elmqvist (1978) and later improved in further
publications. For a recent survey and comparison
of some of the algorithms, see Frenkel et al.
(2012).

Solving the DAE system (1) means to solve
an initial value problem. In order that integration
can be started, a consistent set of initial variables
Px0 D Px .t0/ ; x0 D x .t0/ ; w0 D w .t0/ ; y0 D
y .t0/ ; and u0 D u .t0/ has to be determined first
at the initial time t0 which is a nontrivial task. For
example, often (1) shall start in steady state, that
is, it is required that Px0 WD 0 and therefore at the
initial time (1) is required to satisfy

0 D f .0; x0; w0; y0; u0; t0/ (2)

(2) is an algebraic system of nonlinear equations
in the unknowns x0, w0, y0; and u0. These are
nx C nw C ny equations for nx C nw C ny C nu
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unknowns. Therefore, nu further conditions must
be provided (usually some elements of u0 and/or
y0 are fixed to desired physical values). Solving
(2) for the unknowns is also called “DC operat-
ing point calculation” or “trimming.” Nonlinear
equation solvers are based on iterative methods
that require usually a sufficiently accurate initial
guess for all unknowns. In a large multi-domain
system model, it is not practical that reasonable
initial values must be provided for every DAE
variable and therefore methods are needed to
solve (2) even if generic guess values in a library
are provided that might be far from the solution
of the system at hand.

For analog electronic circuit simulations, a
large body of theory, algorithms, and software is
available to solve (2) based on homotopy meth-
ods. The basic idea is to solve a sequence of
nonlinear algebraic equation systems by starting
with an easy to solve simplified system, char-
acterized by the homotopy parameter � D 0.
This system is continuously “deformed” until the
desired one is reached at � D 1. The solution
at iteration i is used as guess value for iteration
iC1, and at every iteration, the solution is usually
computed with a Newton–Raphson method. The
simplest such approach is “source stepping”: the
initial guess values of all electrical components
are set to “zero voltage” and/or “zero current.”
All (voltage and current) sources start at zero,
and their values are gradually increased until the
desired source values are reached. This method
may not converge, typically due to the severe
nonlinearities at switching thresholds in logical
circuits.

There are several, more involved approaches,
called “probability-one homotopy” methods. For
these method classes, proofs exist that they con-
verge for all initial conditions globally with prob-
ability one (so practically always). These algo-
rithms can only be applied for certain classes
of DAEs; see, for example, the “variable stimu-
lus probability-one homotopy” of Melville et al.
(1993).

Although strong results exist for analog elec-
trical circuit simulators, it is difficult to generalize
them to the large class of multi-domain systems
covered by a modeling language. In Modelica

a “homotopy” operator was introduced into the
language (Sielemann et al. 2011) in order that a
library developer can formulate simple homotopy
methods like the “source stepping” in a compo-
nent library. A generalization of probability-one
methods for multi-domain systems was devel-
oped in the dissertation of Sielemann (2012)
and was successfully applied to air distribution
systems described as one-dimensional thermo-
fluid pipe flow.

Models for Control Systems

Models for Analysis
The multi-domain models from section “Mod-
eling Language Principles” can be utilized to
evaluate the properties of a control system by
simulation. Also control systems can be designed
by nonlinear optimization where at every opti-
mization step one or several simulations of a
plant model are executed. Furthermore, modeling
environments usually provide pre- and/or post-
processing methods to linearize the nonlinear
DAE system (1) around a steady-state operating
point or an operating point along the simulation
trajectory

x .t/ � xop C Δx.t/; w.t/ � wop C Δw.t/;
y.t/ � yop C Δy.t/; u.t/ � uop C Δu.t/

(3)
resulting in

ΔPxred D A Δxred C B Δu
Δy D CΔxred C D Δu

(4)

where xop;wop; yop; anduop define the operat-
ing point, Δxred is a vector consisting of elements
of Δx, vector Δw is eliminated by exploiting the
algebraic constraints, and A, B, C, and D are
constant matrices. Simulation tools provide linear
analysis and synthesis methods on this linearized
system and/or export it for usage in an envi-
ronment such as Julia, Maple, Mathematicar,
MATLABr, or Pythonr.

Multi-domain models might also be used
directly in nonlinear Kalman filters, moving
horizon estimators, or nonlinear model predictive
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control. For example, the company ABB is using
moving horizon estimation and nonlinear model
predictive control based on Modelica models in
its product OPTIMAXr to significantly improve
the start-up process of power plants (Franke and
Doppelhamer 2006), for the control of virtual
power plants and for other purposes.

