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Glaucoma is a common cause of blindness, yet current thera-
peutic options are imperfect. Clinical trials have invariably
shown that reduction in intraocular pressure (IOP) regardless
of disease subtype prevents visual loss. Reducing ciliary body
aqueous humor production can lower IOP, and the adeno-
associated virus ShH10 serotype was identified as able to
transduce mouse ciliary body epithelium following intravi-
treal injection. Using ShH10 to deliver a single vector
CRISPR-Cas9 system disrupting Aquaporin 1 resulted in
reduced IOP in treated eyes (10.4 ± 2.4 mmHg) compared
with control (13.2 ± 2.0 mmHg) or non-injected eyes
(13.1 ± 2.8 mmHg; p < 0.001; n = 12). Editing in the aquaporin
1 gene could be detected in ciliary body, and no off-target
increases in corneal or retinal thickness were identified. In
experimental mouse models of corticosteroid and mi-
crobead-induced ocular hypertension, IOP could be reduced
to prevent ganglion cell loss (32 ± 4 /mm2) compared with un-
treated eyes (25 ± 5/mm2; p < 0.01). ShH10 could transduce
human ciliary body from post-mortem donor eyes in ex vivo
culture with indel formation detectable in the Aquaporin 1 lo-
cus. Clinical translation of this approach to patients with
glaucoma may permit long-term reduction of IOP following
a single injection.

INTRODUCTION
Glaucoma is the commonest cause of irreversible blindness world-
wide, affecting more than 64 million people.1 No cure exists, but mul-
tiple clinical trials have shown that regardless of the initiating pathol-
ogy or disease subtype, sustained reduction in intraocular pressure
(IOP) can prevent retinal ganglion cell death, optic nerve damage,
and subsequent visual loss.2–4 Given the requirement for ongoing
IOP control following diagnosis, present treatment options remain
imperfect, and management is challenging even in developed health-
care systems.5 IOP-reducing drops are used initially but have frequent
side effects, are only moderately efficacious, and concordance is typi-
cally poor because daily administration is required.6,7 Glaucoma sur-
gery (e.g., trabeculectomy) is effective but requires access to highly
trained surgeons, needs intensive monitoring, risks potentially cata-
strophic complications, and often fails over time.8–10
M
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IOP arises as a balance between the formation of aqueous humor by
the ciliary body and outflow via the uveoscleral route or trabecular
meshwork.11 Most interventions focus on increasing outflow; how-
ever, ciliary body destructive procedures (e.g., cyclodiode laser) uni-
versally and markedly reduce IOP even in severe end-stage glaucoma.
However, the resulting ciliary body necrosis can lead to inflammation,
loss of neurotrophic factors, and subsequent phthisis bulbi that has
limited the wider use of this approach.12–14

Gene editing to provide a single but permanent therapeutic alteration
is an appealing approach given glaucoma is a chronic disease that re-
quires lifelong intervention. Progress to date has remained at preclin-
ical stages, with methods focused on either modulating the trabecular
meshwork to increase outflow15,16 or providing neuroprotection to
ganglion cells.17,18 A prior study has used CRISPR-Cas9 to correct
onemutation in themyocilin (MYOC) gene associated with the devel-
opment of glaucoma.19 However, glaucoma is rarely monogenic in
origin, and many genes have been associated with increased risk,
each of which can possess multiple pathogenic mutations.20,21 Nearly
a hundred mutations have been identified in myocilin alone, making
such specific gene-editing approaches less translationally viable.

In this study, we demonstrate a pragmatic gene therapy approach that
reduces IOP by selectively disrupting aqueous humor production in the
ciliary body following a single intravitreal injection. Specific gene edit-
ing is achieved using the smaller S. aureus-derived CRISPR-Cas9 plat-
form, because it is capable of being delivered within a single recombi-
nant adeno-associated virus (AAV), the vector that is now the gold
standard and US Food and Drug Administration (FDA) licensed for
ocular gene therapy.22,23 By targeting a gene critical to a conserved
physiological process rather than correcting one specific mutation, uni-
versal application without a prohibitive personalized approach is trac-
table. IOP reduction is achieved by disrupting Aquaporin 1 (Aqp1) in
olecular Therapy Vol. 28 No 3 March 2020 ª 2020 The Author(s). 1
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Adeno-Associated Virus ShH10 Serotype

Efficiently Transduces Ciliary Body Epithelium

following Intravitreal Injection

A total of 2 � 1010 genome copies of different AAV sero-

types encoding GFP driven by the CMV promoter were

injected into the vitreous cavity of one eye of each mouse.

