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ABSTRACT 

Objective: To investigate if the inverse associations of cardiorespiratory fitness (CRF) with all-cause 

and cardiovascular mortality in the general population vary among individuals who are at different pre-

test risk.  

Patients and Methods: CRF was assessed through submaximal bike tests in 58,892 participants aged 

40-69 years who completed baseline questionnaires between January 1, 2006 and December 31, 2010 in 

the UK Biobank study. Participants were categorized into risk categories, which determined allocation 

to an individualized bike protocol. These were “minimal risk (1)”, “small risk (2)” and “medium risk 

(3)” groups (i.e., those who cycled at 50%, 35% of predicted maximal workload and constant levels, 

respectively). We investigated associations of CRF with mortality across different levels of pre-test risk 

and determined whether CRF improves risk prediction.  

Results: During a median follow-up of 5.8 years, 936 deaths occurred. CRF was linearly associated with 

mortality risk. Comparing extreme fifths of CRF, the multivariable adjusted hazard ratios (95% 

confidence intervals) for mortality were 0.63 (0.52-0.77), 0.54 (0.36-0.82), 0.81 (0.46-1.43) and 0.58 

(0.48-0.69) in “minimal risk (1)”, “small risk (2)” and “medium risk (3)” groups, and overall population, 

respectively. Addition of CRF to a 5-year mortality risk score containing established risk factors was 

associated with a C-index change (+0.0012; P=.49), integrated-discrimination-improvement (+0.0005; 

P<.001), net-reclassification-improvement (+0.0361; P=.005) and model difference (likelihood ratio test 

P<.001). Differences in 5-year survival were more pronounced across levels of age, smoking and sex.  

Conclusion: CRF, assessed by submaximal exercise testing, improves mortality risk prediction beyond 

conventional risk factors and its prognostic relevance varies across cardiovascular risk levels. 

Keywords: cardiorespiratory fitness; submaximal test; risk prediction; all-cause mortality; UK Biobank 
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Abbreviations 

CI = confidence interval 

CPX = cardiopulmonary exercise testing  

CRF = cardiorespiratory fitness 

CVD = cardiovascular disease 

HR = hazard ratio 

IDI = integrated-discrimination-improvement  

IQR = interquartile range 

MET = metabolic equivalent 

NHS = National Health Service  

NRI = net-reclassification-improvement 
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Introduction 

Exercise testing with the assessment of cardiorespiratory fitness (CRF) is a procedure which may offer a 

wide prospect in risk assessment. Cardiopulmonary exercise testing (CPX) is considered to be the gold 

standard for assessing aerobic fitness; however, assessment of CRF using maximal CPX protocols with 

or without collection of respiratory gases is challenging in large population-based cohorts. Submaximal 

exercise testing is an easily available method used in measuring CRF and has been demonstrated to have 

good reliability and validity, with a good safety profile.1, 2 There is a wealth of literature which shows 

CRF to be inversely and independently associated with vascular disease and mortality.3-8 Limited 

evidence also suggests that CRF may provide additional prognostic value beyond established risk factors 

in predicting fatal vascular outcomes.3, 9, 10 The inclusion of CRF in classic risk algorithms has been 

proposed, as it may improve the classification of an individuals' risk and optimize prevention.11 

However, its adoption as a vital risk assessment tool in clinical practice has been slow. The majority of 

risk prediction scores still rely on more traditional risk factors and do not consider CRF in their 

equation.12, 13 Though several large-scale observational studies have evaluated the associations of CRF 

with the risk of mortality, most were either based on the general adult 14, 15 or highly select 

populations.16, 17  

 

