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COMPUTER SCIENCE

A perspective on Gaussian processes for Earth observation
Gustau Camps-Valls1,∗, Dino Sejdinovic2, Jakob Runge3 and Markus Reichstein4

INTRODUCTION
Earth observation (EO) by airborne
and satellite remote sensing and in situ
observations plays a fundamental role
in monitoring our planet. In the last
decade, machine learning has attained
outstanding results in the estimation
of bio-geo-physical variables from the
acquired images at local and global
scales in a time-resolved manner. Gaus-
sian processes (GPs) [1], as flexible
non-parametric models to find func-
tional relationships, have excelled in
EO problems in recent years, mainly
introduced for model inversion and
emulation of complex codes [2]. GPs
provide not only accurate estimates but
also principled uncertainty estimates
for the predictions. Besides, GPs can
easily accommodate multimodal data
coming from different sensors and from
multitemporal acquisitions. Due to
their solid Bayesian formalism, GPs can
include prior physical knowledge about
the problem, and allow for a formal
treatment of uncertainty quantification
and error propagation.

In remote sensing, we often deal
with radiative transfer models (RTMs),
which implement the equations of en-
ergy transfer. These codes are needed for
modelling, understanding and predicting

some variables of interest related
to the state of the land cover, water
bodies and atmosphere. An RTM f
operating in forward mode generates a
multidimensional radiance observation
y ∈ R

p seen by the sensor given a
multidimensional parameter state vector
x ∈ R

d ; see Fig. 1. Running forward sim-
ulations yields a look-up-table (LUT) of
input–output pairs, D = {(xi , yi )}ni=1.
Solving the inverse problem implies
learning the function g usingD to return
an estimate x∗ each time a new satellite
observation y∗ is acquired. GPs have
been used to learn both the often costly
forward model f as well as the inverse
model g. Learning the forward model
allows for faster simulations, while
learning an inverse model has allowed
the provision of physically meaningful,

Inverse
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Figure 1. Forward (solid lines) and inverse
(dashed lines) modelling in Earth observation.

spatially explicit and temporally resolved
maps of variables of interest.

Despite great advances in forward and
inverse modelling, GP models still have
to face important challenges, such as the
high computational cost involved or the
derivation of faithful confidence inter-
vals. More importantly, we posit that
GP models should evolve towards data-
driven physics-aware models that respect
signal characteristics, be consistent with
elementary laws of physics, and move
from pure regression to observational
causal inference.

ADVANCES IN GP INVERSE
MODELLING
Themost important shortcoming of GPs
is their high computational cost and the
memory requirements, which grows cu-
bically and quadratically with the num-
ber of training points, respectively. Re-
cently, great progress has been made in
constructing scalable versions of GPs,
demonstrating their utility in big data
regimes [3].

An important challenge in Earth
observation relates to the fact that data
come with complex non-linearities,
levels and sources of noise, and non-
stationarities. Standard GPs often
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assume homoscedastic noise and use sta-
tionary kernels though.The current state-
of-the-artGP todealwithheteroscedastic
noise makes use of a marginalized vari-
ational approximation [2]. The method
has resulted in excellent performance
in estimating biophysical parameters
(chlorophyll-a content in plants and wa-
ter bodies) from acquired reflectances.
In many EO applications one transforms
the observed variable to linearize or
Gaussianize the data via parametric
transforms. A warped GP model has al-
lowed learning a non-parametric optimal
transformation from data, and has shown
very good results in predicting vegetation
parameters (chlorophyll, leaf area index,
and fractional vegetation cover) from
hyperspectral images [4]. Another com-
mon problem in remote sensing is that
of ensuring consistency across products:
estimating several related variables
simultaneously can incorporate their
relations in a single model. A recent la-
tent force model (LFM) GP can encode
ordinary/partial differential equations
governing the system, and has allowed
monitoring of crops, estimation of multi-
ple vegetation covariates simultaneously,
andmanagement ofmissing observations
due to the presence of clouds or sensor
acquisition problems [5].

Making inferences with GPs is not
only about obtaining point-wise esti-
mates but also faithful uncertainty es-
timates, essential in performing error
propagation. Inference should also con-
template extrapolation analysis as an am-
bitious far-end goal. Besides, note that
we ultimately aim to characterize model
error by comparing simulators to real-
ity, calibrate models by proper estima-
tion of (hyper)parameters, and make un-
certainty statements about the world that
combine models, data, and their cor-
responding errors. We think that the
Bayesian formalism of GPs is the natural
framework to tackle these yet unresolved
problems.

ADVANCES IN GP FORWARD
MODELLING
Surrogate modelling, also known as emu-
lation, based on GPs is gaining popular-

ity in remote sensing. Emulators are es-
sentially statistical models that learn to
mimic the RTM code using a represen-
tative dataset D. GPs have largely dom-
inated the field for decades and have
provided excellent accuracy and physical
consistency as studied via sensitivity anal-
ysis in the context of vegetation and at-
mosphere models in [2]. Once the GP
model is trained, one can readily perform
fast forward simulations, which in turn
allows improved inversion. However, re-
placing an RTM with a GP model re-
quires running expensive evaluations of
f first. Recent more efficient alternatives
construct an approximation to f starting
with a set of support points selected it-
eratively [5]. This topic is related to ac-
tive learning and Bayesian optimization,
which might push results further in accu-
racy and sparsity, especially when mod-
elling complex codes.