(A and B) Four weeks later, (A) ciliary body expression was

compared using immunofluorescent sections, and (B)

retinal transduction was examined by in vivo fundal fluo-

rescence imaging. Only the ShH10 serotype demon-

strated clear ciliary body GFP expression. Representative

images from n = 8, two independent experiments. Scale

bars, 25 mm.
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the ciliary body. Aquaporins are a family of water-transporting trans-
membrane proteins that are widely expressed throughout the human
body,24,25 and transgenic mice deficient in Aqp1 have been shown to
have lower IOP as a result of reduced inflow and aqueous humor for-
mation without adverse effect.26

RESULTS
ShH10 Virus Transduces Mouse Ciliary Body Epithelium

following Intravitreal Injection

Five serotypes of AAV encoding GFP under the control of the consti-
tutive cytomegalovirus (CMV) promoter were injected into mouse
eyes via the intravitreal route. The ShH10 serotype was the only virus
to demonstrate strong GFP expression in ciliary body non-pigmented
epithelium by 4 weeks (Figure 1A). Retinal in vivo imaging revealed
additional GFP expression around the optic disc and retinal vessels
using ShH10 (Figure 1B). This was found to predominantly arise
from Müller glia, ganglion cells, and astrocytes by morphology and
anatomical location. Weak GFP signal was observed in the corneal
endothelium (Figure S1).

Combining Two CRISPR-Cas9 Short Guide RNAs Leads to

Efficient Aquaporin 1 Disruption

Relative Aqp1 protein and transcript levels were assessed across
different tissues of the mouse eye (Figures 2A–2C) and identified in
the ciliary body, cornea, and retinal pigment epithelium (RPE). No
AQP1 protein was detected in the retina, implying any off-target retinal
transduction would not be detrimental. Six Staphylococcus aureus-
derived Cas9 (SaCas9)-compatible short guide RNA (sgRNA) se-
quences within exon 1 of Aqp1 were identified (Figure 2D). These
were cloned into a single plasmid also encoding SaCas9, transiently
transfected into the mouse B6-RPE07 cell line, and tested for indel for-
mation efficiency by T7 endonuclease 1 assay (Figure 2E). Two sgRNAs
(named B and E) were selected as a compromise between efficacy and
spacing across exon 1 and were each produced as single AAV vectors
using the ShH10 serotype capsid. More efficient gene disruption was
observed when targeting with two sgRNAs compared with a single
sgRNA approach, a finding also noted in other studies.27,28 Therefore,
a 1:1 ratio of sgRNAs B and E was employed and henceforth denoted
as “MIX.” Culturing B6-RPE07 cells with these viruses in vitro individ-
2 Molecular Therapy Vol. 28 No 3 March 2020
ually or in 1:1 combination produced indels within exon 1 (Figure 2F)
and reduced transcript levels (Figure 2G). Combined use of the two vec-
torswas selected as themain strategybecause it not only reduced in vitro
transcript levels, but frequent excision of the intervening 98-bp region
between the two sgRNAs additionally disruptedAqp1 function bydelet-
ing key protein residues predicted by the crystal structure to affect chan-
nel patency (Figures S2A–S2C).29 No editing was identified for either
sgRNA in the top five off-target coding genes predicted by a bio-
informatic algorithm (Figure S2D).30
Aquaporin 1 Disruption by CRISPR-Cas9 Lowers IOP

Wild-type C57BL/6J mice received unilateral intravitreal injection of
the combined vector mix, and 3 weeks later the ciliary body was iso-
lated. This confirmed genomic DNA editing within exon 1 of Aqp1
only in treated eyes (Figure 3A), where the presence of SaCas9
DNA was also detected (Figure 3B). In these mice, IOP was reduced
by a mean of 2.9 mmHg relative to each contralateral eye (Figure 3C).
This would be approximately a 22% reduction, which would be clin-
ically effective if translated to glaucoma therapy, where trials have
shown even a 25% reduction can preserve vision.31 No statistically
significant difference in IOP between eyes was identified at baseline,
and greater variance is seen in IOP between different animals, so
contralateral eyes were used as the optimal control with datapoints
displayed as linked pairs of eyes where indicated (Figure S3). Injection
of a GFP-encoding ShH10 control vector did not lead to a reduction
in IOP compared with uninjected or MIX-treated eyes (Figure 3D).
When intravitreal injection of ShH10 vector was performed in both
eyes, subclinical inflammation seen only on OCT scanning as scat-
tered cells within the vitreous cavity could be observed. This was se-
vere in 2 of 23 eyes examined, which were excluded from analysis, and
is compatible with loss of local immune regulation secondary to an-
tigen excess as previously observed.32,33 Flow cytometry of ciliary
body from GFP- and MIX-treated eyes, however, did not show differ-
ences in infiltrating immune cell numbers to confound the IOP
changes seen (Figure S4). Studies imply there is negligible ciliary
body epithelium turnover in mammals.34 BrdU pulse staining was
performed in ShH10-injected eyes and did not show secondary
epithelial cell proliferation in response to viral infection (Figure S2E).
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Figure 2. Aquaporin 1 Is Expressed in the Mouse

