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Abstract
An infinite potential well, truncated at finite height, provides a simple model
for studying the effect of nonanalyticity on semiclassical approximations. An
exact quantization condition for the bound states separates the effects asso-
ciated with the untruncated well from those of the truncation. Because the
truncation occurs beyond the classical turning points, it has no effect to any
finite order in powers of Planck’s constant. The truncation contribution is
exponentially small and depends on the potential in the classically forbidden
region. The contribution associated with the well, when consistently
approximated beyond all semiclassical orders, also leads to a small expo-
nential, depending on the potential in the classically allowed region. Both
exponentially small contributions can be extracted by asymptotic analysis,
with explicit results in the simple case of a linear well. This combination of
several different semiclassical techniques could be pedagogically useful as an
exercise in teaching physical asymptotics at the postgraduate level.

Keywords: asymptotics, singularities, small exponentials, divergent series

(Some figures may appear in colour only in the online journal)

1. Introduction

The quantization of energies in a one-dimensional potential well is a familiar vehicle for
introducing and illustrating semiclassical (small ) approximation techniques, especially the
WKB method [1, 2]. Here we describe a slightly more sophisticated variant, requiring the
understanding of two different kinds of small exponential, with the pedagogical advantage
that it combines several different kinds of asymptotics while being precisely solvable.
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The variant is that the potential V(x) (chosen even for convenience) is truncated at
x=±L as illustrated in figure 1. Thus
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The aim is to understand how the truncation affects the energy levels of the bound states
E<VL, in the semiclassical regime of small . The interest lies in the fact that the
discontinuity of slope means that the potential is nonanalytic, while standard semiclassical
asymptotics works for analytic potentials. The classical turning point xc, defined by
E=Vwell(xc), separates the classically allowed region |x|£xc(E) from the classically
forbidden region |x|>xc(E). Since the truncation at x=L occurs in the classically forbidden
region, and semiclassical asymptotics for the energy levels depends on the potential and its
derivatives in the classically allowed region, the truncation is invisible to all orders  ,n i.e. all
orders of semiclassical approximation. The semiclassical influence of truncation on the
spectrum is exponentially small in , and can be understood only by going beyond all orders.

For explicit calculations, we choose the untruncated potential Vwell to be linear, so
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Figure 2 shows the spectrum, calculated as explained in the next section. As L increases, the
binding increases and more levels are sucked down from the continuum. After its birth, the
influence of the truncation on each level diminishes: the energies approach those of the
untruncated potential. This is the behaviour we aim to understand.

In section 2 we derive an exact quantization condition, in a form where the influence of
the truncation is separated from the conditon for the levels of the untruncated potential.
Section 3 calculates the asymptotics of the truncation term in the quantization condition.
Away from the births of each level at the top of the well, the truncation term is exponentially
weak. Thus for semiclassical consistency the quantization of the untruncated well should also
be approximated to include exponentially small terms; this is described in section 4, and the
two exponentials are compared, and possible extensions discussed, in the concluding
section 5. We recognise that some of the asymptotic analysis (especially in section 4) is
challenging and unfamiliar in many graduate curricula, but we have tried to make it as simple
as possible (though not simpler, as Einstein is reputed to have advised).

Figure 1. Truncated potential, with energy less than the truncation.
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2. Exact quantization condition

The energy levels are eigenvalues determined by the one-dimensional time-independent
Schrödinger equation, which we write in convenient units where the mass is 1/2, and of
course retaining the semiclassical parameter ; thus

( ) ( ( )) ( ) ( )y y + - = x E V x x 0. 2.12

For even potentials, successive eigenstates are even and odd, so it is necessary to consider
only x³ 0. For x<L, the solutions are linear combinations of those of the untruncated potential
Vwell. It is convenient to choose these as the unique exact solution ψ–(x; E) that decays expo-
nentially in the classically forbidden region xc<x<L, and any exact solution ψ+(x; E) that
grows exponentially. The linear combinations are fixed by symmetry: at x=0, ψ=0 for the odd
states, and the derivative ψ ′=0 for the even states. For x>L, the solution in the constant
potential VL is a decaying exponential. Thus the even states can be written as
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and the odd states as
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The constant C can be eliminated by the requirement that the value and slope of the
solutions of (2.1) must be continuous at x=L. This gives the quantization condition for the

