
                          Fennell, J. G., Tálas, L., Baddeley, R. J., Cuthill, I. C., & Scott-
Samuel, N. E. (2021). The Camouflage Machine: Optimizing
protective coloration using deep learning with genetic algorithms.
Evolution. https://doi.org/10.1111/evo.14162

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1111/evo.14162

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Wiley at
https://doi.org/10.1111/evo.14162 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1111/evo.14162
https://doi.org/10.1111/evo.14162
https://research-information.bris.ac.uk/en/publications/983142ce-3d45-4b53-8255-414953f50a63
https://research-information.bris.ac.uk/en/publications/983142ce-3d45-4b53-8255-414953f50a63


ORIGINAL ARTICLE

doi:10.1111/evo.14162

The Camouflage Machine: Optimizing
protective coloration using deep learning
with genetic algorithms
John G. Fennell,1,2 Laszlo Talas,1 Roland J. Baddeley,1 Innes C. Cuthill,3 and Nicholas E. Scott-Samuel1

1School of Psychological Science, University of Bristol, Bristol, UK
2E-mail: john.fennell@bristol.ac.uk

3School of Biological Sciences, University of Bristol, Bristol, UK

Received March 13, 2020

Accepted December 23, 2020

Evolutionary biologists frequently wish to measure the fitness of alternative phenotypes using behavioral experiments. However,

many phenotypes are complex. One example is coloration: camouflage aims to make detection harder, while conspicuous signals

(e.g., for warning or mate attraction) require the opposite. Identifying the hardest and easiest to find patterns is essential for

understanding the evolutionary forces that shape protective coloration, but the parameter space of potential patterns (colored

visual textures) is vast, limiting previous empirical studies to a narrow range of phenotypes. Here, we demonstrate how deep

learning combined with genetic algorithms can be used to augment behavioral experiments, identifying both the best camouflage

and the most conspicuous signal(s) from an arbitrarily vast array of patterns. To show the generality of our approach, we do

so for both trichromatic (e.g., human) and dichromatic (e.g., typical mammalian) visual systems, in two different habitats. The

patterns identified were validated using human participants; those identified as the best for camouflage were significantly harder

to find than a tried-and-tested military design, while those identified as most conspicuous were significantly easier to find than

other patterns. More generally, our method, dubbed the “Camouflage Machine,” will be a useful tool for identifying the optimal

phenotype in high dimensional state spaces.

KEY WORDS: Camouflage, deep learning, genetic algorithms, optimization, protective coloration.

The study of coloration has illuminated many important phenom-

ena in evolutionary biology such as speciation, hybridization, the

rate and direction of selection, dominance, linkage, sexual se-

lection, mimicry and, more generally, adaptation (Cuthill et al.

2017). However, color patterns (visual textures with multiple col-

ors) are difficult to characterize. While a color can be represented

in a relatively low-dimensional space based on spectral charac-

teristics, photoreceptor sensitivities, or psychophysical measure-

ments (Renoult et al. 2017), a pattern (a combination of visual

texture and one or more colors) is a high-dimensional attribute

(Osorio and Cuthill 2015; Stoddard and Osorio 2019). The prob-

lem of characterization is particularly acute when the interest is

in a color pattern shaped by not only the habitat, but also the

perception of signal receivers with different visual systems. This

will be the case for both camouflage and signals. For example,

a poison dart frog (Dendrobates spp.) may be predated by birds,

reptiles or mammals, each of which have different types of color

vision; furthermore the same color pattern can function as either

warning coloration or camouflage, dependent upon viewing dis-

tance and the predator’s visual acuity (Barnett et al. 2018). Quan-

tifying even a single color pattern may require representation in

multiple perceptual spaces, each appropriate for a different ob-

server with a different visual system (Caro 2014; Renoult et al.