Ciliary Body and Can Be Targeted Using CRISPR-

SaCas9

The mouse eye expresses AQP1 predominantly in the

ciliary body, cornea, and RPE. (A–C) Representative

western blot and pooled data from dissected tissues (A)

for protein (B) and RNA (C) by quantitative PCR; n = 4–6

eyes. (D) Genomic map of exon 1 of mouse Aqp1 dis-

playing sequence and binding location of tested SaCas9-

compatible short guide RNAs (sgRNA) tested. (E) T7

endonuclease 1 assay for different plasmid transfected

sgRNAs and the indel creation efficiency of each. sgRNA-

labeled B and E were packaged into ShH10 serotype AAV

vectors and co-cultured with mouse B6-RPE cells indi-

vidually and in combination. (F and G) T7 endonuclease 1

assay (F) and quantitative PCR (G) for mAqp1 were per-

formed. Aqp1 expression was significantly reduced using

sgRNA E alone and in combination with B (MIX) compared

with uninfected (UN) controls. Kruskal-Wallis test with

Dunn’s multiple comparisons. Mean ± SD is shown.

***p = 0.001, ****p < 0.001. n = 10–12. Lamin B1 was

used as loading control.
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AQP1 protein levels were reduced in the ciliary body of treated eyes
(Figures 3E and 3F). Complete AQP1 loss is not seen because it is not
feasible to readily separate the targeted non-pigmented epithelium
from other uninfected ciliary body cells. No structural abnormalities
in the ciliary body were seen by histology at 3 weeks (Figure 3G),
consistent with a lack of gross toxicity reported following retinal de-
livery of CRISPR-Cas9 variants.35 Optical coherence tomography
(OCT) was used to determine whether any in vivo off-target effects
from potential Aqp1 disruption in the cornea or retina occurred
(Figure 3H). No edema was clinically apparent, and quantification
confirmed that no significant corneal or retinal thickening occurred
(Figures 3I and 3J), consistent with previous publications suggesting
there is corneal redundancy provided by aquaporin 5.26
M

Aquaporin 1 Disruption Can Prevent

Ganglion Cell Loss in Experimental Models

of Glaucoma

After demonstrating effective IOP reduction in
normal eyes, the approach was trialed in two
experimental mouse models of glaucoma. Corti-
costeroid-induced ocular hypertension pro-
duces mildly increased IOP, analogous to the
distinct entity seen in humans, but does not
lead to robust ganglion cell loss using a depot
model.36 Intervention in this model from an
elevated baseline resulted in about 20% reduc-
tion in IOP (Figure 4A) and ciliary body
AQP1 protein levels (Figures 4B and 4C).

The microbead glaucoma model produces
greater occlusion of aqueous drainage, resulting
in markedly elevated IOP and secondary retinal
ganglion cell loss. Treatment one week after elevation of IOP led to
a sustained reduction (Figure 4D) in mean pressure of 3.9 mmHg
at 3 weeks (Figure 4E).AQP1 protein in thematched eyes was lowered
(Figure 4F). Extending the model to 7 weeks demonstrated that
treatment prevented the ganglion cell loss (Figures 4G and 4H),
illustrating not only IOP reduction but cellular preservation—the
definitive aim of any glaucoma therapy.

ShH10 Can Transduce Human Ciliary Body Epithelium

To determine whether the approach could be readily translated
into humans, we obtained ocular tissue surplus to transplantation.
AQP1 protein (Figure 5A) and transcript (Figure 5B) are detected
to the same extent in ciliary body and cornea, with minimal
olecular Therapy Vol. 28 No 3 March 2020 3
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Figure 3. CRISPR-Cas9-Mediated Disruption of

Ciliary Body Aquaporin 1 Lowers Intraocular

Pressure in the Mouse

Intravitreal injection of 2 � 1010 genome copies of the

ShH10 virus encoding an equal proportion of mAqp1 B

and E sgRNA (MIX) was performed into one eye of each

wild-type C57BL/6J mouse. After 3 weeks, (A) a repre-

sentative T7 Endonuclease 1 assay demonstrates

genomic DNA mutation in ciliary body dissected from

treated eyes, but not in uninjected eyes (UN). (B) SaCas9

DNA is detectable by PCR only in ciliary body tissue from

MIX eyes. (C) IOP is reduced by mAqp1 disruption by a

mean of 2.9 mmHg; paired t test, n = 18 pairs. (D) IOP is

not altered by control ShH10 CMV-GFP virus injection,

one-way ANOVA with Holm-Sidak’s multiple comparison,

three independent experiments, n = 50 eyes. (E and F)

Representative western blot (E) and densitometry (F)

showing reduced AQP1 protein in isolated ciliary body

tissue; paired t test, n = 7 pairs. (G) Representative H&E-

stained paraffin sections of ciliary body show no clear

structural abnormalities; n = 6, representative images

shown with �2 original magnification inset. (H) Repre-

sentative optical coherence tomography (OCT) scans of

treated and control eyes. (I and J) No significant “off-

target” increase in thickness is seen for either (I) cornea or

(J) retina, paired t test, n = 9 pairs. All scale bars: 50 mm.

