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Abstract: Multirotor micro air vehicles can operate in complex and confined environments that
are otherwise inaccessible to larger drones. Operation in such environments results in airflow
interactions between the propellers and proximate surfaces. The most common of these interactions
is the ground effect. In addition to the increment in thrust efficiency, this effect disturbs the onboard
sensors of the drone. In this paper, we present a fault-tolerant scheme for a multirotor with altitude
sensor faults caused by the ground effect. We assume a hierarchical control structure for trajectory
tracking. The structure consists of an external Proportional-Derivative controller and an internal
Proportional-Integral controller. We consider that the sensor faults occur on the inner loop and
counteract them in the outer loop. In a novel approach, we use a metric monocular Simultaneous
Localization and Mapping algorithm for detecting internal faults. We design the fault diagnosis
scheme as a logical process which depends on the weighted residual. Furthermore, we propose two
control strategies for fault mitigation. The first combines the external PD controller and a function of
the residual. The second treats the sensor fault as an actuator fault and compensates with a sliding
mode action. In either case, we utilize onboard sensors only. Finally, we evaluate the effectiveness of
the strategies in simulations and experiments.

Keywords: multirotor; ground effect; sensor faults

1. Introduction

The interest in Unmanned Aerial Vehicles (UAVs) has been growing in recent years. Different types
of UAVs have been used in many applications such as photography, cinematography, surveillance,
remote inspection and emergency response, to mention a few. Among the types of UAVs, rotary-wing
vehicles are one of the most versatile platforms. Particularly, multirotors offer large payload,
high mobility and simple construction.

Micro Air Vehicles (MAVs) equipped with onboard sensors are ideal platforms for autonomous
navigation. Due to payload and energy restrictions, an MAV is equipped with fewer sensors. The
minimal sensor suite for autonomous localization has been reported to be a monocular camera and
an Inertial Measurement Unit (IMU) [1]. However, it is common that an MAV is also equipped with
sensors to measure the altitude. For low-level flights, the altitude is obtained from a combination of a
range sensor and a barometer; this combination is referred to as an altimeter. With a monocular camera
and the altitude measurement, the autonomous flight of a quadrotor has been achieved for indoor
scenarios [2].

Multirotor MAVs can operate in complex and confined environments that are not accessible to
larger drones. Within such environments, a multirotor is likely to move close to horizontal and vertical
surfaces. These situations result in airflow interactions between the propellers and proximate surfaces.
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The most common of these interactions is the one produced by the ground. This phenomenon, known
as the ground effect, is more pronounced in rotorcraft operating in hover and at low speeds. In addition
to the increment of thrust efficiency, it has been reported that the ground effect causes variations in the
pressure altitude reported by the barometer [3].

The ground effect has been well researched for helicopters [4–6]. For multirotors, empirical
models have been developed [7,8]. Furthermore, several control schemes have been proposed for
compensating the ground effect in quadrotors such as adaptive [9], fuzzy [10], sliding mode [7] and
multi-controller [11]. However, the studies above have only considered the case in which there are
no faults in the multirotor. Those controllers are not suitable for operating the vehicle in the case of
actuator or sensor faults.

When there is no fault, a hierarchical control structure, composed by an external
Proportional-Derivative (PD) controller and an internal Proportional-Integral (PI) controller, is
developed for trajectory tracking. In contrast to previous work, we do not use external sensors to
observe system states such as the vehicle’s pose. Instead, we employ a technique known as Monocular
Simultaneous Localization and Mapping (Monocular SLAM) to observe the position and orientation of the
multirotor. The measurement of these states are estimated with metric, thus enabling us to implement
position feedback for the external PD controller; the internal PI controller receives measurements
from the altimeter. Sensor faults occur on the inner loop and we counteract them in the outer loop.
We design the fault detection unit as a logical process that depends on the weighted residual. The
residual compares estimations from the SLAM system with faulty internal readings. When a sensor
fault is identified, the system switches to a control sub-law. We derive two control sub-laws—the first
combines the external PD controller and a function of the residual; the second treats the sensor fault as
an actuator fault and compensates with a sliding mode action. To the authors’ knowledge, this is the
first time that sensor faults caused by the ground effect are tackled utilizing a state estimator based on
monocular SLAM. The latter is a well-known technique in robotics, typically used to estimate a robot’s
pose, but it has never been used to address any issues related to ground effect in multirotors.

The organization of the rest of the paper is as follows. Section 2 presents the related literature
considering the ground effect in multirotors. In Section 3, we propose the fault detection unit and the
control sub-laws. Section 4 discusses the simulation and experimental results. Finally, conclusions are
given in Section 5.

2. Related Work

For safety reasons, full-scale helicopters are not allowed to operate close to obstacles. However,
operating close to the ground is unavoidable. This circumstance has motivated the study of
aerodynamic interactions between the helicopter and the ground while ignoring other surfaces like
walls and the ceiling. As a result, the most known of these interactions is the ground effect. Simplified
models for one rotor in ground effect were proposed, such as the model of Cheeseman [4] and the
model of Hayden [5]. The applicability of these models to micro-rotors has been questioned because
they operate at significantly different Reynolds numbers [12]. On the other hand, the wake flow of a
single micro-rotor in ground effect has been studied thoroughly [6,13,14]. For a small helicopter, an
empirical formula for ground compensation has been proposed [7]. Though simple, the generalization
of this formula to other vehicles is not clear.

