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Recent years have seen a paradigm shift regarding
the role of nonlinearities and elastic instabilities
in engineering science and applied physics.
Traditionally viewed as unwanted aberrations,
when controlled to be reversible and well behaved,
nonlinearity can enable novel functionalities, such
as shape adaptation and energy harvesting. The
analysis and design of novel structures that exploit
nonlinearities and instabilities have, in part, been
facilitated by advances in numerical continuation
techniques. An experimental analogue of numerical
continuation, on the other hand, has remained elusive.
Traditional quasi-static experimental methods control
the displacement or force at one or more load-
introduction points over the test specimen. This
approach fails at limit points in the control parameter,
as the immediate equilibrium beyond limit points is
statically unstable, causing the structure to snap to
a different equilibrium. Here, we propose a quasi-
static experimental path-following method that can
continue along stable and unstable equilibria, and
traverse limit points. In addition to controlling the
displacement at the main load-introduction point,
the technique relies on overall shape control of the
structure using additional actuators and sensors. The
proposed experimental method enables extended
testing of the emerging class of structures that
exploit nonlinearities and instabilities for novel
functionality.
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1. Introduction
In many human-made systems, nonlinearities and instabilities are viewed as unwanted
aberrations. In the applied physics and engineering science communities, an alternative
perspective has developed, whereby nonlinearities might be viewed as opportunities to enable
novel functionality [1–3] or more efficient systems [4]. For example, buckling has been
used for applications as diverse as energy harvesting [5,6], reversible shape adaptation [7,8],
surface texturing [9], actuation [10], self-encapsulation [11], auxetic materials [12] and energy
dissipation [13].

The physical mechanism that underpins many of these novel systems is the ubiquitous fold
catastrophe, also known as the limit point or saddle–node bifurcation. In structural mechanics,
the response of a load-bearing and deformable structure is generally described by equilibrium
curves of applied (or resultant) force versus the resulting (or applied) displacement. When the
structure reaches a limit point in the loading parameter (force or displacement), the stability of the
structure changes—a previously stable equilibrium becomes unstable or vice versa. Consequently,
a structure that is loaded by a slowly evolving, yet monotonously increasing, load snaps to
another, often remote, equilibrium upon reaching a limit point [14]. This is because, although
force(s) or displacement(s) at the loading point(s) are controlled, the rest of the structure is free to
move dynamically. These snaps can toggle the structure between different functional states, but
may also cause the structure to jump over additional stable segments of the force–displacement
equilibrium manifold [15], as illustrated in figure 1. Because such ‘islands of stability’ are
surrounded by unstable equilibria, they (i) are inaccessible to conventional experimental testing
and (ii) cannot be exploited for additional functionality such as shape adaptation. Hence, new
structural testing and control methods are needed to realize and exploit these shapes in a physical
setting.

In this work, we focus on a relatively simple structure, a shallow arch loaded by a central point
force, for which the mechanical behaviour is readily summarized in terms of curves relating the
central transverse deflection to the resulting reaction force. For structures with more complex
topologies and/or loading conditions, characterizing the nonlinear behaviour may require an
extended parametrization of the results. However, for the proof-of-concept study considered
herein, the lower order system is most instructive.

In recent years, a number of innovative experimental methods have been developed to explore
the stability of nonlinear structures. Wiebe & Virgin [16] used hammer impacts to trigger the
dynamic snap-through of shallow arches. The location of unstable equilibria was not computed
directly, but inferred from the saddles traced by the arches’ dynamic phase-space trajectories.
Virot et al. [17] used a ‘poker’ to laterally perturb an axially loaded cylinder to detect unstable
edge states surrounding the stable pre-buckling equilibrium. An unstable equilibrium was found
when the reaction force on the probe vanished, as this condition is equivalent to the ‘unprobed’
cylinder. Neville et al. [18] introduced the ability to both push and pull on ‘probes’ to control the
deformed shape of a shallow arch, and was thus able to identify multiple unstable equilibria.

In order to experimentally path-follow along connected equilibria, i.e. an equilibrium path, a
continuous control algorithm is needed. One promising approach to achieve this is to mirror the
predictor–corrector schemes used for numerical continuation [19]. For example, van Iderstein &
Wiebe [20] used additional control points to derive an experimental ‘tangent stiffness matrix’ to
path-follow along an unstable equilibrium path of a post-buckled beam. However, the control
algorithm did not converge at limit points where the tangent stiffness becomes singular. The
capability of traversing limit points has, therefore, remained elusive in current experimental
methods for quasi-static nonlinear structures.

