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ESSEX project – background  

Quantum  physics/information applications 
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𝑯 𝒙 =  𝝀 𝒙  

 Sparse eigenvalue solvers of broad applicability  

“Few” (1,…,100s) of 
eigenpairs   “Bulk” (100s,…,1000s) 

eigenpairs 

Good approximation to full spectrum (e.g. Density of States)  

Large,  
Sparse 

and beyond…. 

𝝀𝟏, 𝝀𝟐, … , … , … , … , 𝝀𝒌, … , … , … , … , 𝝀𝒏−𝟏, 𝝀𝒏  



Motivated by quantum physics applications 

Dissipative  
Quantum Systems 

𝐴𝑥 = 𝜆𝐵𝑥 
𝐴 𝜆 𝑥 = 0 

Interoperable 
Library 

𝐴+ ≠ 𝐴 

ESSEX - II 

Conservative 
Quantum Systems 

𝐴𝑥 = 𝜆𝑥 

ESSR: Blueprints 

𝐴+ = 𝐴 

ESSEX - I 



Software: Interoperability 
portability & performance 

Kernel library (GHOST) and solver 
framework (PHIST) 



ESSEX-II: Software Packages 

ScaMaC 
Scalable Matrix Collection 

PHIST 
Pipelined Hybrid Parallel Iterative 

Solver Toolkit 

GHOST 
General, Hybrid, and 

Optimized Sparse Toolkit 
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Links to open source repositories at  https://blogs.fau.de/essex/code 

User Applications 

MPI+X     X ∈ {CUDA,OpenMP,pthreads}  

Hardware: CPU / GPGPU / Xeon Phi 

3rd-party 
libraries: 
Trilinos,… 

RACE 
Recursive Adaptive Coloring 

Engine 



• Hybrid MPI+X execution mode  

     (X=OpenMP, CUDA) 

 

 

•  Algorithm specific kernels: SIMD Intrinsics (KNL) and CUDA (NVIDIA) 

      2x – 5x speed-up vs. Optimized general building block libraries 

 

• Tall & skinny matrix-matrix kernels (block orthogonalization) 

      2x – 10x speed-up vs. Optimized general building block libraries 

 

• SELL-C-s sparse matrix format 

 

• Open Source code & example applications: https://bitbucket.org/essex/ghost 

 

 

 

 

GHOST library 

Resource 
arbitration 

https://bitbucket.org/essex/ghost


A Portable and Interoperable Eigensolver Library 

PHIST (Pipelined Hybrid Parallel Iterative Solver Toolkit) sparse solver framework 
• General-purpose block Jacobi-Davidson Eigensolver, Krylov methods 
• Preconditioning interface 
• C, C++, Fortran 2003 and Python bindings 
• Backends (kernel libs) include GHOST, Tpetra, PETSc, Eigen, Fortran 
• Can use Trilinos solvers Belos and Anasazi, independent of backend 

Getting PHIST and GHOST 
• https://bitbucket.org/essex/[ghost,phist] 
• Cmake build system 
• Availale via Spack  
• https://github.com/spack/spack/ 
• PHIST joined Extreme-Scale Development Kit, 

https://xSDK.info/ 
 

https://bitbucket.org/essex/[ghost,phist
https://github.com/spack/spack/
https://xsdk.info/


Towards common standards and community 
software for extreme-scale computing 



PHIST & GHOST – interoperability & performance 

• Anasazi Block Krylov-Schur solver on  Intel Skylake CPU 
 

• Matrix: non-sym. 7-pt stencil, N = 1283 (var. coeff. reaction/convection/diffusion) 

 

 
• Anasazi’s kernel interface 

mostly a subset of PHIST  
extends PHIST by e.g. BKS and 
LOBPCG 

 
• Trilinos not optimized for block 

vectors in row-major storage 

Anasazi: https://trilinos.org/packages/anasazi/ 
Tpetra:   https://trilinos.org/packages/tpetra/ 
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Multicoloring and ILU 
Preconditoning  

RACE and ILU preconditioning  



Recursive algebraic coloring engine (RACE) 

Objectives 
• Preserve data locality 
• Generate sufficient parallelism 
• Reduce synchronization 
• Simple data format like CRS 

