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Abstract

Better understanding of which processes generate floods in a catchment can improve

flood frequency analysis and potentially climate change impacts assessment. How-

ever, current flood classification methods are either not transferable across locations

or do not provide event-based information. We therefore developed a location-inde-

pendent, event-based flood classification methodology that is applicable in different

climates and returns a classification of all flood events, including extreme ones. We

use precipitation time series and very simply modelled soil moisture and snowmelt as

inputs for a decision tree. A total of 113,635 events in 4155 catchments worldwide

were classified into one of five hydro-climatological flood generating processes: short

rain, long rain, excess rainfall, snowmelt and a combination of rain and snow. The

new classification was tested for its robustness and evaluated with available informa-

tion; these two tests are often lacking in current flood classification approaches.

According to the evaluation, the classification is mostly successful and indicates

excess rainfall as the most common dominant process. However, the dominant pro-

cess is not very informative in most catchments, as there is a high at-site variability in

flood generating processes. This is particularly relevant for the estimation of extreme

floods which diverge from their usual flood generation pattern, especially in the

United Kingdom, Northern France, Southeastern United States, and India.

K E YWORD S

classification, flood, flood frequency, flood generating process, flood type, global, large

sample, mechanism

1 | INTRODUCTION

River flooding is a globally occurring natural hazard that takes many

lives and causes extensive damage to property and infrastructure each

year. Flood risk is predicted to increase in future years in several

areas, particularly in Asia, Africa, and South America (Arnell & Gosling,

2016; Hirabayashi et al., 2013). Climate change, population growth,

and urbanization all increase flood hazard and exposure (Hirabayashi

et al., 2013). Large sample catchment studies already reveal historic

trends in magnitude and frequency of floods over the past five to

six decades in several areas around the world (Blöschl et al.,

2019; Gudmundsson, Leonard, Do, Westra, & Seneviratne, 2019; Mal-

lakpour & Villarini, 2015; Petrow & Merz, 2009). However, these

trends in flood magnitude are not ubiquitous (Petrow & Merz, 2009)

Abbreviations: AWC, available water storage capacity; DFO, Dartmouth Flood Observatory;

GLEAM, Global Land Evaporation Amsterdam Model; GSIM, Global Streamflow and

Metadata Archive; MSWEP, Multi-Source Weighted-Ensemble Precipitation.
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and cannot simply be connected to changes in precipitation (Sharma,

Wasko, & Lettenmaier, 2018). Soil moisture or catchment wetness

state often play an important role in flood generation (Berghuijs,

Harrigan, Molnar, Slater, & Kirchner, 2019; Ivancic & Shaw, 2015;

Sharma et al., 2018; Slater & Villarini, 2016). For example, Blöschl et al.

(2017) showed that changes in the seasonal timing of extreme precipi-

tation are not always the clearest explanatory factor for changes in the

timing of floods, as in large areas of Europe flood occurrences are more

influenced by timing of snowmelt or soil moisture maxima. This shows

that rainfall alone is not the only driver of floods and river peak flow

events can occur for multiple reasons. In addition to hydro-

climatological processes (rainfall, snowmelt, rainfall excess on saturated

ground, rain-on-snow), floods can be generated through blockages

(e.g. ice jam, dam break) or tidal surges as well (Whitfield, 2012).

Information about flood generating processes can be used in a

number of different ways. It can be used to explain detected trends in

flood magnitude or timing (Gudmundsson et al., 2019; Mallakpour &

Villarini, 2015; Petrow & Merz, 2009; Villarini & Slater, 2017) or to

improve flood frequency analysis. In fact, the commonly used

approach to flood frequency analysis assumes the flood sample to

stem from a uniform distribution of flood events (England et al., 2018).

However, it has been shown early on in several local studies that dif-

ferent flood processes generate different distributions and that using

mixed distributions can improve flood frequency estimates (Elliott,

Jarrett, & Ebling, 1982; Hirschboeck, 1987; Merz & Blöschl, 2008;

Potter, 1958; Tarasova et al., 2019; Waylen & Woo, 1982). Further-

more, information about flood processes can contribute to improved

flood modelling and forecasting (Viglione et al., 2010) and to flood risk

management, as different flood types might generate different inun-

dation behaviour (Sikorska, Viviroli, & Seibert, 2015).

For an in-depth overview of studies addressing the classification

of flood events, see Tarasova et al. (2019). Here we focus on various

studies that have identified flood generating processes based on

hydro-climatological information within a catchment. Merz and

Blöschl (2003) developed a widely used (e.g. Nied et al., 2014 ; Nied,

Schröter, Lüdtke, Nguyen, & Merz, 2017 ; Sikorska et al., 2015) frame-

work that uses combinations of catchment state (water stored in soil

and snow) and climatic inputs to produce diagnostic maps at the

regional and national scale for Austria. These maps show all process

indicators for simultaneous events and allow the analyst to individu-

ally choose between one of five types: long rain floods, short rain

floods, flash floods, rain-on-snow floods, and snowmelt floods

(Merz & Blöschl, 2003). This approach allows an accurate description

of flood events; however, one of the drawbacks is that the final flood

type classification is not done automatically but left to the user. This

is a subjective and time-consuming process that limits the number of

events that can be considered. The other disadvantage is that the per-

son interpreting the map has to be familiar with what constitutes, for

example, a large rainfall amount for certain regions, since extreme

rainfall amounts vary across Austria (Merz & Blöschl, 2003) and even

more across larger regions (Boers et al., 2019).

Diezig and Weingartner (2007) advanced flood-type classification

by introducing a decision tree to replace the user centred decisions.

This concept was applied and extended also by Sikorska et al. (2015).

The decision rules are still based on expert knowledge and the deci-

sion thresholds are based on literature values. Hydrograph informa-

tion (Diezig & Weingartner, 2007) and process indicators based on

weather (Diezig & Weingartner, 2007; Sikorska et al., 2015) and stor-

age state (Sikorska et al., 2015) are inputs for the decision tree.

Excluding discharge information can make this analysis available to

catchments with limited data availability. Although the use of a deci-

sion tree makes this classification applicable to large samples and

computationally efficient, the drawback of using regional thresholds

based on literature values remains. It limits the applicability of their

decision tree to regional studies, in this case in Switzerland, as set

thresholds (e.g. event rainfall needs to be greater than 12 mm;

Sikorska et al., 2015) are only valid in the intended region.

