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Abstract. 

Background. Inclusion Body Myositis (IBM) is the most commonly diagnosed inflammatory 

muscle disease associated with aging. It’s characterised by degeneration of skeletal muscles that 

inevitably leads to the loss of mobility. The mechanisms that drive IBM pathogenicity remain 

poorly understood. However, studies reveal that on average 50% of IBM sera contains circulating 

autoantibodies targeting cytosolic 5’-nucleotidase 1A (cN1A) – a metabolic enzyme that is 

highly expressed in skeletal muscles. Accumulating evidence suggests that anti-cN1A antibodies 

may play a role in IBM pathogenesis making them an attractive target for aptamer development.  

Problem. IBM remains refractive to current immunosuppressive treatments. Preventing anti-

cN1A antibodies binding to their target protein may reduce the severity of IBM symptoms and 

halt the disease progression.  

Aim. Within this project, we aim to select DNA aptamers that conjugate with anti-cN1A binding 

sites and prevent their interaction with cN1A protein.    

Results. Sera of forty-eight IBM patients were screened with enzyme-linked immunosorbent 

assay (ELISA) against purified cN1A protein. Eighteen patients (38%) were found seropositive. 

6.5 mg of polyclonal anti-cN1A were purified out of 90 ml of a selected IBM patient’s blood. 

Their biological activity against cN1A was confirmed by ELISA.  

Purified anti-cN1A were used as a target for aptamer selection. Initial library of single-stranded 

DNA fragments (aptamers) was synthesised with a 40-nucleotide randomised region flanked by 

constant primer-binding sites. Neutralising aptamers were selected through the process of 

systematic evolution of ligands by exponential enrichment (SELEX). Two complete cycles of 

selection against anti-cN1A were performed. Selected aptamers were assayed for their 

neutralising capacity by ELISA. Anti-cN1A were pre-incubated with the aptamers at various 

concentrations. Following a one-hour incubation, the ELISA-obtained absorbance remained 

unchanged or increased in a dose-dependent manner. While upon an extended overnight 
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incubation, a 25% decrease in absorbance values corresponding to a 35% decrease in anti-cN1A 

binding was observed.  

Conclusions. The methodology developed during this project resulted in the generation of 

aptamers that conjugate with anti-cN1A binding sites. Following two SELEX cycles, the selected 

aptamers demonstrate 35% neutralisation capacity upon prolonged incubation with the 

immunoglobulins. Our results strongly suggest that the aptamers target monomeric IgG and IgA 

while having low or no affinity for IgM anti-cN1A.  
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CHAPTER 1. Introduction: inclusion body myositis, cytosolic 5’-

nucleotidase-1A antibodies and DNA aptamers.  

1.1. Clinicopathological features, population prevalence and diagnosis of inclusion body 

myositis.  

Idiopathic inflammatory myopathies (IIM), also referred to as “autoimmune myositis” or simply 

“myositis”, are a heterogeneous group of disorders that affect skeletal muscles as well as many 

organs, such as the heart, lungs, and skin.1 Inflammatory myopathies can be divided into 

subgroups based on a patient’s clinical presentation and laboratory findings. Most commonly, 

IIMs are grouped into dermatomyositis (DM), polymyositis (PM), necrotising autoimmune 

myopathy, anti-synthetase syndrome, overlap syndrome myositis and inclusion body myositis 

(IBM).  

IBM is the most frequently diagnosed myopathy in adult patients over 40 years of age.2 It affects 

proximal and distal muscles of arms and legs, notably finger and wrist flexors and quadriceps.3 

Other muscle groups, such as spinal, facial, and oropharyngeal, can also be affected to various 

degrees.4  The symptoms of asymmetric muscle weakness often more pronounced in the non-

dominant side develop slowly but inevitably progress.4 The reported average rate of muscle 

strength loss is between 3.5 and 5.5% per year.4, 5 Although IBM is not inherently life-

threatening, it can significantly reduce the quality of life as patients become reliant on mobility 

assistance within on average 15 years from the onset of the symptoms.5 Furthermore, difficulty 

swallowing (dysphagia) causing malnutrition, as well as reduced respiratory function often 

associated with advanced disease can reduce IBM patients’ life expectancy comparing to general 

population.6 

IBM prevalence varies with geographical location. In Northern Europe, the number of IBM cases 

has been estimated between 4.9 per million of population in the Netherlands7 to 33 per million 

in Norway.8 Data from Japan indicates a lower but increasing incidence of 10 per million.9 In 

Western Australia, the number of IBM cases was 9.3 per million in 2000.10 However, in patients 
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over 50 years of age, the prevalence of the disease is much higher at 51.3 cases per million.11 

Importantly, these statistics are likely to be underestimated due to the long asymptomatic period 

of the condition, an average delay of 4.4 years between the onset of symptoms and diagnosis,10 

and a high rate of misdiagnosis, as the clinical presentation of IBM can be attributed to other 

myopathies, typically polymyositis, as well as some categories of amyotrophic lateral sclerosis 

(ALS).12  

J. Mendell proposed that most if not all IBM cases can be diagnosed from a muscle biopsy based 

on the presence of certain pathological features.3 Known as “Griggs” criteria, definite IBM is 

diagnosed when a patient’s muscle biopsy shows evidence of mononuclear cell invasion of 

nonnecrotic muscle fibres, contains rimmed vacuoles, and either amyloid deposits or 15- to 18-

nm tubulofilaments, regardless of the clinical presentation.3 However, it is not unusual, 

especially in the early-stage disease, that the biopsy doesn’t show all of these features. Such 

cases are diagnosed as possible IBM or often polymyositis that clinically resembles IBM. In a 

retrospective follow-up study of 165 patients with either a previous diagnosis of myositis or 

clinical features of muscle weakness, nine patients were initially diagnosed with polymyositis 

using clinical, laboratory, and histopathologic criteria.13 Upon follow-up, five of the nine patients 

showed characteristic features of IBM.13 The distinction between IBM and polymyositis is 

especially important, since IBM is retractive to glucocorticosteroidal or immunomodulating 

treatments that are effective in polymyositis patients.14 Thus, experts agree that early and 

accurate diagnosis of a patient presenting with muscle weakness is of the prime importance to 

their prognosis, treatment prescription and possible involvement in clinical trials.15 For this 

reason, the inclusion of additional serologic markers in the diagnostic criteria for IBM is being 

investigated.15, 16  
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This review summarises the current knowledge of one such serologic marker, a recently 

discovered autoantibody against cytosolic 5’-nucleotidase 1A, and its role in IBM diagnosis, 

pathology, and treatment.  