The effect of the ground on multirotor MAVs has been acknowledged in several works. An earlier
approach was to model this effect as a variable thrust coefficient, which could be adapted on-line
[9,10,15]. Alternatively, a method for modeling the same effect on a quadrotor used visual feedback
from streamers attached to the ground [8]. Here, the aggregate energy due to the quadrotor down-wash
was calculated and combined with the current throttle to predict the ground effect. The limitation of
this work is that it requires streamers on the ground. In Reference [16], the model of Cheeseman has
been compared to empirical data collected with a micro quadrotor, showing that the ground effect
manifested at a higher height than predicted by the model. Similarly, a series of experiments was



Sensors 2019, 19, 4948 3 of 20

conducted to juxtapose the same model and data obtained from a coaxial quadrotor [17]. Again, the
results pointed to a stronger ground effect than predicted by the theory. Motivated by this, the model
of Cheeseman was extended for a quadrotor in Reference [18]. The authors also introduced the partial
ground effect, which appears when only some of the rotors experience the ground effect. Naturally,
the aforementioned models have been combined with control techniques [19–21].

When a multirotor flies over an obstacle, it is influenced by the ground effect. Considering that a
depth image of the obstacle is available, the impulse affecting a quadrotor that is passing over that
obstacle has been predicted from prior experience [22]. It was demonstrated that the aerodynamic
interactions between the vehicle and the local environment produce consistent effects. The prediction
scheme was nevertheless prone to either overestimating or underestimating these effects. This scheme
was later incorporated into the control loop [23]. With this approach, a significant improvement was
achieved for seen obstacles. For unobserved objects, the disturbance was not properly compensated. A
similar problem was attacked in Reference [18], where the form of the obstacle was restricted to a box.

A state observer incorporates a mathematical model of the quadrotor and can be used to estimate
external disturbances. The estimation can be combined with a feedback controller. This combination
has been reported to improve the control performance when external disturbances exist [24–27].
However, the observer’s estimation deteriorates for small disturbances and large sensor noise. Filtering
the inputs and outputs of the observer can help in this case. The tuning of the filters is intricate and the
filters introduce delays in the estimation, which deteriorates the overall control performance. On the
contrary, stochastic estimation algorithms are designed to handle process and sensor noise at the cost
of increasing the computational burden. An unscented Kalman filter has been presented to estimate
external force and torque for quadrotors [28]. Nevertheless, it is not clear if this approach can be
applied to disturbance rejection.

In Reference [11], we have shown that the position control performance under the ground effect
can be enhanced with a rapid switching control algorithm. The position feedback was provided by
an external motion capture system at a high frequency. We proposed a multi-controller structure
where a classical controller and an extra one with a firm variable action were combined. The latter
was designed to take action when the vehicle was not responding to the former. We treated these
situations as mere disturbances caused by the increment of thrust in the ground effect. However, we
noticed that sometimes the vehicle was suddenly starting to descend without being commanded to do
so. This observation motivated us to check for possible faults in the drone. Indeed, we found spurious
altimeter faults in the ground effect (see Section 4.1). Even though our previous approach did improve
the control performance, there was still room for improvement, especially in avoiding reliance on
external sensors.

The literature mentioned above has only considered the case in which faults do not occur in
the multirotor. In the case of actuator or sensor faults, conventional controllers are not suitable for
operating the vehicle due to significant control errors. In Reference [29], the research on fault diagnosis
and fault-tolerant control for quadrotors was reviewed. Little research has examined the fault diagnosis
and control for multirotors with sensor faults. In particular, the literature comprises faults in sensors
like accelerometers, magnetometers and rate gyros [30–32]. More recently, the work in Reference [33]
has considered faults in the velocity measurement obtained from the Global Positioning System (GPS)
and the Inertial Navigation System (INS). One observer was designed for detection and another to
estimate the sensor fault. Under several constraints, the estimation error was proved to be uniformly
ultimately bounded. The bound is directly proportional to the magnitude of the derivative of the
sensor fault. This fact might limit the effectiveness of such an observer since the sensor faults under
the ground effect tend to have rapid changes. Furthermore, this approach considered faults occurring
in the same loop.

In summary, the literature is lacking in terms of the diagnosis and control of sensor faults for
multirotors. Furthermore, this is the first time that sensor faults induced by the ground effect have
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been reported. Consequently, the first attempts at mitigating these faults are going to be presented in
this paper.

3. Methods and Materials

This section starts with a summary of the multirotor dynamics model. Subsequently, a specific
control scheme is assumed and the stability conditions for the fault-free system are shown analytically.
Finally, the fault diagnosis scheme and two control sub-laws are proposed.

3.1. Multirotor Dynamics

The mathematical model of the multirotor is deduced by introducing a world-fixed coordinate
system {W} and a body-fixed coordinate system {B} (see Figure 1). By using either the Newton-Euler
equations or the Euler-Lagrange formalism, the model of the multirotor can be obtained [34–36].
We selected the following model to describe the multirotor unmanned helicopter:

ẍ(t) = uz(t)(sin ψ sin φ + cos ψ sin θ cos φ)/m

ÿ(t) = uz(t)(sin ψ sin θ cos φ− cos ψ sin φ)/m

z̈(t) = uz(t) cos θ cos φ/m− g

φ̈(t) = uφ(t)/Jx

θ̈(t) = uθ(t)/Jy

ψ̈(t) = uψ(t)/Jz

, (1)

where [x, y, z]T ∈ R3 is the position vector from the origin of the body frame to the origin of the
world frame, [φ, θ, ψ]T ∈ R3 is the vector of Euler angles (roll, pitch, and yaw), m ∈ R is the mass
of the vehicle, diag(Jx, Jy, Jz) ∈ R3×3 is the inertia matrix, g ∈ R is the acceleration of gravity and
[uz, uφ, uθ , uψ]T ∈ R4 is the vector of control inputs.