2017). Nevertheless, characterization is just the starting point

for the even greater problem that the scientist faces: searching a

high-dimensional space for an optimal solution that can be com-

pared to that, or those, of evolution. Identifying the match, or

mismatch, between the observed phenotypes and the optima pre-

dicted under different constraints is a key tool in the study of

adaptation.
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Here, we show how residual deep neural networks (RDNNs)

(Abadi et al. 2016), combined with genetic algorithms (GAs), can

be harnessed to classical psychophysical techniques to find differ-

ent optima in high-dimensional spatiochromatic spaces. This al-

lows us to determine the best color pattern for concealment, or for

signaling, in a given habitat for a given observer. To illustrate the

context and better understand the depth of the problem consider,

for example, the study of animal camouflage. Typically, research

has experimentally tested a small set of pattern types relevant to a

specific functional hypothesis, or has identified ecological corre-

lates of extant patterns, that is patterns seen in nature (Caro 2014;

Stevens 2015; Ruxton et al. 2018; Cuthill 2019). For example,

a comparative study of coat colors in felids shows a correlation

with ecology (Allen et al. 2011), but not whether the observed

patterns are the optima for the associated habitats or constrained

by either the pattern-generation mechanisms or pigments avail-

able to mammals. Such studies necessarily omit possible patterns

that evolution has not realized because of phylogenetic or devel-

opmental constraints, and so cannot identify the influence (if any)

of such constraints. Furthermore, without comparison to the op-

timal pattern(s), it is hard to identify the extent to which an ob-

served pattern is subject to trade-offs with other functions such

as, for example, thermoregulation or UV-protection (Penacchio

et al. 2015; Cuthill et al. 2017).

Defining a framework that could characterize patterns in

terms of their visibility in a given context to a given viewer, in an

efficient and biologically relevant way, would be an exceptionally

useful research tool. As well as providing insight into the evolu-

tion of animal camouflage, it would also allow the assessment of

whether the signals that animals use to display, variously, their

qualities to mates or unprofitability to predators, are optimized

for conspicuity. These may be subject to trade-offs that render

maximal conspicuity suboptimal and/or favor tuning of the sig-

nal to particular receivers at particular distances (Bohlin et al.

2008; Barnett and Cuthill 2014; Barnett et al. 2017, 2018). In the

human domain, our method may be useful in the development of

bespoke camouflage for specific contexts, maximizing the visi-

bility of warning signs, or helping to reduce visual clutter due to

infrastructure.

The main purpose of this article is to propose and test a

new method that can identify the best patterns for a given envi-

ronment, to further our understanding into whether selection has

been able to realize optimal solutions for animal coloration. De-

pending on context and requirements, the method is applicable

for finding patterns that will be effective either for camouflage or

to be highly conspicuous. Historically, methods used to evaluate

patterns tend to be based on binary comparison (is the target in

picture A or B?) or to measure detection speed and accuracy, typ-

ically on computer screens. This is useful if there are only a few

patterns to compare, but if the aim is not to constrain the space

of possible patterns artificially then this approach is inadequate.

Our method proposes gathering data, provided by human partici-

pants, on a subset of the parameter space and then, using RDNNs

(Abadi et al. 2016), to interpolate between pattern and detection

time pairs to predict the detection time for empirically untested

patterns.

To make the method highly applicable to real-world sce-

narios, we constructed naturalistic stimuli and, for realism,

projected them on a screen large enough to fill the visual field.

We used backgrounds taken from photographs of both temperate

forest and scrub desert with foreground occlusion layers and

targets inserted into the scenes using blue screening (“chroma

key”), a method commonly employed in the film industry. We

were also keen that the textures on the targets that we used had

biological plausibility. To achieve this, we used two-component

reaction-diffusion equations. These systems, originally proposed

by Turing 1952 and Murray 2003, consist of semilinear parabolic

partial differential equations capable of creating a vast array of

textures including the camouflage patterns of animals (Allen

et al. 2011, 2013). Textures were color mapped using one color

(represented as an RGB triplet) for each of the two components,

creating two-color, natural-looking patterns. We have tested our

method using two color vision systems: trichromatic, repre-

sentative of the human visual system (but which also includes

catarrhine and some platyrrhine monkeys) and dichromatic,

representing most other mammals, which are red-green color

blind (Jacobs 1993). Our method could be used for other visual

systems and, indeed, may be particularly useful here, where

testing of subjects is technically more demanding and neces-

sarily more time consuming. Most insects are trichromats, but

with ultraviolet, “blue” and “green” photoreceptors; birds are

tetrachromats, spanning insect and human spectral wavebands;

and reptiles, amphibians, and fish show diverse types of tetra-,

tri-, di-, and monochromacy (Kelber et al. 2003). As long as the

stimuli can be displayed as desired (e.g., containing UV content)

and the stimulus-space sampled adequately, our method can

interpolate to estimate responses to unseen stimuli.