In the related yet distinct field of structural dynamics, Sieber et al. [21,22] have developed the
methodology known as control-based continuation (CBC). CBC allows dynamic continuation of
periodic orbits through a fold, i.e. tracking of stable and unstable orbits, and thereby permits
tracing of the full nonlinear backbone curve beyond a resonance peak. These methods rely on
computing a Jacobian of the root-finding control signal. Ways to estimate the Jacobian in the
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Figure 1. Schematic force–displacement response of a nonlinear structure that snaps between functional states, omitting an
‘island of stability’ with potentially additional features.

naturally noisy environment of experiments are discussed by Schilder et al. [23] and Renson
et al. [24,25].

The work presented herein establishes the same capability but in the field of statics, i.e. tracing
of equilibria or stationary solutions. One key difference is that in dynamic systems the control
inputs, excitation frequency and amplitude, can be varied independently. For static structural
systems, the two control inputs—displacement and force—are linked through elasticity and need
to be controlled indirectly via a third parameter: the structure’s shape. A second difference is that
we focus on a Jacobian-free methodology that has the advantage of being less sensitive to noise
but is more difficult to scale to larger dimensional systems.

In this paper, we embed the concept of shape control [18] in a continuous control algorithm
that allows for experimental path-following of stable and unstable equilibrium branches, and the
traversal of limit points. This will (i) enable the validation of structures that exploit nonlinearities
for engineering applications; (ii) expand the design space for shape-adaptive structures by
enabling access to ‘islands of stability’; and (iii) allow several longstanding numerical benchmarks
found in the literature to be validated experimentally [26].

2. Shape control
To illustrate the underlying concept of shape control and the associated control algorithm, we
employ a simple structure that exhibits the salient features of nonlinear behaviour with limit
points: a spring-loaded von Mises truss (figure 2). The truss features an arch-like arrangement of
two inclined linear springs, with a third spring suspended from the apex. For a load applied to the
bottom of the vertical spring, the force–displacement (Fa versus ua) response describes a general
sigmoidal shape. The precise characteristics of this equilibrium curve are entirely described by the
geometric arrangement (α0, L0) and stiffness ratio of the springs (k1/k2). For certain arrangements,
the equilibrium curve features both force and displacement limit points (figure 2b).

The section of the equilibrium curve bounded by the two displacement limit points Ld (dashed
segment in figure 2b) is experimentally inaccessible using conventional quasi-static testing
techniques. This unstable segment of the equilibrium manifold acts as a repeller, whereas the two
stable segments act as attractors. Hence, under displacement control (ua), the apex snaps up- or
downwards upon reaching the unstable segment. To path-follow along the unstable equilibrium
segment and to traverse both limit points, a method for simultaneously controlling the force
and displacement at the loading point is needed. The experimental challenge is that force and
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Figure 2. (a) von Mises truss geometry. The actuation point is at the bottom of the vertical spring; the probe point is at the
apex of the truss. (b) The force–displacement curve for a vonMises truss with k1/k2 = 2 andα0 = 50◦ has both displacement
and force limit points. This causes the dashed section of the equilibrium curve to be unstable under either force or displacement
control, and thus inaccessible to conventional quasi-static testing. The central section of the plot highlights three equilibria
(points i, ii and iii) that correspond to three forces (Fa) associatedwith one displacement (ua = H0). (c) Each equilibrium i, ii and
iii shown in (b) is associated with a unique truss shape. (Online version in colour.)

displacement are inherently linked through elasticity: an applied force results in a displacement,
and an applied displacement induces a reaction force.

For each unstable equilibrium within the dashed region of figure 2b, two further stable
equilibria exist with the same actuation point displacement but different reaction force readings
(see points i, ii and iii in figure 2b). These different shapes provide the key insight to decouple
force and displacement at the actuation point; namely, by introducing a third control variable:
the overall shape of the structure. For an applied displacement (ua), controlling the structure’s
shape determines the corresponding reaction force (Fa); conversely, for an applied force, the shape
determines the displacement.

As shown in previous experimental work [18], the shape of the structure can be controlled by
introducing additional control points. In the case of the von Mises truss, this is done by controlling
the displacement of the apex (up). Thus, the shape of the truss is uniquely determined by the
relative positions of the apex and the actuation point. The purpose of these additional ‘probe’
points is twofold. First, for unstable equilibria, the probes provide the stabilization force required
to resist dynamic snaps. Second, the probes can be used to select different equilibria that exist
for a specific level of loading. Each unique equilibrium state of the unprobed structure must
correspond to a zero reaction force reading at the probe points (Fp = 0). When this is the case—as
far as the structure is concerned—the probes ‘do not exist’.