Larger scale studies that assess flood generating processes across

different climates use different approaches. Berghuijs, Woods,

Hutton, and Sivapalan (2016) determine dominant flood generating

processes for the MOPEX catchments in the continental United

States by comparing the mean occurrence date of the annual maxi-

mum peak flow to the occurrence date of the annual maximum of the

hypothesized causal processes, which are: daily or multi-day precipita-

tion events, precipitation excess or a combination of snowmelt and

rain. Berghuijs et al. (2019) extend the seasonality statistics to Europe

and additionally infer the relative distribution of different flood gener-

ating processes within one catchment by using circular statistics.

Blöschl et al. (2017) analysed how flood timing in Europe changes

based on observed changes in flood generating processes thus all-

owing a conclusion about which processes are most influential in cer-

tain regions. Blöschl et al. (2019) similarly found trends in flood

magnitude to be closely related to changes both in precipitation and

soil moisture for several areas in Europe. All these methods are based

on the average timing of flood generating process versus average

timing of flood event occurrence. This type of analysis determines

dominant flood generating process; however, it cannot classify flood

generating processes for individual events. While averaged results are

still valuable, for example, for climate change impacts assessment

(Blöschl et al., 2017), it still assumes the same flood processes within a

catchment, which rarely is the case (Hirschboeck, 1987; Sikorska

et al., 2015). The benefit of individual event process information is

lost in such approaches. Any information pertaining particularly to

extreme events, which might have a different generating process than

the average annual maximum (Rogger et al., 2012; Smith, Cox, Baeck,

Yang, & Bates, 2018), would not be available. Additionally, there are

no studies that extend the analysis beyond the continental to the

global scale, thus showing a lack in standardized flood process classifi-

cation both for the dominant and the event scale analyses.

In this article, we present a widely transferable methodology to

identify both the dominant flood generating process and the single-

event generating process for catchments with different climates. The

only streamflow information necessary for the analysis is the date of

the annual maximum flow, thus reducing reliance on uncertain peak

flow measurements. Other input data were kept to a minimum as well,

so that a large number of stations could be included in the analysis,
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and the method is potentially transferable to data-scarce regions. This

is especially valuable, as any prior studies of flood generating pro-

cesses have been focused on Europe or North America (Berghuijs

et al., 2016; Berghuijs et al., 2019; Blöschl et al., 2017). Our study

extends the knowledge of flood generating processes to other conti-

nents and climates as well. The new classification is tested for its

robustness and evaluated with available information, two steps that

are often lacking in current flood classification approaches (Tarasova

et al., 2019).

2 | METHODOLOGY FOR A GLOBAL
FLOOD CLASSIFICATION

This section describes how we infer flood generating processes at a

global scale. Section 2.1 describes the flood event data source and

how for each of the study catchments' daily rainfall, temperature, and

evaporation data is calculated. These variables are then used as input

to simple conceptual models producing daily snowmelt and soil mois-

ture estimates (Section 2.2). Section 2.3 explains how flood process

indicators are used in a conceptual decision tree to identify the flood

generating process for a flood event. Section 2.5 then presents the

methods applied to evaluate the robustness of the new classification.

2.1 | Data

The Global Streamflow Indices and Metadata Archive (GSIM) (Do,

Gudmundsson, Leonard, & Westra, 2018a, 2018b; Gudmundsson, Do,

Leonard, & Westra, 2018a, 2018b) provides streamflow station meta-

data, catchment delineation, catchment characteristics, and selected

hydrological indices for more than 30,000 stations. While daily time

series data are not made available, the date and magnitude of annual

maximum flow are published. A value is supplied if at least 350 days

of reliable daily flow data are available for that station (Gudmundsson

et al., 2018b). For more information about the quality control both for

the catchment delineation procedure and time series inhomogeneities

refer to Gudmundsson et al. (2018b). Only stations which have a high

quality in regard to both aspects, determined through the provided

quality flags, are kept for the analysis. No Australian metadata were

available to Do et al. (2018a) to quality check Australian catchments,

we therefore used the catchment outlines delineated by Fowler, Peel,

Western, Zhang, and Peterson (2016) to quality check the catchment

delineation ourselves according to the criteria given by Do et al.

(2018a). Out of 221 catchments in Fowler et al. (2016), 187 had a

match in the GSIM database. In 62 catchments, the area between the

catchment delineation by Do et al. (2018a) differed less than 10%

from the catchments by Fowler et al. (2016) and were thus included

in the analysis.

For the climate variables, global gridded climate data sets were

chosen to make the analysis transferable across locations. Although

global gridded data sets have location-specific uncertainties as

well, the aim was to reduce uncertainty due to varying interpolation

methods and to make the method potentially transferable into areas

where precipitation gauge data are not available. A challenge in the

selection of the data products was to find high-resolution data sets of

global extent that cover several decades. For flood analysis, it is rec-

ommended to have at least 20 years of data available (Kjeldsen,

2015). Daily data are needed since a flood generating rainfall might

just last for a few hours or days and would not be recognized in a

coarser temporal resolution. This limits the choice of data sets avail-

able. For some data sets (e.g. temperature), a coarser resolution had

to be accepted to be able to cover a longer time period.

The precipitation product used in the analysis is the Multi-Source

Weighted-Ensemble Precipitation (MSWEP) Version 2.1 (Beck, Van

Dijk, et al., 2017). It is a daily gridded precipitation product available

at 0.1� x 0.1� resolution from 1979 to 2015 that merges satellite,

reanalysis, precipitation gauge, and streamflow gauge data. Even with-

out precipitation gauge correction, MSWEP is among the most accu-

rate gridded precipitation products as evaluation with rainfall station

data and hydrological modelling shows (Beck, Vergopolan, et al.,

2017). MSWEP 2.1 additionally includes gauge correction. This means

for some areas (snow-affected and/or ‘complex topography’; Beck,

Van Dijk, et al., 2017), streamflow station data are used to avoid

underestimation of long-term precipitation estimates. Martens et al.