Experiments involved participants finding an object with a

particular color pattern, from here on referred to as a target. Tar-

gets in our main experiments were constructed using nine dimen-

sions (three for each of the two colors and three for texture), re-

sulting in a parameter space containing a total of 6.18×1017 pos-

sible patterns. Since our parameter space was so large, we were

unable to select targets exhaustively or randomly with sufficient

diversity. Therefore, we implemented a GA to optimize the color

and texture parameters, based on participants’ responses trial by

trial, for hardest or easiest to see stimuli (Mitchell 1998). Our first

three experiments were pilot experiments conducted to validate

the GA using an increasing number of optimized dimensions: the

first experiment optimized for targets with single trichromatic
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Figure 1. Find the spheres. Examples of experimental stimuli shown in experiments 4a-d. From top to bottom each row depicts the

following conditions: trichromatic temperate forest; dichromatic temperate forest; trichromatic semiarid desert; dichromatic semiarid

desert. Columns illustrate examples of hard (left) and easy to see (right) targets. For locations of the hard to see spheres in the left hand

column see Figure S1 in Supporting information.

colors; the next experiment tested the optimizer with greyscale

reaction-diffusion textures; and the final pilot optimized for two

colors, but using a fixed pattern. Our hypothesis was that, over

experimental generations of the GA, the reaction times to targets

would gradually increase or decrease depending on whether tar-

gets were optimized for camouflage or conspicuity, respectively.

Analysis using General Linear Mixed Models (GLMMs) showed

support for a working GA and we then proceeded with our main

experiment.

The main experiment followed a 2 × 2 design with two types

of backgrounds (temperate forest or semiarid desert) and two

color vision conditions (trichromatic or simulated dichromatic);

examples of the stimuli are illustrated in Figure 1. The results of

the main experiment were used to train RDNNs which we then

used to predict reaction times (a measure of difficulty) for a far

greater number of patterns than had been observed by the human

participants. A final experiment was conducted to assess whether

the method had produced an effective camouflage, by testing the

patterns created against a tried-and-tested military pattern: Dis-

ruptive Pattern Material (DPM). DPM was a camouflage used by

British Armed Forces for over 40 years and proven effective in

temperate forest areas (Wynne 1972).

We call our method The Camouflage Machine, where “ma-

chine” is used to identify an effective method (or algorithm) for

calculating a function that emphasizes the input/output relation-

ship of natural images to optimized camouflage patterns, rather

EVOLUTION 2021 3
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than the particular choice of steps used in the process. Use of the

term machine in this way dates back to at least Jevons (1870)

and probably most famously to Turing (1937). The Camouflage

Machine is a complete pipeline for generating biologically re-

alistic color patterns, assessing their detectability against speci-

fied backgrounds for specified visual systems, predicting the de-

tectability of vastly more, unseen, patterns (using deep learning)

and evolving new and better patterns (using reaction-diffusion

equations). This allows determination of the optimal coloration

for a specified visual system, background, pattern-generation

mechanism and function (concealment or signaling), thus, help-

ing determine the constraints under which natural color patterns

have evolved. Furthermore, the method could be generalized to

tackle other sensory modalities (e.g., sound) where the stimu-

lus space can be characterized but the range of possible stimuli

greatly exceeds those which could be tested empirically.

Materials and Methods
PARTICIPANTS

A total of 95 participants (71 females, 24 males) were recruited

from the University of Bristol. All participants had normal or

corrected-to-normal vision. Informed consent was obtained from

all participants as stated in the Declaration of Helsinki. All exper-

iments were approved by the Ethics Committee of the University

of Bristol’s Faculty of Science.

STIMULI

The creation of stimuli used the same approach as Fennell et al.

(2019). Stimuli were created from three layers. A background

layer consisted of a natural scene taken from one of two loca-

tions: Leigh Woods (North Somerset, UK, 2°38.6’ W, 51°27.8’

N) and Tabernas Desert (Almería, Spain, 2°41.3’ E, 37°02.9 N).

A foreground layer was created by using a large blue cotton

screen (1.8 × 2.8 m) shifted across the same background. All

natural images were captured with a Nikon D90 digital SLR cam-

era (Nikon Corp., Tokyo, Japan) at a 4288 × 2848 pixel resolu-

tion, mounted on a tripod. The natural images captured for both

background and foreground were cropped to 1920 × 1080 pixels

prior to further processing. Between the foreground and back-

ground, a target layer was constructed from colors and textures

(see below). We preprocessed the blue screen images to create a

mask for all possible locations for the centers of targets. The de-

rived mask allowed rapid location selection and the introduction

of occlusion in the foreground. A bespoke program, written using

the Psychtoolbox-3 extension (Brainard 1997) for Matlab (Math-

works 2015), was used to construct and present the stimuli, and

to collect experimental data.