This concept of obtaining a zero force reading on the probes to pinpoint equilibria (stable
and unstable) has two pertinent analogies in numerical methods: (i) the minimization of virtual
work in response to a virtual displacement and (ii) the vanishing of the residual in Newton’s
method. The principle of virtual work states that, of all possible kinematically admissible
(virtual) deformations, the one that minimizes the total potential energy corresponds to the actual
deformation. A powerful tool for solving the virtual work statement analytically or numerically is
the collocation method (or alternatively the Galerkin method), whereby kinematically admissible
shape functions are assumed and the residual at certain collocation points (or the total residual)
is minimized. In precisely this fashion the probes are used to impose a subset of the kinematically
admissible deformations (the ones that can be controlled by the probes), and the residual is
then minimized at specific points (i.e. zero reaction force at the probe points). Similarly, most
numerical frameworks used in structural mechanics—e.g. finite-difference or finite-element (FE)
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methods—divide the computational domain into discretization points (nodes). Some of these
nodes are constrained from displacing (boundary conditions), others are loaded, and the rest
are unloaded. As a reference load is applied, the unconstrained nodes displace, but, in general,
there is a difference between the induced internal nodal forces and the applied external nodal
forces. Hence, the structure is not in equilibrium. In Newton’s method, the structure is moved
closer to an equilibrium state by applying the residual (the difference between internal and
external nodal forces) as an additional force to all nodes. As a result, previously unloaded nodes
of the structure are now loaded, thereby controlling the overall shape of the structure beyond
the primary actuation point. An equilibrium state is found when the residual falls beneath a
predefined threshold. The equivalent threshold in experimental shape control is the vanishing
reaction force at the probe points.

In the following section, we define a simple control algorithm based on shape control that can
path-follow stable and unstable equilibria and traverse limit points.

3. Step–scan control algorithm
To implement a path-following algorithm, a combination of controlling the displacement at
the actuation point, ua, and scanning for equilibria using the probe point, up, is required. The
simplest implementation of such an algorithm is here referred to as the step–scan method and
is demonstrated schematically on the von Mises truss in figure 3. First, the method involves a
finite increment, or step, δa, of the actuation point at constant probe displacement, δp = 0. This
step (moving from 1 to 2 in figure 3b) induces a non-zero reaction force at the probe point. Next,
the probe point is moved by δp until the probe reaction force reads zero (2 to 3 in figure 3b),
i.e. the probe scans for an equilibrium. This procedure is formally described by algorithm 1 in
appendix A. This basic step–scan algorithm is used to progress along both statically stable and
unstable equilibrium paths, as shown graphically in figure 3b by the saw-tooth-shaped segments
and schematically in figure 3c by the deformed shapes. As long as the actuation point increment,
δa, is sufficiently small, the probe-scanning step (moving δp) quickly encounters a zero reaction
force reading, Fp = 0. However, this algorithm fails to converge at a displacement limit point
because the control point increment, δa, takes the system into a region where the probe scanning
step does not intersect an equilibrium solution (figure 3d).

To overcome this limitation and find a new equilibrium past the limit point, the proposed
control system first probe-scans in one direction and, upon failing to identify a zero reaction force
reading within a preset bound (point c), inverts to scan in the opposite direction. If a zero probe
reaction force is also not found in this scanning direction (point d), the control system returns the
structure to its previously identified equilibrium (point a), followed by a further probe scan in
the original direction to find the next equilibrium (point e). This procedure is formally described
by algorithm 2 in appendix A. Throughout this procedure, the controlling action of the probes
prevents snapping away from unstable equilibria.

Although not as sophisticated as numerical continuation methods, the simplicity of the
proposed method provides a robustness which is beneficial when considering the noise and
other imperfections that are present in an experiment. Most importantly, the algorithm is capable
of dealing with the displacement reversal at limit points, allowing it to path-follow from the
stable portion of the equilibrium curve onto the unstable one without dynamic snapping. In the
following section, we demonstrate the successful implementation of the step–scan algorithm on
a symmetric shallow circular arch loaded vertically at its midpoint (the actuation point). To the
best of our knowledge, this is the first time limit-point traversal in a quasi-static setting has been
demonstrated experimentally.