Mean ± SD is shown. **p = 0.01, ****p < 0.001. ns, not

significant.
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expression in the retina or RPE. The ciliary body was isolated and
maintained in culture for up to 7 days according to an established
protocol. ShH10 vector encoding GFP was co-incubated and fluo-
rescence was observed in vitro from day three onward (Figure 5C)
and confirmed as arising from non-pigmented ciliary epithelium
by histology at day seven (Figure 5D). sgRNAs aligning to exon
1 of human AQP1 were tested for their targeting efficiency by
plasmid transfection into a 293T cell line (Figure 5E). sgRNA K
produced the highest rate of indel formation and so was packaged
into the ShH10 vector. Co-incubation with 293T cells (Figure 5F)
or human ex vivo ciliary body (Figure 5G) produced detectable in-
del formation in the AQP1 locus. Low editing levels in the ciliary
body likely arise from limitations in maintaining cell viability
ex vivo, greater dilution of the vector in culture medium, and dif-
ficulty in isolating pure non-pigmented ciliary body epithelium
4 Molecular Therapy Vol. 28 No 3 March 2020
from non-transduced cells during preparation
for the T7 Endonuclease I assay.

DISCUSSION
By selectively disrupting Aqp1 in the adult
mouse eye, IOP can be reduced from normal
physiological baseline or when elevated in
experimental models of glaucoma. Proof of
concept was achieved using the engineered
ShH10 serotype of AAV to deliver the
S. aureus-derived CRISPR-Cas9 system pack-
aged within a single vector. If translated to
humans, this could benefit patients with glaucoma by providing a
new treatment that could lower IOP following a single intravitreal in-
jection irrespective of contributory genetic mutations or disease sub-
type. An approach that uses permanent gene editing is ideal given the
chronic nature of glaucoma with persistent IOP elevation over
decades.

Contemporary research into new treatments for glaucoma has
focused more on techniques to increase aqueous humor outflow.37,38

Pharmaceutical agents or laser destructive procedures are currently
used to reduce inflow at the ciliary body, but their wider use has
been limited. Systemic carbonic anhydrase inhibitors such as acet-
azolamide dramatically reduce IOP but have unacceptable systemic
side effects that prevent long-term use. Cyclodiode laser is often em-
ployed when other treatments have failed and in cases of severe acute



Figure 4. Ciliary Body Aquaporin 1 Disruption

Lowers Intraocular Pressure in Two Experimental

Glaucoma Models and Prevents Ganglion Cell Loss

Using a corticosteroid-induced ocular hypertension

model, paired eyes were subsequently injected with

ShH10-CMV-SaCas9-sgRNA B and E (MIX) or untreated

(UN). (A) Intraocular pressure (IOP) 3 weeks later is

reduced in treated eyes by amean of 2.88mmHg; paired t

test, n = 11 from two independent experiments. Dotted

line is 11.3 mmHg mean IOP before model induction. (B

and C) Representative ex vivo ciliary body western blot (B)

and pooled data (C) demonstrating reduced mAQP1

protein levels; paired t test, n = 11. The more acute mi-

crobead ocular hypertension model was employed with

data shown pooled from three independent experiments

of three to five mice per run. (D) Eyes were treated 1 week

after microbead injection, which attenuated the increase

in IOP. Two-way ANOVA, p = 0.0003, n = 12. (E) After

3 weeks post-virus injection, mean IOP reduction was

3.9 mmHg; paired t test, n = 12. Dotted line represents

12.7 mmHgmean baseline IOP. (F) Matched ex vivo ciliary

body mAQP1 protein was reduced in treated eyes; paired

t test, p = 0.0008, n = 12. Extending to 7 weeks,

confirmed reduced ganglion cell loss in the treated group.

(G and H) Representative examples of retinal flatmount

staining for Brn3a (G), with ganglion cell quantification (H),

a reference mean Brn3a+ ganglion cell count in wild-type

(WT) untreated retina by flatmount, also provided; mean of

six fields per eye quantified as mean ± SD per mm2, two

independent experiments; paired t test, n = 9 pairs.

