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Abstract 

This article introduces research on the synthesis and characteristics of C–TiO2 doped cellulose 

acetate (CA) nanocomposite film. TiO2 nanoparticles were synthesized from Ilmenite mineral 

in Binh Dinh, Vietnam, and modified by Stevia Rebaudiana plant in order to serve as a cheap, 

stable, and eco-friendly photocatalyst that could perform under visible light. Nanocomposite 

film was obtained by dispersing C–TiO2 on cellulose acetate polymer using a supersonic 

generator. The prepared material was characterized by X-ray diffractions (XRD), 

N2 adsorption, Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), energy-

dispersive X-ray analysis (EDX), UV–Vis diffuse reflectance spectroscopy (UV–vis DRS), 

photoluminescence (PL) emission spectra, scanning electron spectroscopy (SEM), and 

thermogravimetric/differential thermal analysis (TG-DTA). The film’s photocatalytic 

efficiency was evaluated via the decomposition of Reactive Red-195 (RR-195) under visible 

irradiation at room temperature. The results showed that the maximum conversion of RR-195 

reached 99.15% at pH = 3 and the activity of the catalyst had a slight decrease after up to four 

times of recycling, for which the conversion of the fourth reaction was 90.02% for RR-195. 

This result suggests an efficient treatment method to eliminate organic pollutants from 

wastewater and stimulate these industrial activities in Vietnam. 
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Introduction 

The increasing amount of waste from human activity is one of the most urgent environmental 

challenges to be faced at the present time (Gaya and Abdullah 2008; Ortega-Liébana et 

al. 2012; Pelaez et al. 2012). Among these waste products, organic compounds in wastewater, 

that are stable and difficult to bio-degrade, account for a significant portion, and have become 

a problem in pollution management as well as in water reuse. Conventional treatments such as 

adsorption, precipitation, etc., are not suitable for dealing with new pollutants which are more 

and more diversified in type and quantity. In addition, these traditional methods require high 

initial investment and operating costs as well as create undesired pollutants. Therefore, the 

appearance of alternative methods for water treatment that are efficient, economic, and eco-

friendly seems to be natural, and advanced oxidation processes (AOPs) (Barndõk et al. 2013; 

Gaya and Abdullah 2008; Ibhadon and Fitzpatrick 2013) using photocatalysts are typical 

examples. In AOPs, the presence of photocatalysts, radicals, and intermediates 

(H2O2, 
●OH, ●O2−, O3) plays the role of oxidation agents that could completely oxidize and 

mineralize pollutants. By employing a photocatalyst, these processes could be carried out in 

mild conditions with energy from sunlight that minimizes operational costs (Barndõk et 

al. 2013; Ortega-Liébana et al. 2012). TiO2, the most popular semiconductor, is widely used as 

a photocatalyst in the various processes including AOPs because TiO2 appears to be more 

stable and easier to synthesize than others (Kubacka et al. 2012; Ortega-Liébana et al. 2012; 

Pelaez et al. 2012). The oxidation process mechanism catalyzed by TiO2 could be as suggested 

below: 

• Photo absorption of TiO2 (hν ≥ Eg = 3.2 eV) 

TiO2 + hν → eCB
− + hVB

+ 

• Reaction of O2 with electron 
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(O2)ads + e−
CB → O2

●− 

• Reaction of hole 

(H2O ↔ H+ + OH-)ads + hVB
+ → H+ + OH● 

• Oxidation by hydroxyl radical 

R + OH● → R● + H2O 

• Or by hole 

R + h+ → R●+ → degradation products 

However, TiO2 has a large band gap energy that requires ultraviolet irradiation. Thus, 

narrowing the energy gap of TiO2 to improve visible light absorption is one of the common 

methods used to boost photocatalytic performance (Kubacka et al. 2012). The methods 

commonly used are the addition of metals or metal oxides, into the TiO2 lattice, such as Zn, Fe, 

Cr, Eu, Y, Ag, Ni, etc. or adding N, C, S, F, Cl, etc. or putting a mixture of elements into the 

TiO2 lattice (Papadam et al. 2007). Among them, TiO2 modified by carbon is particularly 

interesting because several studies have shown that: in the process of modification, carbon has 

doped into the TiO2, narrowing the initial bandgap of TiO2. Different evaluations of 

photocatalytic ability under visible light demonstrated the superior photocatalytic ability of C–

