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Abstract

Background: DNA methylation is associated with non-communicable diseases (NCDs) and related traits.
Methylation data on continental African ancestries are currently scarce, even though there are known genetic and
epigenetic differences between ancestral groups and a high burden of NCDs in Africans. Furthermore, the degree
to which current literature can be extrapolated to the understudied African populations, who have limited resources to
conduct independent large-scale analysis, is not yet known. To this end, this study examines the reproducibility of
previously published epigenome-wide association studies of DNA methylation conducted in different ethinicities, on
factors related to NCDs, by replicating findings in 120 South African Batswana men aged 45 to 88 years. In addition, novel
associations between methylation and NCD-related factors are investigated using the Illumina EPIC BeadChip.

Results: Up to 86% of previously identified epigenome-wide associations with NCD-related traits (alcohol consumption,
smoking, body mass index, waist circumference, C-reactive protein, blood lipids and age) overlapped with those observed
here and a further 13% were directionally consistent. Only 1% of the replicated associations presented with effects
opposite to findings in other ancestral groups. The majority of these inconcistencies were associated with population-
specific genomic variance. In addition, we identified eight new 450K array CpG associations not previously reported in
other ancestries, and 11 novel EPIC CpG associations with alcohol consumption.

Conclusions: The successful replication of existing EWAS findings in this African population demonstrates that blood-
based 450K EWAS findings from commonly investigated ancestries can largely be extrapolated to ethnicities for which
epigenetic data are not yet available. Possible population-specific differences in 14% of the tested associations do,
however, motivate the need to include a diversity of ethnic groups in future epigenetic research. The novel associations
found with the enhanced coverage of the Illumina EPIC array support its usefulness to expand epigenetic literature.
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Background
The role of epigenetics in the aetiology of non-
communicable diseases (NCDs) is of interest owing to
its valuable addition to the limited variance of disease
risk explained by genetics alone [1]. The modifiable na-
ture of the epigenome also offers opportunities to pre-
dict, detect and prevent lifestyle-related diseases [2].
DNA methylation (DNAm) is the most intensively
researched epigenetic modification, partly because of its
ease of measurement from stored samples commonly

collected in epidemiological studies. A number of robust
associations between differentially methylated cytosine-
guanine dinucleotides (CpGs) and NCD-related traits or
exposures have been reported [3–7]. Epigenetic research
has allowed for richer insight into the origin and pro-
gression of complex diseases, and is expected to con-
tinue doing so, thereby enhancing our ability to combat
the continued rise in NCD prevalence [2, 8].
Despite its importance in the global context of NCDs,

current epigenetic literature remains limited by the lack
of ethnic diversity, with most investigating associations
between DNAm and health outcomes/traits within Euro-
pean (EU) populations. Although several large-scale
epigenome-wide association studies (EWASs) have used
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data collected from African American (AA) individuals
[4, 5, 9], information on continental African populations
remain particularly limited. Sub-Saharan Africans are
known to be genetically different from AA individuals,
who typically stem from West African ancestors, with
varying levels of admixture [10]. Because DNAm differ-
ences have been reported among ethnic groups [11–13],
the degree to which current EWAS results can be ex-
trapolated to other populations, including Sub-Saharan
Africans, remains to be established. Understanding the
degree of generalisability of EWAS results to different
ethnicities informs one whether existing knowledge can
be extrapolated to understudied ethnic groups or
whether additional research is needed in these popula-
tions, where resources are often limited [14].
To this end, we replicated data extracted from the

EWAS Catalogue (http://www.ewascatalog.org) on traits
related to NCDs (alcohol consumption, smoking status,
body mass index (BMI), waist circumference (WC),
high-density lipoprotein cholesterol (HDL-C), low-
density lipoprotein cholesterol (LDL-C), total cholesterol
(TC), triglycerides (TG), C-reactive protein (CRP) and
age), in a subset of Batswana men from the North-West
(NW) province of South Africa, who participated in the
international Prospective Urban and Rural Epidemiology
study (PURE-SA-NW). In doing so, we evaluated the re-
producibility of previous EWAS findings in a Sub-
Saharan African population that has never been investi-
gated before. In addition, because the majority of
EWASs to date have been conducted using the older
Illumina 450 K BeadChip, our secondary aim was to re-
port novel DNAm associations by using the new Illu-
mina MethylationEPIC platform, to extend existing
knowledge on methylation and traits related to NCDs in
this population [15].

Results
For each trait, we report the degree of replication be-
tween EWAS findings in the PURE-SA-NW cohort and
the reference studies identified, using the EWAS cata-
logue (complete test statistics in Additional file 1). In
cases where the reference study included cohorts of dif-
ferent ancestries, the PURE-SA-NW cohort was com-
pared to these ancestries separately. We first report the
agreement between the effect sizes obtained in the
PURE-SA-NW data and the reference studies for all the
tested CpGs per trait, to evaluate the overall consensus
between the studies (PURE-SA-NW vs. reference study).
We then examine the similarity between studies at the
individual CpG level by determining whether or not the
individual PURE-SA-NW association’s confidence inter-
vals (CIs) overlap with those of the reference study. This
allows us to identify systematic differences (e.g. attribut-
able to exposure variation) between cohorts before