Mean ± SD is shown. Scale bars, 50 mm. **p < 0.01,

***p < 0.001, ****p < 0.0001.
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glaucoma. It is performed under regional anesthesia, typically in an
operating theater, and delivers direct thermocoagulation and necrosis
of all constituent cells of the ciliary body. Although several treatment
sessions can be required, potent but unpredictable IOP reduction is
invariably achieved. Visual loss and phthisis bulbi are not uncommon
and are ascribed to excessive IOP reduction but may arguably arise
from non-selective destruction and loss of the neurotrophic functions
of the ciliary body, which would be left intact by the selective inhibi-
tion of aqueous production in this approach.14

An advantage over standard gene therapy is that Aqp1 is a universally
expressed protein and its DNA sequence is expected to be broadly
conserved among all individuals with glaucoma. No prohibitive
personalized medicine approach would be required, unlike gene
correction of specific rare mutations. The compartmentalized nature
of the eye allows local treatment and limits systemic dissemination of
AAV, and the technical simplicity and safety of intravitreal injection
permits delivery in a clinic setting, unlike the subretinal route. Com-
bination or adjunctive use with all other treatments including eye
drops, laser trabeculoplasty, and trabeculectomy surgery is theoreti-
cally feasible and likely to be cumulative in IOP reduction capacity.

Thirteen types of aquaporin channel are recognized in mammals and
expressed in the eye, where some redundancy in function exists
among them.25,39 Aquaporin 1 was targeted because it is the most
abundant at RNA and protein levels. Aquaporin 4 is also expressed
in the ciliary body and might compensate for excessive reduction in
IOP following Aqp1 disruption, in a similar fashion to that observed
in the cornea, where aquaporin 5 deficiency is partly compensated for
by aquaporin 3.40

Several limitations need to be addressed in future work. With the
ubiquitous promoter used, all cells transduced by the ShH10 vector
will undergo Aqp1 disruption, including retina and cornea. Although
no clear adverse effects were detected, the identification and integra-
tion of a ciliary body epithelium-specific promoter or microRNA
transcript restriction will be required.41 Efforts toward this are under-
way and will be greatly assisted by combining bioinformatic design
with transcriptomic profiling. An equal mix of two closely spaced
sgRNAs provided consistent IOP reduction and often resulted in exci-
sion of the intervening sequence corresponding to a key region of the
Aqp1 channel. This phenomenon has been observed before and
although it may not be the final translational approach, it increases
the efficiency of disruption of Aqp1 to confirm proof of concept.42

There are disadvantages to the intravitreal route compared with
subretinal injection, which was the first to receive FDA approval
for AAV ocular gene therapy. Heightened immune responses are
Molecular Therapy Vol. 28 No 3 March 2020 5
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Figure 5. Human Ciliary Body Expresses Aquaporin 1 and Can Be Targeted

by ShH10 Vector to Permit CRISPR-Cas9-Mediated Gene Disruption

Human ex vivo ciliary body from post-mortem donors was obtained and could be

maintained in culture up to 7 days. (A) Representative western blot for aquaporin 1

(hAQP1) protein from an eye undergoing immediate dissection. (B) Pooled qPCR

expression data of available tissue from several donors, n = 6 (only one globe

contained cornea). AQP1 was enriched in ciliary body and corneal endothelium.

Human ciliary body was placed into immediate culture with ShH10 virus expressing

GFP under the control of the ubiquitous CMV promoter. (C) By 72 h, GFP expression

was detected in the ciliary body epithelium above autofluorescence using live

fluorescence microscopy. Identical exposure times were used. (D) At day seven of

culture, GFP can be seen in the outer non-pigmented ciliary epithelium using

confocal microscopy histological sections. Representative example from four in-

dependent cultures. Three human sgRNAs were generated targeting exon 1 of

hAQP1 and (E) tested in 293T cells by plasmid transfection and T7 endonuclease 1

assay. (F) sgRNA K was selected and packaged into an ShH10 vector. Addition to

293T cells for 72 h produced detectable indel formation by T7 endonuclease 1

assay. (G) Co-culture of the same vector with ex vivo human ciliary body led to low

but detectable indel formation. Mean ± SD is shown. Scale bars, 400 mm.
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apparent, with high preexisting neutralizing antibody titers to AAV
capsids able to prevent cell infection.33 In early reports, ocular
inflammation has been observed using this route in non-human pri-
6 Molecular Therapy Vol. 28 No 3 March 2020
mate (NHP) studies and early clinical trials.43–45 We observed
possible vitreous infiltrates in a subset of treated eyes, but this was
severe only in a small percentage; however, it is likely that for further
study the judicious use of immunosuppression and vector refine-
ments will be expedient.

Although ocular inflammation is known to be able to reduce IOP, it is
unlikely this explains the therapeutic effect we observed because no
reduction is seen with GFP control vector or with a CRISPR-Cas9
vector that does not target Aqp1 (Figure S3). We also performed
flow cytometry of the ciliary body and detected no difference between
the lymphoid or myeloid cellular infiltrate of GFP or MIX to
confound the IOP reduction observed (Figure S4).