The relationships between CRF and mortality across different cardiovascular risk categories within the 

general population setting is not well known. In addition, the incremental prognostic information offered 

by the assessment of CRF in risk stratification beyond that of conventional risk factors in these risk 

groups has not been investigated in contemporary populations. The UK Biobank is a large, prospective, 

contemporary cohort study which add to the knowledge of CRF in risk prediction. This unique data 

which employs a safe submaximal exercise testing protocol provides an opportunity to clarify the 
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relationship between CRF and mortality in specific pre-test risk groups within the general population 

based on their level of engagement in exercise testing. Notably, the contemporaneity of this cohort 

compared to previous studies on CRF is relevant: as the treatment of cardiovascular risk factors and 

cardiovascular diseases (CVDs) have markedly changed in the last two decades, resulting in a reduction 

of cardiovascular mortality,18 and the relationship and the prognostic relevance of CRF to overall 

mortality may also have changed. This study aimed to investigate the relevance of CRF on survival 

across different levels of cardiovascular risk and to assess whether information on CRF adds incremental 

value for the prediction of the risk for all-cause mortality beyond established traditional risk factors. 

 

Patients and Methods 

Study population 

The UK Biobank study is a prospective cohort of middle-aged adult men and women recruited from 22 

assessment centres across the UK. Approximately 9.2 million adults registered with the National Health 

Service (NHS) were initially contacted to participate in the study. Between January 1, 2006 and 

December 31, 2010, over 500,000 participants completed baseline questionnaires on prevalent 

morbidities, socio-demographic factors, family history, life-style and environmental factors; had their 

physical measurements taken; and provided biological samples.19 From 2009, the study protocol was 

extended to include submaximal stationary bike tests to assess CRF. Prior to performing the bicycle test, 

study participants were grouped into one of five risk categories (based on their pre-test risk) namely: (i) 

“minimal risk”/category 1 (cycle at 50% level); (ii) “small risk”/category 2 (cycle at 35% level); (iii) 

“medium risk”/category 3 (cycle at constant level); (iv) “high risk”/category 4 (take measurement at 

rest-only); and (v) with no pre-defined category test (electrocardiography (ECG) to be avoided, either 

unsafe or pointless). Full details of exercise testing methodology have been described and justified in the 

UK Biobank Cardio Assessment protocol.20 For the purposes of data completeness, we defined two 
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cohorts for the analysis. The first cohort (“categories cohort”) which was mainly used for descriptive 

purposes, included participants for the analysis by a pre-defined category test: from the initial sample of 

95,153 participants, 17,197 were excluded because they did not fit for any pre-defined category due to 

their clinical status  (Supplementary Table S1), leaving 77,956 individuals in the 4 risk categories 

(categories 1 to 4). From this sample, 1,655 were further excluded due to missing data on one or more 

covariates, leaving 76,301 participants for the analysis (Supplementary Table S2). The second cohort 

(“fitness cohort”) which was used for the main analyses, included 59,763 participants in exercise test 

categories 1, 2, and 3 after exclusion of 6,298 participants for not being able to complete the bicycle test; 

8,245 for having at-rest measurements (category 4); and 3,650 with missing data on variables for 

estimating CRF (Supplementary Table S3). On further exclusion of participants with missing data on 

one or more covariates, there remained 58,892 participants for the analysis (Supplementary Table S4). 

For both cohorts, less than 1% of data was missing for covariates. 

 

Assessment of CRF 

Cardiorespiratory fitness was assessed using a 6-min incremental stationary bicycle ergometer protocol 

(eBike Comfort Ergometer, General Electric, firmware version 1.7) submaximal test with workload 

calculated according to age, height, weight, resting heart rate, and sex. The heart rate was monitored 

before the exercise protocol, throughout the exercise test and during recovery via a four-lead ECG. As 

described above, the participants were categorized into risk groups which enabled assignment to an 

individualized bike protocol and was done to increase the number of participants with exposure 

information and reduce the risk of adverse health events during exercise testing. The participants’ 

predicted maximum workload was calculated using the formula based on age, sex, weight, height and 

resting hear rate.20 Participants in the “minimal risk” and “small risk” categories underwent standard 

bike protocols, which comprised of (i) an initial 15-s seated-rest period; (ii) a 2-min phase at constant 
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power (30 watts for women; 40 watts for men), (iii) a 4-min ramp phase with linear increases in power 

from their initial constant power to their individually assigned peak power (to 50% and 35% of predicted 

maximal workload for ‘minimal’ and ‘small’ risk, respectively), and (iv) a 1-min recovery period. 