(2017) use the MSWEP data as forcing data for the Global Land Evap-

oration Amsterdam Model (GLEAM) (Martens et al., 2017; Miralles,

De Jeu, Gash, Holmes, & Dolman, 2011; Miralles, Holmes, et al.,

2011). The current version GLEAM v3.2a is used as source for global

actual evaporation information in this study. The model includes satel-

lite, reanalysis, and merged products for various variables and pro-

vides daily evaporation data between 1980 and 2015 at 0.25� x 0.25�

resolution. Although GLEAM has a tendency in some places to over-

estimate evapotranspiration (Khan, Liaqat, Baik, & Choi, 2018;

Miralles et al., 2016), this fault is common among other evapotranspi-

ration products as well. GLEAM is still more successful than compara-

ble data products at closing the water balance (Miralles et al., 2016).

For air temperature, the Berkeley Earth Surface Temperature daily

gridded product was used (Rohde et al., 2013). It is available at 1� x 1�

resolution from 1970 to 2013. It utilizes the Global Historical Clima-

tology Network stations to interpolate a global grid of surface temper-

ature. The large station network and interpolation algorithm by Rohde

et al. (2013) produces a temperature product with lower uncertainties

than comparable data (Menne et al., 2018). Although the daily gridded

temperature product used here is not yet peer-reviewed, multiple

sources assess it as comparable in accuracy to temperature products

of similar extent and temporal resolution and it is used in multiple ana-

lyses (Levi Goss, 2013, e.g. Osborn, Jones, & Joshi, 2017; Wasko &

Sharma, 2017). The different time extents of the above three data

sources limit our analysis to the period 1980–2013.

2.2 | Snow and soil moisture accounting routine

For each climate variable, a catchment average daily value was pro-

duced using the GSIM delineated catchments. Each grid cell that is
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covered by a catchment is assigned a weight based on the percentage

of the catchment area that covers this cell. With these weights a

weighted average value was calculated for each catchment. The

catchment daily values were used as input into a simple coupled soil–

snow routine to calculate snowmelt and soil saturation.

These simple models were adapted from the soil and snow routines

used by Berghuijs et al. (2016). Snowmelt output is based on a degree-

day snow model. Snow is accumulated if the temperature is below a

critical temperature and melts if temperature is above. The daily time

steps used did require some updates to the soil and snow routines

applied by Berghuijs et al. (2016). One update is that rainfall input can

only occur when the temperature is higher than the critical temperature

thus separating rainfall and snowfall. The other is that the soil routine is

only active if there is no snowpack, which is justified by the fact that

soil moisture under a snowpack is not directly affected by precipitation

and very little by evaporation. The bucket model gives an approxima-

tion of the spatially averaged moisture state of the catchment.

If T(t) < Tcrit,

Ssnow tð Þ= Ssnow t−1ð Þ+P tð Þ,
Pmelt tð Þ=0,
Prain tð Þ= 0:

ð1Þ

If T(t) > Tcrit,

Pmelt tð Þ=min fdd* T tð Þ−Tcritð Þ,Ssnow t−1ð Þð Þ,
Ssnow tð Þ= Ssnow t−1ð Þ−Pmelt tð Þ,

ð2Þ

where at time t Ssnow is snow storage (mm), P precipitation input

(mm), Prain is liquid precipitation, T is air temperature (�C), Tcrit is the

temperature threshold where rainfall turns to snow (�C), fdd is a melt

factor (mm day–1 K–1), and Pmelt is snowmelt rate (mm). fdd is set to

2 mm day–1 K–1 (Berghuijs et al., 2019, 2016). For critical tempera-

ture, the data product by Jennings, Winchell, Livneh, and Molotch

(2018) were used, which provide global gridded critical temperature

for the Northern hemisphere. With no gridded data available for the

Southern Hemisphere, critical temperature is set to 1�C, the mean

critical temperature of the Northern hemisphere (Jennings et al.,

2018). Unlike Berghuijs et al. (2016) the snow routine calculates only

snowmelt and not rain-on-snow to separate these two processes.

Although degree-day models are simplifications of snow processes,

they work well at low resolution such as catchment averages (Hock,

2003) and are often used for flood classification (Tarasova et al.,

2019). Snow storage was set to zero at the end of the annual average

warmest month to include only annual snow and not accumulated

snow over several years (Freudiger, Kohn, Stahl, & Weiler, 2014).

The information about snow storage (Ssnow) is used as input for

the soil routine, which assumes that soil filling, evaporation, and over-

flow only happens when there is no snow cover and when T > Tcrit.

Adapted from Berghuijs et al. (2016), soil storage and soil saturation

are calculated as follows:

If Ssnow(t) = 0,

Su tð Þ=min Su t−1ð Þ+Prain tð Þ,Su,maxð Þ−Ea tð Þ,
Ssat =

Su tð Þ
Su,max

,
ð3Þ

Peff =max Su t−1ð Þ+Prain tð Þ−Su,max,0ð Þ: ð4Þ

If Ssnow(t) > 0,

Su tð Þ= Su t−1ð Þ,
Ssat =

Su tð Þ
Su,max

,
ð5Þ

Peff = 0: ð6Þ

where Su is the soil storage (mm), Su,max is the maximum soil storage

(mm), Ssat is the soil saturation (%), Peff is the excess rainfall (mm), Prain

is the liquid precipitation input (mm), and Ea is the actual evapotrans-

piration (mm). Maximum soil storage is set to the available water stor-

age capacity (AWC) taken from the Harmonized World Soil Database

averaged for each catchment (Nachtergaele, van Velthuizen, &

Verelst, 2009). More detail including an evaluation of the combined

soil–snow routine is given in Data S1, Supplementary A.

2.3 | Decision tree

A decision tree (Diezig & Weingartner, 2007; Sikorska et al., 2015) is

used to decide which process generated each annual maximum flow

event. While blockages (e.g. ice-jams, glacial outburst floods) can also

cause extremely large floods, this article will only focus on hydro-

climatological flood generating processes as they cause the over-

whelming majority of floods (Whitfield, 2012). The structure of the

tree is based on our domain knowledge. This means that the shape of

the tree and the decision nodes are based on our understanding of

flood generating processes, instead of being inferred from data

through an automatic algorithm (Witten, Frank, & Hall, 2016). Specifi-

cally, several process indicators are calculated from the daily time

series of precipitation, snowmelt, and soil moisture, which are then

used by the tree to decide between five different flood generating

processes: short rain flood, long rain flood, excess rainfall flood, rain/

snowmelt flood, or snowmelt flood (Berghuijs et al., 2016; Merz &

Blöschl, 2003; Sikorska et al., 2015). If none of these flood processes

can be assigned, the flood event is described as ‘other’. Flash floods

and glacier melt floods are currently not included in the analysis.