Additional refinements could include the disruption of multiple tar-
gets to extend efficacy, such as combining carbonic anhydrases or
Connexin 43 disruption with Aqp1 editing, which are known to
also contribute to aqueous humor secretion.46 The magnitude of
IOP reduction achieved by Aqp1 disruption in the normal eye is high-
ly significant because reduction may be limited to a minimum pres-
sure in the mouse.

Transient or non-viral delivery methods may prove superior to mini-
mize long-term Cas9 expression once gene editing is complete. Other
studies have not detected toxicity from persistent Cas9 expression in
the retina, however, and because target ocular cells are principally
post-mitotic, the risk for increasingly recognized off-target mutations
causing subsequent carcinogenesis should remain low.35,47 AAV is
certainly a superior vector and even now FDA approved for ocular
gene therapy, compared with other vectors such as adenovirus.19,23,48

Further pre-clinical optimization including the use of glaucoma
models in large-animal and non-human primate will help to further
assess the efficacy and potential side effects of the intervention before
proceeding to clinical studies.49 These will allow accurate measure-
ment of aqueous production rate changes and predicted human
IOP response, but experiments would need species-specific sgRNA
targeting. Longer-term sequelae and potential immune responses
could be studied more precisely and applied in the context of devel-
opments emerging in the wider field. Efforts may also be invested
in refining ex vivo human tissue cultures, with an anterior chamber
perfusion method to recapitulate the ocular environment and main-
tain viability for longer to robustly test permutations of sgRNA.50 Ul-
timately, first-in-human trials are required, yet will be aided by the
unfortunately high prevalence of patients already suffering complete
visual loss from glaucoma but retaining elevated IOP. These poorly
sighted eyes would be initial candidates of choice for testing.

Encouraging findings for human translation include the shared
tropism of the ShH10 capsid for ciliary body non-pigmented epithe-
lium seen in ex vivo ciliary body and detectable genomic editing
within the AQP1 locus by CRISPR-Cas9, even given the limitations
of tissue culture maintenance. By harnessing the latest gene-editing
and vector advances, this approach has the potential to provide
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reduction of IOP after a single intraocular injection, which could ul-
timately benefit patients with glaucoma if successfully translated.
MATERIALS AND METHODS
Animal Husbandry

Adult (6- to 8-week-old) C57BL/6J female mice were purchased from
Charles River Laboratories, Oxford, UK, and housed at the University
of Bristol Animal Services Unit under specific pathogen-free condi-
tions with food and water ad libitum. All procedures were conducted
in concordance with the United Kingdom Home Office licenses (PPL
30/3045 and 30/3281) and were approved by the University of Bristol
Ethical Review Group. The study also complied with the Association
for Research in Vision and Ophthalmology (ARVO) statement for the
use of animals in ophthalmic and vision research.
IOP Measurement

Mice were anesthetized using 2.5% isoflurane in pure oxygen, and
IOP was immediately measured using the TonoLab rebound tonom-
eter (Icare, Vantaa, Finland) according to the manufacturer’s instruc-
tions. IOP measurement was standardized to be performed between
16:00 and 18:00 GMT. Eyes were alternately tested after 3 min
following induction of anesthesia. The mean of three successful mea-
surements for each eye was used for analysis, with each TonoLab
measurement comprising an average of six rebound tests. Paired
eyes were tested alternately to control for anesthetic effects on IOP.
Intravitreal Injection and In Vivo Imaging

Mice were anesthetized using an intraperitoneal injection of
90 mL/10 g body weight of a solution of Ketavet (ketamine hydrochlo-
ride 100 mg/mL; Zoetis Ireland, Dublin, Ireland) and Rompun (xyla-
zine hydrochloride 20 mg/mL; Bayer PLC, Newbury, UK) mixed with
sterile water in the ratio of 0.6:1:8.4, respectively.

All intravitreal injections used were 2 mL in volume at the titers indi-
cated in the text and were delivered using an operating microscope
and a 33G needle on a microsyringe under direct visualization (Ham-
ilton Company, Reno, NV, USA). 1% Chloramphenicol ointment
(Martindale Pharma, Wooburn Green, UK) was applied topically
immediately following injection. Pupils were dilated with a single
drop of 1% w/v Tropicamide (Chauvin Pharmaceuticals, Romford,
UK) prior to fluorescent retinal imaging or OCT of corneal and
retinal thickness using the Micron IV platform (Phoenix Research
Laboratories, Pleasanton, CA, USA).
Experimental Mouse Models of Ocular Hypertension