Assuming that the rotorcraft moves around the hovering state, the model (1) reduces to:

ẍ(t) = θ(t)g

ÿ(t) = −φ(t)g

z̈(t) = uz(t)/m− g

φ̈(t) = uφ(t)/Jx

θ̈(t) = uθ(t)/Jy

ψ̈(t) = uψ(t)/Jz

. (2)

From (2), it is clear that the translational axes are decoupled. Thus, the z-axis dynamic model of
the multirotor can be separated as follows:

z̈(t) = uv(t). (3)

This model implies that any possible gravity is subsumed under the uv term:

z̈(t) =
uz(t)

m
− g = uv(t), (4)

where uz(t) = m[z̈(t) + g] is the actual upward thrust generated by the rotorcraft in Newtons. In
control system theory, it is common to compensate factors such as gravity and the mass into uv, as the
calculation of uz is straightforward and does not depend on any state variables.
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Figure 1. Coordinate frames definition.

3.2. Altitude Control

Before developing the fault-free control scheme, the following assumption is required. Define
zre f (t) ∈ R as the trajectory of reference. This trajectory satisfies that żre f (t) ∈ R and z̈re f (t) ∈ R exist
for all t ≥ 0. This assumption is reasonable since, in practice, the trajectory that a multirotor can track
is limited by the physical attributes of the multirotor.

We follow a cascade control scheme, where a low-level controller is present as the internal loop
and a trajectory tracking controller is running as the external loop [37]. The inner loop controls the
velocity at a high frequency and the outer loop controls the position at a low frequency. When there
are no sensor faults, the formulation of the latter is:

up(t) = kp,1[zre f (t)− z(t)] + kd,1
d
dt
[zre f (t)− z(t)] + żre f (t), (5)

where kp,1 ∈ R and kd,1 ∈ R are controller parameters to be designed. The reference velocity for the
inner loop controller is obtained simply as vre f = up. Then, the formulation of this loop’s controller is:
title = Active Fault-Tolerant Control for a Quadrotor with Sensor Faults,

uv(t) = kp,2[vre f (t)− vz(t)] + ki,2

∫ t

0
[vre f (t)− vz(t)]dτ + kd,2

d
dt
[vre f (t)− vz(t)] (6)

where kp,2 ∈ R, ki,2 ∈ R, and kd,2 ∈ R are controller parameters and vz(t) ∈ R is the z-axis velocity of
the robot.

Define the position and velocity errors as ez = zre f − z and ev = vre f − vz, respectively. The
following two propositions provide the stability conditions for the outer and inner controllers.

Proposition 1. The position error ez, resulting from the application of the external controller (5) to the model (3),
converges asymptotically to zero if kp,1/(1 + kd,1) > 0.

Proof. Given that the internal loop is faster than the external one, we can regard the model from up to
ż as a proportion. Therefore, recalling the form of ez, we have that:

ėz(t) = żre f (t)− up = −kp,1ez − kd,1 ėz = −
kp,1

1 + kd,1
ez. (7)

The characteristic equation of (7) is:

λ +
kp,1

1 + kd,1
= 0. (8)

Since kp,1/(1 + kd,1) > 0., the only root of (8) is negative, which implies that (7) is stable and ez(t)
reaches zero asymptotically.
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Proposition 2. The velocity error ev, resulting from the application of the internal controller (6) to the model
(3), converges asymptotically to zero if kp,2/(1 + kd,2) > 0 and ki,2/(1 + kd,2) > 0.

Proof. For small time steps, it is reasonable to assume constant acceleration between time steps, which
means that v̈re f (t) = 0. Then, recalling the form of ev, we have that:

ėv(t) = v̇re f (t)− v̇z(t)

ëv(t) = v̈re f (t)− u̇v(t) = −kp,2 ėv(t)− ki,2ev(t)− kd,2 ëv(t)
. (9)

Then, the system can be rewritten as:[
ėv(t)
ëv(t)

]
=

[
0 1

− ki,2
1+kd,2

− kp,2
1+kd,2

] [
ev(t)
ėv(t)

]
. (10)

The characteristic equation of (10) is:

λ2 +
kp,2

1 + kd,2
λ +

ki,2

1 + kd,2
= 0. (11)

Since kp,2/(1 + kd,2) > 0 and ki,2/(1 + kd,2) > 0, the real parts of the roots of (11) are negative,
which implies that the system (10) is stable and ev(t) reaches zero asymptotically.

In addition to the conditions in Propositions 1 and 2, the parameters of the external and
internal controllers should be determined according to the real circumstances of the multirotor under
consideration. Particularly, it is common to use only PI control in the inner loop of multirotors [38].
This choice is justified in the stability analysis, where the derivative gain appears, dividing the others,
meaning that it slows down the internal closed-loop dynamics.

3.3. Metric Monocular SLAM

External sensors for localization of the drone are not adequate for complex environments. To
overcome this restriction, we can use a visual SLAM method. Given a monocular onboard camera,
ORB-SLAM2 can be employed to obtain the camera pose and 3D point estimates without metric [39].
To address the scale problem, assuming planar ground and knowing the camera angle and distance to
the ground, we can obtain a synthetic depth image by resolving the ray-ground intersection geometry.
This synthetic image can be coupled with incoming RGB images and then fed to the RGB-D version of
ORB-SLAM2, which generates metric pose estimates [2].