The tree is used for classifying individual flood events whose

dates of peak flow are known. The tree makes the classification deci-

sion based on information about potential causal factors (rain, snow-

melt, soil moisture) that occur during a short time frame before the

recorded flood peak. Since there is no daily discharge data available in

GSIM for event separation as used by Sikorska et al. (2015), the time

frame needs to be fixed. For alpine catchments, Froidevaux,

Schwanbeck, Weingartner, Chevalier, and Martius (2015) found the

time period relevant for flood generation is 3 days prior to a flood
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event. Berghuijs et al. (2016) found for the MOPEX catchments in the

United States that it varies between 3 and 10 days. We decided to set

the threshold to 7 days in order to cover multi-day rain or snowmelt

events even in large catchments. Without daily discharge time series,

a more accurate delimitation is not possible. We evaluated the 7-day

threshold by checking the relationship between catchment area and

mean event response time (Figure S4). Based on the results, the time

period of 7 days was considered applicable for both small and large

catchments. With the flood relevant time period set to 7 days, the

process indicators are each calculated for the 7-day period.

Each process indicator is used as a node in the decision tree. The

decision tree with the process indicators is presented in Figure 1. Pro-

cess indicators and associated thresholds are given in Table 1. A

pseudocode description of the decision tree is given in Data S2, Supple-

mentary B. The thresholds of the tree are inferred from the input time

series itself by using either percentile thresholds (heavy rainfall, heavy

snowmelt) or ratios (rain/snow). This makes the tree transferable across

different locations. The only exception is the threshold for soil satura-

tion, which is set to >90% (Sikorska et al., 2015), thus representing a

near-saturated soil. Since this analysis focuses on annual maxima and

not extreme floods, the 90th percentile is assumed to be a good indica-

tor for finding large enough events to cause annual maximum flow.

Without using the Julian date of the flood occurrence, as was done

by Sikorska et al. (2015), the other process indicators needed to be

structured more strongly on hydrological reasoning. Hence, for our clas-

sification, any involvement of snow needs to be evaluated before all

other processes, as it would be missed if soil moisture conditions or rain-

fall amount was evaluated first. Similarly, antecedent soil moisture condi-

tions are evaluated before heavy rainfall events. In fact, Ivancic and

Shaw (2015) demonstrated for the United States that extreme rainfall

events are much more likely to cause an extreme streamflow event

under wet antecedent conditions. Testing for heavy rainfall conditions

F IGURE 1 Conceptual decision tree for location independent (global) flood classification. Thresholds are given in Table 1

TABLE 1 Table of process indicators (rows) and their threshold values that lead to the different flood generating processes (columns)

Snow/rain Snowmelt Excess rain Short rain Long rain

Pmelt(t7) Multi-day snowmelt >1
3Ptotal >p90

P(t7) Multi-day rainfall >1
3Ptotal >�P7 >p90 >p90

P(t) Single-day rainfall >p90 OR>2
3P7

Ssat Soil moisture state >p90

Note: p90 refers to the 90th percentile of the respective process indicator distribution. The snow/rain indicator is taken from Vormoor, Lawrence,

Heistermann, and Bronstert (2015), and the soil moisture state threshold from Sikorska et al. (2015). Pmelt(t7) is the snowmelt sum over 7 days before the

flood event. p90 for melt is calculated over all values Pmelt(t7) > 1. P(t7) is the rainfall sum over 7 days before the flood event. Ptotal = P(t7) + Pmelt(t7). �P7 is

the mean 7-day rainfall.

STEIN ET AL. 5



before excess rainfall conditions would therefore miss this important

flood generating process. Nevertheless, the tree recognizes that wet

conditions still require rainfall for flood generation (Berghuijs et al.,

2019) by using an additional decision node, which tests if an above-

average amount of rainfall fell in addition to wet antecedent conditions.

If none of these conditions are met, the category ‘other’ will be

selected, which describes a flood event that is either misclassified or

caused by something other than hydro-climatological processes

(e.g. dam break, ice jam, groundwater flood, storm surge, etc.).

A visual demonstration of the inputs of the decision tree is given

in Figure 2 for the 2008 and 2011 maxima in the Aschauer Ache

catchment in Austria. In April 2008 (left), a melting event and a day of

strong rainfall occurred right before the annual maximum flow, thus

allowing the conclusion that the combination of snowmelt and rainfall

generated the flood. The peak flow event in October 2011 (right) was

instead preceded by several days of strong rainfall, falling on not yet

wet soils. This would therefore be classified as a long rainfall flood.

2.4 | Dominant process and measure of process
variability

A dominant flood generating process here is defined as the flood pro-

cess occurring most often in the time series; however, in some catch-

ments, this information is not as meaningful if flood generation varies

evenly between two or more processes. The dominant process for

each catchment can be identified if at least 20 years of events are

classified in order to have a representative sample (Berghuijs et al.,

2016; Kjeldsen, 2015).

The inter-annual variability of the flood generating process is cal-

culated using a variability measure for categorical data taken from

Allaj (2018):

vk =1− k fkk =1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f20 + f

2
1 +…+ f2k−1

q
ð7Þ

where vk is the variability value, k is the number of categories (flood

generating processes), and f is the relative frequencies for each cate-

gory. When one process dominates, the value of vk is near 0; when

several processes are equally dominant, the value of vk increases. If

there are k categories then the upper bound on vk is 1−1=
ffiffiffi
k

p

(Allaj, 2018). The calculated variability is normalized to make the infor-

mation easily accessible.

