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Abstract 

 

The ability to rapidly acquire novel cognitive skills is a hallmark of human cognition. Theories of skill 

acquisition assume that this process is reliant on language, but to date this assertion has not been 

conclusively supported by empirical evidence. In two experiments participants (total N = 68) were 

required to learn, by trial-and-error, the correct response to sets of five object stimuli. To investigate 

the contribution of language to this process, participants performed a verbal (articulatory 

suppression), a non-verbal (foot tapping), or no distractor task during the first or second half of each 

task. In both experiments, articulatory suppression resulted in increased error rates (compared to 

foot tapping), but only during the first (and not the second) half of each task. These results 

constitute the first convincing evidence for the diminishing role of language in novel task learning 

and are discussed in relation to theories of skill acquisition. 
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Introduction 

 

Daily life frequently requires us to learn novel tasks or skills. Whether a participant in a cognitive 

psychology experiment learning a set of arbitrary stimulus-response mappings for the first time, or 

out in the real world learning how to drive, the ability to rapidly acquire a novel skill with relative 

ease is crucial. One of the cognitive processes that is thought to play a vital role in the acquisition of 

novel tasks is language. In particular, according to theories of skill acquisition (e.g., Anderson, 1982), 

the acquisition of a novel task or skill begins with a “declarative phase”, during which language is 

required to maintain the task rules in working memory. More recent models of “instruction 

following” (e.g., Brass, Liefooghe, Braem, & De Houwer, 2017) similarly include an initial stage during 

which linguistic information is transformed into a procedural representation, which guides behavior. 

In both accounts, use of language is particularly important during the early stages of novel task 

learning; although this declarative representation may continue to exist beyond the initial 

declarative phase, it is the procedural representation that is thought to govern action as the task 

becomes more practiced. 

 

Despite this, there is currently no convincing evidence for the diminishing role of language with 

practice. Three studies have provided relevant (though not conclusive) evidence; the results of these 

studies are briefly summarized here1. Firstly, Kray, Eenshuistra, Kerstner, Weidema and Hommel 

(2006) found that 4-year old children benefited from verbal labelling when learning novel action-

effect associations. Although these results suggest language can help children to learn novel tasks, 

they do not demonstrate that the role of language diminishes with practice, as the theories 

described above would predict. Another study by Kray and colleagues (Kray, Eber, & Karbach, 2008) 

examined the contribution of language to task switching performance, by requiring children and 

adults to switch between two tasks whilst engaging in either a task-relevant verbalization (naming 

the next task), a task-irrelevant verbalization (saying an over-learned three-word sequence, one 

word per trial), or no verbalization. Although the effect of a task-irrelevant verbalization on the 

mixing cost (difference between single-task blocks and mixed-task blocks) decreased with practice, 

significant effects of verbalization on the mixing cost remained even after extensive practice (>1000 

trials). While this result is seemingly inconsistent with the abovementioned notion that language 

does not support the performance of well-practiced tasks, it is possible that the function of language 

 
1 It should be noted that there are many more studies that have investigated the contribution of language to 
task switching performance, but because the current study is specifically interested in how the contribution of 
language changes with practice, we have reviewed only those studies which analysed performance as a 
function of practice or those that have focussed on the learning of novel S-R associations. 
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in a task switching scenario differs from the role that language plays in transforming the declarative 

representation of a simple task rule into a procedural one. Specifically, the former involves 

additional processes (including keeping track of the task sequence, and retrieving a task-set from 

long term memory) which may rely on aspects of language beyond the initial practice phase (cf. 

Miyake, Emerson, Padilla, & Ahn, 2004). Finally, one other task switching study designed to 

investigate the contribution of language to task-set control manipulated the phonological similarity 

of the stimulus terms (Van ‘t Wout, Lavric, & Monsell, 2013). This study did not find any effect of 

phonological similarity on task switching performance once the tasks were well-practiced. However, 

right at the beginning of the experiment (when participants were practicing the tasks in single task 

blocks), performance was worse for phonologically similar sets than for phonologically dissimilar sets 

of stimuli, suggesting that participants rely on a phonological representation of the stimulus-

response (S-R) rules when learning a novel task. But there are other important differences between 

single task and task switching blocks (e.g., Monsell, 2003) that complicate the interpretation of that 

result. Furthermore, Van ‘t Wout et al.’s (2013) study was not designed to investigate the 

diminishing role of language as a function of practice (it contained only one phonologically similar 

and one dissimilar task per experiment), and therefore a systematic investigation into this process is 

still required. 