Participants in the “medium risk” category cycled at the constant power level for 6 min; they were asked 

to cycle at 60 revolutions-per-minute during all cycling phases. Participants in the ‘high’ risk category, 

who only did a 2-min seated-rest assessment and those ‘ineligible’ for ECG testing were excluded from 

the analysis.  

 

Heart rate data collected during the test were used to calculate CRF using an approach that has been 

described in previous reports.15, 21, 22 Briefly, the work rate at maximal heart rate was estimated by 

extrapolating the pre-exercise heart rate and the heart rate and work rate at the end of the test, to the age-

predicted maximal heart rate (208–0.7 × age)23 assuming a linear relationship. Maximal oxygen uptake 

(i.e. at maximal heart rate) was estimated from the regression equation for the relationship between work 

rate and oxygen uptake [oxygen uptake (in mL kg-1 min-1) = 7 + (10.8 × work rate (W))/body mass 

(kg)], which was then expressed in terms of maximal metabolic equivalents (METs) (where 1 MET = 

3.5 mL kg-1 min-1).  

 

Ascertainment of covariates 

Age was calculated from dates of birth and date of baseline assessment. Medical history (including 

cancer, CVD and diabetes) and lifestyle characteristics were collected from the self-completed, baseline 

assessment questionnaires. Smoking status was categorized into never, former, and current smoking. 

Height and body weight were measured by trained nurses during the baseline assessment visit. Body 

mass index (BMI) was calculated as weight [kg] / height [m]2). Detailed description of assessment of 

confounders have been provided in the UK Biobank online protocol.24 
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Outcome ascertainment 

Our outcome of interest was all-cause mortality. Mortality status was ascertained by linking Biobank 

data with death records from the NHS Information Centre (England and Wales) and the Scottish 

Morbidity Record (full details of linkage procedures are available online.24 Participants were followed-

up between study entry until date of death or date of censoring: 31 January 2016 for England and Wales; 

30 November 2015 for Scotland. Deaths due to CVD and deaths due to cancer were identified on the 

basis of the International Classification of Diseases-10 codes I00-I79 and C00-C97, respectively. 

 

Statistical analyses 

Baseline characteristics of study participants were summarised using descriptive statistics. Flexible 

parametric proportional hazard survival models were used to calculate hazard ratios (HRs) with 95% 

confidence intervals (CIs) for all-cause mortality. Model-based 5-year standardized (adjusted) survival 

estimates were also computed.25 To assess shapes of the associations between CRF and mortality risk in 

each risk group, HRs were calculated within fifths of baseline CRF and plotted against mean CRF levels 

within each fifth. Floating variances were used to calculate 95% CIs for the log HR in each group 

(including the reference group, first fifth/lowest CRF), to allow for comparisons across the groups 

irrespective of the arbitrarily chosen reference category. Hazard ratios were adjusted for age, sex, 

systolic blood pressure (SBP), BMI (nonlinear spline with 5 knots at equally spaced centiles of the 

distribution), smoking status, high cholesterol, number of medications, and history of cancer, CVD, or 

diabetes mellitus. Effect modification by individual characteristics, such as age, sex, and other 

cardiovascular risk markers were assessed using interaction tests. To assess whether adding information 

on CRF to established risk factors is associated with improvement in prediction of mortality risk, we 

calculated measures of discrimination for censored time-to-event data using Harrell’s C-index26 and 
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reclassification.27, 28 To investigate the change in C-index on the addition of CRF, two mortality risk 

prediction models were fitted: one model based on traditional risk factors which are commonly used in 