During all experiments, stimuli were dynamically con-

structed from the three layers. Backgrounds were randomly

chosen from a pool of 64 images (per geographical location).

Using the associated mask, a location for the target was randomly

selected. Based on the number of backgrounds and potential

target positions there were a very large number of potential

unique stimuli.

The target was always a sphere with a radius of 64 pixels.

After applying colors and texture (specific to the experiments

described below), we added pseudorealistic shading to produce

a spherical look. The shape of a sphere was chosen as it was

straightforward to create and provide with a scene-appropriate

shading. Maintaining the spherical shape throughout the experi-

ments managed the potential problem of a target appearing dif-

ferent from varying angles.

Where dichromatic images were used, representations of the

stimuli were created using the protan equation (Viénot et al.

1999), which simulates a trichromatic representation of an image

perceived by a protanopic dichromat.

TEXTURES

To generate biologically plausible textures, we implemented the

Gray–Scott model of reaction diffusion (Pearson 1993). Full de-

tails are provided in Supporting information.

OPTIMISATION

To optimize the color and texture parameters, we used a GA

based on participants’ responses. Parameters for the first genera-

tion of stimuli were randomly selected from the parameter spaces

for each of the experiments identified below (e.g., three for each

color and three for each pattern), and the time taken to identify

the stimulus recorded (fitness). A new generation was generated

every 50 trials, where individual samples were selected with a

GA using tournament-based selection and tournament size of 4.

Tournament-based selection is an efficient method of selecting

an individual from a population of individuals in a GA (Gold-

berg and Deb 1991; Blickle and Thiele 1996; Mitchell 1998).

Tournament-based selection involves running “competitions” be-

tween members of a population, chosen at random, where the

winner of each competition, the member with the best fitness,

is selected for crossover. A larger tournament size reduces the

probability that weak individuals will be selected (since there is a

higher probability that a stronger individual is also in that tourna-

ment), thereby increasing selection pressure. Offspring, through

the crossover process, received 50% of genes from each parent,

for example, the best two individuals from the tournament, se-

lected randomly. This was followed by a mutation rate of 10%,

which assigned random values (mutations) to genes, randomly.

The GA was run for various numbers of generations dependent

upon the experiments described below.
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GENERAL PROCEDURE

Images were projected on to a 1900 × 1070 mm screen

(Euroscreen, Halmstad, Sweden) from 3100 mm using a

1920 × 1080 pixel HD (contrast ratio 300,000:1) LCD projec-

tor (PT-AE7000U; Panasonic Corp., Kadoma, Japan). For Yxy

measurements of projected colors, see Table S1 in Supporting in-

formation. Participants sat 2 m away from the display screen, so

that the experimental stimulus subtended a visual angle of 50.89o

by 28.59o and the target sphere 3.64o. A central fixation cross on

a mid-grey background was displayed for 2 s prior to stimulus

onset. Participants were asked to indicate on which side of the

screen they saw the target, using the left and right shift keys on a

keyboard. Each trial had a 10 s timeout; if this was reached, the

experiment automatically advanced. The intertrial interval was

set to 2 s. Failure to respond was recorded as a failure and the

experiment moved on the next stimulus. Reaction times were

recorded to the nearest millisecond and errors indicating choice

of the wrong side of the screen were logged.

EXPERIMENTS

For each experiment (unless stated otherwise), half of the partic-

ipants saw targets optimized for increasing difficulty, while the

other half were presented with targets optimized for increased

visibility. Occlusion levels were maintained between 25 and

50% of the target, chosen randomly from a uniform distribution.

Experiment 1 had 10 participants (eight females, two males)

with targets of a single color presented on temperate forest

backgrounds in trichromatic color, optimized over 500 trials.

Experiment 2 had 10 participants (eight females, two males)

featuring monochrome stimuli with evolving textures presented

on temperate forest backgrounds, optimized over 500 trials. Ex-

periment 3 had 10 participants (seven females, three males) who

were shown targets with a fixed disruptive texture and two colors

against a temperate forest background in trichromatic color,

optimized over 1000 trials. In this experiment, all participants

were shown targets optimized to be hard to see.