 

To summarize, although these studies suggest that language plays a role when learning novel tasks, 

they do not provide conclusive evidence for the diminishing role of language with practice. This 

would require an experimental paradigm with the following properties: 1) inclusion of an 

appropriate non-verbal dual task control condition; 2) several novel S-R tasks (to achieve sufficient 

power; also see Cole, Laurent, & Stocco, 2013); and 3) sufficient trials per task so that performance 

can be analyzed as a function of practice (when the task is completely novel, versus when the task is 

well-practiced). The paradigm employed in this study was designed with those conditions in mind. 

Specifically, it required participants to learn, by trial-and-error, the correct response to novel sets of 

line drawings. A trial-and-error based paradigm was used rather than instruction-based learning, 

because recent studies have shown that under some conditions, participants are able to 

“proceduralize” task instructions prior to performance (e.g., Cohen-Kdoshay & Meiran, 2009). Using 

a trial-and-error procedure allowed us to capture this process of proceduralization as it occurred 

during task performance. To investigate the contribution of language to this process, participants 

learnt each novel task whilst performing either a verbal distractor task (articulatory suppression; AS), 

a non-verbal distractor task (foot tapping; FT), or no distractor task (control condition). Importantly, 

we also manipulated the order of these distractor tasks (they could each be performed during the 
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first or the second half of each novel S-R task). We hypothesized that if language is especially 

important during the early phases of novel task learning, then AS should disrupt performance more 

than FT when it is performed during the first half of each task, but not when it is performed during 

the second half of each task. 

 

Experiment 1 Method 

 

Subjects 

 

Thirty-six participants (aged between 18 and 32 [mean age = 20], 30 female) provided informed 

consent prior to taking part. All participants were awarded 1 course credit for taking part. 

Experiments 1 and 2 were approved by the University of Bristol’s School of Psychological Science 

Human Research Ethics Committee (ID 75541 and ID 78862, respectively). 

 

Procedure 

 

The experimental task required participants to learn, by trial-and-error, the correct response to 

novel sets of five black and white line drawings. In total, nine sets of five stimuli were selected from 

the International Picture Naming Project (IPNP; Bates et al., 2003). Within a set, stimuli were 

selected as to avoid phonological, semantic or visual similarity (see Table 1). Across sets, stimuli 

were matched for average naming latency, which served as an indirect measure of frequency 

(Oldfield & Wingfield, 1965); and percent naming agreement (proportion of all trials on which 

participants produced the dominant target name), which was at least 98% for all stimuli. 
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Table 1. Picture names for each of the nine (Experiment 1; Sets 1-9) or eight (Experiment 2; Sets 1-8) 

stimulus sets used. Stimuli were matched for percent name agreement (%) and RT target mean 

(mean latency for dominant responses only). 

 

For each task, stimuli were presented centrally on the computer screen, one at a time. Participants 

were instructed to place five fingers (three from the left hand, two from the right for half the 

participants; vice versa for the other half) on the x, c, v, b and n keys (covered by black stickers) of a 

standard QUERTY keyboard. The stimulus remained on the screen until a response was made. An 

error message (“Error!”) was displayed for 1000ms following an incorrect response. Prior to each 

block, participants received the following instructions: “You are going to sort five different pictures. 

You will have to learn the correct response to each picture. To begin with, you will have to guess (I 

won't tell you what the correct responses are). Remember to try your best (even though you will 

make some mistakes to begin with)!”. These generic instructions were followed by a sentence 

instructing participants which distractor task (see below) should be performed for the duration of 

each block.  