TiO2 materials compared to unmodified materials. Momeni et al. (2016a, 2016b) reported 

fabrication of nitrogen, carbon, and iron multiple-codoped titanium dioxide nanotubes by 

depositing method on TiO2 nanotube surface as a new high-performance photocatalyst. At the 

same time, these authors also synthesized the photocatalytic nanocomposite films of 

Ag2S/TiO2 by electrochemical anodizing and successive ionic layer adsorption and reaction 

approach (Momeni et al. 2016a, 2016b). Iron–cobalt WTiO2 nanotuble (WTNTs) films 

prepared by the chemical bath deposition method (Momeni et al. 2019). However, these 

catalysts have several drawbacks, such as the intricacy in recovering from solution for reuse 
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and the tendency to accumulate and harm living organisms when exposed to the environment 

(Wang et al. 2015). Therefore, to deal with these issues, the carbon source for the modification 

in our study comes from plant sources, so it is very environmentally friendly and simple to 

synthesize. 

Since the 1960s, polymer membrane technologies have become dominant for water treatment 

with very competitive cost (Liu et al. 2011). Among them, cellulose acetate film is considered 

an typical membrane as it has moderate flux and high salt characteristics as well as its bountiful 

raw sources (Radha et al., 2014). In addition, organic polymer membranes are biodegradable. 

Nevertheless, the polymer membrane is susceptible to fouling due to the accumulation of 

contaminants and bacteria on the surface or inside of the membrane, which limits the wide 

application of membranes, since this accumulation can cause many adverse effects such as poor 

water quality, low water treatment productivity, high energy use, and shorter membrane life 

(Bai et al. 2010; Kang and Cao 2014; Radha et al. 2014). To solve this problem, two methods 

utilizing TiO2 nanomaterials have been studied by scientists: (1) changing the surface 

properties of the membrane by using objects nano-TiO2 inorganic materials (Liu et al. 2011; 

Meng et al. 2009; Wang et al. 1997), and (2) the combination of adsorption functions, 

photosynthesis of organic substances of TiO2 to control and limit accumulation (Zhang et 

al. 2014). Remarkably, the nanostructures of TiO2 create many active centers for photocatalytic 

reaction and adsorption of pollutants. Several studies involving cellulose acetate polymer films 

in combination with TiO2 have been published. Typically, Wang et al. synthesized cellulose 

acetate @TiO2 fiber by an electrospinning method of methylene blue decomposition, the 

highest conversion rate reached 90% after 240 min but this process requires UV irradiation to 

consume energy (Wang et al. 2015), and Abedini et al. dispersed TiO2 nanoparticles on 

cellulose acetate membranes by phase reversal and studied the permeability properties of 

membranes. The TiO2 used in the Abedini study was from a source of toxic and expensive 
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organic titanium (Abedini et al. 2011). Jinlong et al. (2018) synthesized a new three-

dimensional, flower-like La–TiO2/g-C3N4 heterojunction composite as photocatalyst using a 

solvothermal method. A novel Gd/TiO2@rGO nanocomposite with high photocatalytic 

performance were prepared by via a one-pot solvothermal method (Shuaiqiang et al. 2019). 

In this study, novel biodegradable C–TiO2/CA photocatalytic nanocomposite film was 

prepared by the phase inversion method using natural material sources from Vietnam. To do 

that, TiO2 were synthesized using Ilmenite mineral collected directly in Binh Dinh, Vietnam. 

These TiO2 materials were then denatured into C–TiO2 with carbon derived from Stevia leaves 

and dispersed on cellulose acetate polymer films in order to serve as a cheap, stable, and eco-

friendly photocatalyst that could work under visible irradiation. After that, the photocatalytic 

efficiency of the material at different pH was investigated in the decomposition of RR-195 

(Reactive Red-195) under visible irradiation and ambient temperature. 

 

Experimentals 

Chemicals 

Ilmenite mineral came from Binh Dinh, Vietnam. The stevia leaves (Stevia rebaudiana) were 

purchased from Vietnam. Cellulose acetate (AC, MW = 25,000 Da) was purchased from 

Sigma-Aldrich; hydrofluoric acid (40 wt.% HF), potassium chloride (KCl), and ammonia 

(28 wt.% NH3 in water) purchased from China; N,N′-dimethylformamide, Reactive Red-195 

(RR-195, 99%) was acquired from Aldrich. The chemicals were utilized without any 

purification. 

