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The hidden unstable orbits of maps with gaps

Mike R. Jeffrey & Simon Webber∗

December 18, 2019

Abstract

Piecewise-continuous maps consist of smooth branches separated by
jumps, i.e. isolated discontinuities. They appear not to be constrained
by the same rules that come with being continuous or differentiable,
able to exhibit period incrementing and period adding bifurcations in
which branches of attractors seem to appear ‘out of nowhere’, and able
to break the rule that ‘period three implies chaos’. We will show here
that piecewise maps are not actually so free of the rules governing their
continuous cousins, once they are recognised as containing numerous
unstable orbits that can only be found by explicitly including the ‘gap’
in the map’s definition. The addition of these ‘hidden’ orbits — which
possess an iterate that lies on the discontinuity — bring the theory
of piecewise-continuous maps closer to continuous maps. They restore
the connections between branches of stable periodic orbits that are
missing if the gap is not fully accounted for, showing that stability
changes must occur in discontinuous maps via stability changes not
so different to smooth maps, and bringing piecewise maps back under
the powerful umbrella of Sharkovskii’s theorem. Hidden orbits are also
vital for understanding what happens if the discontinuity is smoothed
out to render the map continuous and/or differentiable.
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1 Introduction

Discontinuous maps have been studied extensively from different motiva-
tions over the last half century. They have been of interest for their novel
bifurcations and robust chaos, which occur in forms not seen in continuous
or differentiable maps. Nevertheless there remain literal gaps in our under-
standing of their periodic attractors — gaps that we shall see here are filled
by unstable orbits. Those orbits have remained ‘hidden’ from view because
they involve iterates that lie on the map’s discontinuity.

Discontinuous — or more precisely piecewise-continuous — maps, com-
monly occur when integrating through a flow from some surface to another
(or a surface back to itself), when unreachable parts of the flow create gaps
in the map’s image. Figures 1-2 illustrate examples in return maps for two-
dimensional flows. An early example of a discontinuous map arose with
the Lorenz semi-flow [15, 32], which is an abstraction of Lorenz’s famous
chaotic flow [24]. Another is the Cherry flow [26, 28, 33], in which the un-
stable manifolds from a saddlepoint split apart a flow on a torus. In each
case the return map to a typical section taken through the flow contains a
discontinuity, as sketched in fig. 1.

Cherry
flow

xn

xn

xn+1

xn+1

x

Lorenz semi-�ow return map

xn

xn+1

Figure 1: Sources of maps with gaps from saddle-like flows: the Lorenz semi-flow
(top) and Cherry flow on the torus (bottom). Example return maps are sketched
on the right.

More recently such maps have undergone a resurgence in interest as
they appear in growing numbers of electronic, mechanical, and biological
applications. These typically involve gaps arising due to a flow that grazes
a surfaces of discontinuity, often an impact or frictional sticking surface, an
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electronic control surface, see e.g. [5, 19, 27], or a switching thresholds in a
sleep-wake cycle [3] or in cell mitosis [18], as sketched in fig. 2.
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Figure 2: Sources of maps with gaps from grazing flows: tangency to a switching
surface in a vector field (top) and to oscillating switching thresholds in a sleep-wake
cycle. Example return maps are sketched on the right.

A defining feature of discontinuous maps is that they are seemingly
able to display period incrementing or period adding cascades, like that in
fig. 3(i), which, with jumps between different branches of attractors, stand in
stark contrast to the continuous patterns of period doubling cascades more
commonly found in differentiable maps, like that in fig. 3(ii).
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Figure 3: Typical bifurcation diagrams showing periodic orbits and chaos in: (i)
a map with a gap, (ii) a differentiable map, obtained by numerical ‘shooting’. In
(i) the period increases incrementally as α increases until giving way to chaos, in
(ii) the period doubles in an infinite cascade towards chaos. The maps generating
these are given in section 2 and section 7.

A key feature of period doubling is the uniform scaling with which a
doubling cascades lead to chaos, characterized by Feigenbaum’s constants
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[8]. By contrast, a period incrementing cascade like fig. 3(i) can typically
jump abruptly from any finite period to chaos (a jump from a period 5 to
chaos is visible at α ≈ 0.75 in fig. 3(i)), and while scalings are known for
specific maps they have no universal values like Feigenbaum’s constants.

A more precise observation is that Sharkovskii’s theorem [30] applies
only to continuous one dimensional maps on an interval. This theorem
has important implications, such as the existence of a period three orbit
implying the existence of orbits of all periods (or ‘period three implies chaos’
[22]), or Coppel’s result [6] (a precursor to Sharkovskii) which implies that
a continuous map with orbits of period higher than one must have an orbit
of period two. A readable short summary and references can be found in
[4]. The presence of a discontinuity in the map entirely unravels all of
these results (uncontentiously since they are formulated only for continuous
maps), or so it seems if we omit the discontinuity from our analysis.

In this article we want to ask why discontinuous maps are permitted to
exhibit such behaviours, and foremost where do the all the missing periodic
orbits go, in the presence of a discontinuity?