investigating differences at an individual CpG level (e.g.
attributable to site-specific genetic variation). To per-
mit further investigation of individual CpG association
differences, we inspect probes previously identified to
measure methylation at polymorphic sites of which ei-
ther the global minor allele frequency (MAF) is higher
than 1% [16], or variation has been documented in Afri-
cans, specifically [17] (Additional file 1). Probes identi-
fied to hybridise to multiple genomic regions or to be
cross-reactive are also noted [18]. Replication analyses
are followed by a report of any methylation associations
of newly investigated EPIC probes and novel 450K asso-
ciations (of 450K probes present on the EPIC array used
here), where applicable (Additional file 2). Table 1 pro-
vides the descriptive statistics for (i) the PURE-SA-NW
cohort for traits used as covariates in the models, (ii) the
trait of interest as reported by the EWAS catalogue ref-
erence study and (iii) the PURE-SA-NW cohort trait of
interest reported in the same unit as in the specific refer-
ence study. For the different traits, the sample size here
differs because we applied the specific inclusion criteria
of the respective reference studies to our population to
permit comparison (Additional file 1).
Comparatively, our study population had a more

favourable body composition and blood lipid profile, but
a much higher CRP concentration than those included
in the reference studies [3, 9, 22]. The proportion of
current smokers in our study population was twice as
high as the reference cohort [4], and they consumed lar-
ger volumes of alcohol than the EU, but less than the
AA reference cohorts [5]. The remaining traits were
similar between our population and that of the reference
studies.

Alcohol consumption
Ancestry-stratified (European American (EA) and AA)
findings from the meta-analysis by Liu et al. [5] on the
association of alcohol consumption (g/day) with differ-
ential methylation at individual CpGs were compared
with those from the PURE-SA-NW (Fig. 1). In the study
of Liu et al. [5], alcohol consumption was more strongly
associated with DNAm in AA than EA individuals (re-
gression slope = 3.2, p = 8.6 × 10−70). Effect sizes in the
PURE-SA-NW cohort were larger than in either of the
reference groups (regression slope = 0.12, p = 3.2 × 10−16

and 0.47, p = 3.2 × 10−17 for the AA and EA compari-
sons, respectively).
Individual association results showed stronger similar-

ity between the PURE-SA-NW and the AA than with
the EA findings. Overall, 361 CpGs were investigated
(two unique AA, 131 unique EA and 228 associations re-
ported for both ethnicities). Out of the 230 association
tests to compare the AA reference cohort to the PURE-
SA-NW data, 93% (213) of the regression CIs
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overlapped, compared to 80% (287) of the 359 compari-
sons between the EA and PURE-SA-NW. Where CIs did
not overlap, directional consistency was nevertheless ob-
served with the exception of the associations for
cg15636519 (EA and AA comparisons), cg08471846 (EA
comparison only) and cg21227253 (EA comparison only)

with alcohol consumption (Additional file 1a). Data from
the Biobank-based Integrative Omics Studies (BIOS)
Consortium indicated that, apart from cg08471846,
methylation quantitative trait loci (mQTLs) have been
identified for each of these CpGs with absolute reported
Z-scores ranging from 4.15 to 12.9 [24, 25]. Data from

Table 1 Descriptive characteristics of the study and reference cohorts

Trait PURE-SA-NW Reference study Comparative PURE-SA-NW Reference study citation

N 120 See Additional file 1

Age (years) 64 [55–70] 62 [58 − 67] 64 [55–70] [19]

BMI (kg/m2) 22.5 ± 4.9 27.6 ± 4.4a,e 22.4 ± 5.0 [20]

27.7 ± 4.5b,e

WC (cm) 83.8 ± 12.8 101 ± 15.1c,e 83.6 ± 12.7 [9]

97 ± 16d,e [21]

Physical activity (index) 2.41 ± 0.94

Smoking status [N (%)]

Never smoker 56 (47) 6956 (74)b,d,e 56 (48) [4]

Current smoker 61 (51) 2433 (26)b,d,e 61 (52)

Ever smoker 64 (53)

Alcohol use [N (%)]

Never user 56 (47)

Ever user 64 (53)

Alcohol consumption (g/day) 16.7 ± 36.6 1.3 (0, 301)c 0 (0, 240) [5]

5.6 (0, 181)d

CRP (mg/L) 9.7 ± 27.2 6.2 ± 8.8c,e 9.9 ± 27.5 [22]

3.3 ± 5.6d,e

TC (mg/dL) 171 ± 41.6 207 ± 37.1d,e 171 ± 41.6 [3]

LDL-C (mg/dL) 96.5 ± 35.7 125 ± 30.9d,e 96.5 ± 35.7

HLD-C (mg/dL) 54.1 ± 22.7 57.0 ± 16.8d 54.1 ± 22.7

TG (mg/dL) 48.5 ± 30.5 126 ± 69.0d,e 48.5 ± 30.5

Education [N (%)]

None 26 (22)

1–7 years of schooling 66 (55)

8–12 years of schooling 28 (23)

Blood cell type proportions (%)

B cells 0.04 ± 0.02

CD4 T cells 0.11 ± 0.04

CD8 T cells 0.11 ± 0.06

Granulocytes 0.47 ± 0.11

Monocytes 0.09 ± 0.02

Natural killer cells 0.11 ± 0.03

BMI body mass index, CRP C-reactive protein, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, TC total cholesterol, TG
triglycerides, WC waist circumference. Values are presented as median [IQR], mean ± standard deviation, N (%) or median (minimum, maximum). Blood cell
proportions were determined using methylation-based estimates [23]
aIndian Asian ancestry
bEuropean American ancestry
cAfrican American ancestry
dEuropean ancestry
ePopulation means differ between the reference study and comparative PURE-SA-NW study population at p < 0.05 following Bonferroni adjustment
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the 1000 Genomes project support that the differences
observed here could be partly influenced by ancestry-
specific genetic variance; for example, the MAF of
rs7153432 (cis mQTL for cg21227253) is 18% in Afri-
cans and 40% in Europeans [26].
The EWAS conducted on alcohol consumption in the