After we confirmed that the optimizer worked, the main ex-

periment (Experiment 4) followed a 2 × 2 design with two types

of backgrounds (temperate forest or desert scrub) and two color

vision conditions (trichromatic or dichromatic). Forty partici-

pants (seven males, 33 females) were randomly divided between

the four conditions. Each participant completed 1000 trials.

DEEP NEURAL NETWORKS

While the stimuli were generated and the experiments run using

Matlab programs, the RDNNs were written in Python 3 (Python

Software Foundation, Wilmington, DE) using neural network

API Keras (Chollet et al. 2015). Each network was of the same

configuration and consisted of an input layer, a number of resid-

ual blocks, and an output layer. The input layer was of 22 units,

Figure 2. Schematic illustration of the residual deep neural net-

work used in the study.

comprising three dimensions for the pattern color representing

substance A, as described above for the Gray–Scott model; three

dimensions for the pattern color representing substance B in the

Gray–Scott model; three dimensions for the texture; a dimension

for level of occlusion; a two element one-hot array to indicate

the optimization (hardest or easiest); and a 10 element one-hot

array to identify the participant. A one-hot array is a 1 × N

array used to distinguish each category in a set (size N) from

every other category in the set. The vector consists of zeros in

all vector locations except for a single 1 in the location used

to uniquely identify the category. Input colors, both trichromat

and simulated dichromat, were represented as RGB triplets, with

simulated dichromat values consisting of R and G channels of

the same value. An alternative color space, such as CIELab or

HSV, could have been used, but as neural networks form their

own internal representations of distances (Rafegas and Vanrell

2018) the choice of color space is irrelevant.

Residual blocks, each comprised two dense layers, a dropout

layer and a summation layer, containing 768 units each, and an

output layer consisting of a single variable representing difficulty

as reaction time (Fig. 2). We used the built in “rmsprop” opti-

mizer from Keras with the “mean squared error” loss function,

on difficulty, to train the networks, based on a batch size of 128

for 500 epochs.

To establish the number of residual blocks to use, networks

were trained with one, two, four, and six residual blocks. When

training a network model, a proportion of the dataset is “held-

out” for validation. The training loss is the error on the training

EVOLUTION 2021 5
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Figure 3. Mean validation losses between neural networks with one, two, four, or six residual blocks across 500 training epochs were

compared to identify the network with the lowest loss, for each of the four experimental conditions. Networks with the best fit, that is,

lowest losses (per condition) were used to generate patterns for camouflage and conspicuity.

set of data, in the present case calculated using mean squared

error, while the validation loss is the error, calculated in the

same way, after running the held-out validation set through the

trained network. As the number of epochs increases, it is ex-

pected that both the validation and training error will drop. Put

simply, if validation losses are compared across different models

trained with the same data, the model with the lower loss would

be preferred. Here, mean validation losses were calculated for

100 bootstrapped neural networks after 500 training epochs us-

ing mean squared error (Fig. 3). Statistics to compare the effects

of residual block number were calculated using random permu-

tation tests, based on 100,000 resamples. P-values were adjusted

for multiple comparisons with False Discovery Rate (Benjamini

and Hochberg 1995; Bates et al. 2015). We found that neural net-

works with two residual blocks produced significantly lower er-

ror rates compared to networks with one or six residual blocks,

in all four experimental conditions (Table 1). While networks

with two residual blocks produced significantly lower error rates
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Table 1. Comparisons of mean validation losses for neural net-

works with two versus one, four and six residual blocks in all four

experimental conditions.

Condition Comparison P value

Temperate forest trichromat 2 vs. 1 <0.0001
2 vs. 4 0.0054
2 vs. 6 <0.0001

Temperate forest dichromat 2 vs. 1 <0.0001
2 vs. 4 <0.0001
2 vs. 6 <0.0001

Semi-arid desert trichromat 2 vs. 1 <0.0001
2 vs. 4 0.0518
2 vs. 6 <0.0001

Semi-arid desert dichromat 2 vs. 1 <0.0001
2 vs. 4 0.1694
2 vs. 6 <0.0001

compared to networks with four residual blocks in temperate

forest conditions, the difference was not significant in semiarid

desert conditions. Therefore, applying Occam’s razor, we used

networks with two residual blocks as it was simpler.