Figure 2 illustrates the side view of the ray-ground geometric configuration. Knowing the height
above ground of the camera h and the camera angle α, we can define a vector n perpendicular to the
ground. Therefore, a vector l departing from the camera’s optical center (x0, y0) and passing through
a pixel (x, y) will intersect the planar ground for some scalar d. The value of d is obtained with the
ray-plane intersection equations:

l =[(x0 − x)/ f , (y0 − y)/ f , 1]T

n =[0,−h sin α, h cos α]T

d =
nT · n
lT · n

, (12)

where f is the focal length. This approach has been evaluated using the Vicon motion capture system
in indoor environments. It was found that the pose error is 2% on average [2]. Figure 3 shows examples
of the system carrying out the metric mapping. In this figure, it is noticed that all map points (red and
black, obtained from the synthetic depth map) are on a three dimensional plane, which corresponds to
the ground.
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Figure 2. Geometric configuration to generate the synthetic depth image.

(a) Top view (b) Back view (c) Side view

Figure 3. Snapshots that illustrate the functioning of the metric monocular SLAM; the top row provides
samples from camera frames with the tracked features (green markers); the bottom row displays three
views of the map with keyframes (blue pyramids, the first one is green) and map points (red ones are
being used for tracking, while black ones are ignored).

The height above ground of the camera can be obtained from the altimeter of the drone.
The camera angle can be set a priori either via hardware or via software if its field of view can
be foveated. We propose using the metric monocular SLAM system because it offers the following
advantages. First, the metric monocular SLAM system is suitable for autonomous navigation, which
means that such a system is likely to be already present in the control architecture. Second, if correctly
initialized, it is robust against erroneous measurements of altitude (see Section 4.1). This property
holds since the original SLAM algorithm at startup creates a keyframe with the first frame, sets its
pose as the origin and creates an initial map from all keypoints with depth information [39]. The
system optimizes the camera pose by finding features matches to the local map. It also optimizes
the entire map by keeping the origin keyframe fixed. Therefore, the initial synthetic depth image
should be generated with faultless altitude readings, which are easily obtained while hovering far
from horizontal and vertical surfaces.

3.4. Fault-tolerant Control

We utilize a fault-tolerant control architecture. Figure 4 illustrates this architecture applied to
our problem. First, we will describe the interior of the fault detection unit. We assume that there are
available three measurements related to the altitude of the drone—range-based (yr), inertial-based (yi),
and vision-based (yv). The first measurement can be obtained from a combination of a range sensor
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(ultrasonic, infrared, laser) and a barometer. The second is commonly obtained from the IMU. The last
is from the vision algorithms which use an onboard camera. These measurements relate to the state as:

yr(t) = z(t) + δ(t)

yi(t) = ż(t)

yv(t) = z(t)

, (13)

in which δ(t) ∈ R is the sensor fault. Let us consider r(t) ∈ R2 as the residual vector defined as follows:

r(t) =

[
r1(t)
r2(t)

]
=

[
yr(t)− yv(t)
ẏr(t)− yi(t)

]
. (14)

Fault-tolerant
controller PI controller �( + �)�� ∫

�� �� �� �̈ �˙

∫

+
�

− �
��

�

�

Fault
detection

����

Internal loop Model of the z axisExternal loop

Figure 4. Fault-tolerant control schematic.

Next, we define the residual evaluation function Jeval(t) ∈ R with the formulation below:

Jeval(t) = [rT(t)Wr(t)]1/2 = ||r(t)||W , (15)

where W ∈ R2×2 is a real symmetric positive definite weighting matrix. In the literature, the fault
diagnosis relies only on the norm of the residual [40]. We propose the weighting matrix to select the
relative importance of the different components of the residual vector. Thus, the fault detection unit is
operated by a logical process:

dlp =

{
Jeval(t) ≤ Jth normal case

Jeval(t) > Jth fault case
, (16)

where Jth ∈ R is the threshold of the fault detection unit and its value can be designed according to the
experience of experts, considering uncertainties and disturbances present in the system.

So far, the detection or diagnosis scheme has been presented. In what follows, we will describe
the general form of the fault-tolerant control law. Then, we will derive two control sub-laws that will
be activated when a sensor fault is identified; the first deals with the sensor fault directly and the
second deals with it as an actuator fault.

In general, the objective is to find a fault-tolerant control law for the external loop like the
following equation:

up(t) =

{
un

p(t) normal case

u f
p(t) fault case

. (17)

Inserting the measurement, un
p will always remain as:
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un
p(t) = kp,1[zre f (t)− yv(t)] + kd,1

d
dt
[zre f (t)− yv(t)] + żre f (t). (18)

The idea is to design u f
p such that the multirotor stays close to the trajectory of the reference

whenever a sensor fault is identified. If the magnitude of the sensor fault is small, the fault will not be
detected by our fault detection unit. In this case, the control law (18) still guarantee the stability of the
multirotor though the tracking error will not stay close to zero.