2.5 | Evaluation of the proposed global flood
classification

2.5.1 | Evaluation by sensitivity analysis

A sensitivity analysis is used to determine the effect that changes in the

inputs of the classification system may have on the output. It provides

an insight into which input factors lead to a high variability of the output,

thus evaluating robustness of the classification (Pianosi et al., 2016;

Tarasova et al., 2019). In particular, the influence of the chosen model

routine parameters and input data uncertainty (melt rate, AWC, critical

temperature), as well as of the tree parameters and thresholds, is deter-

mined using a regional sensitivity analysis method (Spear & Hornberger,

1980; Young, Spear, & Hornberger, 1978). The tree structure is not eval-

uated with a sensitivity analysis as it is based on our hydrological under-

standing of flood processes. Changing the structure of the tree would

produce outcomes not agreeing with our flood process definitions.

The flood classification is run with 1,000 parameter samples that

are generated using a Latin hypercube sampling scheme over a uni-

form distribution. The range of parameters tested in the sensitivity

F IGURE 2 Visual demonstration of input into the decision tree with rainfall, snowmelt and soil moisture distribution before a flood event
(flood event occurred on the last day shown). The maximum peak flow for GSIM station number AT 0000032 (river Aschauer Ache in Austria) in
2008 (left) would be interpreted as a combination of rain and snow, the event in 2011 (right) as a long rainfall flood. GSIM, Global Streamflow and
Metadata Archive
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analysis is displayed in Table 2. The parameter ranges are set to cover

a plausible range of values. In particular, the catchment-averaged

values of critical temperature and of maximum soil storage are varied

by adding ±1�C and ±50% to the original value. Since the definition of

excess rainfall floods requires saturated conditions, the saturation

threshold is varied between 90 and 99%.

Following the rationale of the regional sensitivity analysis

approach (Pianosi et al., 2016; Spear & Hornberger, 1980), the sensi-

tivity to each parameter is determined by comparing the cumulative

distributions of that parameter for each flood process to the uniform

distribution of the entire parameter sample. The deviations from the

uniform distribution are measured using the Kolmogorov–Smirnov

statistic (D statistic). The lower these deviations, the less influence the

parameter has on the classification outcome. Regional sensitivity anal-

ysis was applied using the SAFE toolbox (Pianosi, Sarrazin, & Wagener,

2015).

2.5.2 | Evaluation by comparison with
available data

The accuracy of the event classification based on observed data is dif-

ficult to establish as flood types cannot be measured but depend on

some other form of classification (Sikorska et al., 2015; Tarasova

et al., 2019). Tarasova et al. (2019) state this as a disadvantage of cur-

rent classification methods. For this reason, we evaluate our results

with the only global scale data available for comparison, the Dart-

mouth Flood Observatory (DFO) Global Active Archive of Large Flood

Events (Brakenridge, 2018) (http://floodobservatory.colorado.edu/

Archives/index.html). A large flood as defined by the archive can be

any event that received extensive media coverage, caused consider-

able damage, or resulted in fatalities (Brakenridge, 2018). The data-

base provides event dates, an outline of the affected area, and cause

of flood. The cause of flood included in the database is based on

newspaper reports. We simplified and grouped flood cause into one

of eight classes (Table S1) If any of the analysed events in our studies

matched both in location and event date with the database entry,

flood cause was compared to the output of our decision tree to

evaluate the classification results. Since our study looks at annual

maxima and not only at extreme events, a large percentage (96%) of

the events we classified cannot be evaluated this way. Therefore, we

additionally compare the results to various studies in the literature

that describe flood generating processes for specific catchments and

regions.

3 | RESULTS

3.1 | Dominant flood generating processes

Figure 3 shows the calculated dominant flood generating process,

which is the process occurring most often in the time series. It also

gives an overview of the distribution of the GSIM station locations

used in this study. Although the station density varies, with the major-

ity of stations in Northern America and Europe, many different regions

and climates are covered so that a global analysis can be performed. In

total, 4,155 catchments fulfilled the quality criteria specified by Do

et al. (2018b) and Gudmundsson et al. (2018b) and had at least

20 years of data available for the analysis of the dominant process. In

total, 113,635 events in total were classified. The prevalent dominant

flood generating process for Brazil, Southeast Asia, India, most parts

of Europe, the southeast of the United States, and New Zealand were

classified as excess rainfall.

A region with distinctly different dominant process is South Africa

and Namibia where most flood events were classified to occur during

dry soil conditions, either due to short or long rainfall events. Similarly,

the south of Switzerland has a mix of short rain and long rain floods,

whereas further to the north, southeast of Germany is mainly classi-

fied as rain/snowmelt floods. Higher latitudes in Europe have more

catchments with snowmelt and rain/snowmelt influenced floods, an

exception being the coastline of Norway which is again dominated by

excess rainfall. Dominance of excess rainfall floods decreases with

decreasing storage capacity (Figure S5a).

The United States has a diverse landscape of dominant flood gen-

erating processes. While the southeast has widespread areas of floods

generated by excess rainfall, there is a sharp longitudinal transition in

TABLE 2 Table of initial parameter values of the model routine/decision nodes and the upper and lower parameter limits for the sensitivity
analysis

Initial value Lower limit Upper limit

Melt rate (mm day –1K–1) 2 1 8

Uncertainty critical temperature (�C) Tcrit Tcrit – 1�C Tcrit + 1�C

Uncertainty soil storage (%) Su,max Su,max – 50% Su,max + 50%

Time period (days) 7 3 14

Rain/snowmelt overlap (−)
1
3

1
10

1
2

Percentile heavy snow (−) p90 p80 p99

Percentile heavy rain (−) p90 p80 p99

Saturation threshold (%) 90 90 99

Note: Tcrit values taken from Jennings et al. (2018), averaged by catchment. Su,max values taken from Nachtergaele et al. (2009), averaged by catchment.
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F IGURE 3 Global map of dominant flood generating process for the 4,155 catchments of the study

F IGURE 4 Normalized year-to-year variability (Equation 7) of the flood generating process identified by our decision tree. A value of zero
indicates the flood process is constant over the years, while high values (up to a maximum of one) indicate that different processes are identified
in different years (Allaj, 2018)
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the Southern United States towards short rain floods. The Northeastern

United States is dominated by rainfall/snowmelt combinations. The

Western United States do not have any clear patterns of a prevalent

dominant flood generating process but are a mix between all four pro-

cesses. Particularly in the south (New Mexico) and north (North Dakota,

South Dakota), several catchments are dominantly classified as ‘other’.