 

Participants performed 200 trials with each of the nine novel S-R sets; this trial sequence was split 

into two halves (“blocks”) of 100 trials (total of 1800 trials). To examine the effect of language on 

# Set 1 RT % # Set 2 RT % # Set 3 RT %

1 book 656 100 6 hat 684 98 11 ear 681 100

2 car 751 100 7 spoon 777 100 12 watch 780 100

3 tree 796 100 8 tent 744 100 13 bus 771 100

4 fan 865 98 9 box 753 100 14 leaf 848 100

5 sun 762 100 10 pig 855 100 15 pen 753 100

Mean 766 100 Mean 763 100 Mean 766 100

# Set 4 RT % # Set 5 RT % # Set 6 RT %

16 key 738 100 21 foot 758 98 26 chair 732 100

17 dog 702 100 22 moon 804 100 27 hand 723 98

18 cake 789 100 23 house 745 98 28 train 838 100

19 heart 720 100 24 bread 773 98 29 snake 775 100

20 ball 886 100 25 frog 751 100 30 kite 796 100

Mean 767 100 Mean 766 99 Mean 773 100

# Set 7 RT % # Set 8 RT % # Set 9 RT %

31 bed 706 100 36 eye 700 98 41 bell 703 100

32 fish 777 100 37 door 719 100 42 flag 847 100

33 cheese 843 100 38 broom 821 100 43 horse 809 100

34 clock 772 98 39 saw 863 100 44 comb 717 100

35 nose 721 100 40 dress 840 100 45 sock 712 100

Mean 764 100 Mean 789 100 Mean 757 100
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novel task learning, performance (mean correct RT and % error) was examined under three 

conditions: articulatory suppression (AS; which has been shown to disrupt the use of inner speech; 

e.g., Baddeley, Chincotta, & Adlam, 2001), foot tapping (FT; which does not interfere with language 

but is well-matched to AS in terms of difficulty; Miyake et al., 2004), or no distractor task (control 

condition). For the AS condition, participants were required to say “tick, tick, tick” to a metronome. 

For the FT condition, participants were asked to tap one foot to the beat of the metronome. During 

the control condition (no distractor task), the metronome remained on, but participants were 

instructed to ignore it. For all conditions, the metronome was set to 100 beats per minute. To ensure 

participants performed the distractor tasks correctly, an experimenter was present at all time. On 

the rare occasion that a participant forgot to engage in AS or FT, the experimenter would 

immediately remind the participant (e.g., “Don’t forget to tap your foot!”). 

 

To examine whether the role of language in novel task learning is restricted to the early phases of 

learning, the following conditions were compared: 1) AS in the first half followed by FT in the second 

half (AS-FT); 2) FT in the first half followed by AS in the second half (FT-AS); 3) no distractor task in 

the first or the second half (none-none). Each participant performed all three conditions three times 

(resulting in 9 novel tasks of 200 trials each; a total of 1800 trials). The order of conditions, the 

assignment of stimuli to conditions, and the assignment of responses to stimuli were balanced 

between subjects. The presentation of stimuli was pseudorandomized so that there were no 

immediate stimulus repetitions, and each stimulus occurred 4 times within a subblock of 20 trials. 

 

At the start of each block, participants were instructed to perform a distractor task (AS or FT) or not. 

They were not shown the stimuli; instead they were instructed to learn by trial-and-error the correct 

response for a set of 5 stimuli. The trial sequence was as follows: a 250 ms centrally presented 

fixation cross was followed by the stimulus, which remained on screen until a response was made. 

Feedback (a 1000ms “Error!” message) only occurred on incorrect trials (see Figure 1 for an example 

of the trial procedure). 
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Figure 1. Example of a trial sequence (displaying two consecutive trials) in Experiments 1 and 2.  

 

Prior to the start of the experimental session, all participants also completed a baseline task, which 

was designed to examine the effect of both distractor tasks on performance (to ensure that they 

were well matched in terms of difficulty). In this baseline task, participants were required to respond 

to a separate set of five line drawings selected from the IPNP. Each line drawing could appear in 

green or blue; and participants were instructed to respond to the green stimuli by pressing the left 

key (a), and the blue stimuli by pressing the right key (l). The trial sequence in the baseline task was 

identical to the trial sequence in the experimental task; except that in the baseline task, a green 

circle was presented in the left lower corner of the screen; and a blue circle was presented in the 

right lower corner of the screen. This was done to minimize any memory load and obtain a “pure” 

measure of the difficulty of both distractor tasks. Each participant completed 20 practice trials, 

followed by 40 trials of each distractor task type (AS, FT or none), resulting in a total of 140 trials for 

the baseline task. The order of distractor task types was balanced between participants. 