Recovery of titanium dioxide (TiO2) from ilmenite mineral 

Ilmenite was resolved by 8.4 M HF solution, stirred for 5 h at a speed of 300 rpm, then 

deposited and filtered to remove residue. The filtered water was collected. 

https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true
https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true
https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true
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Saturated KCl solution was gradually put in to the stirring filtrate solution, Ti4+ ions were 

separated from iron in the form of precipitated K2TiF6 salt. Then, distilled water was used to 

wash the precipitate to neutral pH to eliminate impurities and then the solid was dried. 

Next, the obtained K2TiF6 was dissolved in hot water at 80 °C to saturated concentration 

(60.224 g/l). Then, 4 M NH3 solution was slowly added to obtain a mixture with pH = 9–10. 

At the end of hydrolysis, the Ti(OH)4 product was collected by filtration, washed with distilled 

water, dried at 105 °C for 2 h then calcined at 450 °C for 3 h. 

Synthesis of carbon doped-nano TiO2 (C–TiO2) 

The stevia leaves were dried at 100 °C before grinding into a fine powder. Then 2.5 g of the 

powder was pyrolyzed in the furnace for 2 h at 300 °C. The obtained black carbon powder was 

cooled down to room temperature, then added in distilled water, and centrifuged at 2500 rpm 

to remove large or agglomerated particles. After removing the solid portion, a yellow-brown 

solution was obtained. After that, a mixture was formed by dispersing 1 g of TiO2 powder was 

dispersed in 5.2 mL previous solution. Next, 4.8 mL of distilled water was added and agitated 

strongly for 30 min. The final mixture was then desiccated at 65 °C to obtain C–TiO2. 

Synthesis of C–TiO2/AC nanocomposite films by phase inversion method 

Mixtures of AC (12 wt.%) and N,N′-dimethylformamide were stirred for 5 h. C–TiO2 (20 wt.% 

compared to AC) was added and stirred for 3 h, then used ultrasonic for 1 h. Next, the mixture 

was spread on a glass plate and subsequently submerged in a bath of distilled water to entirely 

separate the phases. The film was detached from the board glass surface, rinsed with distilled 

water and ethanol, and soaked in water for 12 h. A film that did not contain C–TiO2 was made 

similarly for comparison. 
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Evaluation of catalytic activity 

The photocatalytic efficiency of the C–TiO2/CA film was evaluated in the degradation reaction 

of RR-195, a typical dye widely present in textile, paper, and printing industries. In which, a 

link –N = N– (azo), sulfone, and monochlo-otriazine are main functional groups. 

First, model wastewater was prepared by taking 20 mg RR-195 phase in 1000 mL water solvent 

(20 ppm). 

Photocatalytic test of C–TiO2/AC film: 50 mL of RR-195 (20 ppm) solution was put into a 

flask, stirred gently for 30 min in the dark then the mixture was irradiated by a 125 W high 

pressure Hg lamp. Then, the solution was analyzed by UV–Vis spectrometer at λmax = 541 nm. 

The conversion of RR-195 was calculated based on its initial concentration, Co (mg L−1), and 

the concentration Ct (mg L−1) of RR-195 in the solution at reaction time t (min) 

A=((Co–Ct)/Co)×100%A=((Co–Ct)/Co)×100% 

(1)where A is the conversion (%) of RR-195. 

In this study, the effects of catalyst weight, pH and catalytic form on the conversion of RR-195 

and the ability of catalytic regeneration after use were also assessed. 

Characterizations 

The crystalline phase structure of as-prepared materials was determined by XRD with the 2-

theta range of 2°–80° and 20°–80° (D8 ADVANCE, Bruker, Germany) using Cu Ka1 copper 

radiation (k = 0.154 nm) as the X-ray source at a scan rate of 3 min−1. Nitrogen adsorption–

desorption isotherms were analyzed on Automated Sorptometer BET 201-A, USA. The 

material morphology was studied by SEM using an S-4800 microscope (Hitachi, Japan) with 

an accelerating voltage of 200 kV. A JED-2300 with gold coating provided data of energy-

dispersive X-ray spectroscopy analysis (EDX). In addition, UV–Vis diffuse reflection 
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spectroscopy (DRS) was recorded on Cary 5000 within the wavelength range of 200–800 nm. 

The photoluminescence emission spectra excited at 300 nm were recorded by a PL 3-22 JobinY 

von-Spex, USA spectrofluorometer Fluorolog using a 450 W xenon lamp. FT-IR spectra were 

obtained with FTIR Affinity – 1 s (Shimadzu) from 400 to 4000 cm−1 at a resolution of 4 cm−1. 