Figure 2. Red curves: even and odd energy levels in the truncated potential (1.2), for
increasing truncation distance L; dotted lines: levels of the untruncated linear potential,
i.e. zeros of Ai′ (even levels) and Ai (odd levels).
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energies E, in the form of a function Q(E) that vanishes at the eigenvalues. After some
elementary manipulations, this can be expressed in the convenient form

( ) ( ) ( ) ( )= + =Q E Q E Q E 0, 2.4w t

in which Qw alone generates the levels of the untruncated well and Qt is the effect of the
truncation. The two terms are
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Note that the well contribution Qw is different for the even and odd states, while the truncation
contribution Qt is independent of the symmetry.

For the model well Vlinear (1.2), the decaying and growing solutions of (2.1) are the
standard Airy functions [3, 4]
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The turning point is xc=E, and the truncation value of the potential is VL=L. An
immediate simplification is that  can be scaled away by redefining

( )
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so the semiclassical regime is E?1, L?1. (Similar rescaling eliminates  for any power-law
potential Vwell=|x|n.) The two contributions (2.5) to the quantization condition can now be
written explicitly:
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For the untruncated well, the energies are zeros of the Airy functions: Ai(–E)=0 for the
odd states and Ai′(–E)=0 for the even states. It is easy to calculate the zeros of the full Q(E)
numerically (e.g. using the FindRoot function in Mathematica), and that is how figure 2 was
calculated.

The truncations Lbirth at which levels are born can also be calculated. These correspond to
L=E, i.e. X=0 in Qt. From

( ) ( )=Q 0
1

3
, 2.9t
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the truncations are given by
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For the even levels, the first value of Lbirth corredsponds to the first excited even state, not
the lowest, denoted E1,even, because this is the ground state and exists for all purely attractive
one-dimensional potential wells, however weakly binding [5, 6]. Thus this state exists for all
L, as illustrated in figure 2.

Although not part of the semiclassical analysis, we can understand the behaviour of the
ground state for small L by expanding the even Qw in (2.8) for small E, and Qt for small X,
and solving for E. This is an elementary exercise involving known small-argument formulas
for the Airy functions [3], leading to

( ) ( ) ( )= - +E L L L O L . 2.111,even
1
4

4 7

Figure 3 illustrates the accuracy of this formula as L increases from zero.

3. Asymptotic truncation exponential

The main aim of this section is to calculate the semiclassical approximation to Qt, in order to
capture its small exponential. The next section will concern the corresponding exponential in
Qw. Since x=L lies in the classically forbidden region, we require the leading WKB
approximations to the growing and decaying solutions of (2.1); we choose the unique
growing solution that contains no small exponential its complete asymptotic expansion. These
must connect with the corresponding oscillatory solutions in the classically allowed region; it
is convenient to choose those solutions whose sinusoidal oscillations have the same prefactor.
This is the celebrated WKB connection problem, whose analysis leads to [7–9]

Figure 3. Test of the small well limiting form (2.11) for the ground-state energy E1,even.
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From the quotient form of Qt in (2.5), the exponentially growing solution in the
denominator dominates the exponentially decaying solution in the numerator. In the
denominator, the two terms add when calculated from (3.1) to leading order in , that is, by
differentiating just the exponential. But when the same procedure is applied to the numerator
in (2.5), the two terms cancel. Therefore it is necessary to go one stage further, to include the
derivative of the prefactor in the second term of the numerator in (3.1). (It is not necessary to
include the first WKB correction to the approximation (3.1) for ψ–, because its contributions
to the two terms in the numerator of (2.5) cancel.) Thus the leading semiclassical approx-
imation to the truncation term in the quantization condition is found, after a short calculation,
to be
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This is the first of our two small exponentials.
For the linear model potential, this formula (or, equivalently, standard Airy asymptotics)

[3] gives
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Although this approaches the exact Qt(X) as X increases, it fails to describe the behaviour for
small X, which is necessary to understand the energy levels near the top of the potential,
where the influence of the truncation is strongest. For this we need the small X behaviour in
the first order beyond (2.9), namely
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A useful fit to the two extremes is
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Figure 4 illustrates the accuracy of this fit to Qt(X). Using a more sophisticated inter-
polation, and higher-order approximations for large and small X, it would be possible to obtain a
closer fit, but as figure 5 shows this is unnecessary, because the quantization condition based on
(3.5) gives an accurate description of the levels close to their appearance at Lbirth.

