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Abstract 

Startling reports described the paradoxical triggering of human mitogen activated protein 

kinase pathway when a small molecule inhibitor specifically inactivates the BRAF V600E 

protein kinase but not wt-BRAF. We performed a conceptual analysis of the general 

phenomenon "activation by inhibition" using bacterial and human HtrA proteases as models. 

Our data suggest a clear explanation that is based on the classic biochemical principles of 

allostery and cooperativity. Although sub-stoichiometric occupancy of inhibitor binding sites 

results in partial inhibition, this effect is overrun by a concomitant activation of unliganded 

binding sites. Therefore, when an inhibitor of a cooperative enzyme does not reach saturating 

levels, a common scenario during drug administration, it may cause the contrary of the desired 

effect. The implications for drug development are discussed. 

 

Significance Statement 

Small molecule inhibitors of enzymes are commonly derived from native ligands and represent 

invaluable and extensively applied tools in chemical biology. In addition to the well-known 

issue of selectivity, paradoxical curiosities were described over decades that have wide 

implications in drug discovery and treatment. Of particular interest are observations where low 

concentrations of inhibitors may activate their targets instead of causing partial inhibition. Our 

conceptual analysis explains the general phenomenon of "activation by inhibition" as a ligand-

induced transition between the T state and the R state in the classic Monod-Wyman-Changeux 

model of activation, in which the inhibitory ligand acts as an activator. 
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Introduction 

The activity of complex enzymes is precisely regulated by sophisticated molecular 

mechanisms that are described by the fundamental biochemical principles of allostery, 

cooperativity and oligomerization. Allostery is defined as the interaction of binding sites at a 

distance, allowing for the regulation of catalytic activity. Thus, a ligand bound to one site 

affects the affinity of another site for the same or a different ligand by inducing transitions 

between distinct conformational states. In ‘classic’ biochemistry, the couplings of binding sites 

are differentiated into functional interactions. Identical binding sites and homotropic ligands 

are the basis of cooperativity while a more general functional interaction of individual binding 

sites and heterotropic ligands is known as allostery. Allosteric effects may be observed 

between individual domains of monomeric proteins or between protomers of oligomeric 

protein complexes. Moreover, the allosteric switch between the resting and the active 

conformations can be accompanied by rather dramatic events such as changes in oligomeric 

states. While well-known studies have been performed on e.g. hemoglobin, the oxygen binding 

protein of red blood cells, or aspartate transcarbamoylase, a key enzyme in pyrimidine 

synthesis (1, 2), recent evidence suggests that prokaryotic DegP represents an exceptionally 

suitable model for addressing the underlying mechanisms of allostery, cooperativity and 

activation by oligomerization (3, 4).  

The heat shock factor DegP functions as a conformation-specific protease/chaperone complex 

that channels substrates into repair, assembly or degradation pathways (3, 5). DegP is a cage-

forming protease, where the size of the cage is determined by the number of assembled 

trimeric subcomplexes. DegP protomers consist of a serine protease domain and two C-
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terminal PDZ domains. PDZ domains are protein modules that bind the C-terminal 3–4 

residues of target proteins (6). Recent studies revealed how ligands of PDZ1 domain serve as 

allosteric activators inducing positive cooperativity by triggering conformational changes and 

large structural rearrangements including switches between various oligomeric states where 

hexamers represent the resting state while higher oligomers represent the active state (7-10). 

DegP has two binding sites per protomer, the catalytic site and the peptide binding site of the 

PDZ1 domain that are linked by an allosteric circuit. In addition, activation domains that are 

shared between adjacent protomers mediate concerted activation of the catalytic sites within 

the trimeric subcomplexes. This architecture is the basis of positive cooperativity where ligand 

binding to one binding site of one protomer not only increases the affinity of ligands for the 

second site within the same protomer but in addition increases the affinity for ligand binding to 

the neighboring protomer. 