PURE-SA-NW cohort resulted in 19 genome-wide sig-
nificant findings (p < 9.4 × 10−8), 11 of which were newly
investigated EPIC probes and eight were part of those
previously investigated by 450K probes, that were
present on the EPIC array, but failed to reach association
thresholds in other cohorts (Additional file 2a). Table 2
provides the test statistics for these CpGs.
The proportion of methylation variance of these CpGs

explained by including alcohol consumption in the
model methylation ~ age + BMI + cell counts + smoking
status, ranged from 10.3 to 43.8%. When alcohol con-
sumption was used as the outcome variable, the addition
of these 19 probes to the regression model, increased
the percentage of alcohol consumption variance ex-
plained by 57% (adjusted R2 = 0.05 before and 0.62 after
including the CpGs, p = 5.5 × 10−26).

Smoking status
The association of smoking status with the DNAm of
3618 CpGs in the PURE-SA-NW cohort was compared
to a multi-ethnic (EA and AA) EWAS conducted by Joe-
hanes et al. [4]. ‘Current’ users in the PURE-SA-NW co-
hort included individuals regularly smoking any bought
or self-made tobacco product (commercial cigarettes,
bidis, pipes and cigars). Joehanes et al. [4], however, re-
stricted the definition of ‘current’ smokers to those spe-
cifically reporting cigarette use. Regardless of the

discrepancy in the product smoked, results from the re-
spective EWASs were fairly similar. No ancestral compari-
sons were made by Joehanes et al. [4], who combined data
from a number of different ethnic groups in a meta-analysis.
Effect sizes were generally larger in the PURE-SA-NW

than in the reference data (regression slope = 0.34, p =
1.7 × 10−206). Of the 3618 CpGs tested for their inde-
pendent association with smoking status, 3315 (92%) of
the regression β 95% CIs overlapped and 269 were direc-
tionally consistent between cohorts (Fig. 2). Only 34
CpGs showed a difference in the direction of effect be-
tween the findings of Joehanes et al. [4] and the PURE-
SA-NW cohort (Additional file 1b). Thirteen of these
probes measure methylation at polymorphic sites, 20
have cis-mQTLs and five have trans-mQTLs, all of
which with differing AA and EU ancestry MAFs, sug-
gesting that genetic variation between cohorts could
drive some of the dissimilarities observed [24–26]. No
novel associations with smoking were identified and the
only genome-wide significant CpG association was for a
previously identified CpG (cg05575921) that was associ-
ated with a 17% (p = 4.2 × 10−10) reduction in DNAm in
current smokers compared to participants who had never
smoked (Additional file 2b).

Body mass index
We replicated findings from the largest EWAS on BMI
conducted to date, that of Wahl et al. [20]. These au-
thors investigated the relationship of methylation with
BMI in individuals of Indian Asian (IA) and EU descent.
Wahl et al. [20] observed larger effect sizes among the
IA than the EU group (regression slope = 0.48, p = 4.9 ×
10−72). PURE-SA-NW data reflected the IA better than

Fig. 1 % Methylation change per gram of alcohol intake. From left to right: (i) reference AA vs. EA data (247 CpGs), (ii) PURE-SA-NW vs. AA data
(228 CpGs) and (iii) PURE-SA-NW vs. EA data (228 CpGs). Model used: methylation ~ alcohol consumption + age + BMI + cell counts + surrogate
variables. Reference data: Liu et al. (2018). Green data points represent CpGs where the 95% CIs for effect size estimates in each sample group
overlap. Yellow data points represent CpGs where the 95% CIs for effect size estimates in each sample group do not overlap. Red data points
represent the comparison of effect sizes within the reference cohorts. Black dashed line: line of equality. Blue dashed line: regression line

Cronjé et al. Clinical Epigenetics            (2020) 12:6 Page 4 of 13



the EU data, but in both instances, PURE-SA-NW data
showed larger effect sizes than either reference group (re-
gression slope = 0.57, p = 6.0 × 10−7 and 0.37, p = 1.8 ×
10−8 for IA and EU groups, respectively). However, when
comparing the overlap between individual effect estimates,
PURE-SA-NW mirrored findings from the EU group bet-
ter. The 95% CIs of the 265 regression estimates between
the cohorts overlapped 55% (147) and 77% (203) of the
time when compared with IA data and EU data, respect-
ively (Fig. 3). All regression CIs that did not overlap were
directionally consistent between the PURE-SA-NW and
reference cohorts. No genome-wide significant associa-
tions with BMI were identified (Additional file 2c).