As L increases, the quantization sensitivity ∂E/∂L increases for states near the trunca-
tion, i.e. X=L–E=L. From (2.8), and using the simple Bohr–Sommerfeld formula ((4.3) to
follow) for Qw, differentiation, and the fact that Qt(X)=O(1) near the truncation, leads to the
estimate
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E

L Q X
L Q X L

1
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t
t

2

Thus, the higher the truncation, the greater the sensitivity. Reinstating  from (2.7), the
semiclassical sensitivity is / /¶ ¶ ~ -E L .1 3 This exponent is for the linear potential (1.2). If
Vwell=x n, a similar calculation replaces the exponent –1/3 by ( ) ( ( ))/- +n n n2 2 , so the

Figure 4. Errors in approximations to the truncation function Qt. Dashed curve: large X
approximation Qt,large (3.3); red curve: approximation Qt,combined (3.5) fitting the large
and small X limits.

Figure 5. Lowest levels after their appearance when L=Lbirth (..) (magnification of
part of figure 2): red curves: exact; dashed curves: using the approximation Qt,combined

(3.5); dotted lines, levels of untruncated linear potential (1.2), i.e. zeros of Ai and Ai′.
(a) Lowest even level (ground state); (b) lowest odd state; (c) first excited even state;
(d) first excited odd state.
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asymptotic sensitivity increases for potentials increasing more slowly than quadratic, and
decreases for potentials increasing faster.

4. Asymptotic semiclassical well exponential

Except near the birth of the levels at Lbirth, the dominant contribution to the quantization
condition Qt in (2.4) is Qw, associated with the untruncated well and defined in (2.5) for the
even and odd states. In the WKB approximation, this arises from oscillatory solutions
between the classical turning points, and in lowest order gives the familiar phase-corrected
Bohr–Sommerfeld condition for the phase-space area associated with energy E:

( )∮ ( ) ( )

( ) ( )

( )


ò p- = - = +

=

x E V x x E V x n

n n n

d 4 d 2
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x E
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0
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1
2

c

Higher approximations involve increasing powers of  [8, 10]. But since the truncation term
(3.2) is exponentially small in , approximating Qw to comparable accuracy requires going
beyond all orders in the semiclassical series. In fact, the semiclassical power series is
divergent [8], and the small exponential originates in the resummation of its tail, as will now
be explained.

For simplicity, we do not carry out the resummation for a general Vwell (we will return to
the general case at the end of this section). Instead, we illustrate the procedure explicitly for
the odd states of the linear potential (1.2), where the energies are the zeros of Ai(–E). For this
case, (4.1), or standard Airy asymptotics for negative argument [3], gives, for Qw,odd defined
in (2.8), and consistent with (4.1),

( )( ) ( ) ( ) ( )/z p z~ + = ºQ E E E Etan 0, where . 4.2w,linear
1
4

2
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3 2

A convenient form for the Nth order asymptotic approximations to the Airy functions of
negative argument, that follows immediately from the separate series for Ai and Bi [3], is
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In turn this gives the quotient for Qw,odd in (2.8) as

( )( ) ( ) ( ( )) ( )z p z= + +Q E E S Etan Im log . 4.5w N N,linear,
1
4

We cannot immediately extend the sum to = ¥N because it is divergent. This follows
from the large m limiting form of the coefficients
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- -
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m 1 4.6

m

1
6

5
6

(even for m=2 this is accurate to better than 90%). Therefore (as first observed in 1747 by
Thomas Bayes for the related Stirling approximation [11, 12]), the increase of the coefficients
in (4.4) will always dominate the decrease of the powers ζ –m. The least term, representing
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optimal termination of the series, can be estimated from (4.4) and Stirling’s formula for
(m–1)!, as

( ) [ ] ( )z z=N 2 , 4.7opt

where [ ]x denotes the integer nearest to x. The black dots in figure 6 illustrate, for values of
ζ(E) corresponding to the lowest untruncated levels, how the error SN–S∞ first gets smaller
and then increases as N increases: the series diverges.