European CVD risk scores (i.e., age, sex, SBP, smoking, and cholesterol12) and the second model with 

these risk factors plus CRF. Reclassification analysis was restricted to the first 5 years of follow-up 

because of the follow-up time accrued for the Biobank study and was assessed using the net-

reclassification-improvement (NRI)27, 28 and integrated-discrimination-improvement (IDI)27 by 

comparing the model containing conventional risk factors to the predicted risk from the model 

containing conventional risk factors plus CRF. Reclassification analysis was based on predicted 5-year 

mortality risk categories of >2.5%; 2.5 to 3.75%; 3.75 to 5.0%; and >5.0% as previously reported for 5-

year follow-up.29 Given that Harrell’s C-index is based on ranks rather than on continuous data, it can be 

insensitive in detecting differences.30, 31 To avoid discarding potential biomarkers that can be used in 

risk prediction, we complemented the above indices with several others (eg, likelihood ratio test, R2, 

Akaike and Bayesian information criterion), which have been recently suggested to be more sensitive 

when evaluating the added predictive value of a new measurement.32 Importantly, these indices facilitate 

the assessment of the prognostic relevance of CRF across patient-level characteristics. In a sensitivity 

analysis, we further excluded participants with baseline cancer or CVD from the fitness cohort.  All 

statistical analyses were conducted using Stata version 15.1 (Stata Corp, College Station, Texas, USA). 

 

Results 

Baseline characteristics and associations 

Baseline characteristics of individuals according to the 4 pre-test risk categories (“categories cohort”) 

are reported in Supplementary Table S5. Model-based 5-year standardized survival curves 

demonstrated a lower risk of death among individuals who cycled at 50% level (category 1) (Figure 1). 

Comparing individuals in category 4 with those in the category 1, the HR (95% CIs) for mortality was 
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1.63 (1.41 to 1.88) (Supplementary Table S6). Characteristics of participants of the “fitness cohort”, 

overall and by risk categories, are summarised in Table 1. The overall median (interquartile range, IQR) 

age at baseline was 58.1 (50.2-63.6) years and there were 28,319 (48.1%) males. The baseline median 

(IQR) CRF was 10.2 (8.5-12.2), 8.5 (6.9-10.5) and 6.9 (5.7-8.5) METs in the three exercise test 

categories 1, 2 and 3, respectively. During a median (IQR) follow-up of 5.76 (5.66-5.90) years, 936 

participants died, of which 707 (1.4%), 180 (2.4%) and 49 (2.5%) were in category 1, 2 and 3, 

respectively (Table 1).   

In analyses adjusted for conventional risk factors and underlying conditions, CRF showed inverse 

associations with mortality, with more graded associations for category 1 and the overall fitness cohort 

(combined categories 1-3) (Figure 2). A doubling of METs was associated with a mortality HR of 0.71 

(0.60 to 0.85) in the fitness cohort. Table 2 shows the HRs for all-cause mortality for quintiles of CRF 

in each risk group. In multivariable adjusted analyses, comparing extreme fifths of CRF the HRs (95% 

CIs) for mortality were 0.63 (0.52-0.77), 0.54 (0.36-0.82), 0.81 (0.46-1.43) and 0.58 (0.48-0.69) in 

category 1, 2, 3 and combined groups, respectively (Table 2). For category 1 and the overall population, 

CRF was associated with decreased risk of mortality across all categories of CRF. The association was 

only evident in individuals in the highest quintile of CRF for category 2. 

 

CRF and mortality risk prediction in the fitness cohort 

In the overall population, a 5-year mortality risk prediction model containing established risk factors 

(age, sex, SBP, smoking, high cholesterol) yielded a C-index of 0.7160 (95% CI: 0.7002 to 0.7319). 

After addition of CRF measurements to this prognostic model, the C-index increased by 0.0012 (95% 

CI: -0.0021 to 0.0044; P=.49) (Supplementary Table S7). There were no significant C-index changes 

on addition of CRF to models that included information on underlying conditions (number of 

medications and prevalent cancer, CVD, or diabetes). Adding CRF to conventional risk factors yielded 
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an overall NRI of 0.0361 (95% CI: 0.0107 to 0.0615; P=.005) and an overall IDI of 0.0005 (95% CI: 

0.0003 to 0.0008; P<.001) for 5-year mortality prediction (Supplementary Table S8). The IDI 

remained consistent on addition of CRF to subsequent models with information on underlying 

conditions.  