We shall show that the key lies not in the property of continuity of a
map as such, but in the property of instability. Instability is a big player
in a discontinuous map, but in ways that are not often discussed. In short
the discontinuity constitues an infinitely steep change in a map, making
it highly unstable there. If there were to exist orbits with iterates on the
discontinuity, they would therefore be highly unstable.

Although the regions of periodicity and chaos in diagrams like fig. 3(i)
are well understood, the role that instability plays in curtailing regions of
periodicity is seldom discussed. The reason that the abrupt jump to chaos
happens in fig. 3(i) is that the domains of stability of attractors shrink
more quickly than their domains of existence, leaving expanses of parameter
space where there exist only unstable orbits, which on the invariant interval
I necessarily result in chaos. Neglecting unstable objects in the map, if
there are any that have indeed been neglected, therefore seems obstructive
to a complete understanding.

The discontinuity itself receives scant attention in key studies, for exam-
ple see [10, 11, 16, 20, 23], and at first this seems a natural omission, because
the map has no unique well-defined value there. The understanding of pe-
riodic orbits, chaos, and bifurcations from these works are extensive (and
entirely correct – given the definition of the map as excluding the gap), but
in hindsight raise the question of whether something is missing from their
dynamical structure. In that hindsight, it will seem strange to have excluded
the discontinuity at all. We will show why the discontinuity, and orbits with
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iterates lying on it, are crucial to consider, and no less sensible than iterates
in regions where a map is well-defined. By revealing ‘missing’ or ‘hidden’
dynamics we mean to show how unexpectedly easy it is to include the gap
explicitly in the definition of the map, to make sense of iterates inside it,
and to discover the dynamics they generate.

For wider discussion of period adding and incrementing, and other bi-
furcations of nonsmooth maps, see e.g. [1, 14, 23, ?] and references therein.
A starting point for various other applications, history, and fundamental
theory can be found in [7, 13].

Our scheme in this paper will be to explicitly include the discontinuity
as a set-valued branch of a map, in such a way that orbits are able to have
(possibly many) iterates lying on the discontinuity. We describe such orbits
as hidden in the sense that they evade our view until we consider iterates
inside the gap, much as objects behind a curtain remain hidden until we peer
behind it, or as square roots of negative numbers appear ‘imaginary’ viewed
from the real line; the term ‘hidden’ is also borrowed from similar attempts
to reveal the obscure dynamics of ‘flows with a gap’, or piecewise-smooth
flows [?, ?]).

Our purpose is to establish the principle of the existence of hidden orbits
and the role they play. To this end we consider only a simple example of
a one-dimensional piecewise linear map with a gap, leaving the tasks of
exploring the full role of hidden orbits in stability and bifurcations, and in
nonlinear and higher dimensional maps, to future work. We introduce the
map with a gap in section 2. In section 3 we describe how we handle the
discontinuity. Section 4 describes the known periodic orbits, and section 5
introduces the previously undescribed orbits necessary to make sense of the
map’s periodic structures, then we relate these to Sharkovskii’s theorem in
section 6. We consider how this relates to differentiable maps in section 7,
and propose further directions of study along with some final remarks in
section 8.

2 The map with a gap

Consider the piecewise-smooth map

xn+1 = f(xn) =

{

f+(xn) if xn > 0 ,

f−(xn) if xn < 0 ,
(1a)
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where

f+(xn) = αxn − µ , (1b)

f−(xn) = βxn − µ− λ , (1c)

in terms of real constants α, β, µ, and λ.
This system represents the approximation of a map of the form (1a) in

the neighbourhood of a discontinuity at xn = 0, where f(x) and d
dx
f(x) are

finite as x → 0, but f takes different values as x approaches 0 from the right
and left. The piecewise-linear map (1) is known as the ‘map with a gap’ (see
[7, 16]).

Being piecewise-linear, the solutions of (1) can be written explicitly.
The constant λ that creates the gap can be scaled to ±1 or 0 without loss
of generality. Here it will be enough to consider constants of values

β < 0 < α < 1 , µ > 0 , λ = −1 , (2)

giving the map sketched in fig. 4.
For ease of illustration this map will be our sole concern here. This

provides some of the richer dynamics of this class of maps (see [7, 16] for
more generality), and will allow us to illustrate the appearance of ‘hidden’
unstable orbits associated with the discontinuity. The principle we establish
concerning the description of the gap and the orbits it generates can be
extended to maps with more gaps, more dimensions, and with nonlinear
dependence on x, for instance by generalizing our results on symbolic orbit
sequences, the key point of which in the inclusion of the discontinuity or ‘gap’
in any symbol sequence. The map (1) with (2), however, will be enough to
establish our point.

For these parameters the interval −µ ≤ x ≤ −βµ − µ − λ is invariant,
bounded by the first two iterates of 0, namely f−(0) = −µ and f+(f−(0)) =
−βµ− µ− λ.

Lemma 2.1. In the map (1) the interval

I = {x : −µ ≤ x ≤ −(β + 1)µ − λ}

is invariant and attracting.

Proof. Since f− is strictly positive, every xn < 0 maps into xn > 0. In
particular, every xn on −µ ≤ xn ≤ 0 maps to −µ − λ ≤ xn+1 ≤ −(β +
1)µ − λ. Since f+ is strictly decreasing, every xn > 0 eventually maps
to some xn+m < 0 on the interval f+(0) = −µ < xn+m < 0, which we
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Figure 4: the map

showed then maps back into x > 0 with xn+m+1 ≤ −(β + 1)µ − λ. So
every orbit must pass through −µ ≤ xn ≤ 0, and is then constrained inside
−µ ≤ xn ≤ −(β + 1)µ− λ.