The formal infinite series can be defined exactly from (4.3) as

( )( )( ( )) ( ( ) ( )) ( ) ( )/z p z p= - + - - +¥S E E E E EBi iAi exp i , 4.81 4 1
4

The small exponential that we seek is hidden in the remainder R(ζ) when the series is
optimally terminated, defined formally by the divergent tail of the series:
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The main result will be the small exponential in (4.15) for this remainder. Readers interested
only in this can skip the derivation that now follows.

We need only the leading order, and Nopt is large, so we can use the approximation (4.6).
Thus, also using (4.7), we need to calculate

Figure 6. Black dots: errors in the approximations ( ( ))zS EN (4.4) to the sum ( ( ))z¥S E
(4.8) for successive truncations N, showing the divergence of the series; the large dots
indicate the smallest term: N=Nopt(E). Red dots: errors when the series optimally
terminated at Nopt(E) is corrected by the resummed tail Rsummed(E) (4.15), for energies
E of the four lowest levels of the untruncated potential (1.2): (a) E=1.019 (Nopt=1);
(b) E=2.338 (Nopt=5); (c) E=3.248 (Nopt=9); (d) E=4.008 (Nopt=12).

Eur. J. Phys. 40 (2019) 065403 M V Berry and K Burke

9



⎛
⎝⎜

⎞
⎠⎟( ) ( )! ( )

[ ]
åz

p z
» -

-

z= +

¥

R m
1

2
1

i

2
. 4.10

m

m

2 1

In order to estimate this sum of a divergent series, it must be interpreted. There are
several ways of doing this. The most general is to use Borel summation [8]: replacing (m-1)!
by its integral representation, summing the resulting geometric series, and then approximating
the integral (e.g. by the saddle-point technique). But for the present purpose, of getting the
lowest-order approximation, a simpler method will suffice. With the replacement

[ ] ( )z= + +m k2 1 , 4.11

(4.10) becomes
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Next, we use the approximation

([ ] )! [ ]![ ] ( )z z z+ »k2 2 2 , 4.13k

based on the intuition that the value of the resummed series is determined by its behaviour
near the least term, i.e. [ ] zk 2 . Thus (4.12) becomes
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Summing the geometric series (on the border of its domain of convergence), using [ ]z z»2 2
for the large ζ we are concerned with here, and using Stirling’s approximation for [ ]!z2 , we
finally get the lowest approximation

( ) ( ) ( ) ( )
( )

( )
[ ]

z z
z

pz
» =

- -
+

z +
R R

i exp 2

2 1 i
. 4.15summed

2 1

This is the small exponential for the linear potential. The simple procedure employed here
works because the phases (–i)k of the terms in (4.9) depend on k. It would fail if all the terms
in the asymptotic series had the same sign; that situation corresponds to the ‘Stokes
phenomenon’[13, 14], and requires more sophisticated resummation [15, 16].

The red dots in figure 6 illustrate how effectively this resummation improves the least-
term termination approximation, for energies of the lowest four levels of the untruncated
linear potential. Table 1 shows the numerical errors in the sum for the lowest five levels. The
relatively large errors in the final column reflect the fact that (4.15) is just the lowest-order
approximation to the remainder R, sufficient to capture the small exponential.