Other indices of added value indicated a significant likelihood ratio test (p<0.001), with a modest 

improvement in prediction when CRF was added to conventional risk factors and underlying conditions 

in the overall population: the fraction of new information given by CRF was between 2% and 3% 

(Supplementary Table S9). The comparison of 5-year survival probabilities obtained from the models 

with and without CRF indicates, on overall, similar individual predictions, with estimated probabilities 

greater than 90% for most participants (Figure 3). The difference in predicted survival between the two 

models, however, varied across levels of risk factors: differences were larger for older participants; in 

former and active smokers; and in males (Supplementary Figure S1). 

The role of age, smoking and sex was also evident when estimating 5-year survival across levels of 

CRF. While for SBP, BMI, and cholesterol the survival was mainly determined by CRF levels, without 

relevant differences across levels of these three risk factors, conversely the impact of age, smoking and 

sex (and in part of number of medications) was not negligible (Supplementary Figure S2). The 

estimated 5-year survival was constant for all levels of CRF at 45 years old but closely related to CRF 

levels at 65 years old; notably, survival was always higher in a 45 years old subject compared to a 65 

years old subject at any levels of CRF; this interdependence between CRF and levels of risk factors was 

also evident for smoking status and sex (Supplementary Figure S2). The impact of risk factors on the 

prognostic relevance of CRF is quantified by the 5-year survival differences across their levels: 

comparing 20 vs 5 METs, there were 2.9 less deaths per 1000 persons at 45 years old and 12.3 less 

deaths at 65 years old (Supplementary Figure S3). Corresponding values for ranges of other risk 

factors were: SBP, 8.9 for 170 mmHg and 8.3 for 130 mmHg; BMI, 7.8 for 35 kg/m2 and 11.2 for 20 
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kg/m2; number of medications, 11.7 for 6 and 6.7 for 0; smoking status, 15.8 for current, 9.2 for former, 

and 6.8 for never smoker; high cholesterol, 7.0 if present and 8.9 if absent; sex, 11.4 for males and 5.8 

for females (Supplementary Figure S3). 

 

Sensitivity analyses 

We performed sensitivity analyses in 51,635 participants from the “fitness cohort”, without CVD or 

cancer at baseline (Supplementary Tables S10 and S11). Indices of discrimination and recalibration 

indicated no improvement in prediction (Supplementary Tables S12 and S13), in line with other 

indices (Supplementary Table S14): likelihood ratio test P=.25; fraction of new information given by 

CRF between 0.5% and 0.7%. Survival analyses indicated, on overall, virtually identical individual 5-

year mortality estimated from the models with and without CRF (Supplementary Figure S4). The 

pattern of 5-year survival differences was consistent with the main analysis (larger differences in older 

participants; former and active smoker; and males; Supplementary Figure S5); yet, as survival 

probabilities were higher (Supplementary Figure S6), differences across levels of risk factors were 

smaller (Supplementary Figure S7). 

 

Discussion 

In this large-scale, population-based prospective cohort study, we found inverse, independent and 

graded associations of CRF with all-cause mortality events in a contemporary adult population. 

Compared to “small risk” and “medium risk” participants, participants in the “minimal risk” group had a 

reduced risk of mortality across all categories of CRF. Addition of CRF to conventional risk factors 

improved the overall discrimination of 5-year mortality risk and, more importantly, the predictive value 

of CRF varied across levels of some relevant risk factors, including age, sex and smoking. 
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This is one of the first large population-based studies showing that risk prediction can be improved in 

a pre-screened relatively low risk population by adding information on CRF, estimated on the basis of a 

submaximal exercise test, to conventional cardiovascular risk factors. CRF is recognized as an important 

marker of both functional ability and mortality, but it is not routinely assessed in either the general or the 

specialized clinical setting. Earlier evidence suggests that CRF might add prognostic value beyond 

established risk factors in predicting mortality risk;3, 9, 10  however, its value as a clinically useful risk 

predictor on top of common CVD risk factors has not been confirmed. Using objectively assessed CRF 