4. Experimental implementation
A transversely loaded shallow circular arch was selected for the experiments, as it demonstrated
nonlinear behaviour with multiple limit points; the geometry is shown in figure 4. The load
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Figure 3. (a) Schematic of the experimental path-following algorithm (blue steps) superimposed on the equilibrium curve
(grey). (b) Detail view of the stepping procedure described by algorithm 1 in appendix A. Starting at point 1 on the equilibrium
curve, the probe is fixed and the actuation point is moved by increment δa, which generates a non-zero probe force (point 2).
The probe is then moved until a zero probe force reading is found (point 3). The shapes associated with these points are shown
conceptually in (c). (d) Detail view of the limit-point tracing logic described by algorithm 2 in appendix A. Starting at point a, we
step by δa to point b. The probe is then moved to search for zero probe force, but there are no solutions within bounds c and d.
The algorithm returns to the known equilibrium point a, andmoves the probe until the next solution is found at point e. (Online
version in colour.)

h t

3L/16
L

up, Fp

ua, Fa

Figure 4. The symmetric shallow arch studied in this work with midpoint displacement ua; midpoint rotation is prevented to
enforce symmetry. The additional ‘probes’ control the deformed shape by imposing vertical displacement up.

was applied at the midpoint. Symmetry-breaking bifurcations, and the consequent branching off
the main equilibrium manifold, were avoided by preventing midpoint rotation. This symmetry
condition is imposed herein as the natural behaviour of the arch is to transition between the
original and everted states via an asymmetric mode that is stable under displacement control.
Hence, the asymmetric mode does not require stabilization via the experimental path-following
methods described herein. Second, the equilibrium manifold corresponding to the asymmetric
deformation mode does not feature any limit points. Hence, to illustrate limit-point traversal
and path-following along unstable paths, we enforce left–right symmetry by restricting midspan
rotations and using linked probe pairs.

The arch shape was controlled using two linked (again, to maintain symmetry) probe points
at 3L/16 from the supports, which imposed vertical displacement but allowed free rotation
and horizontal translation. The arch specimens used in this work were laser cut from acrylic
sheets. Young’s modulus and Poisson’s ratio of the material are E = 3200 MPa and ν = 0.38. The
specimens had nominal dimensions L = 205 mm, h = 20 mm, t = 1.5 mm as per figure 4, and depth
d = 5 mm (into the page).
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Figure 5. Experimental set-up. (a) LabVIEW laptop and electronics in front of the Instron. (b) The test frame with linear
transducer, actuator and load cell attached to the base of the Instron. (c) The deformed arch specimen with central actuation
point and probes attached. (d) The end of the arch resting in the wedge block. (e) The ‘I’-shaped plates clamping the arch
midpoint. (f ) The pins which attach the probes to the arch. (Online version in colour.)

The experimental set-up is shown in figure 5. The experiment performed in this work requires
two independent displacement-controlled inputs—one for the actuation point and one for the
probes. A purpose-built experimental set-up was used to support the arch at its edges, to
control the actuation point position and to measure the actuation point force. The frame was
fixed to the base of an Instron universal test machine, which was used to control the probe
position and measure the probe force. For further details regarding the components used, see
Neville et al. [27]. The path-following algorithm was implemented in LabVIEW, which controlled
the displacements of the midpoint and probes and recorded the corresponding reaction force
readings.

The pinned end boundary conditions for the arches were implemented using wedge-shaped
blocks (figure 5d), which allowed the arch ends to rotate while restraining translations. The
midpoint of the arch was clamped between two plates (figure 5e); the width of the clamped
area was 5 mm. The probes were attached to the arch by 2 mm diameter steel pins, which passed
through loops in the arch (figure 5f ). A linear rail allowed free movement of the probes in the
horizontal direction, while enforcing equal vertical position.

5. Results
The experiment was performed in two stages. First, a run was performed with displacement
control at the arch midpoint. The midpoint displacement, ua, was increased until the fully
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Figure 6. (a) Comparison of the load–displacement equilibrium plots obtained by the step–scan algorithm and a nonlinear
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t = 1.56 mmand d = 5.0 mm. (b)Mode shapes from the FEmodel at points 1–4 and thematching experimentalmode shapes.
(Online version in colour.)

inverted arch shape was obtained; then ua was decreased to revert the structure back into its
original unloaded position. Under this midpoint-only displacement control, the arch snapped at
the two displacement limit points, L1 and L2, producing the dashed load–displacement curve in
figure 6a.

After obtaining the conventional force–displacement curve, the arch was taken to a position
just before one of the limit points (S1 and S2 in figure 6a). The probes were attached to the arch,
and the path-following algorithm was initiated. This experiment was performed twice in order to
traverse both L1 (from S1) and L2 (from S2). The following algorithm parameters were selected:
probe force residual |Fp| < 0.1 N as the equilibrium threshold, and actuation point step size
δa = 0.1 mm. A video of the experimental path-following is provided in the electronic
supplementary material.