1.2. Humoral immunity. 

1.2.1. B cells, plasma cells, and antibodies. 

Antibodies, also classified as immunoglobulins (Ig) due to their globular structure, are an 

essential functional protein of the adaptive immune system. In healthy individuals, they confer 

protection against pathogens through immobilisation of microorganisms, and neutralisation of 

viral activity and toxins. An antigen is any part of a pathogen or a substance that evokes an 

immune response. Bacterial and viral antigens are generally contained in the extracellular fluids; 

thus, the immune response against them is called humoral immunity (from Latin, “humor” 

meaning “fluid”).  

Antibodies can be bound to the surface of B cells where they serve the role of antigen-specific 

receptors called BCRs. Every individual generates a vast repertoire of BCR antigen specificities, 

which almost guarantees a response to any antigen that they might encounter in their lifetime. In 

fact, the BCR antigen variability is so extensive that most B cells never encounter their matching 

antigen and remain naïve B cells.  

Those B cells that interact with their corresponding antigen will terminally differentiate into 

plasma cells that secrete antibodies. To date, two pathways of B cell activation have been 

described. In a T-cell independent response, B cells react with bacterial antigens such as bacterial 

cell wall components and polysaccharides and do not require additional signals from T-

lymphocytes to activate.17 In a classic T cell-dependent antigen-driven immune response, B cells 

activated by a protein antigen migrate to lymph nodes and spleen where they receive a second 

activation signal from a CD4+ “helper” T cell reactive to amino acid fragments (epitopes) 
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derived from the same antigenic protein.17 Only T-cell dependent activation is thought to result 

in production of memory B cells and long-lived antibody-producing plasma cells.17  

Each plasma cell secretes antibodies of a single antigenic specificity, the same specificity as the 

BCR on the surface of the B cell that produced it. However, a strong response to a single antigen 

typically involves a polygenic antibody response where a population of plasma cells produce 

antibodies reactive to different epitopes of the same antigen.  

1.2.2. Antibody structure. 

The structure of an immunoglobulin molecule was first determined in 1959 when treatment with 

papain split it into three segments of approximately the same size: two retained the ability to bind 

antigen and were referred to as Fab (fragment antigen-binding); while the third could be 

crystallised out of the solution and was termed Fc (fragment crystallisable) (Figure 1).  

Figure 1. Structural components of an immunoglobulin molecule. Image adapted from: MBL Life Sciences, Japan. 

Later it was determined that the Fc region was responsible for antibodies’ many biological 

functions by virtue of binding specific cellular receptors (FcRs) on immune effector cells, such 

as macrophages, monocytes, neutrophils, dendritic, natural killer and mast cells; or by direct 

complement activation via binding of C1q.  
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Digestion with pepsin, another protease, cleaves off the Fab region with the hinge region attached 

(the structure termed F(ab')2) while breaking the Fc region into small fragments (Figure 1).  

Treating an antibody with mercaptoethanol, a reagent that breaks disulphide bonds, separate an 

antibody into four chains, two smaller ones of ~25 kDa consequently termed light chains and 

two larger ones of ~55 kDa termed heavy chains (Figure 1). Each immunoglobulin molecule 

contains one of the two types of light chains, κ or λ. The ratio of λ to κ chains varies between 

species, with 60% of total human immunoglobulins containing the former.18  

Based upon the structure of the Fc region, immunoglobulins can be categorised into five classes 

or isotypes, including IgG, IgM, IgD, IgE, and IgA (Figure 2).18 

Upon activation, B cells secrete IgM and IgD antibodies. However, as they proliferate under the 

influence of surrounding cytokines, B cells undergo class-switching to IgG, IgA or IgE without 

changing their antigenic specificity.  The activating antigen determines the immunoglobulin 

class-switched isotype, while each isotype determines how the antigen will be eliminated and to 

which tissues the antibodies will be delivered.  

Figure 2. Five major classes of secreted antibodies. The polymeric IgM 
and IgA molecules contain a polypeptide known as the J chain (grey 
circle). Image source: SYnAbs, Belgium.   
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Although secreted IgD have been shown to be increased in some autoimmune conditions, such 

as rheumatoid arthritis, systemic lupus erythematosus, Sjögren’s Syndrome and autoimmune 

thyroiditis, they constitute less than 1% of all secreted immunoglobulins.19, 20 IgE antibodies are 

highly specific in their role in allergic responses and protection against parasitic infections. 

Outside of those conditions, their level in serum is extremely low. For these reasons, only 

immunoglobulins of G, M, and A isotypes are usually considered in autoimmunity. 

1.2.3. Antibody autoreactivity and development of autoimmunity. 

B cells development is tightly regulated at several checkpoints to control those clones that can 

react with self-antigens. Any self-reactive B cells can be removed from the repertoire through 

the mechanisms of deletion, energy, or receptor editing.  However, some autoreactive B cells 

escape these regulatory checkpoints, and, if activated by a self-antigen, the production of 

autoantibodies may ensue.  

Autoantibodies are increasingly recognised as the hallmark of many systemic autoimmune 

diseases, including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, 

autoimmune hepatitis, type 1 diabetes and many others.21 While some disorders are characterised 

by the presence of one or a few autoantibodies, for example, anti-rheumatoid factor and anti-

citrullinated protein antibodies in rheumatoid arthritis,22 others, like systemic lupus 

erythematosus, are associated with more than 100 different autoantibodies.23  

It should be mentioned that the presence of autoantibodies does not necessitate the development 

of autoimmunity. There is evidence to suggest that IgM autoantibodies are absolutely necessary 

for the maintenance of tissue homeostasis in healthy individuals.24 In this role, they recognise 

self-antigens that are presented on apoptotic cells or senescent red blood cells and thus participate 

in the removal of apoptotic debris.24  Additionality, even autoantibodies that are associated with 

a disease can be present in clinically healthy individuals. For example, rheumatoid factor 

antibodies are produced by patients with rheumatoid arthritis and Sjögren’s Syndrome, as well 
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as healthy adults. Some evidence suggests that healthy and disease-associated autoantibodies 

might have structural differences causing the autoantibodies in healthy individuals to have less 

binding affinity to the target proteins.25 Additionally, the appearance of autoantibodies might 

precede the development of a disease. In a retrospective study of patients with primary Sjögren’s 

Syndrome, anti-rheumatoid factor antibodies were shown to appear as early as eighteen years 

before the clinical symptoms’ onset.26  

1.3. Autoantibodies in inclusion body myositis. 

1.3.1. Humoral immunity in IBM. 

Early investigations into the composition of immune cells that infiltrate IBM muscle found a 

high proportion of T-cells while detecting only minor numbers of B-cells.27 However, when 