Waist circumference
Eight previously reported associations of WC with DNAm
in cohorts of AA and EA descent [9] were replicated in
the PURE-SA-NW cohort (Fig. 4). The regression model
used to quantify the relationship between WC and DNAm
differed between the reference cohort subgroups. In
addition to the covariates adjusted for in the EA regres-
sion model (age, smoking and white blood cell counts),
the AA model also included alcohol consumption status,

physical activity, education and household income. The
use of the two different models was justified, as it resulted
in highly comparable findings between the reference
study’s AA and EA groups (r = 0.96), with a slightly larger
average effect size observed in the EA than in the AA data
(regression slope = 0.56, p = 0.0001). Applying the fully ad-
justed (AA) model to the PURE-SA-NW data resulted in
a 10.4% increase in average effect size compared to the
model used for the EA group, justifying the use of the fully
adjusted model in our cohort.
As for the previous traits, larger effect sizes were ob-

served in the PURE-SA-NW than both the AA (regression
slope = 0.38, p = 0.03) and EA (regression slope = 0.21, p =
0.04) cohorts with a closer resemblance to the AA than
the EA data (R2 = 0.53. vs. 0.47). When comparing individ-
ual effect estimates between the PURE-SA-NW and refer-
ence data, the 95% CIs overlapped in seven of the eight
assessed associations in both groups (Additional file 1d).
The non-overlapping associations were directionally con-
sistent between studies, overall indicating strong compar-
ability between WC’s association with DNAm across the
investigated ancestral groups. The single non-overlapping
locus was the same in both ethnic groups compared. This

Table 2 EWAS CpG-alcohol consumption associations p < 9.4 × 10−8

ProbeID Location Gene Region β SE p % Variance explained Χ2

p value

cg13153796a 14:101405628 SNORD113-6 TSS1500 − 6.78E–04 8.45E–05 2.2E–11 29.4 (38.4) 3.8E–12

cg00712390a 17:79373624 BAHCC1 1stExon 8.08E–04 1.14E–04 9.7E–10 37.5 (47.0) 5.6E–18

cg05706661 7:36134301 LOC101928618 TSS1500 − 1.05E–03 1.51E–04 2.0E–09 17.6 (57.1) 6.7E–12

cg24252287a 17:40250379 1.48E–04 2.21E–05 4.8E–09 36.5 (41.8) 7.7E–15

cg12177743a 11:113185079 TTC12 TSS200 1.59E–04 2.41E–05 7.5E–09 13.4 (23.4) 2.8E–05

cg19323439 17:9136232 NTN1 Body 5.06E–04 7.93E–05 1.9E–08 14.1 (59.0) 2.1E–08

cg19683675a 5:142077712 FGF1 TSS200 − 1.13E–03 1.78E–04 2.0E–08 35.1 (43.6) 2.7E–15

cg08333974 12:1956337 CACNA2D4 Body − 1.24E–03 1.95E–04 2.2E–08 25.8 (38.3) 8.3E–12

cg12325997 15:59280148 RNF111 1stExon 9.84E–05 1.57E–05 3.2E–08 10.5 (58.4) 9.4E–08

cg19642811 13:95453039 LOC101927284 Body − 6.02E–04 9.64E–05 3.4E–08 19.3 (37.3) 2.3E–08

cg06943216 8:102683096 − 1.33E–03 2.13E–04 3.5E–08 17.5 (33.9) 4.3E–08

cg26187237a 2:217498574 IGFBP2 1stExon 4.19E–04 6.72E–05 3.6E–08 15.5 (53.0) 2.2E–09

cg16358446a 1:1534984 8.10E–05 1.31E–05 4.4E–08 43.8 (52.4) 1.9E–21

cg08724692 6:133646558 EYA4 Body − 6.26E–04 1.03E–04 6.4E–08 10.3 (43.4) 1.2E–06

cg08035774 9:136600662 SARDH 5′UTR − 1.12E–03 1.85E–04 7.5E–08 23.6 (32.8) 6.3E–10

cg18780412a 3:179755086 PEX5L TSS1500 6.36E–04 1.06E–04 8.6E–08 27.0 (33.5) 6.4E–11

cg15942324 1:38482118 UTP11L Body − 6.63E–04 1.10E–04 8.8E–08 23.3 (33.2) 3.4E–09

cg25278025 2:103378026 TMEM182 TSS1500 5.99E–04 9.98E–05 8.8E–08 15.4 (26.0) 5.0E–06

cg22572934b 5:173171061 LINC01484 Body − 1.21E–03 2.02E–04 9.3E–08 13.3 (24.3) 5.5E–05

Model: methylation ~ alcohol consumption (g/d) + age + BMI + smoking + cell counts + surrogate variables
a450K probes
bProbe that should be interpreted with caution owing to the presence of genomic variance at probe measurement site [17]
The percentage variance explained reflects the added value of alcohol consumption to the variance in CpG methylation, reported as percentage explained by
alcohol as an added exposure (percentage variance explained by the total model). Χ2 p value = Chi-square p value when the regression models with and without
alcohol consumption are compared
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site, cg26403843, is associated with five cis-mQTLs and
one trans-mQTL with absolute Z-scores ranging from 4.9
to 39.8. Population differences between the mQTL-
associated SNPs were observed; rs6556405, for example,
has a MAF of 26% in Europenas compared to a frequency
of 66% in Africans [24–26].