In the more general language of maps, the interval I is locally eventually
onto, implying the existence of either periodic or chaotic attractors on I.
Standard results on the map with a gap concern these attractors. The known
orbits are those with one iterate on the left branch of the map (x < 0) and
one or more on the right (x > 0). Many orbits of this kind are possible, but
they are clearly organised by period incrementing bifurcations and changes of
stability, giving the branches of periodic orbits seen, for example, in fig. 3(i).
Their existence and stability for general parameter values are well known,
given by stability diagrams like fig. 5. Although this does include unstable
orbits, we will show that a large family of unstable orbits are missing.

It will be useful to define a function

Sp(α) :=

p−1
∑

k=0

αk . (3)

The pth right iterate fp
+(xn) or pth left iterate fp

−(xn) are given by the
functions

fp
+(xn) := αpxn − µSp(α) , (4a)

fp
−(xn) := βpxn − (µ+ λ)Sp(β) . (4b)
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Figure 5: Stability diagram for the map with a gap, showing regions of existence
of stable or unstable orbits (shaded for the first few zones); R and L denotes right
and left iterates of stable orbits, with lower case indicating unstable orbits. This
replicates standard results from e.g. [7, 16]. Plotted for µ = 1/6, λ = −1.

The inverse map is given by

xn−1 = v(x) =

{

v+(xn) if xn > 0 ,

v−(xn) if xn < 0 ,
(5a)

where v is a multi-valued function such that v(f(x)) = x, with

v+(xn) = (xn + µ)/α , v−(xn) = (xn + µ+ λ)/β . (5b)

The pth inverse right or left iterates (i.e. pth iterates of v±) are given by the
functions

vp+(xn) := α−pxn + µα−pSp(α) , (6a)

vp−(xn) := β−pxn + (µ + λ)β−pSp(β) . (6b)

We will denote an iterate of the map by R if it lies in x > 0 and L if it
lies in x < 0. For iterates lying on periodic orbits, a capital R or L denotes
that the orbit is stable, a small r or l denotes that the orbit is unstable.
Unlike previous studies we will also consider iterates that lie in the gap (i.e.
on the discontinuity) at x = 0, and denote these with an o (noting that
these will always lie on unstable orbits due to the infinite gradient at the
discontinuity).

3 The ‘gap’

We need to decide how to deal with iterates of the map that lie on the
discontinuity at x = 0. Omitting points inside the gap has not prevented
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deep study of the map’s bifurcations in previous investigations, but the
omission is neither necessary nor ultimately beneficial.

In many works the map’s value is left undefined at the gap, such as in
[14, 16, 17]. For definiteness some authors select a particular value for f(0),
often either the left or righthand limit, f(0) = f−(0) or f(0) = f+(0), as in
[1, 7, 21], while in [23] both limits are admitted. In studying a logistic-like
piecewise-quadratic map in [2], the midpoint of the gap is chosen, f(0) =
1
2 (f−(0) + f+(0)), yet to complete the resulting period doubling bifurcation
diagram the authors actually admit also the left and right limits, f(0) =
f−(0) and f(0) = f+(0), and thus find unstable orbits with iterates on
the discontinuity. Those unstable orbits are special cases of the orbits we
shall find here, and play a similar role in completing gaps in the bifurcation
diagram. In [2] it appears that taking special values for the value of the
map at the gap (its midpoint and extremities) is sufficient due to the map’s
symmetry, but here we will need more generality.

Rather than choosing any particular value between f−(0) and f+(0) (or
indeed outside this range), it is more useful in general to acknowledge that
there is no definite value for f(0), and build this into our analysis by let-
ting f(0) be set-valued. This follows the philosophy of Filippov’s successful
approach [9] to piecewise-smooth flows.

We can make the graph of f(x) a continuous curve, albeit with f(x)
being set-valued at x = 0, by letting f(0) be a continuous set containing
f±(0). That is, we add to (1a) the equation

xn+1 ∈f0 if xn = 0 , (7)

where f0 ⊇ [f−(xn), f+(xn)] .

This corresponds to drawing a continuous vertical line that joins the vertical
axis intercepts at xn+1 = −µ and xn+1 = −µ − λ in fig. 4. The inverse at
x = 0 is

xn−1 = v0(xn) ≡ 0 if xn ∈ f0 . (8)

The minimal version of this, in the sense that xn = 0 maps to the
smallest possible set of values (interpolating between (xn, xn+1) = (0,−µ)
and (0,−µ − λ)), is given by reducing (7) to

xn+1 ∈ f0 = [f−(xn), f+(xn)] if xn = 0 , (9)

This is the case we will study here, though all of our results carry to the more
general case, with the possibility that there may exist additional unstable

9



orbits if f0 ⊃ [f−(xn), f+(xn)] (when the vertical branch at xn = 0 extends
outside the two vertical axis intercepts in fig. 4).