3.2 | Event-based flood generating processes

Figure 4 demonstrates the variability in flood generating processes in

each catchment between different years. Within Europe, the United

Kingdom and France have predominantly low variability in flood pro-

cesses. India and Central/Northern Brazil are additional areas with low

variability. The majority of catchments across different climates show a

high variability (median normalized variability 0.59, mean 0.55), with

some of the highest variability (normalized variability close to 1) reached

in the Northern United States, Canada, and Central and Northern Europe.

This demonstrates the need for more detailed information besides the

dominant flood generating processes in these areas, as there might not

be one dominant process but two or three processes combined.

For South Africa, variability is high (mean 0.65) as in most catch-

ments short rain and long rain are almost equally often selected as the

flood generating process. The exact distribution of flood generating

processes for each catchment is shown in several detailed maps in

Figure S5 provides an example of the annual flood generating pro-

cesses time series for seven example catchments, for which detailed

information in the literature is available.

The high variability in flood generating processes makes it quite

likely that the flood generating process of the most extreme event in

the time series is different to the dominant process. However, there

are some areas, displayed in Figure 6, and some single catchments,

where the process of the extreme flood is different, despite the usual

flood generating process being very regular. The majority of the very

stable catchments (variability < first quantile) where dominant flood

process and extreme flood process are not the same, has excess rain-

fall as dominant process (796 out of 1,640 catchments compared to

212 for long rainfall, 209 for rain/snow, 179 for ‘other’, 152 for short

rainfall, and 92 for snowmelt). The largest flood, in contrast, is caused

by long rainfall (501 catchments), followed by short rainfall (246 catch-

ments), or it remains unclear (class ‘other’, 87 catchments).

3.3 | Evaluation of the proposed global flood
classification

3.3.1 | Evaluation by sensitivity analysis

Figure 7 shows the results of the sensitivity analysis. A high value of

the Kolmogorov–Smirnov D statistic for a given parameter (horizontal

F IGURE 5 Time series of annual flood generating process for seven example stations around the world illustrating the variability beyond
dominant (i.e. most frequent) process. In brackets is the normalized inter-annual variability. The Ping river variability is missing as less than
20 years of data were available for calculation
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axis) and flood process (colours) indicates strong sensitivity (Pianosi

et al., 2016), that is, a change in that parameter has a strong effect on

the number of times that process is classified. For the parameters of

the soil–snow routine (melt rate, critical temperature, and maximum

soil storage), the statistic is less than 0.1 for all processes. This indi-

cates that a change in those values will not have a strong impact on

the overall distribution of classified processes. The parameters for the

simple model routine therefore have a low influence.

However, the classification of some flood processes is very sensi-

tive to changes in the thresholds of the classification tree. The long

rainfall and the ‘other’ outcomes are particularly sensitive to the time

period threshold. The rain/snow outcome is strongly influenced by

the rain/snowmelt overlap threshold. The snowmelt classification is

most strongly influenced by choosing a different percentile threshold

for heavy snowmelt. A change in the heavy rain threshold affects the

classification of the outcomes long rainfall and ‘other’. A change in the

saturated conditions threshold affects events classified as excess rain-

fall. The higher the threshold, the fewer events of that process are

classified (Figures 7 and S11). Figure S11 additionally informs us that

a decrease of a threshold leads to an increase in the respective pro-

cess. For the heavy rainfall threshold, this increase in classified long

rainfall floods leads to a decrease in events classified as ‘other’.

3.3.2 | Evaluation by comparison with
available data

Figure 8 shows the comparison of the classified flood processes with

the flood causes found by the Dartmouth Flood Observatory. About

4% of all classified events in our study have a match with an entry in

the DFO database, both in timing and spatial overlap, as the database

only takes by their definition large floods into account. Of those

events, 5,101 events in total (84% of all matched events) are consis-

tent with the global flood classification. The global flood classification

detects well the rainfall component in flood generation (87% of all

excess rainfall events classified as consistent, 93% of all short rainfall

events classified as consistent, 90% of all long rainfall events classified

as consistent). As newspaper reports do not take hydrological

F IGURE 6 Four regions where some catchments have an extreme flood generating process that does not match the dominant process
(marked by a square), despite an overall low variability (marked in blue) in flood generating processes
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processes such as soil moisture into account, a classification as excess

rainfall can be considered consistent with the DFO classes ‘Heavy

rain’, ‘Storm’, ‘Rainy Season’, and ‘Short rain’. Large flood events with

a snowmelt component seem to be less well classified (64% of all

rain/snow events classified as consistent, 16% of all snowmelt events

classified as consistent), as the very simple snowmelt routine in some

cases will not accurately represent magnitude or timing of the

snowmelt peak. This can cause rain/snow floods to be mistakenly

classified only as rain floods.

4 | DISCUSSION

4.1 | Dominant flood generating processes

In some regions, the distribution of the dominant flood generating

processes can be clearly linked to climate. For example, the distinct

boundary between long/short rain and soil moisture floods in the

Central–Southern United States (Figures 4 and S5b) is well mirrored

in the aridity distribution in that area (e.g. Knoben et al., 2018). Arid

and semi-arid regions rarely experience excess rainfall floods, and

short rainfall and long rainfall are the prevalent generating processes

there (Figure S5b). Examples for this are the more arid regions in

South Africa, Namibia, and Australia. The only exception is seasonally

arid catchments. We find excess rainfall to be a common flood pro-

cess in seasonally arid catchments (Figure S5b).