 

Results 

These mechanistic considerations suggested a hypothesis where sub-stoichiometric binding of 

a substrate-derived inhibitor would activate DegP instead of causing partial inhibition. This 

behavior can be explained because the ligand-bound active site is structurally connected to 

neighboring protomers and their unoccupied active sites and PDZ1 domains. Conceptually, 

these allosteric interactions should cause increased affinity of unoccupied sites for their ligands 

ultimately resulting in increased enzymatic activity. To initially test this model of regulation, 

we used the synthetic substrate SPMFKGV-pNA to measure DegP activity in combination 

with the peptidic boronic acid inhibitor DPMFKLV-B(OH)2 that targets the active site Ser 

residue (4, 11). The steady-state rate of substrate hydrolysis varied sigmoidaly as a function of 
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the substrate concentration, characteristic of substrate-induced allostery (SI Appendix, Fig. 

S1A). Kinetically, each time-course showed a significant lag-phase before activation of the 

proteolytic activity while increases in DegP concentration reduced both the length of the lag-

phase and both the steepness and extent of the activation (SI Appendix, Fig. S1A). This 

observation is consistent with a previously-established mechanism in which DegP undergoes 

large changes in oligomeric state i.e. from the resting state hexamer, which dissociates into 

trimers and reassembles to form active 12-mer and even 24-mer assemblies (12, 13). This 

drastic change in oligomeric states normally occurs in response to the binding of substrate to 

the active site or the binding of allosteric peptides to the PDZ1 domain. The presence of the 

lag-phase (SI Appendix, Fig. S1A) reflects the rather slow interconversion of DegP between 

the resting conformation and the allosterically-activated states due to the absence of a 

heterotropic allosteric activator binding to the PDZ1 domains and also the relatively weak 

binding of the peptide substrate (SPMFKGV-pNA) used here. Note that SPMFKGV-pNA does 

not bind to the PDZ domain, because this substrate does not contain a C-terminal carboxylate 

which is essential for binding (6). 

 

Activation by sub-stoichiometric inhibition. Binding of DPMFKLV-B(OH)2 was 

investigated using ITC. Measurements indicated a two-step binding mode of the inhibitor to 

DegP, expected for a cooperative enzyme. The weaker-binding phase (Kd = 6 µM) likely 

reflects the binding of the inhibitor to the resting state conformation, followed by a second, 

much tighter binding event (Kd = 33 nM) reflecting inhibitor binding to the fully activated 

proteolytic sites (Fig. 1A). Binding of the inhibitor to the active site of a cooperative enzyme is 

expected to promote the conformational switch to a tighter binding conformation, thereby 
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resulting in activation of the enzyme at sub-stoichiometric concentrations. To quantify 

activation by sub-stoichiometric inhibition, DegP was treated with various concentrations of 

DPMFKLV-B(OH)2, ranging from 1 nM to 10 µM, before measuring DegP activity using 

SPMFKGV-pNA as a substrate. In agreement with our hypothesis, DegP activity is increased 

by up to 3-fold at sub-stoichiometric concentrations of the inhibitor (Fig. 1B). To show that the 

observed activation is not substrate-specific, the proteolytic assays were repeated using the 

periplasmic domain of the antisigma factor RseA from E. coli as a substrate (14), revealing 

similar effects (SI Appendix, Fig. S1B). As activation of DegP is usually connected with a 

change in oligomeric state, DPMFKLV-B(OH)2 was titrated to DegP and the oligomeric state 

was determined by size exclusion chromatography and chemical crosslinking. Interestingly, a 

switch from hexamer to dodecamer was only observed at above 2-fold excess of inhibitor, i.e. 

concentrations where DegP is inhibited (Fig. 1C, SI Appendix, Fig. S1C), suggesting that 

activation by sub-stoichiometric inhibition can occur in the hexamer. Control experiments 

show that the catalytically inactive DegP S210A mutant does not bind DPMFKLV-B(OH)2, as 

determined by ITC (SI Appendix, Fig. S1D), and changes of oligomeric states do not occur 

even at high inhibitor concentrations (SI Appendix, Fig. S1C). To rule out that the observed 

activation results from unspecific biochemical effects such as aggregation (15), we applied a 

non-binding inhibitor derivative carrying a (D)-configuration at the valine boronic acid residue 

that had no or only minor effects on DegP activity (SI Appendix, Fig. S1E).  

 

Activation by sub-stoichiometric inhibition in combination with allosteric activators. 