For the first control sub-law, suppose the inner loop uses a measurement with the form of the
range sensor measurement in (13):

uv(t) = kp,2[vre f (t)− ẏr(t)] + ki,2

∫ t

0
[vre f (t)− ẏr]dτ. (19)

For compensating disturbances produced by sensor faults of the inner loop, we will design an
additive term ua ∈ R for the outer loop. Taking into account the sensor fault and the additive term, uv

becomes:

uv(t) = kp,2ev(t) + ki,2

∫ t

0
ev(t)dτ + kp,2[ua − δ̇(t)] + ki,2

∫ t

0
[ua − δ̇(t)]dτ. (20)

From the previous equation, it is clear that ua should be designed to be equal to δ̇. However, the
time derivative of δ can be computed either with respect to the external loop or to the internal loop. To
justify the selection, we will analyze the perturbation term p = ua − δ̇. Let Tp and Tv be the sampling
periods of the external and internal loops, respectively. We assume that µ = Tp/Tv ∈ Z+. In discrete
form, after one step of Tp, it yields:

p =
k

∑
j=k−µ+1

(
ua −

δj − δj−1

Tv

)
, (21)

where the subscript of δ denote the discrete-time index, in essence, δk = δ(kTv). The expansion of the
summation results in:

p =

(
ua −

δk − δk−1
Tv

)
+

(
ua −

δk−1 − δk−2
Tv

)
+ · · ·

+

(
ua −

δk−µ+2 − δk−µ+1

Tv

)
+

(
ua −

δk−µ+1 − δk−µ

Tv

)
=

Tpua − (δk − δk−µ)

Tv
.

(22)

The last form of p implies that the additive term should be ua = (δk − δk−µ)/Tp. This means that
internal sensor faults can be countered with information available at the time-steps of the external
loop, no matter the values in between (at the cost of an approximation error). This is useful if the
external loop receives little information about the internal one, which is likely the case when working
with off-the-shelf drones. In reality, δ cannot be measured directly. For this reason, we propose the
following expression:

ua(t) = kar2(t). (23)

If both loops were to run at the same frequency, we would have nearly total fault cancellation
with ka = 1 since r2 ≈ δ̇. However, it is important to remember that the inner loop executes faster
than the outer loop, so ua remains constant until a new outer loop command is computed. In this
case, choosing unitary ka will result in an overcompensation of the fault. Moreover, the value of
r2 could be contaminated with noise. Therefore, we propose the range of this parameter to be
0 < ka < 1. Furthermore, this parameter could take different values for positive and negative
disturbances, ka = {k+a , k−a }. In the end, the first control sub-law is given by following equation:
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u f
p(t) = kp,1[zre f (t)− yv(t)] + kd,1

d
dt
[zre f − yv(t)] + żre f (t) + ua(t). (24)

Some literature has examined converting sensor faults into actuator faults through a
transformation [41,42]. For comparison purposes, we consider sensor faults as actuator faults or
disturbances and propose a second control sub-law based on Sliding Mode Control (SMC). Before
going into detail, some remarks are in order. The time response of the internal loop is much smaller
than that of the external loop, which means that the control of velocity is faster than that of the position.
Therefore, we can neglect the response time of the velocity control and consider the model from uv to
z̈ as a proportion. Thence, the model from up to z̈ can be regarded as a double integrator. Also, we

propose to activate the SMC only when a fault is detected, so up → u f
p. Considering disturbances or

the actuator fault, the model of the z axis results in:

z̈(t) = u f
p(t) + c(t), (25)

where c(t) is a composite disturbance term. We assume that |c(t)| ≤ C for some known C > 0. Define
the sliding surface s with:

s(t) = ėz(t) + keez(t), ke > 0. (26)

The second control sub-law becomes:

u f
p(t) = z̈re f (t) + ke ėz(t) + ks sign[s(t)], ks > 0. (27)

Proposition 3. The control (27) drives the position error to the sliding surface (26) and keeps the error on the
surface thereafter in the presence of the bounded disturbance c(t).

Proof. Recalling the position error ez, it follows that:

ëz = z̈re f − z̈ = z̈re f − u f
p − c. (28)

Let us select a candidate Lyapunov function as:

V =
1
2

s2. (29)

Now, let us take the derivative of V as in the usual Lyapunov method:

V̇ = sṡ = s(z̈re f − u f
p − c + ke ėz) = −s[ks sign(s) + c] = −ks|s| − sc. (30)

Taking the absolute value of the second term and considering the disturbance bound, it results in:

V̇ ≤ −ks|s|+ |s|C ≤ −|s|(ks − C). (31)

Suppose ks is chosen appropriately (ks > C), it yields that V̇ < 0 for s 6= 0. Therefore, the region
s = 0 must be invariant.

Throughout the next section, we will refer as (Fault-Tolerant Controller) FTC 1 to the strategy that
adopts (24), and as FTC 2 to the one that uses (27).

3.5. Equipment

For safety, we first tested the proposed control laws in simulation. The whole system was
implemented in Simulink. The block diagram approach makes it easy to combine continuous models
with discrete systems, such as control loops running on computers. In this way, we can select the
sampling period of the external and internal loops individually. Sensor measurements are obtained by
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simply passing the signals of the plant through zero-order-hold blocks. Also, we emulate the range
sensor faults by adding the output of the uniform random number block to the position variable at
specified times and intervals.

In the real-world experiments, we used a Parrot Bebop 2 quadcopter for which a software driver
is available, allowing the usage of simple commands for takeoff, landing and piloting. The Parrot
Bebop 2 weighs 0.5 kg and has a 29 cm frame. It has three-blade propellers measuring 6 inches. This
drone sends and receives data via WiFi. Among the data that the drone sends, we can find the video
stream from its monocular frontal camera and the altitude gained by fusing data from its ultrasonic
sensor and barometer. Also, the camera angle can be controlled via the Software Development Kit
(SDK) (https://developer.parrot.com/docs/SDK3/). Lastly, we obtain the ground truth of the position
with a Vicon Vantage motion capture system (https://www.vicon.com/hardware/cameras/vantage/).
We placed reflective markers on the drone and configured the capture system to deliver measurements
at 100 Hz. This system provides measurements with millimeter accuracy.