 

In total, the experiment lasted approximately 1 hour. The experiment was programmed in Psychopy 

(Peirce et al., 2019) and run on a Toshiba laptop. Participants were tested one at a time, and the 

experimenter remained present to ensure that the participant was performing the distractor task as 

required. On completion of the experiment, all participants were thanked and debriefed. 

 

Experiment 1 Results 

 

Prior to conducting the analyses described below, reaction times (RTs) greater than 5000ms (0.4% of 

correct responses) were removed from the data set. Throughout, the number following the ± symbol 
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indicates the 95% confidence interval, which was computed using the Cousineau-Morey method 

(Morey, 2008) for calculating confidence intervals for within-subjects designs. 

 

Baseline task 

 

To examine whether AS and FT were well-matched in terms of difficulty, a one-way repeated 

measures ANOVA with the factor distractor task type (AS, FT or none) was run on the accuracy (% 

error) and mean correct RT (ms) data from the baseline condition. 

 

For the % error data, a significant main effect of distractor task type reflected increased error rates 

under AS (5.5±1.2%) and FT (5.5±1.0%), compared to the control condition (3.8±1.1%), F(2,70)=3.36, 

p=.040, 𝜂𝑝
2=.088. Further ANOVAs revealed that error rates were significantly increased under AS 

compared to the control condition, F(1,35)=4.48, p=.041, 𝜂𝑝
2=.113; and under FT compared to the 

control condition, F(1,35)=6.49, p=.015, 𝜂𝑝
2=.156; but that the difference between AS and FT was not 

significant, F(1,35)<0.011, p>.999, 𝜂𝑝
2<.001. 

 

Similarly, for the mean correct RTs, a significant main effect of distractor task type reflected 

increased RTs under AS (520±15ms) and FT (539±18ms), compared to the control condition 

(481±16ms), F(2,70)=13.84, p<.001, 𝜂𝑝
2=.283. Again, further ANOVAs revealed that RTs were 

significantly greater under AS than in the control condition, F(1,35)=14.88, p<.001, 𝜂𝑝
2=.298; and 

under FT than in the control condition, F(1,35)=23.30, p<.001, 𝜂𝑝
2=.400; but that the difference 

between AS and FT was not significant, F(1,35)=2.85, p=.100, 𝜂𝑝
2=.075. Note that an increase in RT 

under FT compared to AS should not negate any detrimental effect of AS on performance in the 

experimental task (if anything, the increased RTs under FT should make it more difficult to observe 

such an effect). 

 

Experimental task 

 

A 3 (distractor task type: AS, FT or none) x 2 (half: first versus second half) repeated measures 

ANOVA was conducted on the accuracy data (% error) and the mean correct RT data (ms). The % 

error analysis (see Figure 2, left panel) found significant main effects of half, F(1,35)=270.43, p<.001, 

𝜂𝑝
2=.885, and distractor task type, F(2,70)=12.93, p<.001, 𝜂𝑝

2=.270. Importantly, the two-way 

interaction between distractor task type and half was also significant, F(2,70)=9.22, p=.001, 𝜂𝑝
2=.209. 

Further ANOVAs found that participants made more errors under AS than under FT, but only in the 
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first half of each task, F(1,35)=10.79, p=.002, 𝜂𝑝
2=.236 (AS: 24.9±2.6%; FT: 19.5±1.8%), and not in the 

second half, F(1,35)=4.07, p=.052, 𝜂𝑝
2=.104, during which participants made marginally more errors 

under FT (9.0±1.1%) than AS (7.7±1.2%). One-way ANOVAs comparing AS and the control condition 

found that participants made more errors under AS (24.9±2.6%) than in the control condition 

(18.9±1.4%) in the first half, F(1,35)=18.96, p<.001, 𝜂𝑝
2=.351, and in the second half, F(1,35)=5.86, 

p=.021, 𝜂𝑝
2=.143 (AS: 7.7±1.2%; none: 6.7±1.3%). Finally, the difference between FT and the control 

condition was not significant in the first half, F(1,35)=0.36, p=.552, 𝜂𝑝
2=.010 (FT: 19.5±1.8%; none: 

18.9±1.4%), but it was significant in the second half, F(1,35)=10.16, p=.003, 𝜂𝑝
2=.225 (FT: 9.0±1.1%; 

none: 6.7±1.3%).  