Figure 6 shows the experimental results compared with the FE analysis (FEA) predictions.
The algorithm’s output is shown in black and red, with black denoting all converged equilibria
(probe force |Fp| < 0.1 N) and red denoting out-of-equilibrium states. The curve from a nonlinear
FE prediction is shown in grey. The experimental curves are qualitatively similar to the FE curves,
with some small quantitative differences. The spikes in the red non-equilibrium data at the limit
points were caused by the probes unsuccessfully scanning for equilibria before reversing direction
and re-encountering the equilibrium curve, as described in the algorithm of figure 3. The arch
shapes observed on the two unstable portions of the equilibrium curve match those predicted by
the FEA (figure 6b) in terms of both number and position of the half-waves.

As shown in figure 6a, the experimental path-following framework is able to traverse the two
limit points L1 and L2 and follow the unstable equilibrium path, but cannot go beyond the next
set of limit points (two red X-marks) where dynamic snaps adjacent to the probes occur. This
second set of limit points separates deformation-mode shapes with five and seven half-waves. The
experimental path-following set-up does not possess sufficient deformation fidelity—i.e. number
and location of probes—to control the higher order deformation mode shapes, and this results
in a loss of ‘control authority’. The a priori selection of the number and location of probes is an
important factor in successful experimental path-following, as these determine the equilibria that
can be identified.
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indicate, respectively, the first and last data point logged in the area of interest during the testing sequence. (Online version in
colour.)

Figure 7 details the measurements near limit point L2 for both the actuation point and the
probes. Subplots a1 and a2 show a stable segment of the equilibrium path away from the limit
point. Subplot a1 is a zoomed-in version in ua versus Fa space, whereas subplot a2 shows the
corresponding probe data in Fp versus up space. The tolerance of convergence |Fp| < 0.1 N is
marked by a grey band. The ‘sawtooth’ pattern generated by the algorithm is clearly visible.
The gradient of the probe scans on subplot a2 is positive, indicating stable equilibria. Subplots b1
and b2 show the stable area close to limit point L2. Starting at the blue circle in subplot b2, the
gradients of the probe scans become increasingly shallow as the algorithm approaches the limit
point, until the midpoint steps past the limit point and the algorithm cannot find an equilibrium
(Fp remains greater than 0.1 N). Eventually, the gradient becomes negative near the red
square.

Subplots c1 and c2 show ‘jumps’ in the equilibrium curve on the unstable region near the
limit point. Because of the nature of the equilibrium criterion (|Fp| < 0.1 N) there will be a range
of probe forces Fp (and hence a range of probe positions up) which satisfy the equilibrium
condition. Consequently, the algorithm does not measure the precise equilibrium curve, but rather
a bounded area around the equilibrium curve within the specified tolerance on Fp. On most
parts of the equilibrium curve, the probe force gradient (dFp/dup) is sufficiently steep to ensure
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narrow bounds, and this guarantees a close approximation to the actual equilibrium curve. As
seen in subplot b2, the probe force gradient is much shallower near the limit points, which results
in wider bounds. The ‘jumps’ are caused by the algorithm performing multiple consecutive
step–scan iterations inside the equilibrium tolerance band (|Fp| < 0.1 N). The algorithm may exit
the equilibrium tolerance band, and the probes scan in a direction that moves the solution away
from equilibrium. One example of this phenomenon is shown in subplot c2; the first part of the
probe scan (cyan dots) increases the probe force. As the algorithm does not find an equilibrium,
it reverses the direction of the probe scan. This reversed scan (yellow dots) re-encounters the
equilibrium area for a different probe displacement up than it originally exited. This hysteresis
is thought to be due to stick-slip behaviour at the boundary conditions, and could be resolved
through improved experimental design.

Finally, subplots d1 and d2 show the unstable equilibrium segment further away from the limit
point. The unstable nature of the equilibria is reflected by the negative gradient of the Fp versus up

subplot in d2. The probe scan direction finds equilibria within the equilibrium bounds, avoiding
the hysteresis due to reversal of the scanning direction discussed previously.