DegP is allosterically activated by the C-termini of misfolded proteins which bind to its PDZ1 

domain (Fig. 1D) (16). We therefore tested whether allosteric peptides would modulate 
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activation by sub-stoichiometric inhibition. Two allosteric peptides displaying a 100-fold 

difference in affinity towards DegP's PDZ1 domain were selected. The Kd values for the 

binding of DYFGSALLRV, corresponding to the C-terminus of E. coli EfeB (17) and the 

synthetic peptide DNRDGNVYFF that was characterized previously (9) were 1.2 µM and 135 

µM, respectively (SI Appendix, Fig. S2A, S3A). Titration experiments indicated sequence 

specific differences in the potency of allosteric activation ranging between about 10 and 3-fold 

when using SPMFKGV-pNA as a substrate (Fig. 2A, SI Appendix, Fig. S2B, S3B). To 

subsequently test the combined effects of allosteric activators and inhibitor, the concentrations 

of the two allosteric peptides, DYFGSALLRV (2.5 µM) and DNRDGNVYFF (500 µM), were 

kept constant. Subsequent titration of inhibitor caused an up to 4-fold further activation of 

DegP at sub-stoichiometric inhibitor concentrations (Fig. 2A, SI Appendix, Fig. S2B, S3B). 

Similar results were obtained using RseA of E. coli as a substrate. DPMFKLV-B(OH)2 was 

titrated to DegP in the presence of 2.5 and 50 µM of the allosteric activator DYFGSALLRV 

and degradation of RseA was followed by SDS PAGE at various time points. Again, activation 

was observed at sub-stoichiometric levels of inhibitor (Fig. 2B). Similar data were obtained 

using DNRDGNVYFF (SI Appendix, Fig. S3C). Furthermore, analysis of kinetic data 

indicated that the Ki of the inhibitor changed in the presence of the PDZ activator from 28 nM 

to 0.6 nM for DYFGSALLRV and to 20 nM for DNRDGNVYFF, respectively (compare Fig. 

1B, Fig. 2A, SI Appendix, Fig. S3B). Moreover, to demonstrate that the detected activation 

coincided with increased affinity of allosteric peptides, ITC experiments were performed at 

various inhibitor concentrations. As expected, the Kds of both peptides showed 6-fold higher 

affinities, i.e. for DYFGSALLRV from 1.2 µM in the absence of inhibitor to 0.2 µM in its 
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presence and for DNRDGNVYFF from 135 µM to 23 µM, respectively (SI Appendix, Fig. 

S2A, S3A).  

 

Activation by sub-stoichiometric inhibition in vivo. To further substantiate our results, we 

tested whether activation at sub-stoichiometric concentrations of inhibitor occurred in living 

cells. For these assays, we used the experimental system that led to the discovery of the degP 

gene (Fig. 2C) (18). When a tsr-phoA fusion is expressed in E. coli, the Tsr-AP hybrid protein 

is cleaved near the fusion joint mainly by DegP but only marginally by other cell envelope 

proteases (SI Appendix, Fig. S4). Therefore, these cells represent a suitable reporter system to 

measure DegP activity in vivo. Growing cells expressing the plasmid-derived tsr-phoA fusion 

and native chromosomal degP were treated with DPMFKLV-B(OH)2 at various concentrations 

ranging between 50 nM and 100 µM. Subsequently, proteolytic processing of the Tsr-AP 

hybrid protein by DegP was determined by Western bloting (Fig. 2D). The pattern of Tsr-AP 

bands indicated that at high inhibitor concentrations (25 - 100 µM), proteolytic processing of 

Tsr-AP was reduced because DegP is inhibited. At intermediate inhibitor concentrations (0.5 - 

5 µM), processing of Tsr-AP was increased, while at lower concentrations of inhibitor (0.13 - 

0.05 µM) processing of Tsr-AP was comparable to the DMSO control. Densitometry of the 

signal intensity of the Tsr-AP band relative to the DMSO control indicated an up to 2.5-fold 

increase in DegP activity at 2.5 and 5 µM inhibitor concentrations, respectively (note that the 

reduced amount of DegP at low inhibitor concentrations is likely the result of autoproteolysis 

caused by its activation). Therefore, the in vivo reporter system supported the results obtained 

by biochemical assays using purified proteins. These data also showed that even moderate 

activation of DegP can significantly affect processing of target proteins in vivo. 
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Activation by inhibition in human HTRA1. To demonstrate that activation by inhibition is 

not a phenomenon that is specific to the bacterial enzyme DegP and its unique structural 

properties, we tested the established model using human HTRA1 for which X-ray 

crystallography has shown that DPMFKLV-B(OH)2 binds to the active site in a canonical 

manner (4). While HTRA1 shares structural and functional features with DegP, such as a 

trimeric arrangement of protomers and the conserved activation domain, it differs in several 

aspects, such as surface accessible active sites and a mode of activation that is not strictly 

coupled to changes in the oligomeric state.  

