
Exascale Sparse Eigensolver
Developments for Quantum Physics Applications

Gerhard Wellein Computer Science, University Erlangen
Bruno Lang Applied Computer Science, University Wuppertal
Achim Basermann Simulation & SW Technology, German Aerospace Center
Holger Fehske Institute for Physics, University Greifswald
Georg Hager Erlangen Regional Computing Center

Tetsuya Sakurai Applied Mathematics, University of Tsukuba
Kengo Nakajima Computer Science, University of Tokyo

ESSEX: 2013 – 2015
ESSEX II: 2016 – 2018

• Motivation

• Software:
– Interoperability, portability & performance

• Multicoloring and ILU Preconditioning

• Scaling Results: Eigenvalue Computations

ESSEX project – background

Quantum physics/information applications

),(),(trHtr
t

i

𝑯 𝒙 = 𝝀 𝒙

 Sparse eigenvalue solvers of broad applicability

“Few” (1,…,100s) of
eigenpairs “Bulk” (100s,…,1000s)

eigenpairs

Good approximation to full spectrum (e.g. Density of States)

Large,
Sparse

and beyond….

𝝀𝟏, 𝝀𝟐, … , … , … , … , 𝝀𝒌, … , … , … , … , 𝝀𝒏−𝟏, 𝝀𝒏

Motivated by quantum physics applications

Dissipative
Quantum Systems

𝐴𝑥 = 𝜆𝐵𝑥
𝐴 𝜆 𝑥 = 0

Interoperable
Library

𝐴+ ≠ 𝐴

ESSEX - II

Conservative
Quantum Systems

𝐴𝑥 = 𝜆𝑥

ESSR: Blueprints

𝐴+ = 𝐴

ESSEX - I

Software: Interoperability
portability & performance

Kernel library (GHOST) and solver
framework (PHIST)

ESSEX-II: Software Packages

ScaMaC
Scalable Matrix Collection

PHIST
Pipelined Hybrid Parallel Iterative

Solver Toolkit

GHOST
General, Hybrid, and

Optimized Sparse Toolkit

C
R

A
FT

C

/R
 &

A

u
to

m
at

ic
 F

au
lt

To

le
ra

n
ce

 li
b

Links to open source repositories at https://blogs.fau.de/essex/code

User Applications

MPI+X X ∈ {CUDA,OpenMP,pthreads}

Hardware: CPU / GPGPU / Xeon Phi

3rd-party
libraries:
Trilinos,…

RACE
Recursive Adaptive Coloring

Engine

• Hybrid MPI+X execution mode

 (X=OpenMP, CUDA)

• Algorithm specific kernels: SIMD Intrinsics (KNL) and CUDA (NVIDIA)

 2x – 5x speed-up vs. Optimized general building block libraries

• Tall & skinny matrix-matrix kernels (block orthogonalization)

 2x – 10x speed-up vs. Optimized general building block libraries

• SELL-C-s sparse matrix format

• Open Source code & example applications: https://bitbucket.org/essex/ghost

GHOST library

Resource
arbitration

https://bitbucket.org/essex/ghost

A Portable and Interoperable Eigensolver Library

PHIST (Pipelined Hybrid Parallel Iterative Solver Toolkit) sparse solver framework
• General-purpose block Jacobi-Davidson Eigensolver, Krylov methods
• Preconditioning interface
• C, C++, Fortran 2003 and Python bindings
• Backends (kernel libs) include GHOST, Tpetra, PETSc, Eigen, Fortran
• Can use Trilinos solvers Belos and Anasazi, independent of backend

Getting PHIST and GHOST
• https://bitbucket.org/essex/[ghost,phist]
• Cmake build system
• Availale via Spack
• https://github.com/spack/spack/
• PHIST joined Extreme-Scale Development Kit,

https://xSDK.info/

https://bitbucket.org/essex/[ghost,phist
https://github.com/spack/spack/
https://xsdk.info/

Towards common standards and community
software for extreme-scale computing

PHIST & GHOST – interoperability & performance

• Anasazi Block Krylov-Schur solver on Intel Skylake CPU

• Matrix: non-sym. 7-pt stencil, N = 1283 (var. coeff. reaction/convection/diffusion)

• Anasazi’s kernel interface

mostly a subset of PHIST
extends PHIST by e.g. BKS and
LOBPCG

• Trilinos not optimized for block

vectors in row-major storage

Anasazi: https://trilinos.org/packages/anasazi/
Tpetra: https://trilinos.org/packages/tpetra/

Lo
w

er
 is

 b
et

te
r

Blocking factor

Multicoloring and ILU
Preconditoning

RACE and ILU preconditioning

Recursive algebraic coloring engine (RACE)