VALIDATION EXPERIMENT

The top 25 hardest and easiest to find patterns predicted by

our method from the temperate forest trichromat condition

were paired with 25 DPM and 25 averaged patterns (Fig. S2

in Supporting information) for an experimental run with hu-

man participants. One run contained each pattern four times

in a random order (totaling 100 trials), supplemented by four

randomly selected patterns from each condition presented at

the start as practice trials. We recruited 25 participants (15

females, 10 males) for the validation experiment, where each

run was presented to a single participant. In all other aspects, the

experiment was identical to those described above.

Results
The three pilot experiments confirmed that the GA was capable

of optimizing target color and texture for both concealment and

high visibility. GLMMs showed that trials became significantly

harder over time when optimizing for concealment, while opti-

mizing for visibility yielded easier to find targets (Table 1). The

effects of trial number on log-transformed reaction times were

analyzed by fitting general linear mixed models using the lme4

package (Bates et al. 2015) in R (R Core Team 2015). Nested

models were compared using the change in deviance on removal

of the fixed variable for GA generations. A positive estimate

coupled with a significant P-value suggested that targets became

harder to see over the course of the experiment, while negative

estimates indicated that targets became easier to see. It should be

noted that estimates and standard deviations are presented as log-

transformed reaction times. For example, an estimate of 1.86e-4

indicates that the target in the final trial was approximately one

second harder to find than the target in the initial trial. In the main

experiment, the optimizer produced significantly harder/easier

results according to settings (see Table 2, experiments 4A-D),

except in the dichromat desert condition optimized for easiest to

see targets (P = 0.5321); we address this in the discussion below.

RDNNs were implemented in Keras 2.1.2 (Chollet et al.

2015) utilizing the neural network library TensorFlow 1.5.0

(Abadi et al. 2016) and were trained with all of the samples col-

lected from the main experiment. To provide for a measure of

precision in our predictions (an estimate of standard error of the

mean), we created 100 bootstraps of our networks for each of the

four conditions. The bootstrap method is a test or metric that uses

random sampling with replacement. The bootstrap method allows

assignment of measures for precision, defined here in terms of

standard error of the mean and is particularly useful when the

value of interest is, as in the present case, a complicated function

(Efron and Tibshirani 1994). By averaging the bootstrapped net-

works’ predictions we calculate both a data-dependent smoothing

of the reaction time function and an estimate of our certainty of

its estimate. Each network was trained on a random sample of

90% of the data and validated with the remaining 10%.

Predicting the full parameter space poses a computational

challenge due its vastness. We therefore created 100 “artificial

observers” based on each of the 100 models, using a similar GA

to the one discussed above. The artificial observers were used to

generate 1000 optimized samples each. Averaged reaction times

for the combined 100,000 samples were obtained using all 100

models. The top 25 patterns that were identified for each condi-

tion and optimization setting are illustrated in Figure S4 in Sup-

porting information. Figure 4 shows the mean predicted reaction

times of the top 25 patterns per condition by artificial observers.

The top 25 (both optimized for hardest and easiest) patterns

identified in the trichromatic temperate forest condition were

tested together with two additional control patterns: British DPM

camouflage (Wynne 1972) and the mean color obtained by aver-

aging across all woodland backgrounds. DPM was used by the

British Armed Forces, and many other nations, for over 40 years.

We therefore considered it an appropriate control that avoids po-

litical sensitivities created by comparisons to any current military

patterns. Furthermore, the average color of the background was

khaki, which has been used by numerous militaries (including

the British) from the late 19th century, making it also an im-

portant control pattern. Statistics were obtained using GLMMs,

where the model, with the effect of treatment included, pro-

vided a significantly better fit than one without it (�deviance =
65.848, d.f. = 3, P = 3.304e-14). Post-hoc analysis (Tukey HSD)
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Table 2. Details of the General LinearMixedModel analysis to determinewhether the Genetic Algorithm is effective, for all experiments.

Effectiveness was established by comparing �deviance between models with and without the fixed variable for GA generations.