 

 

Figure 2. Accuracy data (mean % error) in Experiment 1 (left) and 2 (right) for each distractor task 

type (AS, FT or none) plotted as a function of task half (first 100 trials versus second 100 trials). Error 

bars reflect 95% confidence intervals. 

 

For the mean correct RT data, the same 3 (distractor task type: AS, FT or none) x 2 (half: first versus 

second half) repeated measures ANOVA found a significant main effect of condition, F(2,70)=6.61, 

p=.003, 𝜂𝑝
2=.159, and a significant main effect of half, F(1,35)=54.42, p<.001, 𝜂𝑝

2=.609, but no 

significant interaction between condition and half, F(2,70)=1.46, p=.241, 𝜂𝑝
2=.040 (also see 

Appendix). With regards to the main effect of half, participants were slower in the first half 

(911±17ms) than in the second half (823±17ms). With regards to the main effect of distractor task 

type, three further ANOVAs contrasting the three distractor task types (averaged over half) found 

that RTs were faster in the control condition (843±19ms) than under AS (872±19ms), F(1,35)=4.11, 

p=.050, 𝜂𝑝
2=.105, and FT (886±14ms), F(1,35)=15.10, p<.001, 𝜂𝑝

2=.301; but that the difference 

between AS and FT was not significant, F(1,35)=1.83, p=.184, 𝜂𝑝
2=.050. 
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Experiment 1 Summary 

 

The results of Experiment 1 clearly show that AS led to more errors than FT, but only when AS was 

performed during the first (and not the second) half of each task.  

 

However, although the effect of distractor task type during the first half of each task is 

unambiguous, differences between the AS and FT conditions in the second half are more difficult to 

interpret, because performance in that half is likely to be influenced by performance in the first half.  

Specifically, error rates in the FT condition during the second half may be inflated because that 

condition was always preceded by AS in the first half, and participants made more errors when 

performing AS during the first half. Hence, although the data of Experiment 1 show that AS affects 

performance more than FT when the task is novel, they do not conclusively demonstrate that there 

are no detrimental effects of AS on performance once the task is well-practiced. 

 

To obtain a purer estimate of the effects of AS and FT on performance once the task is well-

practiced, a second experiment was run in which the effect of AS and FT on performance in the 

second half was assessed when participants performed no distractor task in the first half (none-AS 

versus none-FT). Experiment 2 also included two further conditions (AS-none and FT-none), with the 

aim of replicating the results of Experiment 1. Aside from this change to the order of the distractor 

tasks (and the resulting change to the overall number of trials), Experiment 2 was identical to 

Experiment 1, as described below. 

 

Experiment 2 Method 

 

Subjects 

 

Thirty-two participants (aged between 18 and 28 [mean age = 20], 28 female) provided informed 

consent prior to taking part. None of the participants had taken part in Experiment 1, and all were 

awarded 1 course credit for taking part. 

 

Procedure 

 

In Experiment 2, participants learned 8 novel tasks, each consisting of 5 sets of black and white line 

drawings (Sets 1-8 in Figure 1). Each task was performed under one of the following four conditions: 
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1) AS in the first half followed by no distractor task in the second half (AS-None); 2) No distractor 

task in the first half followed by AS in the second half (None-AS); 3) FT in the first half followed by no 

distractor task in the second half (FT-None); 4) No distractor task in the first half followed by FT in 

the second half (None-FT). As in Experiment 1, the order of distractor task type, the assignment of 

stimulus sets to distractor task type and the response assignments were counterbalanced between 

participants. Each participant performed each of the four conditions twice, resulting in a total of 

1600 trials. Again, participants performed a baseline condition (identical to Experiment 1) prior to 

the experimental condition. Experiment 2 lasted approximately 50 minutes. 

 

Experiment 2 Results  

 

As in Experiment 1, reaction times (RTs) greater than 5000ms (0.3% of correct responses) were 

removed from the data set prior to conducting the analyses described below. 