Inverse Models
A large body of literature exists about the theory
of nonlinear control systems that are based on
inverse plant models; see, for example, (Isidori
1995). Methods such as feedback linearization,
nonlinear dynamic inversion, or flat systems use
an inverse plant model in the control loop. How-
ever, a major obstacle is how to automatically
utilize an inverse plant model in a controller with-
out being forced to manually set up the equations
in the needed form which is not practical for
larger systems. Modeling languages can solve
this problem as discussed below.

Nonlinear inverse models can be utilized in
various ways in a control system. The simplest
approach, as feed forward controller, is shown in
Fig. 6. Under the assumption that identical equa-
tions (1) are used for the plant and the inverse
plant model (but the plant model has u as input
and y as output, whereas the inverse plant model
has y as input and u as output) and start at the
same initial state, then from the construction,
the control error e is zero and y D yref;filt, so
y is identical to the low-pass filtered reference
signals. In other words, y � yref for reference
signals that have a frequency spectrum below the
cutoff frequency of the low-pass filters. Since
the assumption is actually not fulfilled, there will
be a nonzero control error e, and the feedback
controller has to cope with it. This controller
structure with a nonlinear inverse plant model
has the advantage that the feed forward part is
useful over the complete operating range of the
plant.

Various other structures with nonlinear plant
models are discussed in Looye et al. (2005),
such as compensation controllers, feedback lin-
earization controllers, and nonlinear disturbance
observers. In Olsson et al. (2017), a Modelica
extension is defined to directly construct (sam-

pled data) feedback linearization controllers from
(continuous-time) Modelica plant models. Fur-
thermore, integration algorithms are proposed to
solve nonlinear inverse models with hard real-
time requirements.

It turns out that nonlinear inverse plant
models can be generated automatically with
the techniques that have been developed for
modeling languages; see section “Modeling
Language Principles.” In particular, constructing
an inverse model from (1) means that the inputs
u are defined to be outputs, so they are no longer
knowns but unknowns, and outputs y are defined
to be inputs, so they are no longer unknowns
but knowns. The resulting system is still a DAE
system and can therefore be handled as any other
DAE system. Therefore, defining an inverse
model with a modeling language just requires
exchanging the definition of input and output
signals. In Modelica, this can be graphically
performed with the nonstandard input–output
block from Fig. 7. This block has two inputs and
two outputs and is described by the equations:

low pass
filters

inverse plant
model

feedback
controller

plant

, ,

−

Multi-domain Modeling and Simulation, Fig. 6
Controller with inverse plant model in the feed forward
path. The inverse plant model needs usually also
derivatives of yref as inputs. These derivatives are
provided by appropriate low-pass filters

u1 u2 y1 y2

Multi-domain Modeling and Simulation, Fig. 7
Modelica InverseBlockConstraint block
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Multi-domain Modeling
and Simulation, Fig. 8
Inversion of a second-order
system in Modelica

filter

f_cut=10
w=0.1

2
secondOrder

u1 D u2I y1 D y2I

From a block diagram point of view, this looks
strange. However, from a DAE point of view,
this just states constraints between two input and
two output signals. In Fig. 8, it is shown how this
block can be used to invert a simple second-order
system: the output of the low-pass filter is con-
nected to the output of the second-order system
(note, a direction connection of this kind violates
the input–output block semantics, but an indirect
connection via the InverseBlockConstraint block
is possible) and therefore this model computes
the input of the second-order system, from the
input of the filter by inverting the second-order
system.

A Modelica environment will generate from
this type of definition the inverse model, thereby
differentiating equations analytically and solving
algebraic variables of the model in a different way
as for a simulation model. The whole transforma-
tion is nontrivial, but it is just the standard method
used by Modelica tools as for any other type of
DAE system.

The question arises whether a solution of the
inverse model exists or is unique and whether the
model is stable (otherwise, it cannot be applied
in a control system). In general, a nonlinear
inverse model consists of linear and/or nonlinear
algebraic equation systems and of linear and/or
nonlinear differential equations. Therefore, from
a formal point of view, the same theorems as
for a general DAE system applies, see Brenan
et al. (1996). Furthermore, all these equations
need to be solved with a numerical method. For
some classes of systems, it can be shown that
a unique mathematical solution exists and that
the system is stable. However, in general, one
cannot expect that it is possible to provide such a

proof for complex inverse plant models. In some
cases it is possible to approximate the plant model
so that its inverse is guaranteed to be stable. In
more involved cases, it might only be possible
to perform simulations at many operating points
to show that the probability of a stable inverse
model is high. Note, nonlinear inverse plant mod-
els have been successfully utilized by automatic
generation from a Modelica plant model, in par-
ticular for robots, satellites, aircrafts, vehicles,
and thermo-fluid systems.