ITC measurements of DPMFKLV-B(OH)2 binding to HTRA1 indicated a Kd of 0.8 µM (SI 

Appendix, Fig. S5A). To test whether HTRA1 can be activated by DPMFKLV-B(OH)2, we 

performed proteolytic digests using its native substrate tau and various concentrations of 

inhibitor. An up to 15-fold increase in HTRA1 activity was observed in the presence of the 

inhibitor (Fig. 3). However, in contrast to DegP, the highest activation of HTRA1 was not 

observed at sub-stoichiometric concentrations of the inhibitor, but at 20-fold excess. This 

effect might be best explained by the 24-fold lower affinity of the inhibitor for HTRA1. To 

overcome this limitation, HTRA1 was pre-incubated with an allosteric ligand of the PDZ 

domain, SYAAWIDVEDL (Kd=32 µM, SI Appendix, Fig. S5B) at concentrations 3-fold 

below (10 µM) and 5-fold above (150 µM) its Kd. Subsequently, DPMFKLV-B(OH)2 was 

titrated to determine the effects of the inhibitor on HTRA1's activity. At both concentrations of 

the allosteric PDZ domain ligand SYAAWIDVEDL, HTRA1 was activated by the inhibitor up 

to 7-fold and 10-fold, respectively (Fig. 3, SI Appendix, Fig. S5C). As expected,  in the 

presence of 150 µM SYAAWIDVEDL, the inhibitor concentrations where highest activation 
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could be observed shifted from 20 µM to 1-2 µM. In agreement with these considerations, the 

presence of the allosteric activator caused stronger inhibition at high inhibitor concentrations. 

In addition, ITC measurements revealed, in a concentration-dependent manner, an up to 4-fold 

increase of the affinity of the allosteric peptide in the presence of the inhibitor, i.e. from 32 to 8 

µM (SI Appendix, Fig. S5B). 

 

Discussion 

Ligand-derived synthetic inhibitors of enzymes are widely used in basic research and as drugs. 

For inhibitors interacting with single binding sites of monomeric enzymes, dose-response 

correlations are hyperbolic. The response of the enzyme system to inhibition changes 

fundamentally when an enzyme has multiple binding sites that are allosterically connected. 

Here, regulation of activity is more complex and can therefore cause effects that may seem 

paradoxical at first sight. HtrA proteases such as DegP belong to the S1 family of serine 

proteases, prominent members of which include e.g. trypsin, chymotrypsin, thrombin and 

elastase. The latter are typically activated by zymogen conversion. This process involves 

proteolytic processing of N-terminal segments stabilizing conformations via as disorder-order 

transition of the activation domain comprising loops L1, L2 and LD. As the formation of the 

active site is conformationally linked with binding of the newly formed N-terminus into a 

preformed pocket, allostery is an integral part of the activation mechanism of these classic 

proteases (19). Even though activation of DegP does not include zymogen processing, the 

principles described above are conserved. However, the molecular mechanisms regulating 

DegP are more complex. Its loop LD reaches over from an adjacent protomer and the 

activation domain is extended by loop L3 and PDZ domain 1 to sense allosteric ligands of the 
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PDZ domain. Moreover, activation by PDZ ligands is coupled to oligomer conversion, i.e. 