As a side remark to return to in section 7, one way to handle discontinu-
ities is to consider them as singular limits of smooth functions. In the case
of (1) we can consider a map

xn+1 = Fk(xn) = f(xn) +O (1/k) ,

where f is the function (1), while Fk is a continuous and r-times differen-
tiable function for some r ≥ 0 and k > 0, such that

for |xn| > 1/k , lim
k→∞

Fk(xn) = f±(xn) , (10a)

for |xn| ≤ 1/k , lim
k→∞

Fk(xn) ∈ f0 . (10b)

Thus as k → ∞, a single-valued branch of Fk(x) tends to infinite gradient as
it interpolates between Fk(−1/k) and Fk(+1/k), and so forms the set f(0).
We will explore this interpretation in section 7, showing that the unstable
orbits hidden by the discontinuity persist for finite k.

4 Orbits of the form LR
p or lr

p

The well known periodic orbits of the map with a gap (1) take the form of
one left iterate and p right iterates, with p being any natural number. Let
us review these simple results from [7, 16]. We write such an orbit as LRp if
it is stable and lrp if it is unstable.

A periodic orbit LRp or lrp is a fixed point of the map x∗ = fp
+(f−(x∗))

(using the functions f− from (1c) and fp
+ from (4a)), or some permutation

thereof. It is useful to consider the iterates nearest the gap, given by

x∗L = fp
+(fL(x∗L)) and x∗R = fp−1

+ (fL(f+(x∗R))) . (11)

Their solutions are

αp(µ+ λ) + µSp(α)

βαp − 1
< 0 <

αp−1(βµ+ λ) + µSp(α)

βαp − 1
. (12)

The inequalities in (12) state that the left iterate must lie in x < 0 and the
right iterate in x > 0. Thus (12) defines the domains of existence of these
LRp or lrp type orbits. Because they have one left iterate and p right iterates,
their stability is simply given by

d
dx
f−(f

p
+(x)) = βαp . (13)
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Therefore, since β < 0 < α, these constitute stable LRp orbits for βαp > −1,
and unstable lrp orbits for βαp < −1.

A bifurcation diagram showing the stable LRp orbits as α varies, ob-
tained by numerical shooting, is shown in fig. 3(i). In fig. 6 we re-plot this
analytically, using the conditions (12) to find the range of α values over
which each branch of period p+1 orbits exists, and using (13) to show their
change of stability as βαp passes through −1.

α

x

1.2

0.8

0.4

0

0.2                0.4                0.6                0.8               1.0

LR

LR2 LR3 LR4 LR5

Figure 6: Bifurcation diagram showing branches of periodic orbits of type LRp

(blue) or LRp (green). In all cases the two lowest branches are the curves of x∗L

and x∗R iterates.

5 Orbits of the form or
p and or

q
lr
p

Let us first observe that by including the gap as part of the map in section 3,
the point x = 0 has become an unstable fixed point for the parameter values
0 < µ < −λ, denoted as a trivial orbit o. (This fixed point will not exist
more generally when −µ and −µ− λ both have the same sign, but this will
not prevent the existence of orbits with period greater than one containing
an ‘o’ iterate).

There are numerous other periodic orbits that contain the point x = 0.
These can be considered as homoclinic to the fixed point.

Lemma 5.1 (Hidden unstable orbits). The map with a gap exhibits periodic
orbits of the form orp and orq lrp for 1 ≤ q ≤ p. For a set of parameters
satisfying (2) the maximum period of these orbits increases with α such
that:

1. if there exists an orbit of the form orp, then all orbits of the form ora

exist for 1 ≤ a ≤ p.
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2. if there exists an orbit of the form orq lrp, then all orbits of the form
orplrb exist for 1 ≤ b ≤ q.

Proof. Taking the equations (1), we will show below that the map xp =
fp
+(f0(x0)) has a non-trivial fixed point at x0 = xp = 0, and similarly the
map xp+q+1 = fp

+(f−(f
q
+(f0(x0)))) has a non-trivial fixed point at x0 =

xp+q+1 = 0, for certain values of p and q. These fixed points are non-trivial
periodic orbits of the map (1), whose other iterates can be found by iterating
(1) and (7) from the initial value x0 = 0. Examples of these periodic orbits
are shown for a few different values of α in fig. 7 and fig. 8.

xn

xn+1
α=0.1

α=0.15

xn

xn+1

xn

xn+1

(i)            (iii)

(ii)

α=0.3

LR

LR

or

orlr

LR2

LR2

Figure 7: Periodic orbits of the map with a gap, showing the function f(xn) and its
orbits at parameter values β = −3, µ = 1/6, λ = −1, with: (i) α = 0.1 exhibiting
a stable period two LR orbit; (ii) α = 0.15 exhibiting a stable period three LR2

orbit and an unstable period four orlr orbit, coexisting with the stable period two
LR orbit, with separate images of the three orbits; (iii) α = 0.3 exhibiting a stable
period three LR2 orbit and an unstable period four or orbit. (Stable orbits shown in
blue, unstable orbits in red. We omit the scales for clarity, but they can be inferred
from fig. 6 and fig. 9).
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xn

xn+1 α=0.5

or

LR2

or2lr
or2lr2

LR3

Figure 8: Periodic orbits of the map with a gap, showing the function f(xn) and
its orbits at parameter values β = −3, µ = 1/6, λ = −1, with α = 0.5. Five
co-existing orbits are shown in the main figure (top-left), and the other plots show
these individually: (reading clockwise) a stable period three LR2 orbit, a stable
period four LR3 orbit, an unstable period five orlr2 orbit, an unstable period six
or2lr2 orbit, and an unstable period two or orbit. (Stable orbits shown in blue,
unstable orbits in red).