The corticosteroid-induced model of ocular hypertension was per-
formed as previously described using Dexamethasone-21-acetate in
a vehicle suspension formulation.36 Two hundred micrograms was
injected into the periocular space of both eyes with a 33G needle
and Hamilton microsyringe every 7 days for the duration of each
experiment. The inclusion criteria were successful sub-conjunctival
injection and elevated IOP 1 week after induction compared with
baseline. Allocation of eyes to intervention was made at random.
The microbead ocular hypertension model followed a published pro-
tocol.51 In brief, after anesthesia and pupil dilation, 3 � 106 sterile
paramagnetic microbeads of 4.5 mm in diameter (Dynabeads, Thermo
Fisher Scientific, UK) were injected into the anterior chamber using a
70-mm internal diameter borosilicate glass micropipette and
microsyringe pump (World Precision Instruments, Hitchin, UK). A
0.45-T bar magnet was used to direct beads into the angle and 1%
chloramphenicol ointment applied as above.

IOP was checked before injection or model induction. AAV treat-
ment was randomly distributed to eyes with one as intervention
and the other as a contralateral control. AAV injection was given
1 week after induction of the ocular hypertension model.

Cell Lines and Tissue Culture

Mouse B6-RPE07 (gift of Dr. Heping Xu, Queen’s University Bel-
fast, Belfast, UK) and human 293T cell lines (ATCC CRL-3216)
were maintained in culture using DMEM supplemented with 10%
v/v heat-inactivated fetal calf serum, 2 mM L-glutamine, 1 mM so-
dium pyruvate, 100 U/mL penicillin, and 100 mg/mL streptomycin
(all from Thermo Fisher Scientific, UK).52 Cells were incubated at
37�C in 5% CO2 using standard tissue culture conditions, passaged
twice per week a maximum of 20 times. Transient plasmid
transfection was performed using Lipofectamine 3000 and Opti-
MEM medium (Thermo Fisher Scientific, UK), according to the
manufacturer’s instructions, on cells at 70% confluency and incu-
bated for 72 h.

Design of Mouse and Human sgRNA Sequences

The mouse Aqp1 genomic sequence was obtained from Ensembl
(ENSMUSG00000004655). Compatible 21-bp SaCas9 sgRNAs were
identified and ranked using Benchling (https://benchling.com)
according to Doench et al.53 Selected sgRNAs were synthesized as ol-
igonucleotides (SigmaAldrich, UK) and cloned into the pX601-AAV-
CMV:NLS-SaCas9-NLS-3xHA-bGHpA;U6::BsaI-sgRNA plasmid
from Addgene by Golden Gate assembly according to the supplied
protocol.22 The top five off-target coding genes for each sgRNA
were also determined for testing as per Bae et al.30

AAV Production

AAV vectors were either purchased from Vector Biolabs (PA, USA)
or manufactured at the UCL (University College London) Institute
of Ophthalmology as previously published.54 In brief, recombinant
ShH10 serotype particles were produced through triple-plasmid
transfection using PEI transfection reagent into 293T-HEK cells.
ShH10 particles were bound to a 1-mL HiTrap AVB Sepharose col-
umn (GE Healthcare, USA) and eluted with 50 mM glycine (pH
2.7) into 1 M Tris (pH 8.8). Vectors were desalted and concentrated
in PBS-MK to a concentration of 1� 1013 genome copies permilliliter
(gc/mL) using a Vivaspin 4 (10 kDa) concentrator. Viral genome ti-
ters were determined by quantitative real-time PCR using probes
binding to either the SV40 or ITR sequences. An amplicon-based
standard series of known concentration was used for sample interpo-
lation. Preparations were certified as endotoxin <5 EU/mL by
Molecular Therapy Vol. 28 No 3 March 2020 7
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Pyrotell-T kinetic turbidimetric endotoxin test (Associates of Cape
Cod, MA, USA).

T7 Endonuclease 1 Genomic Cleavage Assay

Genomic DNA was extracted from cells and tissue using DNeasy
Blood & Tissue Kit (QIAGEN, Germany). The region of expected in-
del formation was amplified by PCR asymmetrically spanning the re-
gion using the Q5 High-Fidelity DNA polymerase master mix (New
England BioLabs, MA, USA) with primers shown in Supplemental
Information. The PCR product was denatured and reannealed before
cleavage with T7 endonuclease 1 (New England BioLabs, MA, USA)
according to the manufacturer’s instructions. Fragments were
analyzed by a DNA 1000 assay on an Agilent 2100 Bioanalyzer (Agi-
lent Technologies, CA, USA) with indel formation frequency deter-
mined as per Ran et al.55

RNA Isolation and qPCR

Total mRNA was isolated using the RNeasy Mini Kit (QIAGEN, Ger-
many) before a RNA to Ct one-step TaqMan assay was performed
on a QuantStudio 3 (Thermo Fisher Scientific, UK) as per the
manufacturer’s protocol. The TaqMan Aqp1 probes used were
Mm01326466_m1 and Hs00166067_m1, and GAPDH probes were
Mm99999915_g1 and Hs02758991_g1 (Thermo Fisher Scientific,
UK). See Supplemental Information for probes and primers se-
quences. Each sample was run in triplicate and normalized against
GAPDH using the 2�DDCt method.56