Greenberg et al. performed a microarray analysis of an IBM muscle in 2005, they found that 

nearly 60% of highly upregulated transcripts belonged to the immunoglobulin genes.28 The group 

hypothesised that the immunoglobulins might have been produced by fully differentiated plasma 

cells that have lost the typical CD19 and CD20 B cell receptors and thus could not be detected 

in the previous studies. Indeed, using a specific plasma cell marker, CD138, Greenberg et al. 

were able to demonstrate a dense infiltration of plasma cells localised to the connective tissue 

encasing each myofiber.28  

Following on, Bradshaw et al. carried out a comparison of immunoglobulin mRNA transcripts 

between IBM patients and healthy controls.29 They found that the very few mature B cells present 

in the healthy control blood samples produced IgM only while most of the IBM plasma cells 

were class-switched from IgM to IgG or IgA.29 This result suggested that IBM B cells were 

activated via the T-cell-dependent activation pathway by one or many self-antigens.29 

Sequencing of the immunoglobulin genes revealed that 85% of the myopathy samples (consisting 

of IBM, PM, and DM) contained clonally expanded B cells.30 The clonal variants belonged to 

up to six different but related groups, and the same clonal groups were found in adjacent sections 
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of the same patient’s muscle tissue.30 In contradiction to the classic T-dependent B cell activation 

model, these findings strongly suggested that the clonal expansion took place within the muscle 

rather than in a spleen or a peripheral lymph node.30, 31  

Further evidence of the antigen-driven humoral response came from functional studies that 

demonstrated strong binding of hemagglutinin-tagged recombinant IgG derived from a single 

IBM plasma cell to an intracellular self-antigen that was present in a skeletal muscle cell line.32 

The binding was also observed while incubating murine muscle tissue with human IgG derived 

from IBM patients’ but not from healthy sera.32 These experiments provided further evidence of 

serum circulating antibodies directed against one or many self-antigens in the IBM muscle tissue.  

1.3.2. Anti-cN1A antibodies identification. 

Western blot analysis of skeletal muscle lysates from patients clinically diagnosed with 

idiopathic inflammatory myopathies led Salajegheh et al. to identify a 43 kDa self-antigen 

present in 52% of IBM samples but not in DM, PM, myasthenia gravis or healthy controls.33  

Two years later, the 43 kDa protein targeted by IBM autoantibodies was identified by two 

independent groups as cytosolic 5’-nucleotidase 1A (commonly abbreviated cN1A or NT5c1A). 

Larman et al. performed gel separation and mass spectrometry analysis on the IBM patients’ 

muscle lysates.34 By focusing on proteins between 40 and 48 kDa in size, the group identified 

seven potential candidates. A library of T7 phage transcripts containing 36-residue peptides 

spanning all the open reading frames in a human genome was created and screened using IBM 

and normal sera. Peptide-antibody complexes were precipitated and compared for the association 

with IBM. By combining the results of the mass spectrometry and phage precipitation 

experiments, cN1A protein was identified as the 43 kDa self-antigen with high confidence.  

Simultaneously, Pluk et al.35 used immunoaffinity purification to precipitate the protein of 

interest, which they termed Mup44 (Muscle protein with a molecular weight of 44,000 Da). They 

purified endogenous IgG from two IBM patients and a pool of healthy controls. Purified IgG 
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was covalently coupled to agarose beads that were subsequently used to precipitate Mup44 from 

human muscle lysate precleared from endogenous IgG. The precipitated protein was analysed by 

mass spectrometry and identified as cN1A.  

1.3.3. Reactive epitopes. 

Having identified the self-antigen as cN1A, both groups proceeded to establish which specific 

sites or epitopes of the protein are responsible for its interaction with the antibodies. Upon 

screening a phage library containing 36-residue overlapping peptides, Larman et al. identified 

three cN1A peptides that were present in reactive patients.34 The immunodominant epitope near 

the N-terminus consisted of amino acids in positions 30 to 94 defined by two overlapping 

peptides 30-65 and 59-94 (Figure 3). The two other reactive epitopes occupied positions 204-

239 and 334-368. Pluk et al. used ninety synthetic overlapping peptides to challenge cN1A-

positive sera.35 They also identified three reactive peptides comprising amino acids 25-50 

(confirmed an immunodominant epitope), 221-243, and 341-368. Interestingly, the peptide 

occupying residues 59-94 identified by Larman et al.34 was not confirmed reactive by Pluk et 

al.35 Further experimentation is required to investigate this fourth putative epitope.  

A later study probed 283 IBM patients’ sera with the 23-amino acid peptides identified by Pluk 

et al.35: 59% of the reactive sera recognised one epitope only, while 25% recognised two and 

15% recognised all three epitopes.36  

1-60    MEPGQPREPQEPREPGPGAETAAAPVWEEAKIFYDNLAPKKKPKSPKPQNAVTIAVSSRA 

61-120  LFRMDEEQQIYTEQGVEEYVRYQLEHENEPFSPGPAFPFVKALEAVNRRLRELYPDSEDV 

121-180 FDIVLMTNNHAQVGVRLINSINHYDLFIERFCMTGGNSPICYLKAYHTNLYLSADAEKVR 

181-240 EAIDEGIAAATIFSPSRDVVVSQSQLRVAFDGDAVLFSDESERIVKAHGLDRFFEHEKAH 

241-300 ENKPLAQGPLKGFLEALGRLQKKFYSKGLRLECPIRTYLVTARSAASSGARALKTLRSWG 

301-360 LETDEALFLAGAPKGPLLEKIRPHIFFDDQMFHVAGAQEMGTVAAHVPYGVAQTPRRTAP 

361-368 AKQAPSAQ 

 

 

1-60    MEPGQPREPQEPREPGPGAETAAAPVWEEAKIFYDNLAPKKKPKSPKPQNAVTIAVSSRA 

61-120  LFRMDEEQQIYTEQGVEEYVRYQLEHENEPFSPGPAFPFVKALEAVNRRLRELYPDSEDV 

121-180 FDIVLMTNNHAQVGVRLINSINHYDLFIERFCMTGGNSPICYLKAYHTNLYLSADAEKVR 

181-240 EAIDEGIAAATIFSPSRDVVVSQSQLRVAFDGDAVLFSDESERIVKAHGLDRFFEHEKAH 

Figure 3. Amino acid sequence of cytosolic 5’-nucleotidase 1A (cN1A). Coloured amino acids represent 
putative reactive epitopes targeted by anti-cN1A antibodies.  
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1.3.4. Cytosolic 5’-nucleotidase 1A. 