Because f0 is set-valued, it is easier to use the inverse of f , given by
(5) and (8), and study the fixed point of the inverse map xp = v0(v

p
+(x0))

at x0 = xp = 0, and of the inverse map xp+q+1 = v0(v
q
+(v−(v

p
+(x0)))) at

x0 = xp+q+1 = 0, using the functions (5), (6), and (8).

1. Orbits of the form orp. Assume that x∗p = x∗0 = 0 is a fixed point of
the map xp = v0(v

p
+(x0)). Iterating (5) with (8), the leftmost iterate of this

periodic orbit is simply x∗1 = µ/α, and the rightmost iterate is given by

x∗p =
µ

αp
Sp(α) . (14)

To form a periodic orbit, x∗p must map under (8) onto x∗p+1 = x∗0 = 0,
which requires

µ

αp
Sp(α) ≤ −µ− λ . (15)
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This constitutes the existence criterion for a periodic orbit with rightmost
iterate (14) for a given p. Since µ > 0 and α > 0 by (2), the function
µ
αpSp(α) is increasing with p, so that for a given α we have

µ

α
S1(α) <

µ

α2
S2(α) < · · · <

µ

αp
Sp(α) ≤ −µ− λ , (16)

therefore if a periodic orbit of type orp exists, the condition (15) implies that
periodic orbits of type ora exist for all a = 1, . . . , p.

2. Orbits of the form orq lrp. This is similar to the previous case. Assume that
x∗p+q+1 = x∗0 = 0 is a fixed point of the map xp+q+1 = v0(v

q
+(v−(v

p
+(x0)))).

Iterating (5) with (8), the leftmost iterate of this periodic orbit is again
x∗1 = µ/α, while the rightmost iterate is given again by

x∗p =
µ

αp
Sp(α) , (17)

but if this violates (15), the solution will map under (5) back into x < 0. To
map back into x > 0 this iterate x∗p must lie inside the invariant interval I,
hence x∗p < f−(f+(0)). Combining this with violating (15) gives

−µ− λ ≤
µ

αp
Sp(α) ≤ −βµ− µ− λ . (18)

This constitutes the existence criterion for a periodic orbit with rightmost
iterate (17) for a given p and q.

Now we require that the iterates f b
+(f−(f

p
+)0))) lie in x > 0, that is,

0 < vq+(v−(
µ

αp
Sp(α))) <

µ

αp
Sp(α) ≤ −βµ− µ− λ , (19)

which expands as

1

αq

{( µ

αp
Sp(α) + µ+ λ

)

/β + µSq(α)
}

<
µ

αp
Sp(α) ≤ −βµ− µ− λ . (20)

Similarly to the previous case, since the function 1
αq §q(α) is strictly increas-

ing with q, for a given α we have

0 < α−1
{

(
µ

αp
Sp(α) + µ+ λ)/β + µS1(α)

}

< α−2
{

(
µ

αp
Sp(α) + µ+ λ)/β + µS2(α)

}

< . . .

< α−q
{

(
µ

αp
Sp(α) + µ+ λ)/β + µSq(α)

}

<
µ

αp
Sp(α) ≤ −βµ− µ− λ , (21)
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therefore if a periodic orbit of type orq lrp exists, the condition (18) implies
that periodic orbits of type orplrb exist for all b = 1, . . . , q.

Figure 9 shows the theoretical iterates of these unstable orbits homoclinic
to x = 0, given by (14) and (17) and their iterations under the map. They
are shown overlayed with the well known orbits of form LRp or lrp from
section 4.

α

x

1.2

0.8

0.4

0

0.2                  0.4                   0.6                   0.8                   1.0

fig7.(i)   (ii)               (iii)                   fig.8

Figure 9: Stable and unstable orbits of the map with a gap, including unstable
orbits homoclinic to the gap. (Stable LRp orbits shown in blue, unstable lrp orbits
in green, unstable orq lrp orbits in red).

This reveals that what appear to be unbalanced appearance and disap-
pearances of periodic orbits are, in fact, bifurcations that are qualitatively
similar to the bifurcations familiar from differentiable maps. The curves of
attractors and repellors in fig. 9 (and similar diagrams for other parame-
ters, but we show just the one example here) meet in fold-like annihilations
of stable/unstable branches, or in pitchfork-like meetings of one stable and
two unstable branches producing a single unstable branch. For example,
at α ≈ 0.2 the four branches of an unstable period four orlr orbit, and two
branches of a stable period two LR orbit, collide in a pitchfork-like fashion
to produce an unstable period two or orbit (the LR2 orbit plays no part in
the bifurcation).