RTMs are the result of many decades
of scientific research and continuous de-
velopment, so they often include ad hoc
rules, heuristics and non-differentiable
links that hamper analytic treatment.
Emulation allows one to account for in-
put errors, derive predictive variance es-
timates, infer sensitivity values of param-
eters, calculate Jacobians and perform
uncertainty propagation and quantifica-
tion analytically. Besides, a lot of physi-
cal knowledge used for designing RTMs
could be translated in designing priors
(e.g. physically plausible parameter val-
ues).These excellent capabilities havenot
been widely exploited in EO applications
though.

TOWARDS PHYSICS-AWARE GP
MODELLING
The GP framework allows us to include
constraints and priors adapted to sig-
nal features such as non-stationarity,
circularity, spatial–temporal relations,
coloured-noise processes and non-i.i.d.
relations. Nevertheless, data-driven GP
models should be further constrained to
provide physically plausible predictions.
Recent approaches consider designing
joint observation–simulation cross-
covariances [5]. Recently we suggested a
full framework for hybrid modelling with

machine learning [6], which could be
formalized within the GP probabilistic
framework too.

Learning dynamical physical systems
is very challenging. Recent regression
approaches have learned the governing
equations of non-linear dynamical sys-
tems from data, such as the Lorenz,
Navier–Stokes and Schrödinger equa-
tions. Models typically impose sparsity
and hierarchical modelling, but also a GP
probabilistic approachhas excelled in dis-
covering ordinary and partial differential,
integro-differential and fractional order
operators [7].

The integration of physics into GP
models not only achieves improved gen-
eralization but, more importantly, en-
dorses these grey-box models with con-
sistency and faithfulness. As a by-product,
the hybridization process has an interest-
ing regularization effect, as physics dis-
cards implausible models and promotes
simpler structures.

FROM REGRESSION TO
CAUSATION
Understanding is more challenging than
predicting, especially when no interven-
tional studies can be conducted, as in the
Earth sciences. Causal inference fromob-
servational data to estimate causal graph-
ical models has become a mature science
with effective machine-learning methods
to deal with both time series and non-
time-ordered data; see [8,9] and refer-
ences therein. Causal inference methods
can be classified roughly into condi-
tional independence or constraint-based
approaches and structural causal mod-
els. Constraint-based causal discovery al-
gorithms iteratively infer graphical mod-
els utilizing conditional independence
testing. In [10] a GP-based conditional
independence test is combined with a
scalable causal discovery algorithm al-
lowing high-dimensional graphical mod-
els to be inferred from time-series data.
Constraint-based algorithms only allow
causal graphical models to be inferred
up to a Markov equivalence class. Uti-
lizing additional assumptions, such as on
the noise distribution or functional de-
pendence, the class of structural causal
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models [8] allows causal directionality to
be inferred in such undecidable Markov
equivalent cases. Recently, [2,4] intro-
duced the WGP regression in additive
noise models to account for post-non-
linear effects and heteroscedastic noise
respectively, and applied it successfully to
a set of geoscience and remote sensing bi-
variate problems. Some important chal-
lenges in causal inference for the Earth
science are still to be solved: how to
scale GP models to deal with millions of
points,missing data and time aggregation
as well as time sub-sampling, and com-
plex spatial–temporal dependence struc-
tures. Testing scientific hypotheses, com-
paring model-vs-data causal graphs, and
assessing the impacts of extreme events
are just some exciting avenues of further
research.

FUNDING
G.C.V. would like to acknowledge the support
from the European ResearchCouncil (ERC) under

the ERC Consolidator Grant 2014 project SEDAL
(647423).

Gustau Camps-Valls1,∗, Dino Sejdinovic2,
Jakob Runge3 and Markus Reichstein4
1Image Processing Laboratory, University of
Valencia, Spain
2Department of Statistics, University of Oxford, UK
3German Aerospace Center, Institute of Data
Science, Germany
4Max Planck Institute for Biogeochemistry,
Germany
∗Corresponding author.
E-mail: gustau.camps@uv.es

REFERENCES
1. Rasmussen CE and Williams CKI. Gaussian Pro-
cesses for Machine Learning. New York: MIT
Press, 2006.

2. Camps-Valls G, Verrelst J andMuñoz-Marı́ J et al.
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A et al. IEEE Geosci Remote Sens Lett 2018; 15:
1647–51.

5. Camps-Valls G, Svendsen D and Martino L et al.
Appl Soft Comput 2018; 68: 69–82.

6. Reichstein M, Camps-Valls G and Stevens B et al.
Nature 2019; 566: 195–204.

7. Raissi M, Perdikaris P and Karniadakis GE. J Com-
put Phys 2017; 348: 683–93.

8. Peters J, Janzing D and Schölkopf B. Elements of
Causal Inference: Foundations and Learning Algo-
rithms. Cambridge: MIT Press, 2017.

9. Zhang K, Schölkopf B and Spirtes P et al. Natl Sci
Rev 2018; 5: 26–9.

10. Runge J. Chaos 2018; 28: 075310.

National Science Review
6: 616–618, 2019
doi: 10.1093/nsr/nwz028
Advance access publication 4 March 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article-abstract/6/4/616/5369430 by D

eutsches Zentrum
 fuer Luft- und R

aum
fahrt (D

LR
); Bibliotheks- und Inform

ationsw
esen user on 31 D

ecem
ber 2019

mailto:gustau.camps@uv.es