The corresponding well contribution to the quantization condition, including optimal
termination and the approximated resummaton, is

( )( ) ( ) ( ( ( )) ( ( ))) ( )[ ]z p z z= + + +zQ E E S E R Etan Im log . 4.16w,linear,summed
1
4 2 summed

This is for the odd states. For the even states, the only change is the replacement of tan by cot.
In particular, the small exponential (4.15) is the same. Thus, the even and odd energies of the
untruncated linear potential, i.e. the zeros of Ai and Ai′, are, in this improved semiclassical
approximation, determined by the solutions of

( )( ) ( ( ( )) ( )) ( ) ( )[ ] z z z p+ + = - =zE S E R n nIm log , 1, 2, . 4.172 summed
1
2
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For a general untruncated potential Vwell, the theory for the small exponential corresp-
onding to (4.15) is essentially the same. The divergence of semiclassical approximations is a
general phenomenon, whose origin lies in the fact that successive approximations involve
successive derivatives (essentially of ( )-E V xwell ), and high derivatives diverge; this is a
consequence of Darboux’s theorem [8, 9]. For second-order differential equations of the
Schrödinger type (2.1), the tail to be resummed is exactly (4.10), and the small exponential is
(4.15), after the replacement

( ) ( ) ( )
( )

òz  -E x E V x2 2 d . 4.18
x E

0
well

c

This quantity is the difference of the exponents in the growing and decaying solutions; in
more general situations, such as the approximation of integrals with several saddle-points, this
difference of relevant exponents is called the ‘singulant’[8].

5. Concluding remarks

There are two main results from this study of truncated potentials. First, the exact quantization
condition can be written in the form (2.5), in which the contributions associated with the
untruncated well and the truncation are separated. Second, the semiclassical asymptotics of
the quantization condition involves two comparable small exponentials: associated with the
truncation, and with the untruncated well. These are

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( ) ( ) ( )

( )

( )

ò

ò

= - ¢ ¢ -

= - ¢ - ¢





e E x V x E

e E x E V x

truncation: exp
2

d

well: exp
2

d . 5.1

t
x E

L

w

x E

well

0
well

c

c

For the linear potential (1.2), the exponentials are

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( )/ /= - - = -e E L E e E Etruncation: exp

4

3
, well: exp

4

3
. 5.2t w

3 2 3 2

Thus the truncation exponential dominates for L/2<E<L, i.e. nearer the top of the well,
and the well exponential dominates for 0<E<L/2, i.e. near the bottom of the well.

Our intention has been to explore a ‘minimal model’ [17] of the influence of non-
analyticity on quantization. Several extensions can be envisaged, such as

Table 1. Errors in the sum ( ( ))z¥S E for the lowest five levels of the untruncated linear
potential (1.2), corresponding to approximating by the leading term S0 of the series
(4.4), optimal termination Nopt, and including the resummed tail Rsummed.

E Nopt ∣ ∣-¥S S0 ∣ ∣-¥S SNopt ∣ ∣- -¥S S RN summedopt ∣ ∣/ -R R 1summed

1.019 1 0.0775 0.0469 0.0144 0.31
2.338 5 0.0277 0.0010 ´ -1.010 10 4 0.10
3.248 8 0.0174 ´ -3.87 10 4 ´ -2.507 10 6 0.06
4.088 11 0.0124 ´ -1.33 10 6 ´ -6.396 10 8 0.05
4.820 14 0.0098 ´ -5.39 10 8 ´ -2.044 10 9 0.04
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• Exactly solvable model potentials different from (1.2). for example a harmonic well,
where the exact quantization condition (2.5) would involve parabolic cylinder functions,
or the Pöschl–Teller potential, involving Legendre functions.

• Different forms of nonanalyticity, in which the truncation is more gentle than the
discontinuity of slope in (1.1). We conjecture that if the lowest discontinuous derivative
of the potential is the nth, the same small exponentials will appear, but with prefactors
proportional to n (see (3.2)). For a related study, for reflections above nonanalytic
potential barriers, see [18].

• More sophisticated resummations of the tails of series such as (4.9), where
approximations such as (4.6) are corrected by incorporating the fact that the coefficients
of high-order terms of divergent series are related to the coefficients of the low-order
terms; this is the phenomenon of ‘resurgence’ [8, 12], leading to ‘hyperasymptotic’
approximation schemes [19–21], involving successive exponential improvements: for the
first zero of Ai, the relative error is of order 10–7. A less general but comparably accurate
alternative [22] is based on extending approximations such as (4.13) to higher orders
in [ ]/ z1 2 .
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