 

Baseline task 

 

A one-way ANOVA with the repeated measures factor distractor task type (AS, FT or none) showed 

that participants made fewer errors when there was no distractor task (3.8±1.3%), compared to the 

AS (7.0±1.5%) and FT (5.9±1.0%) conditions, F(2,62)=6.69, p=.003, 𝜂𝑝
2=.178. Consistent with 

Experiment 1, further ANOVAs demonstrated that the difference between AS and the control 

condition and the difference between FT and the control condition were both significant 

(F(1,31)=9.38, p=.005, 𝜂𝑝
2=.232 and F(1,31)=8.88, p=.006, 𝜂𝑝

2=.223, respectively); whilst the 

difference between AS and FT was not, F(1,31)=1.36, p=.252, 𝜂𝑝
2=.042. 

 

With regards to the mean correct RT data in the baseline condition, the same one-way ANOVA found 

a significant main effect of distractor task (AS, FT or none), F(2,62)=8.76, p=.001, 𝜂𝑝
2=.220. Further 

ANOVAs revealed that RTs were significantly greater under FT (570±29ms) compared to both the AS 

(515±20ms) and the control condition (509±19ms), F(1,31)=8.92, p=.005, 𝜂𝑝
2=.223, and 

F(1,31)=11.22, p=.002, 𝜂𝑝
2=.266, respectively. The difference between the AS and control condition 

was not significant, F(1,31)=0.39, p=.538, 𝜂𝑝
2=.012. 

 

Experimental task 
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A 2 (distractor task type: AS or FT) x 2 (half: first or second) repeated measures ANOVA was run on 

the accuracy data (% error) and the mean correct RT data (ms). Note that data from the blocks in 

which participants did not perform a distractor task (control condition), though displayed in Figure 2 

(right panel), were not included in this analysis. This was because the main aim of this analysis was 

to compare the effects of FT and AS on performance once the task was well-practiced; and because 

the control condition in the second half was always preceded by either FT or AS in the first half, 

unlike in the first experiment. 

 

For % error data, the abovementioned ANOVA showed a significant interaction between distractor 

task type and half, F(1,31)=9.53, p=.004, 𝜂𝑝
2=.235. Two further one-way ANOVAs contrasting the 

distractor tasks (AS or FT) within each half showed that in the first half, participants made more 

errors under AS (28.9±3.6%) than under FT (22.7±2.3%), F(1,31)=10.52, p=.003, 𝜂𝑝
2=.253, but that 

there was no significant difference in the second half (AS: 8.1±1.4%; FT: 7.9±1.7%), F(1,31)=0.24, 

p=.626, 𝜂𝑝
2=.008. As the effects of AS and FT were expected to be equivalent after practice, a 

Bayesian one-way ANOVA with default priors was conducted (JASP Team, 2018) to compare the 

effect of AS and FT on performance in the second half of each task. This analysis found “positive” 

evidence (BF01 = 3.685; Raftery, 1995) in support of the null hypothesis of no meaningful difference 

under the two types of distraction once the tasks were well-practiced. 

 

For the mean correct RT (ms) data, the same 2 x 2 repeated measures ANOVA found only a 

significant main effect of half, F(1,31)=10.22, p=.003, 𝜂𝑝
2=.248, reflecting increased RTs in the first 

half (970±26ms) compared to the second half (912±26ms). The main effect of distractor task type (FT 

or AS) and the interaction between half and distractor task type were not significant, F(1,31)=0.27, 

p=.609, 𝜂𝑝
2=.009, and F(1,31)=0.14, p=.712, 𝜂𝑝

2=.004, respectively (also see Appendix). 

 

Effect of articulatory suppression versus foot tapping within a block across Experiments 1 and 2 

 

The separate analyses described above for each of Experiments 1 and 2 compared the effect of 

distractor task type (AS, FT or none) in the first and second half of each task. However, a more 

detailed analysis can also be performed, in which the data are plotted separately for each distractor 

task type (AS, FT or none) as a function of stimulus occurrence (each stimulus occurred 20 times 

within each half). This analysis was run on the data from Experiments 1 and 2 combined to increase 
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power (as there were only 15 trials per stimulus occurrence per subject for each distractor task type) 

and to reduce the likelihood of Type I errors. 

 

One prediction with regards to this analysis is that the effect of distractor task type (AS or FT) on 

accuracy should not be linear (i.e., largest at the start of each task and then steadily decreasing). 