Thermogravimetry analysis (TGA) was implemented between room temperature and 800 °C at 

a rate of 10 °C/min on a DTG-60H thermogravimetric analyzer in an air flow of 50 mL/min. 

 

Results and discussion 

Characterization of the materials 

The composition of Binh Dinh ilmenite was determined by the EDX method, the results are 

presented in Figure 1 and Table 1. From the EDX results, it could be found that the mineral 

had quite high Ti and O content. In addition, it also contains a large amount of Fe (23.51 wt.%), 

titanium, and iron in the composition that could facilitate the decomposition of the mineral by 

HF acid due to the ability to form complexes of these ions with anionic fluoride in an acidic 

environment. However, the high content of iron impurities in the mineral greatly affects the 

preparation of high purity TiO2. 

 

Figure 1. EDX spectra of ilmenite. 

https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true#F0001
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Table 1. EDX element analysis of ilmenite. 

Element Ti O Si Fe K V Al Mn C 

Mass composition (%) 25.46 40.47 2.8 23.51 0.29 0.65 2.51 0.29 4.01 

Atomic composition (%) 13.18 62.7 2.47 10.44 0.19 0.31 2.31 0.13 8.27 

 

Figure 2 illustrates the XRD spectra of material samples. From Figure 2, the recorded peaks 

represent for anatase TiO2 (JCPDS file No. 21-1272) and no other peaks of impurities appears. 

The TiO2 average particle size was 20 nm determined by using the Scherrer 

equation: D = 0.9λ/(βcosθ) (where D – the mean size of the crystalline; λ – the X-ray 

wavelength; β is the line broading at half the maximum intensity; θ is the Bragg angle). After 

that, with the doping of carbon, the structure of C–TiO2 material was unchanged, and only the 

TiO2 anatase phase peaks still existed (JCPDS file No. 21-1272). Figure 2 shows peaks at 2θ of 

6.26°, 7.46°, 8.45° corresponding to the cellulose triacetate structure (Kono et al. 1999). In 

addition, when dispersing C–TiO2 on CA film, peaks were still recorded at about 2θ = 25°, 

which characterizes the anatase phase of TiO2. Based on these results, it could be affirmed that 

the addition of doping carbon onto TiO2 then the dispersion of C–TiO2 on the CA film did not 

change the phase structure of the original TiO2 material. 

 

Figure 2. XRD spectra of the materials TiO2 (a), C–TiO2 (b), C–TiO2/CA film (c). 

https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true#F0002
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https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true#F0002
https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true
https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true
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The N2 adsorption–desorption isotherm of CA and C–TiO2/CA film is shown in Figure 3. As 

shown in Figure 3, the samples are of type IV with a steep uptake at P/Po of above 0.9. The 

BET surface area of the CA film was small with a value of 10.22 m2/g and pore volume of 

0.056 cm3/g. However, these values increased to 13.32 m2/g and 0.076 cm3/g after dispersing 

C–TiO2 on CA film. With comparing the samples of pristine CA film and C-TiO2/CA film, it 

was obvious that the C–TiO2/CA film has a larger BET surface area and pore volume than the 

CA film. This difference clearly indicated the dispersion of C–TiO2 nanopartilces onto 

cellulose acetate polymer film. 

 

Figure 3. N2 adsorption–desorption isotherm of CA film (a) and C–TiO2/CA film (b). 

Figure 4 reveals the Raman spectrum of C-doped TiO2. The peaks at 146 cm−1 (Eg), 

199 cm−1 (Eg, weak), 399 cm−1 (B1g), 516 cm−1 (A1g), and 640 cm−1 (Eg) are typical for peaks 

of anatase phase (Su et al. 2007; Wang et al. 2008). Also, no peaks were found at 235 and 

612 cm−1 that represents for TiO2 existing in the rutile phase. This means that the material 

exists only in the anatase phase (Wang and Hall 1984), which is in agreement with the XRD 

results. The decrease in the intensity of peaks in the carbon-doped sample is explained by the 

disruption of the symmetry of the TiO2 molecule with the presence of C in the TiO2 lattice 

https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true#F0003
https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true#F0003
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https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true
https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true
https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true
https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true
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(Wang et al. 2008). So, it can be deduced that carbon has been successfully doped into the 

TiO2 lattice (Bhattacharyya et al. 2008). 

 

Figure 4. Raman spectra of TiO2 (a) and C–TiO2 (b). 

The bonding properties in TiO2 and C-doped TiO2 samples determined by the FT-IR spectrum 

are shown in Figure 5. Peaks appearing at about 3456–3600 cm−1 and 1629 cm−1 characterize 

the type of chemotherapy vibration of ν(OH) of surface water molecules (Ernö et al. 2009). 