Blood lipids
Findings from the largest TC, LDL-C, HDL-C and TG
EWASs to date, reported by Hedman et al. [3], were com-
pared to those of the PURE-SA-NW cohort. For each of
the four lipids, larger effect sizes were observed in the
PURE-SA-NW than in the EU reference cohort. The re-
gression slopes when modelling the PURE-SA-NW effect
sizes against those of the reference cohorts’ were 0.12 (p =
0.18), 0.13 (p = 0.27), 0.19 (p = 9.9 × 10−06) and 0.30 (p =
0.01) for TC, LDL-C, HDL-C and TG, respectively (Fig. 5).
Effect estimates and 95% CIs overlapped for 38/40 (95%)
for TC, 18/21 (86%) for LDL-C, 96/102 (94%) for HDL-C
and 15/16 (94%) for TG, of the associations tested (Add-
itional file 1e). Ten of the 12 non-overlapping associations
were directionally consistent, leaving only two associations
divergent in the direction of effect: cg24939194-HDL-C
and cg15878619-TC. Two mQTLs have been identified
for cg24939194 (rs748097 and rs2969017), the strongest
of which has a MAF of 6% in Africans and 37% in Euro-
peans, indicating that genetic ancestry may be important
for the association of cg24939194 with HDL-C [26].
Despite the consistency in the effect sizes between the

PURE-SA-NW and the reference data, the large CIs ob-
served in our data do not allow for further interpretation
of these findings. There was one genome-wide significant

Fig. 3 Change in BMI (kg/m2) per % methylation change. From left to right: (i) reference EU vs IA data, (ii) IA vs. PURE-SA-NW data and (iii) EU vs.
PURE-SA-NW data. Model used for PURE-SA-NW EWAS: BMI ~methylation + age + smoking status + alcohol consumption + physical activity +
cell counts + surrogate variables. Reference data: Wahl et al. (2017). Green data points represent CpGs where the 95% CIs for effect size estimates
in each sample group overlap. Yellow data points represent CpGs where the 95% CIs for effect size estimates in each sample group do not
overlap. Red data points represent the comparison of effect sizes within the reference cohorts. Black dashed line: line of equality. Blue dashed
line: regression line

Fig. 2 % Methylation difference between current and never smokers
in reference vs. PURE-SA-NW data. Model used for PURE-SA-NW
EWAS: methylation ~ smoking + age + cell counts + surrogate
variables. Green data points represent CpGs where the 95% CIs for
effect size estimates in each sample group overlap. Yellow data
points represent CpGs where the 95% CIs for effect size estimates in
each sample group do not overlap. Black dashed line: line of
equality. Blue dashed line: regression line
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Fig. 5 % Methylation change per mg/dL change in lipid concentration in reference vs. PURE-SA-NW data. Models used: methylation ~ lipid (TC,
LDL-C, HDL-C or TG) + age + cells + surrogate variables. Green data points represent CpGs where the 95% CIs for effect size estimates in each
sample group overlap. Yellow data points represent CpGs where the 95% CIs for effect size estimates in each sample group do not overlap. Red
data points represent the comparison of effect sizes within the reference cohorts. Black dashed line: line of equality. Blue dashed line:
regression line

Fig. 4 % Methylation change per centimetre change in WC. From left to right: (i) reference EA vs. AA data, (ii) AA vs. PURE-SA-NW data and (iii)
EA vs. PURE-SA-NW data. WC was normalised to have a mean of 0 and a standard deviation of 1. Model used for PURE-SA-NW EWAS: methylation
~WC + age + alcohol consumption + smoking + physical activity + education + cell counts + surrogate variables. Reference data: Demerath
et al. (2015). Green data points represent CpGs where the 95% CIs for effect size estimates in each sample group overlap. Yellow data points
represent CpGs where the 95% CIs for effect size estimates in each sample group do not overlap. Red data points represent the comparison of
effect sizes within the reference cohorts. Black dashed line: line of equality. Blue dashed line: regression line
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lipid-DNAm association in our cohort (Additional file 2e).
High-density lipoprotein cholesterol associated with
cg23636606 at a regression β of 2.6 × 10−04 ± 4.4 × 10−05

(p = 4.8 × 10−08).

CRP
Ancestry-stratified (AA and EU) data on the effect of
CRP on the DNAm of 207 loci, by Ligthart et al. [22]
were compared to PURE-SA-NW. The reference study
reported highly comparable effect sizes between the AA
and EU ancestral groups (regression slope = 0.82, p =
1.25 × 10−107), with slightly larger effects observed in the
AA group. The comparison of the regression slope of ef-
fect sizes between the reference data and our own
showed moderately larger effect sizes in the PURE-SA-
NW findings than in the reference data, more so for the
EU (regression slope = 0.25, p = 2.5 × 10−10) than the AA
(regression slope = 0.22, p = 1.3 × 10−10) comparison
(Additional file 1f). Confidence intervals of the individual
effect estimates between the reference and PURE-SA-
NW data overlapped for 192 out of the 207 tests (93%)
in each ethnicity (Fig. 6). Twenty-two of the 30 non-
overlapping associations were directionally consistent.
Two CpGs had associations in opposing directions of ef-
fects compared to EU (cg01588592 and cg23740758)
and three compared to the EU and AA (cg24174557,
cg26846781, cg27184903) reference datasets. All the
non-overlapping CpGs have cis-mQTLs with absolute
reported Z-scores ranging from 4.06 to 22.95 [24, 25].
Data from the 1000 Genomes project support the no-
tion that the differences observed here could be partly
influenced by ancestry-specific genetic variance: for ex-
ample, MAF of rs9791189 (cis-mQTL for cg23740758) is

12% in Africans and 23% in Europeans [26]. There were
no genome-wide significant or novel CRP-DNAm asso-
ciations in our cohort (Additional file 2f).