The seven members of the 5’-nucleotidase enzyme family dephosphorylate nucleoside 

monophosphates into their constituent nucleosides and inorganic phosphates.37 While some 5’-

nucleotidase enzymes are ubiquitously expressed, cytosolic 5’-nucleotidase 1A expression is 

predominant in cardiac and skeletal muscles (Figure 4).  

Cytosolic 5’-nucleotidase 1A has high specific activity with adenosine monophosphate (AMP) 

at millimolar concentrations.38 By regulating pools of AMP, cN1A indirectly controls the 

“energy-sensing” AMP-activated protein kinase (AMPK) phosphorylation (Figure 5). The 

evidence for this relationship comes from the observation of a significant increase in 

phosphorylated AMPK levels during skeletal muscle stimulation of cN1A knockout mice.39 In 

its role as an energy regulator, AMPK phosphorylates a large number of downstream enzymes 

resulting in inhibition of anabolic pathways and activation of catabolic pathways.40  

Figure 4. Cytosolic 5’-nucleotidase 1A expression in human tissues. The highest expression is observed in heart 
and skeletal muscles. Source: NCBI. 

Figure 5. Regulation of cellular metabolism by cytosolic 5’-nucleotidase 1A and AMP-activated protein kinase. 
A. Healthy state: cN1A activity indirectly reduces activation of catabolic and autophagic regulators. B. Anti-
cN1A-positive muscle: increased AMPK phosphorylation leads to upregulation of catabolic and autophagic 
regulators. 
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1.3.5. Anti-cN1A antibody pathogenicity. 

Due to its prominent role in cellular metabolism, it is hypothesised that anti-cN1A antibody-

binding could affect cN1A expression levels leading to an increase in catabolic processes and 

muscle degeneration. The most compelling evidence that this mechanism might be causing 

wasting of IBM muscles comes from a study assessing changes in protein expression levels in 

vitro and in vivo via supplementation of cells or passive immunisation of mice with anti-cN1A 

IgG from IBM patients.41 The group observed a significant increase in sarcoplasmic aggregation 

of autophagy-related proteins p62/SQSTM1, a ubiquitin-binding adapter protein, and LC3, a 

microtubule-associated protein, both of which are pathological hallmarks of IBM muscle.41 A 

simultaneous decrease in cN1A expression was also observed leading the authors to conclude 

that anti-cN1A antibodies may play a role in IBM pathogenicity.  

1.3.6. Clinicopathological features of seropositive patients. 

A small number of studies compared cohorts of IBM patients based on their anti-cN1A serology. 

6, 34, 42-45 Upon evaluation of upper and lower muscle strength in a group of 25 IBM patients, 

Goyal et al. found seropositive patients to have a more severe motor weakness, more difficulty 

getting up from a standard chair and a higher chance of requiring a walker or a wheelchair for 

mobility.6  Increased requirement for mobility assistance was confirmed in a cohort of 188 anti-

cN1A seropositive patients.43  

Seropositive IBM patients present with higher rates of dysphagia, facial muscle weakness and 

lower respiratory function as defined by lower forced vital capacity.6 As a consequence, such 

patients’ survival is on average 6.6 years shorter with an increased chance of dying from a 

respiratory disease than the seronegative group.43  

No statistically significant correlation has been observed with anti-cN1A seropositivity to the 

presence of other antibodies (ANA, anti-Ro, anti-La) or diagnosis of other autoimmune diseases 



27 

 

(although, in one study 2 out of 33 anti-cN1A positive patients also had Sjögren’s Syndrome and 

2 had psoriasis).34, 43 

Despite the significantly lower prevalence of IBM among females (38% compared to 61% in 

males),11 one small study found an increased likelihood (83%) of a female patient to be anti-

cN1A positive.6 However, this association could not be confirmed in larger cohorts.43-45  

Interestingly, one study found that muscle biopsy from seropositive patients was significantly 

less likely to contain rimmed vacuoles – an IBM diagnostic feature (62% vs 83%).45 The authors 

speculate that increased anti-cN1A reactivity against the rimmed vacuoles could be the causative 

factor.45 Subsequently, in cases where rimmed vacuoles are absent, the presence of anti-cN1A 

antibodies could help distinguish IBM from DM or PM.  

No significant correlation was found between anti-cN1A positivity and patients’ age, race, 

duration of symptoms, the strength of the weakest finger flexor and the strength of the weakest 

knee extensor.6, 34, 42-44  

1.3.7. Anti-cN1A detection methods – enzyme-linked immunosorbent assay. 

Since the identification of anti-cN1A antibodies, various assays have been developed for their 

detection in IBM patients’ sera or muscle tissues. Some of the more commonly used detection 

methods are immunoblotting (otherwise known as Western blotting) with human or mouse 

muscle extracts34, 35, 42 or cN1A-expressing human embryonic kidney 293 cell lysates,6, 45 dot 

blot assay,34 immunoprecipitation,34, 35 and enzyme-linked immunosorbent assay (ELISA) with 

either full-length recombinant cN1A protein4, 6, 42, 44, 46 or cN1A-derived synthetic peptides.36, 42 

The specificity and sensitivity achieved by various diagnostic methods are summarised in Table 

1. Here, the sensitivity describes the percentage of clinically-diagnosed IBM patients who are 

positive for anti-cN1A antibodies while the specificity refers to the proportion of seropositive 

patients who carry IBM diagnosis.  



28 

 

Table 1. Anti-cN1A antibodies detection methods presented in order of publication date from oldest to newest. 

Upon recognition of anti-cN1A antibodies as a useful diagnostic tool for IBM, a need arose to 

develop a standardised method that could be applied across diagnostic laboratories. Thus, a 

standardised ELISA for the detection of serum anti-cN1A antibodies of the IgG isotype was 

developed in 2016.4 The assay will be discussed in detail later in this thesis. Despite the 

standardisation of the ELISA protocol, the range of the normal values is determined 

independently by each laboratory. In Kramp et al. study, the normal range was set as the mean 

optical density for the healthy controls cohort plus three standard deviations.4 Caution is, 

therefore, required in interpreting ELISA results as the stringency of the normal range cut-off 

values may vary.4, 44  

To determine the reproducibility and diagnostic value of the newly developed ELISA, the assay 

was used by two independent laboratories to test sera of patients diagnosed with IBM, other 

myopathies and unrelated autoimmune diseases as well as healthy controls. The sensitivity of 

the assay was independently determined to be 35.5% and 39.2% (reaching 47.1% in a group of 

patients with definite IBM) while the specificity was 96.1% and 96.5%.4 Patients’ sera were also 

tested by other established assays, namely ELISA based on three previously identified reactive 

epitopes36 and the immunoprecipitation assay. The results were found to be highly correlated 