4. Results and Discussion

This section presents results comparing the two control sub-laws described in the previous section.
We begin by describing the general behavior of sensor faults induced by the ground effect. Then, the
proposed strategies will be evaluated in simulation. The strategies will also be evaluated in real-world
experiments. For supplementary video see: https://youtu.be/uszilXBFKP4. The project’s code is
available at: https://github.com/AMatusV/mrotor-sfaults-control.

4.1. Altitude Sensor Faults

For low-level flights, the altitude of UAVs is measured with a combination of barometers and
range sensors. The first type of sensor is affected by the ground effect because of the increment in the
air pressure around the vehicle [3]. In general, the second type of sensor has limitations when there
are abrupt changes in the measurement surface. Particularly, ultrasonic sensors, which are perhaps
the most widely used for multirotors, are subjected to other problems such as acoustic noise and air
turbulence (https://www.maxbotix.com/ultrasonic-sensor-operation-uav.htm). For the latter, the best
results are obtained by mounting the sensor as far away from the propellers as possible. Nevertheless,
the presence of the ground induces an upwash encountering the central part of the rotorcraft body
[17,43]. Thus, flying close to the ground may cause sensor faults.

Technical manuals have reported the tendency of rotorcrafts to climb back into the air when close
to the ground (https://docs.px4.io/v1.9.0/en/advanced_config/tuning_the_ecl_ekf.html, http://
ardupilot.org/copter/docs/ground-effect-compensation.html). This is caused when the high-pressure
zone below the drone affects the barometer. The result is a lower reading or sensor fault in pressure
altitude, leading to the inner loop commanding an unwanted climb.

Applying ultrasonic wave propagation as an airflow velocity sensor is not a new concept.
Ultrasonic sensors are used in several applications such as in gas, hydraulic and airflow meters
[44,45]. This reinforces the idea that the ground effect could cause ultrasonic range sensor faults.
Moreover, the authors’ experience has shown the following strange behavior when flying quadrotors
close to the ground—the rotorcraft suddenly descends without being commanded to do so. This
behavior is not in line with the literature about the ground effect.

To demonstrate the general behavior of the altitude faults induced by the ground effect, we
collected data from the quadcopter described in Section 3.5. With a proportional outer loop controller,
we commanded the drone to hover close to the ground. The feedback for this controller is obtained
from the vision algorithm described in Section 3.3. Figure 5 presents the results of three tests in
which sensor faults actually occur. A sensor fault occurs when the altitude reported by the drone,
yr, deviates from the ground truth (Vicon). For example, a sensor fault appeared in Test 1 around
the 40 s mark which last 3 s approximately. In Test 2, a sensor fault appeared between 27 s and 30
s. Remaining deviations in this test did not affect the vehicle significantly and could be ignored by

https://developer.parrot.com/docs/SDK3/
https://www.vicon.com/hardware/cameras/vantage/
https://youtu.be/uszilXBFKP4
https://github.com/AMatusV/mrotor-sfaults-control
https://www.maxbotix.com/ultrasonic-sensor-operation-uav.htm
https://docs.px4.io/v1.9.0/en/advanced_config/tuning_the_ecl_ekf.html
http://ardupilot.org/copter/docs/ground-effect-compensation.html
http://ardupilot.org/copter/docs/ground-effect-compensation.html
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a suitable detection threshold. Test 3 shows a fault between 25 s and 30 s, the deviation was in the
opposite direction than the faults in the other tests. Another fault happened around 42 s which can
be detected by an appropriate weighting of the residual. Deviations detected as sensor faults cause
the inner loop to react, producing a disturbance for the outer controller, see Figure 6. As expected,
the position disturbance is in the opposite direction of the sensor fault.
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(c) Test 3

Figure 5. Position response while hovering close to the ground.

It is important to note that the vision-based measurement agrees well with the ground truth,
even though it relies on the range sensor to estimate the metric pose. The vision algorithm, assuming
planar ground and knowing the camera angle and distance to the ground, constructs a synthetic depth
image, which is coupled to an RGB (Red-Green-Blue) frame. Then, the RGB-D (Red-Green-Blue-Depth)
version of ORB-SLAM2 consumes this data to generate a pose estimate. Our results show that the
SLAM system is robust against range sensor faults when the camera moves mainly along the principal
axis. In this situation, the ability to perform relocalization and reuse the map yield robustness to the
system. For this to happen, the initial synthetic depth image should be generated with faultless altitude
readings, which can be easily obtained while hovering far from horizontal and vertical surfaces.

(a) (b) (c)

Figure 6. Photographs showing the quadrotor in three conditions: (a) faultless, (b) descending due to
an upward sensor fault, and (c) ascending due to a downward sensor fault; we indicate the reference
with a green line; for supplementary video check https://youtu.be/uszilXBFKP4.

Similar to this subsection, in the next ones, we will restrict to examining tests in hover conditions.
This restriction is reasonable since it represents the situation in which the vehicle is most vulnerable to
disturbances. Moreover, this situation extends to missions where the drone is tracking a trajectory in
the x-y plane while maintaining a constant altitude.