Graph coloring: RACE uses recursive BFS level based method for “distance-k 
coloring” of symmetric matrices 
 

Applications – Parallelization of  
• iterative solvers, e.g. Gauß-Seidel  

& Kaczmarz 
• sparse kernels with dependencies, 

e.g. symmetric spMVM  

Example: Node-level parallelization of symmetric spMVM (distance-2) 

Intel Skylake (20 cores) 

Compare with  
• Intel MKL  
• RSB (data format)  
• Multicoloring 
 

RACE 



Recursive algebraic coloring engine (RACE) 

Objectives 
• Preserve data locality 
• Generate sufficient parallelism 
• Reduce synchronization 
• Simple data format like CRS 

Graph coloring: RACE uses recursive BFS level based method for “distance-k 
coloring” of symmetric matrices 
 

Applications – Parallelization of  
• iterative solvers, e.g. Gauß-Seidel  

& Kaczmarz 
• sparse kernels with dependencies, 

e.g. symmetric spMVM  

Example: Node-level parallelization of symmetric spMVM (distance-2) 

Intel KNL (68 cores) 

Compare with  
• Intel MKL  
• RSB (data format)  
• Multicoloring 
 

RACE 



Robustness & Scalability of ILU preconditioning 

• Hierarchical parallelization of multi-colorings for ILU precond. 

 

 

 

 

• High precision Block ILU preconditioning: Achieved almost 
constant iterations and good scalability with a graphene 
model (500 million DoF) 

 

• Apply algebraic block multi-coloring to ILU preconditioning: 
2.5x – 3.5x speed-up vs multicoloring 

 

Tokyo Univ.: Masatoshi Kawai (now Riken) , Kengo Nakajima et al.  

Hokkaido Univ.: Takeshi Iwashita et al.  



Scaling Results:  
Eigenvalue Computations 



Scalability on Oakforest-PACS 
            since 6 / 2018 number 12 of 

Cores: 

Memory:  

Processor:  

 

Interconnect:  

556,104 

919,296 GB 

Intel Xeon Phi 7250 68C 1.4GHz 

(KNL) 

Intel Omni-Path 

Linpack Performance 

(Rmax) 

Theoretical Peak 

(Rpeak)  

13.554 PFlop/s 

 

24.913  PFlop/s 

Nmax  

HPCG [TFlop/s]  

9,938,880 

385.479 

 
 

 

CRAY XC30 – PizDaint 

• 5272 nodes 
• Peak:       7.8 PF/s 
• LINPACK: 6.3 PF/s 
• Largest system in 

Europe 



Weak scaling: Jacobi-Davidson Method 

• Up to 0.5M cores 

• Percentage indicates the 

parallel efficiency compared to 

the first measurement 

(smallest node count). 

• Symmetric PDE problem with 

the largest matrix size 

N = 40 963,  

• target eigenpairs near 0 , 

• The best performance was 

obtained with a block size of 4. 



Large scale performance – weak scaling 

• Computing 100 inner eigenvalues on matrices up to 
𝑛 = 4 × 109 

 

 

 

 

 

 

0.4 PFLOP/s 0.5 PFLOP/s 

Typical Application[1]: 
Topological Insulator  

[1] Pieper, A., et al. Journal of Computational Physics 325, 226–243 (2016) 

Oakforest PACS PizDaint 2 



Large scale performance – weak scaling 

• Computing 100 inner eigenvalues on matrices up to 
𝑛 = 4 × 109 

 

 

 

 
SUPERMUC (SNG) 
Leibniz Supercomputing Centre 
(LRZ) in Garching 

6480 CPU-only dual-socket nodes 
with Intel Skylake-SP 

311,040 compute cores 

 

 

 

Weak scaling of BEAST-P on SNG for problems of size 221 (1 node) 
to 1.53 x 232 (3136 nodes, about half of the full machine) 



Joint work with Tsukuba Univ.: 
Tetsuya Sakuarai et al.  



Visit our homepage: https://blogs.fau.de/essex/ 

 

 

 

 

 

 

 

 

 

THANK YOU! 

https://blogs.fau.de/essex/
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