Reference  Method of detection  Cohort size Sensitivity  Specificity 

Salajegheh, 

201133 

Immunoblot with muscle lysate 25 52 100 

Pluk, 201335 Immunoblot with muscle lysate  56 60 89 

Larman, 201334 Dot blot against 36-mer peptides 47 70 92 

Greenberg, 

201442 

ELISA against full protein (IgG) 50 51 94 

Greenberg, 

201442 

ELISA against full protein (combined 

IgG/IgA/IgM) 

50 76 91 

Herbert, 201636 ELISA against 23-mer peptides 238 37 96 

Kramp, 20164 ELISA against full-length cN1A 17 35.5-39.2 96 

Lloyd, 201645 Immunoblot with HEK 293 lysate 117 61 87 

Goyal, 20166 Immunoblot with HEK 293 cell lysate 25 72 NA 

Lilleker, 201743 ELISA against 23-mer peptides 311 33 NA 

Muro, 201746 ELISA against full protein 10 80 89 

Tawara, 201741 COS7 cell-based assay (in-house) 67 36 92 

Felice, 201844  ELISA against full-protein 40 50 NA 
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between all tests. Notably, upon pooling data from various studies, anti-IgG only ELISA against 

cN1A peptides appears to be less sensitive (35%) than ELISA against the full-length protein 

(51%) possibly due to the reactivity of some polyclonal antibodies from a single patient to more 

than one cN1A epitope (Table 1 and section 1.3.3).  

While the first ELISA was developed to test only for IgG isotype, it was later modified with the 

use of secondary antibodies against IgA, IgM and IgG isotypes.42 Greenberg et al. found that 

including IgM and IgA isotypes increased ELISA sensitivity to 76%.42 

The benefit of a standardised ELISA assay is that it can be applied across laboratories with highly 

reproducible results while being quicker and less laborious than other detection methods 

available. Another advantage is that ELISA lends itself well to high-throughput applications 

where multiple samples can be tested simultaneously. One of the main limitations of the assay is 

that upon coating of the wells with the antigen, some of the reactive epitopes might become 

masked. Thus, the antibody concentration value obtained by the ELISA could potentially be 

lower than the true serum concentration.   

The specificity of anti-cN1A antibodies for IBM is over 87% supporting their value as a valuable 

diagnostic tool for the condition (Table 1). However, it is noteworthy that anti-cN1A antibodies 

have been detected in patients with other myopathies, autoimmune diseases, and in healthy 

population, albeit a lot less frequently than in IBM (Table 2).  

  



30 

 

Table 2. Prevalence of the anti-cN1A antibodies in various diseases. 

 

 

 

 

 

 

 

 

Higher prevalence of anti-cN1A antibodies in patients with IBM comparing to polymyositis 

patients suggests their utility in distinguishing those two clinically similar conditions. However, 

the diagnosis of IBM cannot be solely based on a patient’s seropositivity status since up to 5% 

of polymyositis patients also develop anti-cN1A antibodies.36, 45 It has not been determined 

whether anti-cN1A-positive polymyositis patients go on to be diagnosed with IBM later in the 

disease progression.   

Dermatomyositis patients test positive for anti-cN1A antibodies in up to 15% of cases,45 while 

patients with Sjögren’s Syndrome and systemic lupus erythematosus can be seropositive in up 

to 36% and up to 20% of cases respectively.36 Interestingly, DM, systemic lupus erythematosus 

and Sjögren’s Syndrome patients positive for anti-cN1A do not have a defined clinical phenotype 

and appear to be indistinguishable from seronegative patients.45 An increased incidence of anti-

cN1A antibodies in these patients is not diagnostically significant since the conditions are 

clinically distinct from IBM. However, it might be evidential of common underlying 

autoimmune mechanisms or genetic background for these diseases that are yet to be uncovered. 

Disease Diagnosis Anti-cN1A reactivity (%) 

Inclusion Body Myositis  33%-80%43, 46, 47  

Polymyositis 4%-4.8%36,45 

Dermatomyositis 15%45 

Sjögren’s syndrome 
 

0%4, 47, 6%34, 12%48, 23%45, 36%36 

Systemic lupus erythematosus 6,1%4, 10%48, 14%45, 47, 20%36 

Psoriasis 6%34 

Scleroderma 
 

2%,36 10%4 

Rheumatoid arthritis 
 

0%,47 2%,36 5%4 

Multiple sclerosis 
 

5%36 

Type 1 diabetes 
 

0%36 

Healthy controls 3%36, 4.8%45 
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1.4. Therapeutic targeting of anti-cN1A antibodies with DNA aptamers. 

Due to the anti-cN1A diagnostic significance and their potential involvement in IBM 

pathogenicity, these autoantibodies can be a promising target for therapeutic aptamer 

development. Aptamers are single-stranded oligo(deoxy)nucleotide (DNA or RNA) constructs 

of 20-80 bases in length that are capable of binding a selected target with high affinity and 

specificity due to their unique three-dimensional structure (Figure 6).49, 50 The conformation 

depends primarily on the aptamer sequence but also the environmental conditions (e.g. 

temperature, pH, buffer composition etc.).51 Since their discovery more than 25 years ago,52-54 

aptamers have been designed for a plethora of targets, such as small molecules,55 proteins and 

peptides,56 viruses,57 bacteria and living cells.58 Due to their specific binding ability, aptamers 

can be likened to monoclonal antibodies, but there are some important factors favouring the use 

of aptamers in bioanalytical and therapeutic applications.59 One significant functional difference 

is that aptamers denatured under certain conditions such as high temperatures can refold into 

their original tertiary structures when the conditions return to favourable. Denaturation of 

antibodies, like other proteins, cannot be reversed. Additionally, aptamers (i) have reduced 

immunogenicity and toxicity, (ii) can be synthesised following an established chemical 

procedure minimising batch-to-batch variations, (iii) can be chemically modified to increase 

resistance to nucleases in vivo or to introduce reporter probes (fluorophores) for visualisation in 

a site-specific manner.49 In their interactions with proteins, aptamers bind to a specific domain 

Figure 6. Schematic representation of an aptamer–target interaction.  
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thus potentially inhibiting the associated protein function, e.g. interaction of an autoantibody 

with a self-antigen.60 

1.4.1. SELEX aptamer selection. 

To achieve high-affinity binding, a large pool of randomly generated nucleic acid sequences 

undergo a process of repetitive in vitro selection, termed SELEX (systematic evolution of ligands 

by exponential enrichment).53 Both DNA and RNA sequences can be used for SELEX depending 

on the target application. Historically, RNA was preferred due to its ability to form more diverse 

three-dimensional structures.61 However, working with RNA is tedious as it can be easily 

degraded by ubiquitous RNAses, high temperatures etc. Thus, much of the current SELEX 

research is conducted with single-stranded DNA which is more robust while still able to fold into 

intricate functional motifs.62   

SELEX process begins with the generation of a chemically synthesised library containing a 

random sequence of 20-40 nucleotides flanked by constant primer-binding sites.63  In the case of 

RNA aptamer generation, the starting RNA library is first transcribed into DNA that then 

undergoes selection like DNA aptamers.  