In humid areas, especially in the humid tropics, we find excess

rainfall to be the most common process. For the Ping catchment in

Thailand (Figure 5), Lim and Boochabun (2012) describe that floods

are not only due to tropical storms or monsoon rainfall but also

require wet antecedent conditions. This demonstrates the benefit of

focusing on flood processes instead of storm types (cyclone, mon-

soon, storm). Outside the tropics many studies describe soil moisture

as a relevant factor in flood generation for several areas and river

basins as well (Berghuijs et al., 2019; Institute of Hydrology (IoH),

1999; Lim & Boochabun, 2012). Our distribution of excess rainfall as

dominant flood generating process matches previous studies in the

United States (Berghuijs et al., 2016) and Europe (Berghuijs et al.,

2019). However, Berghuijs et al. (2016) find no excess rainfall domi-

nance in the Northeastern United States, whereas our classification

F IGURE 7 D statistic for the
Kolmogorov–Smirnov test for the regional
sensitivity analysis. The higher the D statistic
value, the more sensitive is the respective
process to changes in the parameter/
threshold. The theoretical range of D is
between 0 and 1 (Pianosi & Wagener, 2015).
The parameters of the model routine are
melt rate, critical temperature, and soil

storage. A more detailed figure with the
cumulative distribution functions can be
found in Figure S11

F IGURE 8 Comparison of DFO flood causes with output of the
global flood classification. Events are considered consistent if
reported flood causes are plausible for news reports of the classified
flood process (e.g. a DFO event where the cause is listed as rain is
consistent with both soil moisture and rainfall floods). Yellow symbols
indicate consistency between this study and DFO, and symbol size
indicates number of flood events. An empty spot indicates zero flood
events. DFO, Dartmouth Flood Observatory
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does. We also find that the dominant process is not very informative

in that region due to the high inter-annual variability of flood pro-

cesses. This might also explain why Berghuijs et al. (2016) could not

find any dominant process for some of the catchments in that area. In

Germany, there is a similar disagreement between Berghuijs et al.

(2019) and our classification. Berghuijs et al. (2019) find most catch-

ments in Western and Northern Germany to have no influence of

snowmelt on flood generation. Our classification, however, finds that

a small fraction of events in each catchment is caused by a combina-

tion of rain and snowmelt. Our findings are supported by Freudiger

et al. (2014), who found several rain-on-snow events in the Rhine,

Elbe, Weser, and Ems catchments, which cover most of Western and

Northern Germany.

4.2 | Event-based flood generating processes

One key findings of this study is the widespread year-to-year variabil-

ity in flood generating processes. Although some areas like Central

Europe, India, and Central Brazil show low variability, the overwhelm-

ing majority of catchments are classified as regularly experiencing

annual maxima generated by two or more different processes. This is

very important for flood frequency analysis. Although it has long been

known that frequency analysis, particularly of extreme floods, has

higher accuracy if the flood distribution is split by flood type (Elliott

et al., 1982; Hirschboeck, 1987; Potter, 1958; Waylen & Woo, 1982),

such distinction is still not standard procedure. For example, the Bulle-

tin 17-C for the United States does recommend separation of the

flood frequency curve into different processes; however, it does not

supply guidance on how to do this (England et al., 2018; Villarini &

Slater, 2017), although there are recent approaches to rectify this

(Barth, Villarini, & White, 2019). Especially in areas where the extreme

flood process might deviate from the regular annual maxima, any

flood estimation procedure might likely underestimate that extreme

(Rogger et al., 2012; Smith et al., 2018). Areas where this may happen

are, for example, the United Kingdom, the northwest of France, the

southeast of the United States and Central India, as Figure 6 demon-

strates. The detected generating processes for extreme events are

dependent on the analysed time period (1980–2013). Although it is

reasonable to expect that flood types change with time, questions

about trends in flood type are beyond the scope of this paper. For

some catchments the most extreme flood events might have hap-

pened outside that period and are therefore not included in this analy-

sis. The classification shows that the shift in flood process mostly

moves away from soil moisture towards long rainfall and short rainfall.

This agrees with findings by Smith et al. (2018), who found unusually

large floods in the United States are caused by a shift towards thun-

derstorms and tropical cyclones.

The benefit of an event-based classification is that it allows an

event-based evaluation of the results. Events described as short rain-

fall in the Dartmouth Flood Observatory are classified by our global

classification as either excess rainfall (possibly because wet anteced-

ent conditions are not recorded in the Dartmouth Flood Observatory)

or as long rainfall, which might be due to the limitation of using daily

data. In fact, any overnight rainfall event would be registered as a

2-day event even if it only lasted few hours.

Most catchments in higher latitudes experience rain/snowmelt or

snowmelt as flood generating processes. It rarely is the dominant pro-

cess though with a few exceptions in mountainous areas or very high

latitudes. According to the comparison with the Dartmouth Flood

Observatory, not all snowmelt floods are classified correctly by our

global flood classification. Rain and snow floods might get classified as

snowmelt or vice versa. This is the case for the Southwest Margaree

River (Figure 5) in Atlantic Canada, where a previous study by Collins

et al. (2014) found that several catchments experience more rain

floods than snowmelt floods. However, their methodology takes into

account only the last 3 days prior to the flood event. Snowmelt and

rain-on-snow floods can lead to a slow reaction of the catchment with

snowmelt contributing to increased streamflow levels or a high wet-

ness state (Merz & Blöschl, 2003). Therefore, 3 days might be too

short to recognize the influence of snowmelt on flood generation. In

contrast to Collins et al. (2014), Buttle et al. (2016) report that snow

accumulation in the Maritime Provinces of Canada has a major impact

on flood timing and magnitude, thus agreeing with the results reached

by the global classification presented here. For comparison, in the

Mezen catchment (Figure 5) our findings agree with the literature. In

this catchment, Tockner, Uehlinger, and Robinson (2009) report snow-

melt floods occur during the spring thaw, with additional occasional

summer flash floods. In the Nordelva catchment (Figure 5), Vormoor

et al. (2015) found 14% of flood events associated with rain-on-snow,

with a dominance of 80% associated with rainfall. These proportions

are similar to those found by our global flood classification. An evalua-

tion of the outputs of the soil–snow routine (Figure S3) demonstrates

that overall the storage simulations (snow accumulation and melt as

well as water storing in the soil) work as expected. However, a possi-

ble reason why snowmelt processes could still not be perfectly repre-

sented in the classification is the potentially inaccurate timing of the

snowmelt simulations. Catchment specific aspects and elevation varia-

tions cannot be taken into account with a fixed melt rate. A catchment

with a wide range of elevations might have a mean temperature above

the critical temperature, thus leading to melt conditions in the model

routine, while in reality the snow pack is still present at higher eleva-

tions. This could lead to the model routine predicting a melt peak ear-

lier or later than the actual peak, which means the snowmelt event is

missed by the classification. One solution for this problem could be to

define the model routine on a gridded basis instead of as lumped for

each catchment. This would require downscaling gridded temperature

to smaller grid cells which take topographic differences such as eleva-

tion into account.