Age
Previous findings from EU-based research on the associ-
ation of age with DNAm of 152 CpGs [19] were com-
pared to those from the PURE-SA-NW cohort (Fig. 7).
In contrast to all other traits, a much weaker association
between age and DNAm was observed in our data than
in the reference data (regression slope = 12.9, p = 4.2 ×
10−31). Although the direction of effects was consistently
similar between the two studies, none of the regression
CIs overlapped when comparing the individual associa-
tions (Additional file 1g).
Formal data on disease diagnosis were not available for

the PURE-SA-NW cohort and were, therefore, not in-
cluded in regression models, as done by Florath et al. [19].
Furthermore, cell counts were not adjusted for in the ref-
erence study, but were included in our models, since cell
counts are recognised confounders in our data. Sensitivity
analyses were, however, performed by including data on
chronic medication use (as a proxy for disease) as well as
excluding cell count adjustments. These analyses did not
result in any discernible differences in findings (inclusion
of medication use: regression slope = 13.0, p = 4.5 × 10−30,
exclusion of cells: regression slope = 12.4, p = 1.7 × 10−32).
There were no genome-wide significant or novel age-
DNAm associations in our cohort (Additional file 2g).

Discussion
Our primary analysis focussed on the replication of rele-
vant EWAS literature in 120 Batswana men from the

Fig. 6 Change in logarithmic CRP (mg/L) per % methylation change. From left to right: (i) reference EU vs. AA data, (ii) AA vs. PURE-SA-NW data
and (iii) EU vs. PURE-SA-NW data. Model used for PURE-SA-NW EWAS: methylation ~ CRP + age + smoking + BMI + cells + surrogate variables.
Reference data: Ligthart et al. (2016). Green data points represent CpGs where the 95% CIs for effect size estimates in each sample group overlap.
Yellow data points represent CpGs where the 95% CIs for effect size estimates in each sample group do not overlap. Red data points represent
the comparison of effect sizes within the reference cohorts. Black dashed line: line of equality. Blue dashed line: regression line
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PURE-SA-NW cohort. Secondary analysis included the
discovery of novel findings, either investigated for the
first time on the EPIC array, or with the 450K probes in-
corporated in the EPIC array that had not previously
been associated with these traits.
Overall, the 95% CI of effect estimates for 86% (4730

out of the 5498 CpG-trait association tests) of the PURE-
SA-NW associations overlapped with previously reported
findings, and a further 13% (720 out of the 5498 CpG-trait
association tests) were directionally uniform. Generally,
larger effect sizes were observed in the PURE-SA-NW
data than those of the reference studies. Although the rea-
son for differing effect sizes cannot be answered defini-
tively, given the small sample size, the degree of
association seems to be related to population-specific dif-
ferences. Only ~ 1% of our findings (48 out of the 5498
CpG-trait association tests, including 44 unique CpGs)
were directionally inconsistent with its compared associ-
ation reported in the reference study. No data quality con-
cerns were observed for any of these directionally
contradicting findings. Of the 44 CpGs, 36 have mQTLs
[24, 25] for which population differences in MAFs have
been observed by the 1000 genomes project [26].
Overall, these results indicate general consistency in

epigenome-wide associations among ethnicities, but an-
cestry may be important in up to 14% of the tested asso-
ciations. This is supported by the fact that regardless of

the similarity in traits measured among groups, the associ-
ations observed in PURE-SA-NW data consistently
reflected those reported in AA better than in EU/EA co-
horts and better in EU than IA in the case of methylation-
BMI associations. Furthermore, eight novel associations
between the methylation of 450K array probes, present on
the EPIC platform, and alcohol consumption are reported
in the Batswana South Africans that were not previously
observed in populations of different ancestral origins.
These population distinctions indicate the value of ethnic
diversity in epigenetic research.
The only trait for which we were unable to replicate

any associations was age. Apart from the reference study
for age being the smallest of the reference studies in-
cluded (N = 498), there were also clear differences in the
pre-processing, data normalisation and EWAS approach
followed between PURE-SA-NW and Florath et al. [19].
The reference cohort’s analyses were restricted to a pre-
selected set of 200 CpGs, the methylation levels of which
were normalised using Box–Cox transformations. A
mixed regression model with plate and BeadChip as ran-
dom effects was used. For the PURE-SA-NW data, how-
ever, we employed a functional normalisation strategy
on the raw methylation data of all the EPIC BeadChip
probes, followed by linear regression where surrogate
variables were adjusted for as fixed effects to control for
possible unaccounted variance. Our findings remained
directionally consistent with the reference study’s, with
the average difference in effect size amounting to 0.87%
methylation change per year increase in age (calculated
as the percentage difference between the average of the
152 tests’ absolute regression βs of the PURE-SA-NW
vs. Florath et al [19] results).
In terms of findings related to the EPIC array, 11

genome-wide significant alcohol associations are re-
ported here. An additional eight genome-wide significant
alcohol associations were observed for 450K probes
present on the EPIC array. Alcohol consumption con-
tributed to a large portion of the variance in the methy-
lation of these probes, as well as, when reversed, the
probes to the variance in alcohol consumption. Previous
450K CpG-alcohol associations have been used success-
fully to identify risky and heavy drinkers [5]. Our sample
size did not allow stratification of alcohol intake, but we
expect the addition of the alcohol-associated EPIC
probes reported here to enhance the discriminatory po-
tential of the current methylation-based biomarker of al-
cohol consumption [5]. The variance explained by these
findings and their usefulness as potential biomarkers
warrant replication in large and ethnically diverse co-
horts. Larger sample sizes and ethnic diversity will also
permit further exploration of the biological basis of these
findings and their potential application in NCD-related
epigenetic research.