(e.g. exercise capacity by watts) in the current UK Biobank population study, our recent findings 

provide further insight on the value of assessing exercise tests and whether high-risk patients need 

additional interventions based on conventional risk factor levels and CRF. Our study shows that CRF 

provides incremental prognostic value in risk prediction on top of age, sex, SBP, cholesterol and 

smoking, which are established components of conventional cardiovascular risk scores.33 Furthermore, 

the use of CRF assessment in the general population may help in the reclassification of patients into 

appropriate risk categories more accurately, compared to well-known risk models based on conventional 

risk factors only, particularly in males older than 60 years and at higher cardiovascular risk (e.g., 

smoker). 

In the study by Celis-Morales and colleagues,15 which aimed to evaluate whether the association 

between physical activity and mortality could be moderated by CRF and grip strength, the authors 

demonstrated independent associations of grip strength and total physical activity with all-cause 

mortality. In another Biobank study, Kim and colleagues evaluated associations of CRF, grip strength, 

and their combination with all-cause mortality.14 Similarly, previous studies have showed an inverse 

relationship between walking speed, a surrogate biomarker of CRF, and all-cause and cardiovascular 

death.34-36 Though some earlier associations are consistent with our current study, we present first time 

new findings on the associations of CRF with mortality risk across all different pre-determined test 
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categories from 1 to 3, and primarily focusing on the prognostic value of CRF on the top of commonly 

used risk factors and its relevance at different levels of cardiovascular risk. Whereas all previous 

analyses focused on general populations which included a mix of healthy and unhealthy or “high risk” 

participants, our population was restricted to those at the lowest risk (albeit approximately healthy 

participants or without pre-existing disease). Moreover, as the survival differences across levels of risk 

factors and CRF depend on the absolute risk of cardiovascular mortality, the availability of UK Biobank 

was instrumental in clarifying the prognostic relevance of CRF in a contemporary population, given that 

the declining rates of cardiovascular death over recent years has positively changed mortality profiles.  

Increasing physical activity is the major pathway by which CRF can be increased.37, 38 Though about 

half of the variation in CRF is heritable,39 CRF through physical activity is suggested to exert its 

protective effects on mortality via beneficial modulation in cardiometabolic risk markers such as blood 

pressure, lipid and glucose levels, natriuretic peptides, and cardiac troponin T;40-42; anti-inflammatory 

effects;43, 44 improvement in endothelial function;45, 46 regulation of cardiac autonomic function;47 and 

increase in cardiac output, left ventricular function, oxygen utilization, and the formation of collateral 

vessels.42,45,46 Although CRF is a seemingly simple metric, testing an individual's capacity to perform 

physical work characterizes the ability of multiple physiologic processes to occur synergistically in 

order to achieve and sustain high levels of PA. Thus, CRF is significantly correlated with measures of 

pulmonary, cardiovascular, skeletal muscle, and metabolic function. Insufficiencies in one or more 

systems involved in delivering atmospheric oxygen to the mitochondria of the working organ and/or 

removal of metabolic by-products from the body reduces CRF.487  

Our study provides new insights on the beneficial impact of CRF on mortality risk in the general 

population with a relatively low pre-test risk. Over the last two decades, the scientific literature has 

witnessed a growing evidence on the beneficial effects of CPX, which has triggered the release of 

recommendations by several guideline bodies and associations.48,49 Though enormous strides have been 
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made in the evidence base, the application of CPX in clinical practice is not well established, especially 

in general population settings. CRF has not been widely and routinely utilized in clinical practice 

potentially because of previous technical or resource challenges in its measurement; however, with the 

introduction of respiratory gas analyzers and automated data processes, it is relatively easy to analyze 

and compute this measure in real life clinical practice. The current findings suggest that CRF is a 

mortality risk indicator and provides improvement in the prediction of 5-year mortality especially in 

those at low cardiovascular risk; indicating that at least in this general population group, it could be a 

valuable tool to use in clinical practice. In addition, other strengths include the large-scale and well-

phenotyped nature of the cohort and comprehensive analysis which employed cutting-edge statistical 

approaches.  