The precise shape of the curves in fig. 9, for instance their local growth
rates with the bifurcation parameter, are nevertheless markedly different
from differentiable maps. Clearly the precise forms of these bifurcations
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deserves further study, and this is already underway, but as is common in
maps (or similarly in flows) with discontinuities, the task is a lengthy one.
The lack of continuity prevents all systems capable of exhibiting any given
bifurcation being reduced to a single topological normal form. Instead, many
normal forms will be required to represent the different instances of folds
(and pitchforks, cusps, etc.) in maps with distinct tolopologies. This is
obviously beyond our scope here.

As we come to understand these bifurcations in more detail, we will
then be able to understand more precisely their relation to differentiable
maps. To give some hints in this direction we show in section 7 how objects
corresponding to hidden orbits persist in a continuous or differentiable map,
and at the end of the paper we look briefly at what happens to the bifurcation
diagram fig. 6 as we transition between a map that is discontinuous and one
that is differentiable.

What fig. 9 shows is that orbits with iterates in the gap play an important
role. Whether or not we regard them to be sensible orbits in any strict
sense, their significance lies in organising the surrounding dynamics and
bifurcations, in particular ensuring that stable or unstable orbits do not
pop arbitrarily in and out of existence without branches of unstable hidden
orbits appearing to balance any changes of existence or stability.

6 Reviving Sharkovskii

Since the unstable orbits of the forms orp and orq lrp are homoclinic to the
fixed point, they can be concatenated in infinitely many ways to form orbits
of higher period. Thus, including the fixed point o, if there exist orbits of
type

o , orsi , and orqj lrpk ,

for some sets of integers, s1, s2, . . . , q1, q2, . . . , p1, p2, . . . , then there also
exist orbits whose sequences are any arbitrary concatenation of these. Since
the unit-length sequence o is included in this, orbits of any higher period
can be formed, consistent with the outcome of Sharkovskii’s theorem [30].

Take the three cases in fig. 7:

(i) There exists a stable period two LR orbit. If Sharkovskii’s theorem did
apply then there should also exist a fixed point, which is provided by
the unstable point o where the vertical branch crosses the diagonal.

(ii) The standard theory reveals stable orbits of period two, LR, and period
three, LR2. If Sharkovskii’s theorem did apply then it would imply the
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existence of orbits of all periods. A non-trivial period four orbit, orlr, is
indeed found, along with the unstable fixed point o. All other periods
result from concatenations of these.

(iii) The standard theory reveals a stable orbit of period three LR2. Again
if Sharkovskii’s theorem did apply then it would imply the existence
of orbits of all periods. A period two orbit, or, is found in this case,
along with the unstable fixed point o, and all other periods result from
concatenations of these.

Though the concatenations in (ii) and (iii) seem somewhat trivial, as they all
overlap via the homoclinic connection to o, nonetheless they generate unique
symbol sequences of all periods. Their existence restores Sharkovskii’s result,
albeit in a rather degenerate fashion.

More general maps might not have a fixed point o, but still possess
higher period hidden orbits with an iterate o on the discontinuity, and our
conjecture is that these will similarly ensure the satifaction of Sharkovskii’s
theorem. This does, of course, remain to be proven, and we make further
remarks in section 8.

The result becomes particularly meaningful when we seek to relate dis-
continuous maps to their continuous counterparts — which must satisfy
Sharkovskii’s theorem — in the next section.

7 Smoothing the map – bringing the ‘gap’ to life

Are hidden orbits, with an iterate on the gap, in any way real and mean-
ingful, or are they mere figments of taking the map to be set-valued at the
gap? Besides their role in bifurcation diagrams like fig. 9, or in extending
Sharkovskii’s theorem in section 5, there is another, perhaps more direct
way to see that hidden orbits are realisable, and that is by smoothing the
map.

A device that has long been used to remove some of the conceptual
uncertainties of dealing with a discontinuity is to represent the jump as the
(singular) limit of a continuous or differentiable process. A map with a
discontinuity at some point x = ξ, say

xn+1 = f(xn) with lim
k→∞

f(x± 1
k
) = f±(ξ) , (22)

can be made continuous by introducing some monotonic branch f0(x) in
|x−ξ| ≤ 1/k such that xn+1 = f0(xn), with the map unchanged for |x−ξ| >
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1/k. If we call the new map xn+1 = Fk(x) then it must obey

xn+1 = Fk(xn) such that lim
k→∞

Fk(xn) = f(xn) , (23)

where Fk(x) is r-times differentiable in x for some r ≥ 0.
We will show a couple of examples here to illustrate how the orbits from

section 5 persist, remaining as unstable periodic orbits still close to, but no
longer homoclinic to, the map’s fixed point. Themap with a gap is unimodal,
and if we take k sufficiently small then it begins to resemble a tent map (if
made continuous piecewise-linear) or a logistic map (if made differentiable).

The simplest continuous (r = 0) example is a piecewise map, such as

xn+1 =











f+(xn) if kxn > +1
2 ,

f0(xn) if k|xn| ≤
1
2 ,

f−(xn) if kxn < −1
2 ,

(24a)

where

f0(xn) = (12 + kxn)f+(xn) + (12 − kxn)f−(xn) . (24b)

In fig. 10 we use this to regularize the map for the parameters in fig. 7(ii),
showing the first few periodic orbits.

xn

xn+1

Figure 10: Piecewise-linear continuous approximation of fig. 7(ii), with β = −3,
µ = 1/6, λ = −1, α = 0.15, and k = 84. The periodic orbits of type LR, LR2, and
orlr, are clearly identifiable.