We conclude this section by commenting on the robustness of the arch response—and
therefore of the algorithm—to aleatoric uncertainties as well as small geometric and constitutive
changes. It is well known that the transverse force versus transverse displacement behaviour
of a circular arch can be expressed using the non-dimensional transverse displacement ua/R
and non-dimensional load FaR2Θ/EI, where R is the radius of curvature, Θ is half of the
included angle, E is Young’s modulus and I is the second moment of area. Hence, the arch
is most sensitive to changes in the thickness t (through the second moment of area I) and
radius R of the arch. In addition to geometric and constitutive uncertainty, experimental noise
and measurement uncertainty affect the results. Previous numerical studies investigated the
effects of sensor noise [28]. The observations made therein—that the sensitivity to measurement
uncertainty is greatest around the limit points and smallest around the predominantly linear
portions of the curve—are corroborated in our experimental work. In the presented algorithm,
the primary parameter was chosen to be ua, such that steps in ua always remain in the outer loop
of the algorithm and scans in up in the inner loop. Potential improvements in results could be
achieved by switching to up in the outer loop in the vicinity of the limit point in ua, and vice
versa. This would remove singularities in the fundamental loading parameter, either ua or up,
allowing for more robust traversal of either limit point and a minimization of the susceptibility to
noise. Two additional factors during testing are creep/relaxation and plastic deformations as the
acrylic arch is forced into the higher order mode shapes beyond the limit points. Relaxation occurs
as the step sizes are relatively small, such that the arch remains in a highly strained configuration
for long periods of time. Furthermore, the high strain values experienced in the high-order mode
shapes may also plastically deform the specimens. Despite these considerations and the fact that
the acrylic specimens were manufactured using a laser cutting process with low dimensional
fidelity, it was found that the mechanical response of individual specimens was surprisingly
repeatable.

6. Outlook
The notion of ‘control authority’ suggests that, with increasing structural complexity (e.g. from
arch to shell), the number of probe points to control the structure increases correspondingly.
A practical experimental path-following set-up under these circumstances requires a more
sophisticated control algorithm. Ideally, one that moves a set of control points concertedly
based on the non-zero reaction force readings at all probe points, i.e. an experimental analogue
to numerical continuation. Indeed, the general control signal Fp(ua, up) = 0 can also be solved
by adapting one of the many available numerical continuation solvers into a LabVIEW
environment. This would require the computation of the Jacobian of Fp using a finite-
difference approximation by slightly perturbing ua and up. As demonstrated by van Iderstein
& Wiebe [20], an experimental tangential stiffness matrix can be computed by perturbing a
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single probe and recording the change in reaction force at all control points. By repeating
this procedure for all probes sequentially, a finite-difference tangential stiffness matrix can be
assembled. In this manner, the testing method can not only be scaled up to more complex
structures, but the algorithm also departs from the simple step–scan approach to a more
refined experimental path-following method. The advantage of this refined approach is that
a predictor–corrector scheme can be implemented, whereby both ua and up are controlled
during the predictive step away from an equilibrium and during the ensuing corrective steps.
The disadvantage of the approach is that the computation of the Jacobian is exceedingly
sensitive to noise close to the limit point, such that alterations to the typical numerical
continuation algorithms are necessary for a successful implementation in an experimental
setting.

The objective of the present work is to show that a Jacobian-free method is also possible
that relies on ua only for the predictor and up only for the corrector, and is therefore more
robust to experimental noise. A variant of the experimental path-following technique based on
shape control that relies on the Jacobian has also been successfully implemented by the present
authors, but is beyond the scope of the present work. In conclusion, the simplicity of the step–scan
algorithm means it is less sensitive to experimental noise, and can therefore reliably traverse limit
points. In fact, simulations have shown pronounced sensitivity of the finite-difference tangential
stiffness matrix close to the limit points, hindering their reliable traversal. Nonetheless, with the
development of appropriate control algorithms, the traversal of limit points is expected to be
achievable [29].

7. Conclusion
This paper presents a new testing method for nonlinear structures. The proposed quasi-
static experimental path-following method can continue along stable and unstable equilibrium
branches, and traverse limit points in a structure’s force–displacement response—it is able to
explore beyond the fold. To the best of our knowledge, this is the first time this capability has been
demonstrated experimentally. The methodology relies on the concept of shape control, whereby
additional control points are introduced across the structure to stabilize unstable equilibria and
prevent snapping at limit points. A simple step–scan algorithm is implemented experimentally
to traverse two limit points of a transversely loaded shallow arch.

Fundamentally, we have demonstrated a direct mapping of familiar numerical quantities
to the experimental domain: the introduction of probe points enables the calculation of an
experimental tangential stiffness matrix and the residual force vector, required for Newton’s
method. This means that well-understood numerical algorithms can be adapted for experimental
path-following.