4.2. Simulation

In the simulation, besides the double integrator model (4), we considered the following expression
for the rotor thrust increment due to the ground effect:

TIGE
TOGE

=
1

1− R2

16z2

, (32)

https://youtu.be/uszilXBFKP4
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where TOGE is the thrust generated by the rotorcraft flying out of ground effect, TIGE is the thrust when
the rotorcraft is in ground effect, R is the radius of the rotor, and z is the vertical distance of the rotor
to the ground. Specifically, we set R = 4r, where r = 0.0762 m is the radius of one propeller of the
Bebop 2.

The control objective is to track a reference of 0.5 m from initial conditions of 1 m and 0 m/s.
The mass of the vehicle is 0.5 kg and the gravity acceleration is 9.81 m/s2. The values of fault-free
control parameters are kp,1 = 1, kd,1 = 0.1, and kp,2 = ki,2 = 10. The residual weighting matrix is
W = diag(2, 0.5) and the fault detection threshold is Jth = 0.2. For the FTC strategies, the parameters
are k+a = 0.3, k−a = 0.1, ke = 1.7 and ks = 0.01. The total simulation time is 30 s. To simulate sensor
faults, we considered a uniform random generator with range [0.01, 0.2], which is added to the internal
loop measurement at times 5 s to 6 s, 15 s to 17, and 25 s to 28 s. We set the sampling times of the
external and internal loops to 0.05 s and 0.01 s, respectively. Also, we assume that the internal loop
shares its measurement with the external loop every 0.2 s.

Figure 7 shows the outputs of the sensors, the reference and the fault detection scheme. It can
be seen that the sensor faults were properly detected at the time intervals at which the output of the
random generator was added to the internal loop measurement. These graphical results demonstrate
that the fault detector indirectly depends on the control strategy. Nevertheless, all significant sensor
faults were recognized for each control strategy. Also, it can be noted that the fault can be tolerated
after the control sub-laws are adopted.
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Figure 7. Simulation response of three control strategies.

Figure 8 illustrates the control actions of each strategy. As anticipated, the PD output reached
lower magnitudes than the FTC strategies. On the other hand, the FTC 2 scheme attained higher
command magnitudes. This might indicate problems in real implementation. The rapid changes in
commands could cause fast battery depletion. Also, the vision algorithm that estimates the position
could fail due to the fast movements of the camera.
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Figure 8. Control actions of three strategies in simulation.
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Qualitatively, the FTC 2 scheme yielded the best response. For a quantitative comparison, we
computed the Root Mean Square Error (RMSE) and summarized the results in Table 1. Compared to the
PD controller, the proposed strategies improved the error measure in 24.41% and 38.06%, respectively.

Table 1. Error measures of the control strategies in simulation.

PD FTC 1 FTC 2

RMSE 0.0214 0.0172 0.0155

An important take away from the simulation is the advantage of adopting asymmetrical values
for k+a and k−a . The simulation clarified that the integral action of the inner loop provides a negative
offset to compensate for the ground effect. In consequence, negative commands of the external loop
have more impact than positive commands until the integral reaches to zero.

4.3. Experiments

In the experiments, we exploit the features of the Bebop 2 to run the metric monocular SLAM
algorithm to estimate the pose of the camera (refer to Section 3.3), which will be the feedback of the
external controller. For all tests, the camera angle was set to −83◦ with respect to the horizon.

In the tests with the drone, we restrict the x-y position and the yaw angle with PID controllers:
ux(t) = PID(x; t), uy(t) = PID(y; t), and uψ(t) = PID(ψ; t). To preserve the direction in global
coordinates of the x-y projection of the vector generated by the position controllers, we apply the
transformation in (33).

F =
√

u2
x + u2

y

ux,b = F cos
[

arctan
(

uy

ux

)
− ψ

]
uy,b = F sin

[
arctan

(
uy

ux

)
− ψ

] . (33)

The control objective is to track a reference of 0.48 m from an initial condition of 1 m. The values
of fault-free control parameters are kp,1 = 0.6, and kd,1 = 0.2; the drone’s inner loop parameters are
kept as default. The residual weighting matrix is W = diag(1, 0.5) and the fault detection threshold is
Jth = 0.2. For the FTC strategies, the parameters are k+a = 0.5, k−a = 0.2, ke = 1.25, and ks = 0.01. In
practice, we observed variable frequency in the vision feedback (external loop) with an average of 15
Hz (≈ 0.0667 s). Like in the simulation, the Bebop 2 publishes altitude measurements every 0.2 s.

Instead of emulating the sensor faults, we opted for evaluating flights with real faults, in essence,
sensor faults actually occur. Given the apparent stochastic behavior of sensor faults induced by the
ground effect, we collected results from five tests for each control strategy. Only tests with detected
sensor faults and without vision tracking losses were examined. For comparison, we have plotted the
error signals in Figure 9. Overall, the figure reveals that the best qualitative behavior was obtained
with FTC 1. This observation is confirmed with Table 2, where the FTC 1 strategy has the lowest
average RMSE. Taking as reference the PD strategy, the FTC techniques improved the average error
measure in 85.55% and 8.43%, respectively.
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Figure 9. Error response of the control strategies for five tests with the real drone.

Table 2. Error measures of the control strategies with the real drone.