Instead, one might expect AS to have no adverse effects on performance (above and beyond that of 

FT) at least the very first time participants encounter a stimulus because at that point in time, there 

is no linguistic representation of the S-R rule yet. If so, then one might expect the effect of AS 

(compared to FT) on accuracy to follow an inverted U-shaped trend, where the effect of AS on 

accuracy increases at first (as participants use language to compile the task-set), and then decreases 

thereafter (as performance becomes more automatic and the role of language diminishes). 

 

 

 

Figure 3. Accuracy data (mean % error) as a function of stimulus occurrence (1-20); plotted 

separately for each distractor task type (AS, FT or none; left) and as a difference score (AS minus FT; 

right). Error bars reflect 95% confidence intervals. 

 

A 2 (distractor task type: AS or FT) x 20 (stimulus occurrence: 1-20) repeated measures ANOVA with 

Experiment (1 or 2) as a between-subjects factor confirmed this prediction, F(1,66)=5.86, p=.018, 

𝜂𝑝
2=.082 (two-way interaction between distractor task type and the quadratic component of 

occurrence). As predicted, the effect of AS on the error rate increases, and then decreases, as a 

function of stimulus occurrence (see Figure 3). 
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Experiment 2 Summary 

 

The results of Experiment 2 replicate those of Experiment 1: AS again resulted in increased error 

rates compared to FT, but only during the first half of each task. Furthermore, Experiment 2 was able 

to determine that when the task is well-practiced (AS or FT preceded by no distractor task in the first 

half), AS did not have a detrimental effect on performance compared to FT. This observation was 

further supported by a Bayesian analysis, which found “positive evidence” in support of the null 

hypothesis, according to which the effect of AS and FT on performance is equivalent once the task is 

well-practiced. 

 

Discussion 

 

The two experiments reported here demonstrate for the first time that participants use language 

when learning a novel cognitive task by trial-and-error; and that the role of language diminishes with 

practice. After 100 trials of practice, error rates were no longer significantly increased under 

articulatory suppression (AS) compared to foot tapping (FT). This profound effect of AS on initial task 

performance cannot be attributed to an increased difficulty of this distractor task per se , as data 

from the baseline task showed that AS and FT yield comparable error rates when the task does not 

require the participant to learn novel S-R mappings (in the baseline task the correct S-R mappings 

remained on screen throughout). In fact, RTs were significantly greater under FT compared to AS in 

the baseline task of Experiment 2 (the same trend was observed in Experiment 1), making the 

detrimental effect of AS on novel task learning even more striking. 

 

A more detailed analysis of performance as a function of practice (in which error data were plotted 

as a function of stimulus occurrence) shed further light on the role of language in novel task 

learning. Specifically, at the very beginning of each task, performance was no worse under AS than 

under FT; a difference between the two conditions then appeared, and then disappeared towards 

the end of the first half of each task. This result is entirely consistent with an account of novel task 

learning which stipulates that people use language to compile a mental representation of the task. 

According to such an account, when each stimulus is first encountered, participants do not yet have 

a linguistic representation of the S-R rule, because in our trial-and-error paradigm that would require 

(at least) one correct response. Consequently, AS does not disproportionally disrupt performance 

the first time a stimulus is encountered, but it does thereafter. Then, as performance becomes more 

automatic, language ceases to support performance, and the difference between AS and FT 
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disappears again. These results constitute the first convincing demonstration in support of the 

diminishing role of language in skill acquisition (Anderson, 1982). They are also consistent with 

theories of working memory (Oberauer, 2009) and task-set control (Monsell, 2017), which assume 

that although a novel task may be represented linguistically during acquisition, performance is 

ultimately governed by a non-linguistic, procedural representation of the task. 

 

One other noteworthy finding of the present study is that in both experiments, the detrimental 

effect of AS was restricted to the error rates (in the RTs, the interference caused by AS and FT was 

equivalent). This pattern of data sheds light on the specific role that language might play in novel 

task learning. In particular, it suggests that AS affects participants’ ability to form an accurate 

representation of the relevant S-R rules; but it does not affect the time required to retrieve or 

implement an S-R rule once an accurate representation of that S-R rule has been established. The 

former would result increased error rates under AS (which were found in both experiments), 

whereas the latter would result in increased RTs under AS (which were not found). Finally, it is worth 

noting that in Kray et al.’s (2006) study, effects of verbalisation also manifested in the error (and not 

the RT) data, further confirming that the difference between the RT and accuracy patterns in the 

current study are not an anomaly, but rather a reflection of the specific role that language plays in 

novel task learning. 