from the resting hexamer to active larger oligomers (9). The events triggered by a strong active 

site ligand such as DPMFKLV-B(OH)2 involve the same elements, the interaction of which 

proceeds in reverse order, i.e. initial interaction of the ligand with the substrate specificity 

pockets and loop L2 triggers the rearrangement of loops L1 and LD* as well as of loop L3 

leading to a structural rearrangement within the PDZ domain and a concomitant increase of 

affinity for its ligands. Therefore, high concentrations of the inhibitor have the same effect as 

allosteric ligands of the PDZ domain, i.e. triggering the conversion of hexamers into larger 

oligomers. Together, these allosteric communications across protomers result in the structural 

rearrangement of substrate-binding pockets, proper positioning of the catalytic triads and 

formation of the oxyanion holes in structurally connected active sites and ultimately in positive 

cooperativity. These processes can be considered as a ligand-induced transition between the T 

state and the R state in the classic Monod-Wyman-Changeux model of activation, in which the 

inhibitory ligand acts as an activator (20) (Fig. 1D). Therefore, activation does not require 

occupation of all allosteric sites. 

Our model of activation of an enzyme by sub-stoichiometric occupancy of an inhibitor is 

reminiscent of other  inhibitor activated systems. One prominent example is the activation of 

the mitogen activated protein kinase pathway when wild type BRAF is targeted by inhibitors 

such as PLX4032 (21). The paradoxical result has been readily explained by inhibitor-driven 

dimerization with unliganded CRAF causing allosteric disruption of autoinhibition and 

transactivation of CRAF leading to increased pathway activity (22). Therefore, the BRAF 

PLX4032 - unliganded CRAF complex represents another example of activation by sub-

stoichiometric inhibition. Consistently, similar effects are observed with kinase-dead mutants 
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of BRAF (23). Moreover, additional allosteric events involving RAS-RAF interactions that are 

not RAS allele specific may come into play (22, 24), promoting additional activation and are 

thus comparable to those observed with allosteric peptides and HTRA1 and DegP. A similar 

example involving small molecule modulators of mammalian kinases describes activation by 

sub-stoichiometric inhibitor concentrations of PERK, a kinase of the unfolded protein response 

of the ER (25). It seems that this mode of regulation is widespread. For  example, low ratios of 

the inhibitors maleate and N-phosphonacetyl-(L)-aspartate to aspartate transcarbamoylase 

cause an increase in enzymatic activity (20, 26). In addition, an engineered E. coli lipoprotein 

containing a hydrophobic C-terminus displayed similar concentration-dependent pattern of 

activation and inhibition of DegP as DPMFKLV-B(OH)2, however the binding site of the 

lipoprotein-derived inhibitor and thus the underlying molecular mechanism remain to be 

elucidated (27).  

The molecular mechanisms described here have wide implications for drug development. If an 

inhibitor that targets a cooperative enzyme is not equally distributed across all tissues, 

reflecting the well-known problem of bioavailability, the inhibitor will be efficient in tissues 

where distribution is good but it will activate the target protein in tissues where concentrations 

are low causing the opposite of the desired effect. Thus, allosteric effects are not only 

important for basic research but they have also considerable importance for clinical 

applications. In general, our work supports the notion that a careful consideration of classic 

biochemical principles is likely to significantly reduce side effects and failed efforts in drug 

discovery (28). 

 

Materials and Methods 
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The synthetic substrate SPMFKGV-pNA of DegP and the peptidic boronic acid inhibitor 

DPMFKLV-B(OH)2 were prepared and used as described (4, 11). The cell based assays of DegP 

activity employing a Tsr-AP hybrid protein were done as described (18). Methods for protein 

purification and ITC measurements followed previously described protocols. They are described in 

detail in the SI Appendix, which includes materials and methods and figures. 

 

Data Availability 

All data are included in the manuscript and supporting information. 
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Figure legends 

Fig. 1. Inhibition of DegP by DPMFKLV-B(OH)
2
 A) ITC thermogram of binding of DPMFKLV-

B(OH)
2
 inhibitor to wt DegP. 400 µM inhibitor was titrated into the sample cell containing 40 μM 

DegP. K
d
s of the two distinct binding steps are indicated. B) Kinetic parameters of DegP (1 µM) 

activity in the presence of the DPMFKLV-B(OH)
2
 concentration indicated using the chromogenic 

substrate SPMFKGV-pNA (500 µM). Error bars = standard deviation of experimental data (n=3). 