We expect that these experimental path-following methods will enhance engineers’
and scientists’ capabilities to test and validate buckling-driven multi-functional structures.
Furthermore, they will enable novel functionality by providing access to equilibrium states that
are currently inaccessible.
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Appendix A

Algorithm 1 . Basic step–scan path-following

1: loop
2: ua = ua + δa & up = constant
3: repeat
4: up = up + δp & ua = constant
5: until Fp = 0
6: end loop

Algorithm 2 . Improved step–scan path-following

Require:
(
ua, up

)
eq

1: loop
2: ua = ua + δa & up = constant
3: while up < ‖ubound

p ‖ do
4: repeat
5: up = up + δp & ua = constant
6: until Fp = 0
7: end while
8: if not Fp = 0 then
9: while up > −‖ubound

p ‖ do
10: repeat
11: up = up − δp and ua = constant
12: until Fp = 0
13: end while
14: end if
15: if not Fp = 0 then
16: set

(
ua, up

) = (
ua, up

)
eq and δa = −δa

17: ua = ua + 0.01δa & up = constant
18: repeat
19: up = up + δp & ua = constant
20: until Fp = 0
21: end if
22: end loop

References
1. Hu N, Burgueño R. 2015 Buckling-induced smart applications: recent advances and trends.

Smart Mater. Struct. 24, 063001. (doi:10.1088/0964-1726/24/6/063001)
2. Reis PM. 2015 A perspective on the revival of structural (in)stability with novel

opportunities for function: from buckliphobia to buckliphilia. J. Appl. Mech. 82, 111001.
(doi:10.1115/1.4031456)

3. Reis PM, Brau F, Damman P. 2018 The mechanics of slender structures. Nat. Phys. 14, 1150–
1151. (doi:10.1038/s41567-018-0369-4)

4. Cox BS, Groh RMJ, Avitabile D, Pirrera A. 2018 Modal nudging in nonlinear elasticity:
tailoring the elastic post-buckling behaviour of engineering structures. J. Mech. Phys. Solids
116, 135–149. (doi:10.1016/j.jmps.2018.03.025)

5. Harne RL, Wang KW. 2013 A review of the recent research on vibration energy harvesting via
bistable systems. Smart Mater. Struct. 22, 023001. (doi:10.1088/0964-1726/22/2/023001)

6. Emam S, Inman D. 2015 A review on bistable composite laminates for morphing and energy
harvesting. Appl. Mech. Rev. 67, 060803. (doi:10.1115/1.4032037)

http://dx.doi.org/doi:10.1088/0964-1726/24/6/063001
http://dx.doi.org/doi:10.1115/1.4031456
http://dx.doi.org/doi:10.1038/s41567-018-0369-4
http://dx.doi.org/doi:10.1016/j.jmps.2018.03.025
http://dx.doi.org/doi:10.1088/0964-1726/22/2/023001
http://dx.doi.org/doi:10.1115/1.4032037


13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20190576

...........................................................

7. Arena G, Groh RMJ, Brinkmeyer A, Theunissen R, Weaver PM, Pirrera A. 2017 Adaptive
compliant structures for flow regulation. Proc. R. Soc. A 473, 20170334. (doi:10.1098/
rspa.2017.0334)

8. Gomez M, Moulton DE, Vella D. 2017 Passive control of viscous flow via elastic snap-through.
Phys. Rev. Lett. 119, 144502. (doi:10.1103/PhysRevLett.119.144502)

9. Seffen KA, Stott SV. 2014 Surface texturing through cylinder buckling. J. Appl. Mech. 81,
061001. (doi:10.1115/1.4026331)

10. Overvelde JTB, Kloek T, D’haen JJA, Bertoldi K. 2015 Amplifying the response of
soft actuators by harnessing snap-through instabilities. Proc. Natl Acad. Sci. USA 112,
10 863–10 868. (doi:10.1073/pnas.1504947112)

11. Shim J, Perdigou C, Chen RE, Bertoldi K, Reis PM. 2012 Buckling-induced encapsulation
of structured elastic shells under pressure. Proc. Natl Acad. Sci. USA 109, 5978–5983.
(doi:10.1073/pnas.1115674109)

12. Bertoldi K, Reis PM, Willshaw S, Mullin T. 2010 Negative Poisson’s ratio behavior induced by
an elastic instability. Adv. Mater. 22, 361–366. (doi:10.1002/adma.200901956)

13. Hu N, Burgueño R. 2015 Tailoring the elastic postbuckling response of cylindrical shells: a
route for exploiting instabilities in materials and mechanical systems. Extr. Mech. Lett. 4,
103–110. (doi:10.1016/j.eml.2015.05.003)

14. Gomez M, Moulton DE, Vella D. 2017 Critical slowing down in purely elastic ‘snap-through’
instabilities. Nat. Phys. 13, 142–145. (doi:10.1038/nphys3915)

15. Groh RMJ, Pirrera A. 2018 Orthotropy as a driver for complex stability phenomena in
cylindrical shell structures. Compos. Struct. 198, 63–72. (doi:10.1016/j.compstruct.2018.05.013)