The SELEX cycle entails incubation of the nucleotide library with the target molecule, washing 

the unbound aptamers away, recovering the bound aptamer-protein constructs and amplifying 

the selected sequences by PCR in case of DNA or RT-PCR in case of RNA (Figure 7).61 The 

process is repeated 5-16 cycles to sufficiently enrich the aptamer population for high affinity and 
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specificity. Potential aptamers recovered from SELEX are sequenced and their binding kinetics 

evaluated by various methods.   

Since its development more than 20 years ago, SELEX has undergone countless modifications.61 

Here, it is worth mentioning that in line with changes to the actual in vitro selection process, 

multiple in silico approaches have also been developed that have become an integral part of 

almost all SELEX experiments. Numerous computational programs can be used for the 

prediction of aptamer tertiary structure, its target interactions and thermodynamic 

characteristics.61 While computational approaches can reduce the cost and time of high-affinity 

aptamer generation, they can only be used in combination with conventional SELEX since they 

require prior knowledge of the target sequence and the selected aptamer sequences which can 

then be modified in silico to increase their binding affinity to the target.61   

Figure 7. Schematic illustration of an in vitro SELEX selection process. Image source: Darmostuk et al.  
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1.4.2. Aptamers against immunoglobulin targets. 

Development of aptamers against autoantibodies associated with various autoimmune diseases 

has been given much attention in the last two decades with promising results. Doudna et al. 

identified a short RNA sequence using selection against a mouse monoclonal antibody, MA20, 

that recognises human insulin receptor.50 Patients with severe insulin resistance often develop 

autoantibodies that recognise the same epitope as MA20. Indeed, the developed anti-MA20 RNA 

aptamer showed efficacy in binding anti-insulin receptor antibodies in human patient sera thus 

blocking the autoantibody-receptor interaction.50 This finding, however, had limited therapeutic 

application since RNA transcripts have a short half-life in serum due to the presence of nucleases. 

This problem was overcome by the modification of the “decoy RNA”, as it was originally 

termed, where all pyrimidine nucleotides (uracil and cytosine) were replaced with a 2’-amino 

group.64 Inclusion of the 2’-amino group increased the RNA stability in serum by more than 

10,000-fold while not affecting its ability to bind the insulin receptor on the surface of human 

lymphocytes.64 Similarly, RNA pyrimidines can be substituted by a 2’-fluoro analogues to 

enhance an aptamer’s nuclease resistance.65 Effective RNA aptamers have since been designed 

against anti-DNA autoantibody G6-9 present in systemic lupus erythematosus patients,66 and 

anti-acetylcholine receptor antibody Mab198 in myasthenia gravis.67, 68  

Autoantibodies against various G-protein coupled receptors (beta1-, beta2-, alpha1-

adrenoreceptors, anti-endothelin A receptor, ETA-receptor etc.) have been implicated in the 

pathogenesis of a group of diseases, encompassing cardiomyopathies, hypertension, diabetes 

mellitus, Alzheimer’s disease and others.69 An exciting possibility would be to develop an 

aptamer-based therapeutic that could target the antibodies in all of these conditions. Interestingly, 

a DNA aptamer BC 007, initially developed against thrombin, showed efficacy in neutralising 

multiple anti-G-protein coupled receptor antibodies in vitro and in vivo in hypertensive rats.69 

Moreover, BC 007 appears to be specific for human G-coupled receptor autoantibodies while 
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having no efficacy with other autoantibody types and little to no efficacy with G-coupled receptor 

autoantibodies from other species (other than rats).69 Due to its specificity and efficacy at low 

doses, BC 007 was entered into clinical trials as an autoimmune cardiomyopathy treatment, of 

which phase one was completed in 2018.70 These cases present compelling evidence for 

autoantibody-neutralising aptamers’ therapeutic potential.  

1.5. Project Outline. 

This research project will investigate a selection of DNA aptamers that can target anti-cN1A 

antibodies to prevent their interaction with cN1A protein. In doing so, we hope to ameliorate 

IBM symptoms and halt the disease progression.   

The first part of the project will encompass screening of the biobanked IBM sera with anti-cN1A 

ELISA. A single patient with high autoantibody titres will be selected for a repeat serum 

collection from which anti-cN1A antibodies will be purified.  

In the second part of the project, the purified anti-cN1A antibodies will be utilised for the aptamer 

selection by a modified SELEX methodology. The first cycle of selection will be performed from 

the initial library of synthesised DNA fragments (aptamers) containing a 40-nucleotide 

randomised region flanked by the 5′ and 3′ constant regions serving as primer-binding sites. The 

selected aptamers that effectively conjugate with the antibodies’ binding region will be isolated 

and employed as a library for the following selection cycle.  

The efficacy of the aptamer neutralisation will be confirmed by an ELISA where the binding of 

purified anti-cN1A antibodies to cN1A protein in the absence of aptamers will be compared to 

their binding upon the addition of the selected aptamers at a range of concentrations.  

The success of this project may lead to the discovery of a novel therapeutic for anti-cN1A-

positive IBM patients. Moreover, the established methodology may be applied to other 

autoimmune conditions where antibodies have been demonstrated to play a pathogenic role.  
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CHAPTER 2. Materials and methods. 

2.1. Patients and Controls.  

Clinically diagnosed IBM patients were recruited through their primary clinician Prof Merrilee 

Needham (Fiona Stanley Hospital, Murdoch, WA) in accordance with the protocols approved by 

the Murdoch Human Experimentation Ethics Committee (approval # 2015/111). Blood samples 

were collected at the Institute for Immunology and Infectious Diseases within twelve months 

prior to the study. All samples were fractioned upon collection with the serum portion biobanked 

and stored at -80°C.  

Pooled healthy sera were obtained from the Busselton Health Study Group (University of 

Western Australia, Perth, Western Australia). 