Objectives
• Preserve data locality
• Generate sufficient parallelism
• Reduce synchronization
• Simple data format like CRS

Graph coloring: RACE uses recursive BFS level based method for “distance-k
coloring” of symmetric matrices

Applications – Parallelization of
• iterative solvers, e.g. Gauß-Seidel

& Kaczmarz
• sparse kernels with dependencies,

e.g. symmetric spMVM

Example: Node-level parallelization of symmetric spMVM (distance-2)

Intel Skylake (20 cores)

Compare with
• Intel MKL
• RSB (data format)
• Multicoloring

RACE

Recursive algebraic coloring engine (RACE)

Objectives
• Preserve data locality
• Generate sufficient parallelism
• Reduce synchronization
• Simple data format like CRS

Graph coloring: RACE uses recursive BFS level based method for “distance-k
coloring” of symmetric matrices

Applications – Parallelization of
• iterative solvers, e.g. Gauß-Seidel

& Kaczmarz
• sparse kernels with dependencies,

e.g. symmetric spMVM

Example: Node-level parallelization of symmetric spMVM (distance-2)

Intel KNL (68 cores)

Compare with
• Intel MKL
• RSB (data format)
• Multicoloring

RACE

Robustness & Scalability of ILU preconditioning

• Hierarchical parallelization of multi-colorings for ILU precond.

• High precision Block ILU preconditioning: Achieved almost
constant iterations and good scalability with a graphene
model (500 million DoF)

• Apply algebraic block multi-coloring to ILU preconditioning:
2.5x – 3.5x speed-up vs multicoloring

Tokyo Univ.: Masatoshi Kawai (now Riken) , Kengo Nakajima et al.

Hokkaido Univ.: Takeshi Iwashita et al.

Scaling Results:
Eigenvalue Computations

Scalability on Oakforest-PACS
 since 6 / 2018 number 12 of

Cores:

Memory:

Processor:

Interconnect:

556,104

919,296 GB

Intel Xeon Phi 7250 68C 1.4GHz

(KNL)

Intel Omni-Path

Linpack Performance

(Rmax)

Theoretical Peak

(Rpeak)

13.554 PFlop/s

24.913 PFlop/s

Nmax

HPCG [TFlop/s]

9,938,880

385.479

CRAY XC30 – PizDaint

• 5272 nodes
• Peak: 7.8 PF/s
• LINPACK: 6.3 PF/s
• Largest system in

Europe

Weak scaling: Jacobi-Davidson Method

• Up to 0.5M cores

• Percentage indicates the

parallel efficiency compared to

the first measurement

(smallest node count).

• Symmetric PDE problem with

the largest matrix size

N = 40 963,

• target eigenpairs near 0 ,

• The best performance was

obtained with a block size of 4.

Large scale performance – weak scaling

• Computing 100 inner eigenvalues on matrices up to
𝑛 = 4 × 109

0.4 PFLOP/s 0.5 PFLOP/s

Typical Application[1]:
Topological Insulator

[1] Pieper, A., et al. Journal of Computational Physics 325, 226–243 (2016)

Oakforest PACS PizDaint 2

Large scale performance – weak scaling

• Computing 100 inner eigenvalues on matrices up to
𝑛 = 4 × 109

SUPERMUC (SNG)
Leibniz Supercomputing Centre
(LRZ) in Garching

6480 CPU-only dual-socket nodes
with Intel Skylake-SP

311,040 compute cores

Weak scaling of BEAST-P on SNG for problems of size 221 (1 node)
to 1.53 x 232 (3136 nodes, about half of the full machine)

Joint work with Tsukuba Univ.:
Tetsuya Sakuarai et al.

Visit our homepage: https://blogs.fau.de/essex/

THANK YOU!

https://blogs.fau.de/essex/

	Exascale Sparse Eigensolver Developments for Quantum Physics Applications
	Slide 2
	ESSEX project – background
	Motivated by quantum physics applications
	Software: Interoperability portability & performance
	ESSEX-II: Software Packages
	GHOST library
	A Portable and Interoperable Eigensolver Library
	Towards common standards and community software for extreme-scale computing
	PHIST & GHOST – interoperability & performance
	Multicoloring and ILU Preconditoning
	Recursive algebraic coloring engine (RACE)
	Recursive algebraic coloring engine (RACE)
	Robustness & Scalability of ILU preconditioning
	Scaling Results: Eigenvalue Computations
	Scalability on Oakforest-PACS since 6 / 2018 number 12 of
	Weak scaling: Jacobi-Davidson Method
	Large scale performance – weak scaling
	Large scale performance – weak scaling
	Slide 20
	Slide 21