Fig. 7 % Methylation change per year of age in reference vs. PURE-
SA-NW data. Model used for PURE-SA-NW EWAS: methylation ~ age
+ smoking + cell counts + surrogate variables. Yellow data points
represent CpGs where the 95% CIs for effect size estimates in each
sample group do not overlap. Black dashed line: line of equality.
Blue dashed line: regression line
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The strengths of this study are the expansion of current
data, both by using the EPIC array and investigating a
novel study population, after first being able to observe
similar findings to those from independent, highly pow-
ered, previously replicated literature. The overall
consistency between effect sizes is reassuring, not only in
terms of the comparability of the PURE-SA-NW data with
previous findings, but also the consistency in the effect
size and explained variability of novel associations com-
pared to previous EWASs on similar traits [5, 9, 20, 21].
The efficacy of the enhanced coverage of the EPIC array,
to uncover new associations with a range of traits, is
shown in our study, even with our limited sample size.
We motivate the use of this array in future large-scale
analyses, as it is likely to add to the variance that can be
explained using methylation markers and also to identify
novel sites that may be important in prediction, risk strati-
fication or understanding causal disease pathways.
In this study, however, the corresponding limitation to

doubling the coverage of the 450K array was the relative
loss of statistical power, given our sample size. The lack
of power resulted in wide regression CIs for most associ-
ation estimates that limited our capacity for the fine
scale inference of findings. We were able to comment
on general patterns and large differences, but we do not
know whether more subtle differences between popula-
tion subgroups exist. Furthermore, the unavailability of
genomic data in our cohort and the absence of data on
Southern African populations in the 1000 genomes’
database restricted our ability to evaluate MAF differ-
ences between the reference and Batswana South Afri-
can groups. We are, therefore, unable to quantify the
relative contribution of genetic compared to environ-
mental factors in the associations and association differ-
ences observed. The overall congruence in replication
results between cohorts—even when large differences in
phenotypes are demonstrated—does, however, suggest
that these associations might be the result of genetic
architecture rather than environmental differences,
which we expect to affect the investigated traits as well.
The inclusion of only one sex also limits this study in

that no assumptions can be made regarding the general-
isability of these results to black South African women.
However, because all the reference studies we replicated
contained mixed-gender data, there are likely not major
differences in these associations between the sexes.

Conclusions
This study reports that up to 86% of the previously re-
ported epigenome-wide associations observed in other
ethinicities are present in this black male South African
population. While acknowledging the value of ethnic-
specific genomic data, our results support the notion
that current blood-based 450K EWAS findings can

largely be extrapolated to under-represented ethnicities
for whom epigenetic data are not yet available. However,
the population-specific differences in up to 14% of the
CpGs tested, together with the unique associations re-
ported here, do motivate the inclusion of a diversity of
ethnic groups in epigenetic association studies. Investi-
gating multi-ethnic data in epigenome-wide studies
should be considered the golden standard.

Methods
Study design
This study was performed on a sub-sample of individ-
uals participating in the international PURE study [27].
The PURE study includes sub-cohorts across the world,
including one comprising individuals residing in the
NW province of South Africa. This sub-cohort repre-
sents a single, self-reported ethnicity, Batswana South
Africans, who were born and still reside in the NW
province of South Africa. Detailed descriptions of the
international and PURE-SA-NW cohorts have been pub-
lished previously [27, 28].
PURE-SA-NW data were collected in 2005, 2010 and

2015. A total of 126 participants were randomly selected
for the current investigation, from a group of 990 indi-
viduals who took part in the 2015 PURE-SA-NW data
collection. Eligibility depended on the following inclu-
sion criteria: availability of bio-samples, testing negative
for the human immunodeficiency virus at the time of
data collection and male sex. These criteria were incor-
porated to eliminate confounding by sex and CD4 cell
counts in a study with already limited power. The partic-
ipants included in this study are referred to as the
PURE-SA-NW cohort in this manuscript.

Data collection
Height and weight were quantified using a stadiometer
and an electronic scale. BMI was calculated as weight
per unit height squared (kg/m2). WC was measured at
the appropriate landmarks, by qualified anthropometrists
using a steel tape.
An adapted physical activity index questionnaire was

used to gather data to calculate a physical activity index
[29]. Alcohol intake (g/day) was determined from a
quantitative food frequency questionnaire adapted and
validated for use in this population [30]. Participants re-
ported the amount, frequency and any relevant descrip-
tion of the alcoholic drinks they had consumed in the
preceding month. Data were processed to an amount in
g/day, based on the South African food composition ta-
bles using FoodFinder3® software (available from http://
foodfinder.mrc.ac.za). Smoking status (current, former
or never) was self-reported, using a standardised ques-
tionnaire. When used as a covariate, smoking and drink-
ing status were dichotomised into never and ever groups,
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with former smokers/drinkers included in the ever cat-
egory. When investigated as the EWAS exposure, smoking
status and alcohol consumption were classified according
to the classification used in the reference studies.
Fasting blood samples were collected and handled as

described previously [31]. High-sensitivity CRP and fast-
ing blood lipids (TC, LDL-C, HDL-C, TG) were quanti-
fied using the Cobas® Integra 400 (Roche® Clinical
System, Roche Diagnostics, Indianapolis, IN, USA).