2.2.  Anti-cN1A enzyme-linked immunosorbent assay (ELISA). 

N-terminal histidine-tagged cN1A protein (RefSeq NP_115915.1; Cat. No. P10011809; 

GenScript, New Jersey, United States) was diluted with 0.05 M carbonate-bicarbonate buffer 

(34.3 mM Na2CO3, 15.7 mM NaHCO3, pH 9.6) to the final concentration of 10 μg/mL. To coat 

a Microtitre 96 well plate (Maxisorp, Nunc, Roskilde, Denmark), 50 μL of the protein per well 

was incubated for two hours at room temperature. After washing the plate three times with 

500 µL PBST (2.7 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, 15.2 mM Na2HPO4, 0.1% Tween-

20, pH 7.4) in the automatic plate washer (ELx405, BioTek), the wells were blocked with 250 

µL blocking buffer (PBST pH 7.4, 5.0% skim milk powder) overnight at 4°C.  

The following day the plate was brought to room temperature and washed as before. Patients’ 

sera were diluted 1:1000 with blocking buffer, and 50 μL was added to each well, followed by a 

two-hour incubation at room temperature. Subsequently, wells were washed as before and 

incubated for two hours at room temperature with 100 µL goat anti-human horseradish 

peroxidase (HRP)-conjugated antibodies against IgG (Cat. No. 31410; Invitrogen, Rockford, IL, 

USA); IgA (Cat. No. 31417; Invitrogen, Rockford, IL, USA); IgM (Cat. No. 31415; Invitrogen, 
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Rockford, IL, USA) and IgG/M/A (Cat. No. 31418; Invitrogen, Rockford, IL, USA).  Upon 

receipt, the antibodies were diluted 1:2 with glycerol (Univar), aliquoted into 100 or 500 µL 

volumes, and stored at -20°C. Prior to use, the aliquoted antibodies were thawed at room 

temperature and diluted with blocking buffer at 1:10,000 for IgG and IgG/M/A, 1:5,000 for IgA 

and 1:2,000 for IgM.  

Thirty minutes prior to use, one tablet of TMB (3,3,5,5-tetramethylbenzidine) substrate solution 

(Cat. No. T5525-50TAB; Sigma-Aldrich) was added to 10 mL of 0.05 M phosphate-citrate buffer 

(0.05 M citric acid, 0.1 M Na2HPO4, pH 5.0) in a 15 mL test tube wrapped in aluminum foil and 

incubated on a tube rotator (MACSmix, Miltenyi Biotec) at room temperature to assist with the 

tablet dissolution. Immediately before use, 10 µL of 6% hydrogen peroxide was added to the 

TMB solution. 6% hydrogen peroxide was prepared from 30% solution (Cat. No. H1009, Sigma-

Aldrich).  

Finally, after washing the plate as before, bound antibodies were visualised by adding 100 µL of 

the TMB solution. The reaction was stopped after 10 minutes by the addition of 25 µL 2 M 

sulphuric acid (prepared from 100% sulphuric acid (Cat. No. 339741, Sigma-Aldrich). The 

absorbance was read at 450 nm by the multi-mode microplate reader (FLUOstar Omega, BMG 

LABTECH).   

Every serum sample was tested in duplicate with each secondary antibody isotype. Each plate 

contained an internal positive control (a previously-tested positive sample), a healthy control 

(pooled healthy sera) and a blank (cN1A-coated well without sera).  

Absorbance values obtained for all patients’ sera samples were recorded as a fold change relative 

to healthy sera.  

A reference seropositive range was previously determined by Bundell et al.71 as the 99th 

percentile of the pooled healthy control (same pooled control as used in this project).  
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2.3.  Magnetic bead purification of serum anti-cN1A antibodies.  

90 mL of blood from a selected IBM patient was collected at the Institute for Immunology and 

Infectious Diseases collection centre into serum tubes with gel separators. The tubes were 

centrifuged (Allegra X-22R, Beckman Coulter) at 14,000 rotations per minute (RPM) for 10 

minutes to fraction the blood. The serum was aspirated into 5 mL Falcon® round-bottom 

polystyrene tubes (Cat. No. 352054; Corning) and stored at 4°C.  

The antibodies purification was performed using Dynabeads® magnetic beads for histidine-

tagged isolation and pulldown (Cat. No. 10103D; Invitrogen, Vilnius, Lithuania) coated with N-

terminal histidine-tagged cN1A protein (RefSeq NP_115915.1; Cat. No. P10011809; GenScript, 

New Jersey, United States). Protein conjugation to the beads was achieved by combining 152 µL 

of cN1A diluted in 1400 µL of binding/wash buffer (0.05 M NaH2PO4, 0.3 M NaCl, 0.02% 

Tween-20, pH 8.0) with 42 µL of stock beads. Following a five-minute incubation at room 

temperature on a tube rotator, the beads were washed four times by alternating rounds of 

resuspension in 300 µL of binding/wash buffer, a two-minute incubation on the EasyEights 

EasySep magnet (Cat. No. 18103; Stemcell Technologies) and supernatant aspiration with a 

pipette. After the third wash, the beads were resuspended in 300 µL binding/wash buffer and 

evenly split into two 1.5 mL Eppendorf tubes before placing on the magnet for two minutes and 

aspirating the supernatant. 1.5 mL of undiluted serum was added to each Eppendorf tube, and 

the coated beads were incubated with the serum on a tube rotator (MACSmix, Miltenyi Biotec) 

at room temperature for two hours. During incubation, serum anti-cN1A antibodies were 

captured by the bead-immobilised cN1A protein. The beads were washed as previously described 

four times with 500 µL HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer (pH 

7.2) containing 0.06% Tween-20. Bound antibodies were eluted with 190 µL Pierce® gentle 

antigen/antibody elution buffer (Cat. No. 21027; Thermo Scientific, Rockford, IL, USA) by 

incubating the beads with the buffer for ten minutes at room temperature on a shaker plate. The 
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buffer facilitated disassociation of the antibodies from cN1A protein while the protein remained 

conjugated to the beads for further use.  

Following a two-minute incubation on the magnet, the supernatant containing purified antibodies 

was collected. The elution was then repeated two more times. Following the last elution round, 

beads were washed three times with 500 µL HEPES buffer.  

Between experiments, coated beads were stored in 500 µL HEPES buffer at 4°C.  

Each 1.5 mL of serum underwent a minimum of three rounds of depletion.  