An example of a differentiable map (r ≥ 1) is given by

xn+1 =
1+φk(xn)

2 f+(xn) +
1−φk(xn)

2 f−(xn) , (25a)
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where φk(x) is any differentiable sigmoid function and k > 0, such that
d
dx
φk(x) > 0 for k|x| < 1 and

lim
k→∞

φk(xn) = sign(xn) . (25b)

In fig. 11 we use this to smooth the map for the parameters in fig. 7(ii),
again showing the first few periodic orbits.

xn

xn+1

Figure 11: Analytic approximation of fig. 7(ii), taking φk(x) = tanh(kx) with
β = −3, µ = 1/6, λ = −1, α = 0.15, and k = 84. The periodic orbits of type LR,
LR2, and orlr, are clearly identifiable.

As k → ∞, the systems (24) and (25) each tend to the map with a
gap as defined by (1) and (9). The point x = 0 then maps to the whole
interval between f+(0) and f−(0), consistent with our inclusion of the gap
as set-valued in (9).

The persistence of the LR and LR2 stable orbits, and the orlr unstable
orbit, can be clearly seen in both figures 10 and 11, where o now denotes an
iterate on the branch of the map with gradient of order k. Numerous other
stable and unstable periodic orbits can also be found with iterates crowded
closely to the orlr orbit (not shown), and indeed since Sharkovskii’s theorem
now holds there must be infinitely many such orbits.

Ultimately, as we let k → ∞, these infinitely many orbits must go some-
where. What one observes is that they crowd up until, when k becomes
infinite and the map becomes discontinuous, they lie on top of each other
as homoclinic orbits to the unstable fixed point, consistent with our results
from section 5 to section 6, providing an interpretation of overlapping con-
catenations of hidden orbits as the singular limits in which many unstable
orbits of a continuous map crowd together.
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8 Closing Remarks

Although Sharkovskii’s theorem does not strictly apply to a map with a
discontinuity, by considering the map to be set-valued across the gap we
essentially restore continuity (albeit in a set-valued sense), and recover
Sharkovskii’s result. This suggests that Sharkovskii’s theorem might be ex-
tended to discontinuous maps by amending its proof to permit a set-valued
function.

If the existence of these unstable orbits has come to light in combinatoric
literature, then the authors are not yet aware of such a result, and they have
not come to light in recent work from the perspective of discrete dynamical
theory. Differential inclusions — which can be used to study ‘flows with
a gap’ (i.e. piecewise-smooth flows) — have been studied in literature at-
tempting to extend Sharkovskii’s theorem to ordinary differential equations
[?, ?, ?, ?, ?], and it is possible that hidden orbits may form part of the
picture in those cases too by applying the ideas of [?, ?] which introduced
the notion of hidden dynamics more generally.

Unstable orbits are, of course, harder to pinpoint in numerical analyses
than stable orbits. Their role in connecting period doubling cascades in
differentiable maps was considered in [29]. Here we have shown that unstable
orbits can be identified with iterates lying on a discontinuity, and these help
make sense of the bifurcation structures of discontinuous maps, showing how
closely they fit with intuition learned from continuous maps.

We have only shown an example of orbits passing through the gap, and
left a more general theory to future work. It is tempting to consider other
particular cases, for example the obvious counter-example to Sharkovskii’s
theorem,

xn+1 =

{

xn + 1 if xn < 2 ,

xn − 2 if xn ≥ 2 ,
(26)

on the interval 0 ≤ x < 3, in which every iterate seemingly has period three,
lying on an orbit with one right and two left iterates, and so these orbits
are null-stable. Clearly this violates Sharkovskii’s result as no other periods
exist. If we include the gap, however, then immediately there exists an
unstable fixed point o where the vertical branch intersects the diagonal, and
also a period two orbit ol. Thus we have periods 1, 2, and 3, and orbits of
all periods are formed through concatenations of these, and although they
overlap in x-space, they have unique o,l,r, symbol sequences.

So let us return to the question of whether hidden orbits to be interpreted
as real objects, and whether values inside the gap should be interpreted as
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xn

xn+1

LR2

ol

Figure 12: A simple counter-example seeming to contain only orbits of period
three. An example period three orbit is shown, along with the hidden period two
orbit that restores Sharkovskii’s result.

valid iterates of a map. In section 7 we saw that hidden orbits correspond
to perfectly regular, though highly unstable, orbits of a nearby continuous
map. But the significance of the gap and its hidden orbits does not rely
on such interpretations. In the case of the Cherry or Lorenz flows in fig. 1,
hidden orbits of the map would not correspond to any actual orbits of the
original flows. Dynamical attractors and repellors do not have to represent
valid states to have a role as organising centers of local or global dynamics,
to organize bifurcations in diagrams like fig. 9, or as described in section 5,
to permit the extention of results like Sharkovskii’s theorem.