Data were fitted to MWC model as described in supplementary information. L, equilibrium constant 

T/R in the absence of ligand; K
i
,  affinity of the inhibitor to activated DegP; K

R
, dissociation constant 

for substrate binding to activated DegP; v/[E]
0
,  maximum turnover rate for the activated DegP 

species; parenthesis, 95% confidence limit of the fit. C) SEC analysis of DegP (100 µM) 

preincubated with ratios of DPMFKLV-B(OH)
2 

indicated. Retention volumes and size (kDa) of 

calibration proteins thyroglobulin (669 kDa), ferritin (440 kDa) and aldolase (158 kDa) are indicated 

(left). Activity of eluted DegP fractions was determined using 500 µM SPMFKGV-pNA as substrate 

(right). Error bars indicate standard deviation (N=3). D) Cartoon of core allosteric mechanism. The 

T-state is the inactive hexamer. It exists in equilibrium with the dissociated trimers (R-state) which is 

competent to bind either substrate (S) or inhibitor (I) to the active site. Although the equilibrium in 

the absence of S or I lies towards the T-state (i.e. K
1
 is small) the binding of S or I pulls the 

equilibrium towards the R-state by thermodynamic coupling. Alternatively, the inactive T-state binds 

activator to the PDZ1 domains moderately but the R-state PDZ1 domains bind activator more tightly 

(i.e. K
RA

>>K
TA

) leading to activation, as once in the R-state it can bind S or I. 

 

Fig. 2. Activation of DegP by substoichiometric inhibition A) Activity of DegP (1 µM) using 

chromogenic SPMFKGV-pNA (500 µM) as a substrate in the presence of various (left) or fixed  
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(right) concentrations of DYFGSALLRV (2.5 µM, corresponding to 2-fold of K
d
) and various 

concentrations of the inhibitor DPMFKLV-B(OH)
2 

(Inh). Error bars indicate standard deviation of 

experimental data (N=3). Data were fitted to MWC model as described in supplementary 

information. L, equilibrium constant between T and R conformations in the absence of ligand; K
R
, 

dissociation constant for substrate binding to activated DegP; K
i
,  affinity of the inhibitor to activated 

DegP; K
TA

 and K
RA

 are the dissociation constants for the interaction between activator and the T-

state conformation, and R-state conformation, respectively; K
i2,

 affinity of the activator for the active 

site; v/[E]
0
 is maximum turnover rate for the activated DegP species; parenthesis, 95% confidence 

limit of the fit. B) Representative images of the digestion of the periplasmic domain of RseA (20 µM) 

by DegP (1 µM) in the presence of fixed concentrations of DYFGSALLRV (2.5 and 50 µM) and 

concentrations of DPMFKLV-B(OH)
2
 indicated (upper panel). **, RseA cleavage products. 

Quantification of DegP activity using the signal intensity of RseA relative to the DMSO control 

(lower panel). Error bars indicate standard deviation (N=3). C) DegP activity in vivo. Cartoon of cell-

based DegP reporter assay. Alkaline phosphatase (AP) is tethered to the N-terminal 164 amino acids 

of Tsr protein. DegP cleaves the Tsr-AP hybrid protein near the fusion joint. D) Inhibitor mediated 

activation of DegP activity in vivo. E. coli cells expressing the tsr-phoA fusion were grown ON at 

30°C in rich medium with either DMSO (2%) or various concentrations of DPMFKLV-B(OH)
2
. 

Whole cell extracts of equivalent number of cells were subjected to SDS-PAGE and Western blotting 

using antibodies against AP. *, Tsr-AP degradation products. Additional Western blots of the same 

samples using MBP-DegP antibodies (lower panel). Quantification of DegP activity using the signal 

intensity of Tsr-AP band relative to the DMSO control (upper panel). Error bars indicate standard 

deviation (N=3). 
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Fig. 3. Activation of HTRA1 by substoichiometric inhibition Proteolysis of Tau (10 µM) by 

HTRA1 (1 µM) in the absence or presence of the fixed concentrations of the allosteric peptide 

SYAAWIDVEDL (10 µM and 150 µM) and various concentrations of the inhibitor DPMFKLV-

B(OH)
2
 (Inh) after 5 h incubation at 37°C (left panel). Quantification of Tau signal intensity using 

densitometry (N=3) relative to the DMSO control, error bars indicate standard deviation (right panel). 

An additional 2 h time point of tau digests is shown in Fig. S5C.  
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