Other peaks seen at 1035–1187 cm−1 of C–TiO2 are thought to be the valence oscillation type 

of C–O (Gong et al. 2015; Sun et al. 2015; Wang et al. 2014). The important peak at 

1658 cm−1 could refer to the bond of C = C. The peaks in the range of 500–800 cm−1 represent 

the oscillation range of Ti–O–Ti. Indeed, surface hydroxyl groups are an decisive factor in 

photocatalytic activity because the groups can react with photogenerated holes to form 

hydroxyl radicals that reduce the ability of electron–hole recombination, thus increasing 

photocatalytic efficiency (Sleiman et al. 2007). By the results of FT-IR, it is suggested that 

there were the surface ·OH radicals of C–TiO2. In addition, the existence of carbon could be 

discovered and confirmed by EDX results. 
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Figure 5. FT-IR spectra of TiO2 (a) and C-doped TiO2 (b). 

The composition of the C–TiO2 sample was detected by the EDX method as presented 

in Figure 6 and Table 2. 

 

Figure 6. EDX spectrum of C doped TiO2. 

Table 2. EDX element analysis of C doped TiO2 sample. 

Element Ti O C F K 

Mass composition (%) 26.87 33.57 23.81 9.4 6.34 

Atomic composition (%) 10.59 39.6 37.41 9.34 3.06 

 

https://www.tandfonline.com/doi/full/10.1080/00986445.2020.1712375?scroll=top&needAccess=true#F0006
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From EDX results of the C–TiO2 sample it was found that there was no occurrence of Fe 

impurities and only Ti, O, and C, which are the main components of C–TiO2, could be seen. 

This suggested that the mineral decomposition process had completely eliminated iron 

impurities although the initial iron content in the mineral was relatively high. Moreover, there 

was also the presences of K and F left because of the TiO2 washing process. 

Photocatalytic properties of TiO2 and C–TiO2 materials were determined by UV–vis 

spectrometry. Figure 7(a) illustrates the UV–vis DRS spectrum of C–TiO2 and TiO2. The band 

gap of the samples calculated using the transformed Kubelka–Munk function versus energy of 

light is shown in Figure 7(b). 

 

Figure 7. UV–vis DRS spectra and transformed Kubelka–Munk with the energy of the 

excitation source of TiO2 (a) and C-doped TiO2 (b). 

As can be seen, large optical absorption C–TiO2 can be observed in visible light. According to 

the research by Kish et al., the presence of carbon content in TiO2 has a great influence on the 

light absorption of the material (Sakthivel and Kisch 2003). In fact, the substitution of oxygen 

atoms in the Titania lattice by C, N, F, P, or S could lower the TiO2 band gap and result in the 

ability to excite the photocatalysts with both UV and visible irradiation. So, the visible light 

absorption ability of C–TiO2 is greater than TiO2 due to the addition of carbon. Based on the 

Kubelka–Munk method, the bandgap energy can be calculated by taking the intersection of the 
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tangent line of the graph (αhν)1/2 with the photon energy (hν). The values of TiO2 and C–

TiO2 are 3.1 eV and 2.85 eV, respectively. The optical band gap value 3.1 eV for pure 

TiO2 corresponds to the anatase TiO2 consistent with XRD data indicating the anatase phase as 

the major phase. The value 2.85 eV again confirms the reduction of the bandgap induced by 

the introduction of C into the TiO2 matrix. 

Moreover, if titanium ions in TiO2 are replaced by carbon, visible light absorption is not 

observed (Kamisaka et al. 2005). Thus, it is believed that the bandgap energy of the carbon-

doped TiO2 sample is significantly reduced when compared to the pure TiO2 sample due to the 

replacement of oxygen in TiO2 by carbon atoms, thus permitting visible light absorption. 

In order to further demonstrate photocatalytic efficiency of C-TiO2/CA film, the 

photoluminscence emission was investigated using A 450 W xenon lamp at excitation 

wavelength of 300 nm. The obtained results are shown in Figure 8. Compared with TiO2/CA 

photocatalyst film, after the carbon modification, the PL intensity of TiO2 nanoparticles were 

significantly decreased, indicating that the carbon modification lowered recombination rate of 

electron/hole of the photocatalyst film. 