4.3 | Classification tree method

A regional classification tree method (Diezig & Weingartner, 2007;

Sikorska et al., 2015) was adapted and extended here to be transfer-

able to several climates by using thresholds based on simulated time
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series, instead of literature values. These climate independent thresh-

olds make the tree applicable at global scale. As opposed to other

flood classification methods (Merz & Blöschl, 2003; Nied et al., 2014;

Sikorska et al., 2015), the classification tree does not require local

knowledge of seasonality or weather patterns of the analysed catch-

ments. The order of the decision nodes is based on hydrological pro-

cess knowledge. An extension of the tree is possible, if further

information is of interest. This could include glacier melt floods or a

more detailed split of flood producing conditions.

The global extent of the application limits the temporal and spa-

tial distribution of the data used as input to the classification. How-

ever, the methodology can easily be adapted to higher resolution

data. This might be a higher temporal resolution of the climate input

data or, if daily flow data is available, the classification of multiple

flood events per year.

An important part of the decision tree is the last node ‘other’.

Including the class ‘other’ enables an evaluation of the original

hypothesis of which flood generating processes should be included in

the decision tree, and the identification of areas where that hypothe-

sis fails. A region where most events are classified as ‘other’ is the

Central United States. In North and South Dakota, this could be

explained by ice jams, which are common during spring break up

floods (McCabe & Crosby, 1959). Another location where that is the

case is further to the south of the United States, towards New Mex-

ico. A closer inspection of the rainfall distribution before flood events

reveals that the flood generating rainfall is spread over 2 or 3 days. As

the classification tree looks for either short (1 day) or long (7 days)

extremes, these in-between storms might not reach the thresholds

set. A more exact delimitation of the event time period, and thus a

more exact delimitation of flood generating rainfall, might solve that

problem. However, without daily streamflow data, a more accurate

flood event delineation is difficult.

In their review, Tarasova et al. (2019) recommend to apply sensi-

tivity analysis to test the robustness of the flood classification. With

the exception of Sikorska et al. (2015), this is rarely done. Our sensitiv-

ity analysis revealed that the classification outcome is not very sensi-

tive to the parameters of the soil–snow routine, but the choice of

thresholds in the decision tree is. This result is consistent with what

Sikorska et al. (2015) experienced with their crisp decision tree. A

fuzzy decision tree might be considered a more robust approach; how-

ever, Sikorska et al. (2015) and Brunner et al. (2017) found that a fuzzy

tree reached the same ‘dominant’ process per event as a crisp tree. An

advantage of using a crisp tree is that it enabled the comparison with

(crisp) flood cause data from the Dartmouth Flood Observatory.

This study extends river flood classification to a larger scale than

has been done before. The focus of previous studies has been on con-

tinental (Europe), national (United States, Switzerland, Austria), or

regional scale. One motivation to extend the analysis of flood generat-

ing processes to the global scale was to make the classification of flood

generating processes comparable across more climates (Gupta et al.,

2014; Linsley, 1982). Testing the classification across multiple climates

and many catchments also highlights strengths and limitations of

the methodology (Andréassian, Hall, Chahinian, & Schaake, 2006). For

example, the events/catchments classified as ‘other’ are of interest. They

reveal limitations of the classification method (as discussed above), but

also point out locations where hydroclimatology is less influential for flood

generation. This might be interesting in the context of ungauged catch-

ment studies, because it can indicate either catchments that might not be

suitable to be included in regionalization, or catchments having specific

characteristics particularly interesting for regionalization (Boldetti, Riffard,

Andréassian, & Oudin, 2010; Wagener &Wheater, 2006).

4.4 | Outlook

The widespread relevance of soil moisture in flood generation shown

by this study can be applicable in climate change impact studies.

Wasko and Sharma (2017) found changes in soil moisture with

warming temperatures to be more relevant for streamflow response

than extreme rainfall variation. The results presented here would sup-

port these findings, as extreme rainfall was not identified as the domi-

nant process in most catchments. Nevertheless, it has to be taken into

account that most catchments experience mixed processes and in

some catchments where soil moisture is usually influential, a very

extreme rainfall can still lead to extreme flooding. Therefore, if a

catchment experiences occasional long rainfall/short rainfall floods,

these might increase in frequency or magnitude, whereas excess rain-

fall floods might be less affected by changes in extreme rainfall. These

different processes should be taken into account when flood risk

changes are predicted (Slater & Villarini, 2017) and further studies

regarding flood trends should focus on how floods of different pro-

cesses might change differently. Additionally, the impact of climate

change on flood generating processes will need to be examined in fur-

ther studies. A first step in that direction could be a better under-

standing which catchment and climate characteristics are relevant in

shaping the flood process mix.

5 | CONCLUSIONS

A new global methodology to analyse flood generating processes has

been proposed and applied to 4,155 catchments of the GSIM data-

base. Flood process indicators were queried in a decision tree to iden-

tify these processes for each annual flood peak flow event. The

structure of the classification tree is dependent on the flood process

definition and sensitive to changes in the threshold parameters. Nev-

ertheless, the evaluation showed that most extreme flood events were

classified consistent with reports from the Dartmouth Flood Observa-

tory, with snowmelt influenced floods occasionally misclassified.

The analysis revealed that excess rainfall, that is, rainfall on wet

soils, is a common flood generating process across several climates

and continents. It also demonstrated the need for an event-based

analysis, with a high variability of flood generating processes being

the norm rather than the exception in most catchments. This should

raise awareness of possible uncertainties in the common practice of

using one distribution during flood frequency analysis to estimate
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extreme floods. This is especially relevant since the most extreme and

damaging floods might be generated by a process different from the

dominant flood process (Rogger et al., 2012; Smith et al., 2018). The

results found by the global flood classification are furthermore impor-

tant for any future work analysing impact of system changes on flood

events. Given the primary role of soil moisture in flood generation,

the impact of predicted increases in extreme precipitation must be

considered in the context of soil moisture, including future changes in

soil moisture.
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