Western Blot Analysis

Protein was extracted from cells or tissues using the Cellytic MT lysis
reagent (Sigma-Aldrich, UK), and protein concentration was deter-
mined by the BCA protein assay kit (Thermo Fisher Scientific,
UK). Between 10 and 40 mg total protein was prepared per sample
and denatured using Bolt LDS sample buffer (Thermo Fisher Scienti-
fic, UK). Electrophoresis was performed on precast 4%–12% Bis-Tris
Plus gels before transfer to a polyvinylidene fluoride (PVDF) mem-
brane using the iBlot system (Thermo Fisher Scientific, UK). After
blocking for 1 h with 5% skimmed milk in 0.1% TBS-Tween, the
membrane was stained overnight at 4�C with 1:1,000 dilution of pri-
mary antibody, either anti-mouse/human AQP1 (ab168387; Abcam,
Cambridge, UK), anti-b-actin (4970; Cell Signaling Technology,
MA, USA), or anti-Lamin B1 (ab133741; Abcam, Cambridge, UK).
After washing, the membrane was incubated with either HRP
(7074; Cell Signaling Technology, MA, USA) or DyLight 800 (SA5-
10036; Thermo Fisher Scientific, UK)-conjugated secondary
antibodies and developed with ECL Prime reagent (RPN2232; GE
Healthcare, USA) and film or the LI-COROdyssey Fc imaging system
(LI-COR Biosciences, NE, USA).

Histology

Mouse eyes were dissected and fixed in 2% paraformaldehyde before
paraffin embedding, sectioning at 6-mm thickness, and hematoxylin
and eosin staining at the Histology Core Facility, University of Bristol.
Images were captured using an EVOS Color CCD microscope
(Thermo Fisher Scientific, UK).
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For GFP immunofluorescent imaging, mouse eyes or human ciliary
body was fixed with 4% paraformaldehyde, frozen in optical cutting
temperature compound (VWR, PA, USA), and sectioned at 14-mm
intervals. Slides were incubated with a 1:1,000 dilution of DAPI
(Sigma Aldrich, UK) and mounted in fluorescence mounting media
(Agilent Technologies, CA, USA) before imaging on an EVOS FL mi-
croscope (Thermo Fisher Scientific, UK) or Leica SP5 Confocal mi-
croscope (Leica Microsystems, Germany).

For ganglion cell counts, mouse retinal flatmounts were prepared by
immediate dissection as previously described and fixed in 4% PFA for
2 h.57 Tissues were blocked in 5% normal goat serum (Vector Labo-
ratories, CA, USA), 1% Triton X-100, and 2% BSA (Sigma Aldrich,
UK) in PBS for 4 h before 2-day incubation at 4�C with 1:50 dilution
of Alexa Fluor 488-conjugated anti-mouse Brn-3a (sc-8429; Santa
Cruz Biotechnology, TX, USA). Five z stacks encompassing the gan-
glion cell layer distributed evenly around the optic disc were imaged
at�63 magnification using a SP5 confocal laser scanning microscope
(Leica Microsystems, Germany). Using maximum projection images,
mean Brn-3a retinal ganglion cell counts were quantified with Voloc-
ity (Version 6.2.1; Perkin Elmer, UK). The registration module was
used to obtain an average count per field of positive cells with diam-
eter between 10 and 40 mm.

Human Ciliary Body Culture

Human donor eye material surplus to corneal transplantation
(without recorded ocular disease) was obtained from National Health
Service (NHS) Blood and Transplant Services after research ethics
committee approval (16/SW/0124), with experiments conducted ac-
cording to the Declaration of Helsinki and in compliance with UK
law. Dissected human ciliary body processes were immediately placed
into epithelial cell culture medium (ScienCell Research Laboratories,
Carlsbad, CA, USA) incubated at 37�C and 5% CO2 comparable with
a previously published protocol for a maximum of 7 days.58 Where
indicated, culture media were supplemented with ShH10 vector to a
concentration of 1.5 � 1011 gc/mL.

Statistics

Results are presented as mean ± standard deviation (SD) in all cases.
Comparisons of two individual groups were performed using either
paired or unpaired Student’s t test and Mann-Whitney test. For mul-
tiple comparisons, nonparametric analysis was performed using the
Kruskal-Wallis with Dunn’s multiple comparisons test. Tests were
performed on GraphPad Prism 6 (v.6.01; GraphPad Software, CA,
USA). Two-tailed tests were used throughout, and results were
considered statistically significant if p < 0.05.
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