 

Figure 8. Photoluminescence emission spectra (excited at 300 nm) of TiO2/CA film (a) and 

C–TiO2/CA film (b). 
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Scanning electron microscopy (SEM) method was used to study the morphology of acetate 

cellulose film (CA) and C–TiO2/CA film (Figure 9). 

 

Figure 9. SEM images of acetate cellulose (CA) film (a): film surface (a1), cross section (a2); 

and C–TiO2/CA nanocomposite (b): film surface (b1), cross section (b2). 

The morphological structure of cellulose acetate (CA) film is illustrated by the film surface 

in Figure 9(a1) and the cross-section in Figure 9(a2) which present the structural association of 

cellulose acetate molecules in the polymer chain in combination with pores in the material 

structure. The formation of pores could be explained by the fragmentation of the polymer chain 

(Ioniță et al. 2018). C–TiO2 nanoparticles were observed on the surface of CA in Figure 9(b1). 

Comparing with the morphology of the CA film in Figure 9(a1), it could be seen that the 

average size of C–TiO2 is about 20–30 nm (in accordance with the calculation method in XRD) 

which has been evenly distributed on the polymer chain surface. The cross-sectional SEM 

image of C–TiO2/CA film revealed that the porous structure of the material remained intact 

after adding nano-C–TiO2 into CA film. The pore structure of the material will contribute to 

enhancing the contact ability of C–TiO2 nanoparticles with pollutants. 
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TGA was used to investigate the thermal properties of CA and C–TiO2/CA films and the 

measured data are shown in Figure 10. 

 

Figure 10. Thermal gravimetric analysis (TGA) curves of (a) CA and (b) C–TiO2/CA film. 

According to this figure, the mass loss of samples was calculated at 99% and 84% 

corresponding to CA film and C–TiO2/CA film. When C–TiO2 was added onto the CA film, 

the mass loss of the film decreased resulting in the residual mass of the C–TiO2/CA film being 

higher than that of the CA film. This could originate from the removal of heat in the material. 

Specifically, the additional heat is transferred to C–TiO2 in the film during the analysis process. 

Thanks to the interaction between C–TiO2 and CA based on hydrogen bonds or covalents 

which improve the energy of the CA chain, the strength of the polymer chain would be 

reinforced. Therefore, the improvement of thermal resistance could be due to a slight increase 

in the decomposition temperature of the C–TiO2/CA film (Td) with the presence of C–TiO2. In 

fact, similar results were observed by Abedini et al. (2011). According to the authors, good 

compatibility between CA and C–TiO2 was achieved because of the bond of Ti4+ and acetate 

groups as well as the creation of the hydrogen link between surface OH groups and acetate 

groups of CA (Abedini et al. 2011). Moreover, the significant interaction between C–TiO2 and 
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the CA chain can prevent C–TiO2 from being easily separated from the film. An increase of 

about 15% was recorded in the thermal resistance of the C–TiO2 sample compared to the bare 

CA sample and this could support this argument. The results suggest that the deposition of C–

TiO2 into CA enhanced the polymer chain durability, that could improve the mechanical and 

thermal stability of the film. 

Evaluation of catalytic activity 

Effect of catalyst weight 

Figure 11 illustrates the photocatalytic ability of catalytic mass for the decomposition RR-195 

under visible light irradiation. 

 

Figure 11. Conversion of RR-195 as a function of catalyst weights. Reaction conditions: [RR-

195] = 0.02 g L−1, V = 50 mL, pH = 6.26, ambient temperature. 

The experiment was conducted under normal conditions, the concentration of RR-195 was 

20 ppm (a higher concentration than used by Habibi et al. who used nanocomposite cobalt 

catalyst coating on the Petri to decompose RR-195 with the concentration of 10 ppm (Habibi 

and Rezvani 2015), 50 mL RR-195 in a water solvent, pH of solution = 6.26. The results 
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showed that after 420 min of irradiation, 0.25 g of C–TiO2/CA film had converted 95.3% of 

RR-195, higher than the case of using 0.50 g (84.38%) and 0.1 g C–TiO2/CA film (54.82%). 

Considering these results, it could be clearly seen that when the catalyst weight range from 

0.1 g to 0.25 g, RR-195 conversion drastically increased. Generally, the increase of catalyst 

leads to the increase of active sites and also the contact possibility for reactants with these sites 

on the surface of the materials. As a result, the photocatalytic conversion of the dye increased 

significantly. 