The Functional Mockup Interface

Many different types of simulation environments
are in use. One cannot expect that a generic
approach as sketched in section “Modeling
Language Principles” will replace all these
environments with their rich set of domain-
specific knowledge, analysis, and synthesis
features. Practically, all simulation environments
provide a vendor-specific interface in order
that a user can import components that are not
describable by the simulation environment itself.
Typically, this requires to provide a component
as a set of C or Fortran functions with a particular
calling interface. In the control community, the
most widely used approach of this kind is the
S-Function interface from the MathWorks, where
Simulink is used as integration platform, and
model components from other environments are
imported as S-Functions.

In 2010 the vendor-independent standard
“Functional Mockup Interface 1.0” was devel-
oped, followed by a significantly improved
version 2.0 in 2014 (Modelica Association 2014).
An again significantly improved version 3.0
is under development as of June 2019 (see
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https://fmi-standard.org/faq/). FMI is a low-level
standard for the exchange of models between
different simulation environments. This standard
allows to exchange only the model equations
(called “FMI for Model Exchange”) and/or
the model equations with an embedded solver
(called “FMI for Co-Simulation”). This standard
was quickly adopted by many simulation
environments, and in 2019 there are more than
130 tools that support it (for an actual list
of tools, see https://fmi-standard.org/tools/).
In particular Modelica environments export
Modelica models in this format, and therefore,
Modelica multi-domain models can be imported
in other environments with low effort.

A software component which implements the
FMI is called Functional Mockup Unit (FMU).
An FMU consists of one zip file with extension
“.fmu” containing all necessary components to
utilize the FMU either for Model Exchange, for
Co-Simulation, or for both. The following sum-
mary is an adapted version from Blochwitz et al.
(2012):

1. An XML-file contains the definition of all
exposed variables of the FMU, as well as
other model information. It is then possible to
run the FMU on a target system without this
information, that is, without unnecessary over-
head. Furthermore, this allows determining all
properties of an FMU from a text file, without
actually loading and running the FMU.

2. A set of C-functions is provided to execute
model equations for the Model Exchange case
and to simulate the equations for the Co-
Simulation case. These C-functions can be
provided either in binary form for different
platforms or in source code. The different
forms can be included in the same model zip
file.

3. Further data can be included in the FMU zip
file, especially a model icon (bitmap file),
documentation files, maps and tables needed
by the model, and/or all object libraries or
DLLs that are utilized.

The main application area of FMI is offline
simulation, but it is also used for (soft) real-time

applications, see, for example, the direct support
of FMI in the real-time systems of dSPACE
(https://www.dspace.com). In Brembeck (2019) a
nonlinear (continuous-time) Modelica model of a
highly maneuverable electric vehicle is used as
starting point of a dedicated tool chain to gener-
ate automatically (sampled data) FMUs used as
discrete-time prediction models for an extended
moving horizon state estimator and an extended
Kalman filter.

Summary and Future Directions

Multi-domain modeling based on a DAE descrip-
tion and defined with a modeling language is an
established approach, and many tools support it.
This allows to conveniently define plant models
from many domains for the design and evalua-
tion of control systems. Furthermore, nonlinear
inverse plant models can be easily constructed
with the same methodology and can be utilized
in various ways in nonlinear control systems.

Current research focuses on the support of
the complete life cycle: defining requirements
of a system formally on a “high level,”
considerably improving testing by checking these
requirements automatically when evaluating a
system design by simulations, see, for example,
Bouskela and Jardin (2018), and providing
complete tool chains to embedded systems.
For example, in the European ITEA project
EMPHYSIS (embedded systems with physical
models in the production code software; https://
itea3.org/project/emphysis.html), the variant
eFMI of FMI is being developed in the years
2017–2021 so that whole tool chains from multi-
domain modeling environments to production
code on automotive electronic control units
and other embedded devices with hard real-
time requirements become feasible. This will
allow convenient and fast target code generation
of nonlinear controllers, optimization-based
controllers, extended and unscented Kalman
filters, or moving horizon estimators from multi-
domain models.

Furthermore, the methodology itself is further
improved. Especially, with the prototyping

https://fmi-standard.org/faq/
https://fmi-standard.org/tools/
https://www.dspace.com
https://itea3.org/project/emphysis.html
https://itea3.org/project/emphysis.html
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platform Modia (Elmqvist et al. 2017), new
directions are evaluated, such as hybrid 2D
schematic/3D graphical user interfaces, close
integration of complex data structures with
equation-based modeling (e.g., to model mul-
tiphase, multicomponent fluids or collision
handling of 3D mechanical systems), improved
and new symbolic transformation algorithms
(Otter and Elmqvist 2017), code generation for
large models, support of multi-domain Dirac
impulses, and changing the number of equations
during simulation.

Cross-References
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Introduction and Historical Overview
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