Experiment Color Optimized for N �Deviance Df P Estimate Std

Experiment 1 Trichromat Hardest 5 17.293 1 3.20 × 10−05 1.86 × 10−04 4.46 × 10−05

Easiest 5 22.510 1 2.09 × 10−06 −1.38 × 10−04 2.89 × 10−05

Experiment 2 Monochrome Hardest 5 11.552 1 6.77 × 10−04 3.17 × 10−04 9.32 × 10−05

Easiest 5 317.050 1 <2.20 × 10−16 −1.14 × 10−03 6.21 × 10−05

Experiment 3 Trichromat Hardest 10 101.520 1 <2.2 × 10−16 1.47 × 10−04 1.46 × 10−05

Experiment 4a Trichromat Hardest 5 10.771 1 0.001031 6.53 × 10−05 1.99 × 10−05

Easiest 5 16.633 1 4.54 × 10−05 −5.34 × 10−05 1.31 × 10−05

Experiment 4b Dichromat Hardest 5 47.902 1 4.48 × 10−12 2.10 × 10−04 3.03 × 10−05

Easiest 5 16.612 1 4.59 × 10−05 −6.34 × 10−05 1.56 × 10−05

Experiment 4c Trichromat Hardest 5 7.565 1 0.005951 4.72 × 10−05 1.71 × 10−05

Easiest 5 156.360 1 <2.2 × 10−16 −1.59 × 10−04 1.26 × 10−05

Experiment 4d Dichromat Hardest 5 5.160 1 0.02317 4.83 × 10−05 2.13 × 10−05

Easiest 5 0.390 1 0.5321 −9.02 × 10−06 1.44 × 10−05

Positive estimates indicate an increase in reaction time, that is, patterns became significantly harder to see (optimized for camouflage), while negative

estimates show a decrease in reaction time, that is, easier to see (optimized for conspicuity). Experiments 1–3 are pilot experiments to test optimization

for single trichromatic colors, greyscale reaction-diffusion textures, and a single, fixed pattern with two colors, respectively. Experiments 4a–d are the main

experiment where both colors and textures are optimized.

Figure 4. Mean predicted reaction times of the top 25 patterns

per condition identified by the Camouflage Machine. Error bars

are standard error of the mean. FR3: trichromatic temperate for-

est; FR2: dichromatic temperate forest; DS3: trichromatic semiarid

desert; DS2: dichromatic semiarid desert.

showed clearly (see Fig. 5) that the hardest patterns identified by

our method were significantly harder to detect than DPM (P =
0.0256) and the average color (P = 0.0474). Similarly, the easi-

est patterns according to our method were significantly easier to

detect than DPM (P < 0.001) and the average color (P < 0.001).

Discussion
Evolutionary biologists frequently aim to measure the fitness, or

some surrogate currency, of different phenotypes using behav-

ioral measures, for example, survival, foraging success, detec-

Figure 5. Mean reaction times to conditions tested in the valida-

tion experiment. Error bars are standard error of the mean.

tion, and attractiveness. However, for complex phenotypes, such

as coloration, the state-space can be vast. There are two common

solutions: one is to limit the experiment to a small number of
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observed phenotypes, for example, melanic versus nonmelanic

(Karpestam et al. 2014; Walton and Stevens 2018), or discrete

variants in mimetic accuracy (Bain et al. 2007; Kikuchi and Pfen-

nig 2010). The other solution is to abstract the problem to a range

of simple stimuli that capture the essence of the question but do

not attempt to mimic reality, for example, experiments with artifi-

cial prey to investigate the evolution of aposematism (Lindström

et al. 1999), mimicry (Kazemi et al. 2014), or camouflage (Bar-

nett and Cuthill 2014). Although the use of computer displays,

either with human participants or nonhuman animals in an op-

erant (reinforcement-based) paradigm, can reduce the time costs

and so expand the range of phenotypes evaluated, it is still of

the order of 100’s not the millions that would ideally be investi-

gated. The method presented here, named the Camouflage Ma-

chine, augments participant responses with AI, to vastly increase

the scope of any such investigation.

The Camouflage Machine successfully identified patterns

that were better, in terms of camouflage, than an existing mili-

tary camouflage pattern and the average background color, com-

monly regarded as a good solution for concealment (Fennell et al.

2019). The Camouflage Machine provides an effective and effi-

cient way to search very large parameter spaces to establish op-

timal patterns for camouflage, as well as conspicuity, in various

environments. As illustrated by our simulated dichromat exper-

iments and use of two very different backgrounds, the method

generalizes to different color vision systems and across dissimi-

lar environments. It is important to note that the Camouflage Ma-

chine need not identify a single best concealed/visible pattern, but

can reveal multiple, similarly effective solutions. It is equipped

to deal with the possibility that natural backgrounds contain suf-

ficient heterogeneity that any method, including evolution, may

not find a unique, best solution. Or that other factors (than cam-

ouflage) may determine the optimum within a range of similarly

concealing solutions, for example the cost of pigment synthesis or

trade-offs with thermoregulation. Supporting information Figure

S4 illustrates that there is considerable visual variability between

patterns within conditions, but not in terms of predicted difficulty

(see Fig. 4).