On the other hand, when the catalyst content exceeds the level of saturation, the proton 

absorption is reduced and this excess catalyst will create a secondary glow phenomenon, which 

reduces the contact area of the catalyst, thus lowering the photocatalytic activity. Additionally, 

it can be suggested that when the catalyst mass increases, the catalysts have the ability to shield 

each other, so that the catalyst in the back will not absorb the proton, which reduces the free 

radical. This phenomenon was also seen in other works (Papadam et al. 2007) (Lin et al. 2009; 

Rauf et al. 2011; Sleiman et al. 2007), which suggested that the agglomeration of 

TiO2 significantly changed the efficiency in light absorption. 

Effect of pH 

pH of the solution has a significant effect on the surface charge of TiO2 because it could modify 

the adsorption capacity and then the photocatalytic process that takes place (Bourikas et 

al. 2005; Wang and Ku 2007). There is an isoelectric point (IEP) representing for pH at zero 

zeta voltage that can be used to evaluate the quality of the adsorbent surface. Experimentally, 

for TiO2, the isoelectric point (pHiep) is from 2 to 8.9 (Fernández-Ibáñez et al. 2003; Wang and 

Ku 2007). Nonetheless, the pH of P25 TiO2 ranged from 6.2 to 6.9 (Bourikas et al. 2005; Dutta 

et al. 2004; Fernández-Ibáñez et al. 2003). In fact, the pH value of TiO2 nanoparticles varies 

on the phase, the synthesis process, the material hydration, and the ion concentration in the 
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solution (Allouni et al. 2009; Dutta et al. 2004; Fernández-Ibáñez et al. 2003; Pettibone et 

al. 2008). 

Figure 12 shows the conversion of RR-195 at different pHs versus time. The results exhibited 

that at pH = 3 the ability to convert RR-195 on catalytic surfaces was optimal, reaching 99.15% 

after 60 min, higher than the results obtained at pH = 6.26 (95.53% after 420 min) and at pH = 

9 (48.43% after 420 min). Theoretically, RR-195 reactive dye is anionic, so the conversion 

efficiency is higher at low pH because of the electrostatic attraction between anionic dye and 

positively-charged TiO2 (pH < pHiep) following Equation (2) (Aguedach et al. 2005; Çiçek et 

al. 2007; Huang et al. 2008) 

TiIV–OH + H+ → TiIV–OH2
+, pH < pHiep (2) 

 

Figure 12. Conversion of RR-195 at different pH values. Reaction conditions: [RR-

195] = 0.02 g L−1, V = 50 mL, pH = 3, 6.26, and 9, mcatalyst = 0.25 g, ambient temperature. 

Beside pH which strongly influences the adsorption of the anionic dyes on the catalyst surface, 

the catalytic surface coverage also considerably affects the adsorption in the interface area 

between the catalytic surface and the dye. The anionic RR-195 accumulation in this area 

increases negative charges, which limits the adsorption of additional dye ions (Bhattacharyya 
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et al. 2008). Moreover, when pH solution increase, the amount of negative charge on the 

catalyst surface upsurges that leads to the electrostatic repulsion (pH > pHiep). This 

phenomenon could drastically decrease the absorption of dye ions following Equation (3) 

TiIV– OH + OH− → TiIV– O− + H2O, pH> pHiep (3) 

This could derive from the particle size of the catalyst which toughly rely on the pH of the 

aqueous phase. Li et al. (2010) proposed that at neutral pH, the agglomeration of 

TiO2 nanoparticles in aqueous phase happened. The change of pH to the acidic conditions could 

be a solution for this problem because TiO2 nanoparticles size decreases at low pH. At this pH, 

the electrostatic repulsive forces between particles are minimized and the agglomeration will 

be limited. 

To sum up, pH affects both the surface state of TiO2 and the ionization of the dye as well as 

the particle size that affects the ability to transform RR-195. In this case, pH = 3 was the best 

condition for the degradation of RR-195 in the aqueous phase and this result is completely 

consistent with other studies (Aguedach et al. 2005; Bourikas et al. 2005). 

Catalytic activity of C–TiO2 and C–TiO2/AC film 

The conversion of RR-195 in photocatalytic decomposition reaction using C–TiO2 and C–

TiO2/CA films as catalyst is exhibited in Figure 13. 
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Figure 13. Conversion of RR-195 in the reaction using C–TiO2 (a) and C–TiO2/CA (b) film 

as the catalyst. Reaction conditions: [RR-195] = 0.02 g L−1, V = 50 mL, pH = 3, ambient 

temperature. 