RMSE Test 1 Test 2 Test 3 Test 4 Test 5 Average

PD 0.0492 0.0591 0.0479 0.0460 0.0549 0.0514
FTC 1 0.0266 0.0304 0.0249 0.0317 0.0247 0.0277
FTC 2 0.0215 0.0576 0.0579 0.0417 0.0582 0.0474

For further comparison, we picked one test of each strategy and plotted their signals in Figure 10.
Different from the simulations, in the experiments, a sensor fault may occur gradually (see the first
detection in Figure 10b). In this case, a fault can still be detected (after a delay) since our detector
depends on the position component of the residual. With Jth, we sacrifice the speed at which we can
identify a gradual fault for robustness against noise. On the other hand, it can be observed that the
worst-case scenario from FTC 1 dominates the median response of the other strategies. Unlike in the
simulations, FTC 2 shows error peaks similar to the standard PD strategy.
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(b) FTC 1: Test 4
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(c) FTC 2: Test 3

Figure 10. Sensors, reference and fault detection signals for individual tests.

The control commands for the tests in the previous plots are shown in Figure 11. The same
trend as in simulations can be seen in this figure—the commands of FTC 2 exhibits the highest peaks,
followed by FTC 1. The noise in the measurement and the computation of the unsmoothed first
derivative explain the peaks in the PD commands.
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Figure 11. Control signals for individual tests.

While collecting results for each strategy, we had complications with the vision algorithm. On
one hand, the vision tracking was being lost when the camera approached the ground. On the other,
the vision tracking was being lost when the camera moved too fast. For the PD controller, we were
losing the vision feedback because the commands allowed the drone to move close to the ground.
Whereas for FTC 2, we were losing the feedback because the commands moved the drone rapidly.
FTC 1 reduced the occurrence of this problem by keeping the drone close to the reference while using
moderate energy.

The performance of FTC 2 was significantly different in the experiments and the simulation. One
evident reason is the reduction of parameter ke in the experiments. We lowered this parameter because
we were not obtaining tests without vision feedback losses with higher values of ke. Another evident
reason is the lower variable frequency of the real external loop. Together, these differences explain the
performance degradation of FTC 2 in the experiments.

Focusing on the improvements of the error measure for FTC 1, the improvement was greater
in the experiments than in the simulation. Different from the simulation, sensor faults in real tests
worsen as the vehicle moves closer to the ground. This indicates that the PD controller is expected
to have inferior performance in reality. Moreover, the opportune and moderate commands of FTC
1 somewhat preserved the performance of this strategy. The combined effect is the increase in error
measure improvement for FTC 1 in the experiments.

5. Conclusions

In this article, we have presented a procedure for fault diagnosis and two control sub-laws for a
multirotor with altitude sensor faults. In particular, we have considered sensor faults induced by the
ground effect. In the fault-free case, a hierarchical control composed by an external PD and an internal
PI controller has been developed for trajectory tracking. Exploiting the trend of onboard cameras, we
have considered a vision-based feedback for the external loop based on a well known technique in
robotics known as Monocular SLAM. This is the first time such a technique has been used to address
any issue related to ground effect in multirotors

The fault diagnosis has been achieved using a weighted residual, which is obtained by comparing
estimations from the metric monocular SLAM system against faulty internal readings. The first control
sub-law has been proposed as a combination of the external PD controller and a function of the
residual. The second control sub-law has been based on SMC. The performance of the strategies has
been illustrated in simulations and experiments. It is important to remark that we have adopted
onboard sensors only.

Regarding the results, we have discovered that both control sub-laws overcame the performance
of the standard PD controller in simulations. However, the first control sub-law offered better behavior
in experiments. The performance of the second control sub-law degraded due to a combination of its
rapid switching nature and limitations of the vision algorithm. In the experiments, we have found that
the first control sub-law improved the RMSE in 85% compared to the PD controller.
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Results reported in this work indicate that our fault detection scheme is feasible for altitude faults
induced by the ground effect. To our knowledge, this is the first time that the problem of detecting
internal sensor faults is addressed by using a metric monocular SLAM system. Besides, we have
shown that our first control sub-law enhances the flying performance when hovering close to the
ground. Therefore, this controller can be used to improve missions such as take-off, landing, hovering
and operating near the ground in general.

Future work will focus on considering model uncertainties and sensor noise. These terms could
be dealt with either with a state observer or with a Kalman filter. To compensate for delays in the
measurements, a mathematical model could be used for prediction. Also, rejection of altitude sensor
faults caused by abrupt changes in the surface below the drone should be explored.
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List of Symbols

x, y, z Position in the world-fixed frame
φ, θ, ψ Roll, pitch, and yaw angles
vz Velocity of the z axis
m Mass of the multirotor
g Gravitational acceleration
Jx, Jy, Jz Diagonal elements of the inertia matrix
uz Thrust force
uφ, uθ , uψ Input torques
uv, up Control inputs of acceleration and velocity
zre f , vre f Position and velocity references of the z axis
ez, ev Position and velocity errors of the z axis
kp,1, kd,1 Parameters of the external controller
kp,2, ki,2, kd,2 Parameter of the internal controller
h Height above ground of the camera
α Angle of the camera
f Focal length of the camera
l Vector from the camera’s optical center through a pixel to the ground
n Vector perpendicular to the ground from the camera’s optical center to the ground
d Distance at which l intersects the ground
δ Sensor fault
yr, yv Range-based and vision-based measurements of the altitude
yi Inertial-based measurement
r Residual vector
Jeval Residual evaluation function
Jth, dlp Fault detection threshold and logical variable
Tp, Tv Sampling periods of the external and internal loops

un
p, u f

p Control input of velocity in normal case and fault case
ua Additive control term
ka = {k+a , k−a } Control gain (for positive and negative disturbances) of FTC 1
c, C Composite disturbance term and its bound
s, ke Sliding surface and its parameter
ks Sliding mode control gain of FTC 2
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