16. Wiebe R, Virgin LN. 2016 On the experimental identification of unstable static equilibria. Proc.
R. Soc. A 472, 20160172. (doi:10.1098/rspa.2016.0172)

17. Virot E, Kreilos T, Schneider TM, Rubinstein SM. 2017 Stability landscape of shell buckling.
Phys. Rev. Lett. 119, 224101. (doi:10.1103/PhysRevLett.119.224101)

18. Neville RM, Groh RMJ, Pirrera A, Schenk M. 2018 Shape control for experimental
continuation. Phys. Rev. Lett. 120, 254101. (doi:10.1103/PhysRevLett.120.254101)

19. Riks E. 1979 An incremental approach to the solution of snapping and buckling problems.
J. Solids Struct. 15, 529–551. (doi:10.1016/0020-7683(79)90081-7)

20. van Iderstein T, Wiebe R. 2018 Experimental path following of unstable static equilibria for
snap-through buckling. In Nonlinear dynamics (ed. G Kerschen), vol. 1, pp. 17–22. Cham,
Switzerland: Springer International Publishing.

21. Sieber J, Gonzalez Buelga A, Neild S, Wagg D, Krauskopf B. 2008 Experimental continuation of
periodic orbits through a fold. Phys. Rev. Lett. 100, 1–4. (doi:10.1103/PhysRevLett.100.244101)

22. Sieber J, Krauskopf B, Wagg D, Neild S, Gonzalez-Buelga A. 2011 Control-based continuation
of unstable periodic orbits. J. Comput. Nonlinear Dyn. 6, 011005. (doi:10.1115/1.4002101)

23. Schilder F, Bureau E, Santos IF, Thomsen JJ, Starke J. 2015 Experimental bifurcation
analysis—continuation for noise-contaminated zero problems. J. Sound Vib. 358, 251–266.
(doi:10.1016/j.jsv.2015.08.008)

24. Renson L, Sieber J, Barton DAW, Shaw AD, Neild SA. 2019 Numerical continuation in
nonlinear experiments using local Gaussian process regression. Nonlinear Dyn. 98, 2811–2826.
(doi:10.1007/s1107)

25. Renson L, Barton DAW, Neild SA. 2017 Experimental tracking of limit-point bifurcations
and backbone curves using control-based continuation. Int. J. Bifurcation Chaos 27, 1730002.
(doi:10.1142/S0218127417300026)

26. Wardle BL. 2008 Solution to the incorrect benchmark shell-buckling problem. AIAA J. 46,
381–387. (doi:10.2514/1.26698)

27. Neville RM, Groh RMJ, Pirrera A, Schenk M. 2019 Quasi-static experimental path-following.
In AIAA Scitech 2019, San Diego, CA, 7–11 January 2019. Reston, VA: American Institute of
Aeronautics and Astronautics.

28. Groh RMJ, Neville RM, Pirrera A, Schenk M. 2018 Virtual testing of experimental
continuation. (http://arxiv.org/abs/1807.02026).

29. Groh RMJ, Shen J, Schenk M, Pirrera A. In preparation. Newton’s method for quasi-static
experimental path-following.

http://dx.doi.org/doi:10.1098/rspa.2017.0334
http://dx.doi.org/doi:10.1098/rspa.2017.0334
http://dx.doi.org/doi:10.1103/PhysRevLett.119.144502
http://dx.doi.org/doi:10.1115/1.4026331
http://dx.doi.org/doi:10.1073/pnas.1504947112
http://dx.doi.org/doi:10.1073/pnas.1115674109
http://dx.doi.org/doi:10.1002/adma.200901956
http://dx.doi.org/doi:10.1016/j.eml.2015.05.003
http://dx.doi.org/doi:10.1038/nphys3915
http://dx.doi.org/doi:10.1016/j.compstruct.2018.05.013
http://dx.doi.org/doi:10.1098/rspa.2016.0172
http://dx.doi.org/doi:10.1103/PhysRevLett.119.224101
http://dx.doi.org/doi:10.1103/PhysRevLett.120.254101
http://dx.doi.org/doi:10.1016/0020-7683(79)90081-7
http://dx.doi.org/doi:10.1103/PhysRevLett.100.244101
http://dx.doi.org/doi:10.1115/1.4002101
http://dx.doi.org/doi:10.1016/j.jsv.2015.08.008
http://dx.doi.org/doi:10.1007/s1107
http://dx.doi.org/doi:10.1142/S0218127417300026
http://dx.doi.org/doi:10.2514/1.26698
http://arxiv.org/abs/1807.02026

	Introduction
	Shape control
	Step--scan control algorithm
	Experimental implementation
	Results
	Outlook
	Conclusion
	References