It can be observed that the conversion using C–TiO2/CA was higher than using the C–

TiO2 catalyst after the same period of irradiation. Specifically, after 30 min of reaction, C–

TiO2/CA catalyst for conversion efficiency RR-195 reached 98.02% while the C–TiO2 catalyst 

reached only 68.71%. Then, after 60 min of reaction, with catalyst C–TiO2/CA the conversion 

efficiency for RR-195 reached 99.15% while the C–TiO2 catalyst after 120 min only gave 

91.43%. This could be explained by the C–TiO2 dispersion on the CA film, which increases 

the area of light exposure and the adsorption capacity of RR-195 due to the porous system of 

the CA film (SEM images). Besides, in the case of using only C–TiO2, C–TiO2 was evenly 

dispersed in the whole reaction device, so the exposure to light sources is usually concentrated 

only in some particles on the surface, the remaining particles situated at the reactor bottom 

could not absorb the light, reducing the possibility of ·OH radical generation, thus reducing the 

catalytic activity. 
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Photocatalytic activity after recycling 

The ability to recover and reuse catalysts in photocatalysts plays a very important role as it 

contributes significantly to reducing operating costs in the wastewater treatment process. C–

TiO2 active sites are easily recovered after reaction due to its dispersion on the CA film. C–

TiO2/CA catalyst was regenerated by soaking, washing several times with distilled water and 

then dried naturally for use in evaluating catalytic reusability. The experiment was conducted 

at room temperature, pH = 3, 50 mL RR-195 20 ppm solution and irradiation time of 60 min. 

The conversion of the RR-195 using catalyst regenerated after four consecutive cycles is shown 

in Figure 14. 

 

Figure 14. RR-195 conversion after four cycles of regeneration. Reaction conditions: 50 mL 

solution of RR-195 20 ppm, pH = 3, irradiation time = 60 min, ambient temperature. 

After four cycles of regeneration, the conversion efficiency of RR-195 still reached over 90%. 

Indeed, the conversion after the first cycle was 95.69% and after the 4th cycle was 90.02%. 

Performance has decreased slightly due to the deposition of intermediate products on the 

catalytic surfaces. For example, RR-195 contains sulfonate groups so sulfate ions certainly 

exist in the solution. These ions could bind strongly with the surface of the catalyst and 
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deactivate some parts of the catalyst. As a result, the rate of oxidation reaction was diminished 

(Abdullah et al. 1990). A similar result was observed by Zhu et al. (2009) when they degraded 

Congo Red using chitosan/nano-CdS as the catalyst under visible light. However, the value of 

90.02% is still impressive after several times of regeneration and completely readiness for 

reusability. 

In addition, the photocatalyst film before and after the decomposition of RR-195 was analyzed 

by SEM images, FT-IR, and XRD. The SEM images of samples still kept the morphological 

structure of CA film and the size of C–TiO2 was still at about 30 nm (Figure 15). It shows the 

FT-IR spectra of those two samples showed that the position of peaks were unchanged (Figure 

16(A)). As shown in Figure 16(B), the XRD patterns of the samples in the range 2-theta of 

20°–70°. According to XRD, the characteristic peaks of TiO2 can be clearly observed, 

indicating its structure remains unchanged. The results suggest that the photocatalyst film is 

structure stable during the composition of RR-195. 

 

Figure 15. SEM images of the C–TiO2/CA films before (a1, a2) and after (b1, b2) reaction. 
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Figure 16. (A) FT-IR spectra and (B) XRD patterns of the C–TiO2/CA film before (a) and 

after (b) reaction. 

The results revealed that the activity of the photocatalytic film changed negligibly, which 

indicates that the film is stable and effective for RR-195 decomposition and can be reused after 

up to four cycles. 

 

Conclusions 

C-doped TiO2 photocatalyst has been successfully synthesized from Binh Dinh ilmenite 

and Stevia leaves via the pyrolysis process. The experimental results proved that carbon had 

been successfully doped into the TiO2 lattice by replacing oxygen atoms and creating oxygen 

vacancies, resulting in visible light absorption ability. The grafting of C–TiO2 onto CA film 

improved the photocatalytic activity of C–TiO2 in the decomposition reaction of reactive dyes 

RR-195. The results also revealed that at low pH values there was a significant electrostatic 

interaction of positively charged catalytic surfaces and anionic dyes. The highest value of 

conversion achieved at pH = 3 was 99.15% after 60 min of visible light irradiation. Moreover, 

catalytic activity remained high after four cycles of regeneration. Therefore, high 

photocatalytic activity composite films can be considered promising material for organic 

pollutants treatment. 
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