 

In relation to previous findings, our results are consistent with those of Van ‘t Wout et al. (2013), 

who found that S-R rules are not represented phonologically once the task is well-practiced. 

Conversely, the current results may at first appear to contradict Kray et al.’s (2008) finding of a 

significant effect of AS on the mixing cost even after extensive practice (>1000 trials). However, as 

Kray et al. (2008) did not use a non-verbal distractor task for comparison, it is possible that at least 

some of the residual effect of AS after practice is due to generic dual task demands. Additionally, 

there are other differences between Kray et al.’s (2008) and the current study, which could explain 

this apparent discrepancy. Specifically, it is possible that the role played by language in a task 

switching scenario (e.g., Kray et al., 2008) differs from the contribution of language to the acquisition 

on novels sets of simple S-R rules (e.g., Van ‘t Wout et al., 2013). For example, task switching 

involves additional processes, such as retrieving the task goal from long term memory; and it is 

possible these processes continue to be supported by language beyond the initial practice phase (cf., 

Miyake et al., 2004). Indeed, the idea that the contribution of language to task performance may 

vary according to the task demands could explain why in some studies, the role of language is 

restricted to the early stages of practice (e.g., Van ‘t Wout et al., 2013), whereas in other studies, 
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beneficial effects of verbal labelling are observed throughout the experimental session (Kray et al., 

2008), or even increase during the course of the task (Lupyan & Swingley, 2012; Ferdinand & Kray, 

2017).  

 

In the current study, language appears to be supporting the acquisition of novel sets of S-R rules, 

though some questions remain with regards to the precise nature of this process. For example, are 

participants using language to label the stimuli, or the responses, or both? The results of Van ‘t Wout 

et al. (2013), which found that performance was affected by the phonological similarity of the 

stimulus names, would suggest that language is being used for the phonological recoding of visual 

stimuli. Additionally, the results of Kray et al. (2006) suggest that language specifically supports the 

binding of action-effect associations. Future research could further explore these possibilities by 

requiring participants to selectively label the stimulus and/or response components of task-set (cf. 

Kray et al., 2006), whilst also examining whether and how the effects of labelling are modulated by 

practice.  

 

The current results also speak to recent models of instruction following (Brass et al., 2017), 

according to which language helps to transform the instructions into a procedural representation 

that guides behavior. Future experiments will have to confirm whether language also supports the 

acquisition of novel tasks in instruction-based learning paradigms. The effect of AS on novel task 

learning by instruction may differ from the effect described here in two ways: Firstly, one might 

expect the effect of AS on novel task learning to be less pronounced in instruction-based learning, as 

participants may proceduralise the task prior to task performance (Cohen-Kdoshay & Meiran, 2009). 

Alternatively, in an instruction-based learning paradigm, participants might be able to rely on a 

linguistic representation of the S-R rules right from the beginning, and if so one would expect to see 

differences between performance under AS and FT even for the first stimulus occurrence, in contrast 

to the data described here. 

 

Finally, one area in which this paradigm may prove useful is within developmental psychology. The 

ability to use language to guide behavior is thought to improve throughout childhood (e.g., Cragg & 

Nation, 2010). Consequently, it is possible that age differences in novel task learning are the result of 

developmental differences in the use of verbal strategies. If this is the case, then one might expect 

age differences in novel task learning to be eliminated under AS. Our paradigm could enable future 

studies to answer these (and other) questions, and would help to reveal the precise contribution of 

language to novel task learning. Those findings will in turn have important consequences for theories 
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of skill acquisition and novel task learning; and they could be used to help determine the best way to 

teach novel tasks and skills to adults and children, both within and beyond educational settings. 
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Appendix 

 

 

Mean correct RT (ms) in Experiment 1 (left) and 2 (right) for each distractor task type (AS, FT or 

none) plotted as a function of task half (first 100 trials versus second 100 trials). Error bars reflect 

95% confidence intervals. 