To illustrate, consider a model of a population x that varies as dx
dt

=

a − bx2. As a model this has at most one fixed point, at x =
√

b/a when
b/a > 0. But regardless of the domain of x, mathematically the equation
dx
dt

= a − bx2 always has two fixed points at x = ±
√

b/a. Their existence
reveals itself in the dynamics, influencing the population in x > 0, even
though they do not correspond to anything physical generally since it does
not make sense to consider ‘negative’ or ‘imaginary’ populations. Similarly,
‘hidden’ orbits have a dynamical role, whether or not they are part of the
original application or of the chosen definition of the map. Whether points
inside the gap can be visited by the state of a given system will depend on the
application, and this determines whether hidden orbits represent realisable
physical dynamics.

The qualitative difference between continuous and discontinuous maps
is not so great as it once appeared, provided the discontinuity is adequately
described. Hidden orbits mean that many of our insights of continuous maps
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seem also to apply to those with jumps. By learning more about the differ-
ence between the qualitative dynamics of discontinuous versus continuous
maps, we can also learn better how to use discontinuities to approximate
steep branches in nonlinear maps, without losing qualitative features crucial
to the dynamics.

Having smoothed the map in section 7, it is interesting to go one step
further, and ask how the bifurcation diagram in fig. 3(i) arises from the
more familiar period doubling cascades as in fig. 3(ii) as a differentiable
map limits to a discontinuous one. The branches of unstable orp and orq lrp

orbits in section 5 reveal that period incrementing occurs via saddle-node
like births of pairs of stable and unstable periodic orbits. Still, these and
the stable branches in fig. 3(i) must be associated with periodic windows
somewhere among the chaos of fig. 3(ii). An analytic understanding has not
been reached yet, but let us conclude with some numerical observations to
guide future study.

In fig. 13 we present a sequence of bifurcation diagrams for the map (25),
showing how its dynamics changes from very large k to small k.

For k = 1000 there is no clear difference from the bifurcation diagram
for the map with a gap in fig. 3(i). As k decreases to around 70, the overlap
between different branches decreases, shrinking the regions of coexistence of
different periods. As these branches continue to retract they leave a gap,
which is filled by chaos as seen at k = 60. The chaotic regions widen and
period doubling cascades become apparent. By k = 20 we can see that, as
the chaotic regions continue to widen and eventually merge, the periodic
branches will shrink into small periodic windows.

As we continue to decrease k the higher periods leave the parameter
region in the diagram, but we can observe closely what happens to the
period 3 branch. The single chaotic band that still exists for k = 11 at
around α ≈ 0.6 splits into three bands, and disappear by k = 8. This period
3 window then rapidly closes between k ≈ 7.74 and k ≈ 7.73, leaving behind
a familiar period doubling cascade, that merely continues to warp and give
way to period doubling as we decrease to around k = 4 and beyond.

The key images in fig. 13 are perhaps those showing the transition from
k ≈ 7.74 to k ≈ 7.73, which reveal how the periodic branches of the in-
crementing cascade for the very stiff (large k) or discontinuous map, are
associated with periodic windows of familiar chaos delimited by period dou-
bling cascades. The particular window is not obvious at smaller k. The
steep nonlinearity created as k increases warps the chaotic region, and ef-
fectively rips open these chaotic windows as k increases, or, put another
way, the near-discontinuous map hops through the chaotic region between
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Figure 13: Bifurcation diagram obtained for analytic map (25), taking φk(x) =
tanh(kx) with β = −3, µ = 1/6, λ = −1, comparable to fig. 3 and fig. 9. The
stiffness k is as shown in each diagram. Obtained by numerical shooting, showing
stable periodic orbits only.
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periodic windows whose periods increase incrementally with α. The steep
nonlinearity for large k, and ultimately its infinite gradient at x = 0 as
k → ∞ stretches out these periodic windows into sustained branches.

In principle it is possible to include the unstable orbits in these diagrams
by means of continuation methods, but this is made more challenging by the
stiffness of the map at large k. It is quite easy to see that the orbits studied
in section 5 will be taken over by the regions of chaos that appear as k
decreases from around k ≈ 70 to k ≈ 60.

It would be more interesting to study further why certain periodic win-
dows, near certain parameter values, are picked out from the differentiable
map’s periodic doubling cascades. It seems likely that this depends greatly
on particular type of smoothing function, e.g. (24) or (25), chosen, but a
result showing otherwise would be interesting indeed. A careful analysis
should reveal why the windows chosen take successively increasing period,
since although the reason for this is clear in the discontinuous map, it is not
so obvious in the differentiable map.

The features of the bifurcation diagrams in fig. 13 may suggest that
there is general interest in more closely studying the dynamics of maps with
steep, hence strongly unstable, branches. Those features persist whether
the map is continuous or not, and are instead associated with whether the
function is Lipschitz continuous, that is whether |f(x1)−f(x2)| ≤ L|x1−x2|
for some constant L, and it may be of interest to study whether there is a
determinable magnitude of L that determines whether a map will exhibit
period incrementing or period doubling.

In this paper we have taken a piecewise linear map with a single gap
as an example, merely to establish the principle that any gap, in any map
with any number of discontinuities in any number of dimensions and any
degree of nonlinearity, may exhibit hidden orbits. This leaves much to be
understood about their role in such more general circumstances.
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