In all cases, we found that the standard error of the predic-

tions was less than 17 ms, constituting what we believe to be

an indistinguishable perceptual difference in the context of visu-

ally complex and nonaffective stimuli (Paul et al. 2012; Ionescu

2016). It is also interesting to note that the predicted mean reac-

tion times for the easiest to find patterns in each condition are

equivalent. We believe this should be expected because a suf-

ficiently salient stimulus in a complex scene should exhibit a

pop-out effect (Treisman and Gelade 1980; McElree and Car-

rasco 1999; Henderson 2007). Although dichromat targets opti-

mized for concealment were significantly harder to detect than

trichromat ones, consistent with our previous findings on uni-

formly colored stimuli (Fennell et al. 2019), it should be stressed

that our results are for trichromats using the visual informa-

tion available to a dichromat, not natural dichromats neurophys-

iologically adapted to, and familiar with, using that level of

information.

Previous studies have used evolving prey (Bond and Kamil

2002, 2006; Sherratt et al. 2007); however, an important benefit

of the Camouflage Machine is that far larger parameter spaces

can be explored, effectively predicting data for unseen stimuli.

Although deep neural networks are capable of modelling a large

parameter space, establishing optima in a principled way remains

a challenge. While it is technically possible to exhaustively pre-

dict every possible pattern in a given parameter space, it is cer-

tainly impractical in a reasonable timescale for the space de-

scribed in this study. Our solution involves combining GAs with

deep neural networks, effectively training “artificial observers.”

Artificial observers allow us to be able to navigate the param-

eter space in a principled way and establish the hardest and

easiest color pattern combinations within reasonable timescales.

For example, the predicted two-color stimuli (optimized for con-

cealment) were able to outperform an existing military pattern

(Wynne 1972) developed specifically for the (temperate forest)

environment used in the experiment. We found that our genetic

optimizer worked well in producing increasingly harder or easier

to find patterns However, in a single condition, dichromat stimuli

optimized for conspicuity in the semiarid desert, an improvement

in pattern detectability across all trials was not found. We believe

the explanation for this stems from the narrower range of patterns

that provide significant levels of concealment; in other words, the

optimizer has to deal with a space where most patterns are highly

visible and so was already at ceiling performance for the majority

of trials.

The Camouflage Machine offers a novel and useful

tool for scientific and societal applications. Biologists will

be interested in testing various hypotheses about the col-

oration of animals in specific environments. For example,

finding an optimal concealing pattern in an environment and

comparing it to the camouflage of animals inhabiting that

environment could reveal more about their visual ecology

(Caro 2014; Cuthill et al. 2017).

The Camouflage Machine is also capable of contributing

to the development of dual-purpose applications, where both

concealment and visibility is simultaneously required. For exam-

ple, distance-dependent defensive coloration (Bohlin et al. 2008;

Barnett and Cuthill 2014), or providing different information to

different viewers. Introducing viewing distance as a variable in

the models would allow identification of patterns that are con-

spicuous close up, but become concealed at a distance (Barnett

et al. 2017, 2018). While we deliberately limited ourselves to

two colors and a simple (spherical) shape, it is clearly possible
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to include a larger number of colors and more complex shapes.

Added to this, measures other than reaction time can be used, for

example, aesthetic preference.

Conclusions
The impracticality of using large arrays of patterns has previously

been a limiting factor in camouflage research and studies of the

adaptive value of coloration more generally (Cuthill et al. 2017).

With the aid of GAs and deep neural networks, we have also

demonstrated a novel approach to psychophysics, carried out us-

ing multiple dimensions. We have achieved this using a modest

number of optimized samples collected from relatively few par-

ticipants. Using the Camouflage Machine, it is possible to iden-

tify clusters of global optima efficiently for both concealment

and conspicuity. The approach should generalize to other prob-

lems where evolutionary biologists want to measure the fitness,

or some surrogate currency, of phenotypes using behavioral mea-

sures (e.g., survival, foraging success, detection, attractiveness),

but where the state space of possible phenotypes is too large to

evaluate directly.
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