Some limitations should be considered when interpreting the results. The study design was 

observational and hence causality cannot be inferred.49 The findings of the UK Biobank cannot be 

completely generalised to other populations. There may be a possibility of selection bias due to the 

sample of relative healthy participants who finally accepted in the bicycle exercise tests. Indeed, it has 

been reported that there is evidence of a “healthy volunteer” selection bias within the UK Biobank 

sampling population.50 In addition to other previous results, this study also showed that those 

participants who reported having cardiovascular disorders and were excluded from the exercise test had 

a significantly increased risk of death. However, participants were categorized into risk categories based 

on certain cardiovascular risk and clinical markers which determined the allocation to an individualized, 

safe bicycle protocol or when exercise testing should be avoided or not needed. Furthermore, potential 

confounding factors such as concomitant use of specific CVD medications, were not available.  At least 

partly due to strict pre-test exclusions during the baseline examinations, the numbers of fatal 

cardiovascular event remained low during the 5 years. This was a reason that we could not perform 

detailed cause-specific mortality analyses. The gold standard measurement for CRF remains the 
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measurement of peak oxygen consumption (VO2) by CPX using gas exchange analysis,6 which was not 

employed by the UK Biobank. However, the Biobank study employed an easily available submaximal 

testing for CRF assessment, which has good reliability and validity.1, 2, 21, 22 Submaximal heart rate 

responses are acceptable and commonly used to assess CRF/METs levels (due to proficiency constraints 

and the lack of very sophisticated equipment). Additionally, both treadmill and bicycle tests are readily 

available, useful and reliable ways to define CRF status.21, 22, 511 It is possible that the study participants 

were not adequately suitable for risk prediction analyses given the relatively short follow-up time for all-

cause mortality outcomes. However, our study findings show that CRF has the potential to be used for 

5-year risk prediction in clinical practice. However, its prognostic relevance and clinical meaning could 

likely be higher for 10 years, although this needs to be demonstrated in future studies. Finally, as with 

any observational study design, reverse causation bias could have influenced the findings. 

Conclusions 

Within a contemporary healthy adult UK population, CRF was strongly, inversely, linearly, and 

independently associated with risk of mortality. Addition of CRF to conventional risk factors improved 

mortality risk prediction, particularly in subjects at low pre-test risk. 
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FIGURES 

FIGURE 1: 5-year standardized survival by category of bicycle test 

 

Category 1 (cycle rising to 50% level), green; Category 2 (cycle rising to 35% level), orange; 

Category 3 (cycle at constant level), gold; Category 4 (at-rest measurement), red.  

Survival estimates adjusted for age, sex, systolic blood pressure, body mass index (nonlinear spline), 

smoking status, high cholesterol, number of medications, and prevalent cancer, cardiovascular disease, 

or diabetes at baseline.  

Confidence intervals (areas) are shown for Categories 1 and 4. 

 

 

FIGURE 2: Shape of associations between cardiorespiratory fitness and all-cause mortality, 

overall and for categories of bicycle test 

 

The left-most estimation (1st fifth) is the reference group (hazard ratio, 1).  

Hazard ratios (y-axis) are adjusted for age, sex, systolic blood pressure, body mass index (nonlinear 

spline), smoking status, high cholesterol, number of medications, and prevalent cancer, cardiovascular 

disease, or diabetes at baseline and plotted against the mean of the natural log transformation 

cardiorespiratory fitness within each fifth of its distribution (x-axis). Corresponding values are reported 

in Table 2.    

 

 

FIGURE 3: Individual Post vs Pre 5-year survival 

 

Pre indicates model with age, sex, systolic blood pressure, body mass index (nonlinear spline), smoking 

status, high cholesterol, number of medications, and prevalent cancer, cardiovascular disease, or 

diabetes at baseline.  

Post indicates model Pre + cardiorespiratory fitness. 

 

 