DNAm data generation and processing
Whole blood intended for the isolation of genomic DNA
was collected in 9 mL Tempus tubes (Applied Biosys-
tems™, Foster city, CA, USA) at the same time as blood
used for the quantification of all other phenotypes.
Tubes were vortexed for 10 s prior to storage in a −
20 °C freezer for up to 5 days, after which samples were
transferred to cryostorage (− 80 °C) until analysis. DNA
was isolated using QIAGEN Flexigene DNA extraction
kits (QIAGEN® Valencia, CA, USA). The manufacturer’s
protocol was followed with minor modifications.
Upon extraction, the picoGreen® dsDNA quantitation

assay (Invitrogen™, Carlsbad, CA, USA) was used to
quantify DNA. Five hundred nanograms DNA from each
participant was bisulphite-converted using the Zymo EZ
DNAm™ kit (Zymo Research, Irvine, CA, USA), followed
by genome-wide DNAm profiling on the Illumina Infi-
nium MethylationEPIC BeadChip according to the man-
ufacturer’s protocol (Illumina®, San Diego, CA, USA).
Samples were randomised across slides to minimise the

possibility of confounding by batch. Raw signal intensity
data were processed from .idat files using functional nor-
malisation as described by the R package meffil [32]. The
quality threshold for samples and probes was set at 95%.
All probes or samples with a detection p value > 0.01 for
more than 5% of the evaluated measures were excluded. Six
samples were removed on account of low quality: four sam-
ples because of a proportion of undetected probes above
the quality control (QC) threshold and two with outlying
control probes. Probes failing QC were removed prior to
data normalisation (N = 8343). Eventually 857,516 probes
and 120 individuals were included in subsequent data nor-
malisation and analysis. Principal component analysis of
the control probes identified 12 principal components to be
included in the functional normalisation. In addition, slide
was specified as a random effect to be included to address
batch variance. Sample cell fractions (B cells, CD4 and CD8
T cells, neutrophils, monocytes and natural killer cells)
were estimated using the IDOL optimised L-DMR library
for whole blood samples [23].

Identification of reference data using the EWAS catalogue
Data we sought to replicate were extracted from the
EWAS catalogue (http://www.ewascatalog.org, date of

access: 27 April 2019). The EWAS catalogue indexes
EWAS studies performed in a study sample of at least
100 individuals for whom at least 100,000 CpGs were
available genome-wide. Only associations with p < 1 ×
10−4 are included in the catalogue.
Data from the catalogue were pruned according to the

following criteria: (i) the EWAS catalogue trait had to be
available in the PURE-SA-NW study cohort in a com-
parable unit; (ii) methylation-trait associations had to be
replicated (below a p value threshold of 1 × 10−4) in at
least one independent cohort, regardless of tissue, to re-
duce the possibility of including false positive findings
from among the reference studies; (iii) the DNA had to
have been extracted from a blood-based sample; (iv)
DNAm had to be reported in Beta units; and (v) an ef-
fect estimate (β) and standard error had to be available
for each association. Traits that fitted these criteria were
age, alcohol consumption, smoking, BMI, WC, CRP,
HDL-C, LDL-C, TG and TC. To simplify data analysis,
we attempted to replicate results from the largest study
indexed by the EWAS catalogue for each investigated
trait only. The results reported in each replication sub-
section make reference to the particular study used for
comparison, which would have been the largest EWAS
included in the catalogue at the time of writing.

Statistical analysis
Statistical analysis was conducted using R 3.4.3 [33].
The normality of trait data was assessed using Shapiro-
Wilks tests. Linear regression models were used to iden-
tify epigenome-wide associations using the meffil [32]
and ewaff (https://github.com/perishky/ewaff) packages.
DNAm was modelled as a β value between 0 and 1,
representing the ratio of methylated to unmethylated
probes. The relative contribution of exposures to the
variance of outcome variables was determined using the
relaimpo package’s lmg metric from the calc.relimp
function applied to linear models.
For the replication analysis, because of the small sam-

ple size of the PURE-SA-NW study population and,
therefore, limited power, replication of previously pub-
lished results focusses on the size and direction of effect
sizes rather than comparison of p values. Associations
were considered replicable when the 95% CI of the re-
gression β of the reference and the PURE-SA-NW co-
hort overlapped. Most reference studies extracted from
the EWAS catalogue adjust regression models for ‘tech-
nical variation’. In PURE-SA-NW, surrogate variables
were added to all models to reduce any unknown or un-
measured confounding [34]. The sva and generate.con-
founders functions within the meffil and ewaff packages
estimated the surrogate variables that were included in
each model based on the method described by Leek and
Storey [34]. Annotation data were obtained from meffil.
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For the investigation of novel findings, only associa-
tions with p < 9.4 × 10−8 were considered genome-wide
significant [15]. Within our cohort, we estimated 80%
power to detect a 5% difference in methylation at this
threshold for 69% of the EPIC probes, assuming an alpha
level of 0.05 and 530,639 independent tests [15]. Pack-
ages used in analyses, in addition to those already speci-
fied, include BaseR, dplyr, FlowSorted.Blood.EPIC, ggplot,
IlluminaHumanMethylationEPICanno.ilm10b2.hg19,
minfi, readxl and xlsx.

Supplementary information
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1186/s13148-019-0805-z.
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