Purified antibodies were then dialysed to replace the elution buffer with PBS (2.7 mM KCl, 137 

mM NaCl, 1.5 mM KH2PO4, 15.2 mM Na2HPO4, pH 7.4) for long-term storage. For dialysis, 

3.5 – 4 mL of the eluted antibodies were loaded into a Slide-A-Lyzer™ dialysis cassettes (3.5K 

molecular weight cut off, Cat. No. 66330; Thermo Scientific, Rockford, IL, USA) and floated in 

2 L of PBS overnight at 4°C. The following day, 9 mL of antibody/PBS suspension was pipetted 

from each dialysis cassette into 15 mL test tubes and stored at 4°C or immediately concentrated.  

To concentrate the antibody-containing solution, 15 mL was loaded into an Amicon® Ultra-15 

centrifugal filter device (10K molecular weight cutoff, Cat. No. UFC901024; Merck Millipore) 

and centrifuged (Allegra X-22R, Beckman Coulter) at 4000 x g relative centrifugal force (RCF) 

for 15 minutes at 4°C. Post centrifugation, each collection tube contained between 550 and 

950 µL of anti-cN1A in PBS. Concentrated antibodies were stored at 4°C. A fraction of purified 

antibodies in excess to the SELEX requirement was combined with equal volume of glycerol 

and stored at -80°C.  

2.3.1.  Purified anti-cN1A quantification by bicinchoninic acid 

(BCA) protein assay. 

The concentration of the purified anti-cN1A antibodies in the solution was quantified using 

Pierce® bicinchoninic acid (BCA) protein assay kit (Cat. No. 23225; Thermo Scientific, 

Rockford, IL, USA). The assay was performed according to the manufacturer’s instructions for 

a microplate procedure. Briefly, 1 mL ampule containing 2 mg/mL bovine serum albumin (BSA) 
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was diluted in PBS (2.7 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, 15.2 mM Na2HPO4, pH 7.4) 

to prepare a set of protein standards with the final protein concentrations of 2000, 1500, 1000, 

750, 500, 250, 125, 25 and 0 µg/mL.  

Purified antibodies were diluted in PBS at the ratios of 1:2, 1:7, 1:49 and 1:343.  

A working reagent was prepared by combining 5,000 µL of Reagent A with 100 µL of 

Reagent B. All solutions were thoroughly vortexed before adding 25 µL of each standard and 

sample dilution to a Microtitre 96 well plate. 200 µL of the working reagent was then added to 

each well and mixed with a pipette. The plate was covered and incubated at 37°C for 30 minutes.  

Following the incubation, the plate was cooled to room temperature, and the absorbance was 

read at 570 nm wavelength by the multi-mode microplate reader (FLUOstar Omega, BMG 

LABTECH).  

2.4.2.  Protein sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE). 

To hand cast one gradient gel, 8 mL of resolving polyacrylamide gel solution was prepared by 

combining 2 mL of 40% SureCast acrylamide solution (Cat. No. HC2040; Life Technologies, 

Carlsbad, CA, USA), 2 mL of resolving buffer (0.38 M Trizma base, pH 8.8), 80 µL of 10% 

SureCast ammonium persulfate and 3.9 mL of deionised water. 10% ammonium persulfate was 

prepared by dissolving 100 mg ammonium persulfate (Cat. No. HC2005; Life Technologies, 

Carlsbad, CA, USA) in 1 mL of MilliQ water and stored as 90 μL aliquots at -20°C.  8 µL of 

SureCast TEMED (Cat. No. HC2006; Life Technologies, Carlsbad, CA, USA) was added to the 

solution immediately before pouring into a 1 mm-thick Mini-Protean casting cassette (Bio-Rad). 

A thin layer of 100% isopropanol was pipetted on top of the gel to flatten the top edge and protect 

the gel from oxidation. The gel was set for 20 minutes.  

Meanwhile, 4% polyacrylamide stacking gel solution was prepared by combining 0.3 mL of 40% 

SureCast acrylamide solution, 0.75 mL of 1 M Tris-HCl buffer (pH 6.8) prepared from UltraPure 
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1 M Tris-HCI buffer, pH 7.5 (Cat. No. 15567027; Invitrogen, Rockford, IL, USA), 30 µL of 10% 

SureCast ammonium persulfate and 1.92 mL deionised water.  

Once the resolving gel was set, the isopropanol layer was removed with Kimwipes (Kimtech), 

and the gel edge was rinsed with deionised water. 3 µL of TEMED was then added to the stacking 

solution, and the solution was poured on top of the resolving gel. The gel was fitted with a Mini-

Protean 1.0 mm 10-well comb (Bio-Rad) and set for 15 minutes.  

Reduced and non-reduced protein samples were prepared. For non-reduced preparation, samples 

were combined with equal volumes of loading buffer (4% SDS, 25 mM EDTA, 0.01% 

bromophenol blue, 20% glycerol, 125 mM Tris-HCl, pH 6.8). For reduced preparation, samples 

were combined as before with the addition of 0.35 mM dithiothreitol (DTT) and heated at 95°C 

for 10 minutes. Samples were kept at room temperature until loading.    

Once set, the casting cassette was removed from its holder and inserted into a Mini-Protean tetra 

cell (Bio-Rad) opposite another gel or the buffer dam. The internal chamber was filled with 

running buffer (25 mM Trizma base, 191.8 mM glycine, 3.5 mM SDS, pH 8.3) while the cell 

was filled with the same buffer to the “2 Gels” mark (~ 500 mL total buffer volume). Wells were 

loaded with 8 µL of each sample or loading buffer diluted 1:1 with MilliQ water so that no empty 

wells remained. The electrophoresis was run at constant 90 volts for 1 hour 45 minutes until the 

loading dye travelled to the bottom edge of the gel. Once complete, the gel was removed from 

the cassette and stained for 10 minutes with Coomassie blue staining solution (0.001% 

Coomassie Brilliant Blue (Bio-Rad), 50% methanol, 10% glacial acetic acid) on a plate shaker. 

Subsequently, the gel was destained in 7% acetic acid solution overnight. The following day, the 

gel was imaged with Fusion FX (Vilber Lourmat) chemiluminescence detector.    

2.4. Positive selection of aptamers against anti-cN1A binding sites.  

Initial DNA library (Integrated DNA Technologies, Coralville, IA) was synthesised with a 40-

nucleotide randomised region containing equal parts of A, T, G and C flanked by the 5′ constant 
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region 5′-GGA CAG GAC CAC ACC CAG CG-3′ and the 3′ constant region 5′-GGC TCC TGT GTG TCG 

CTT TGT-3′. The library was diluted with PBS (2.7 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, 

15.2 mM Na2HPO4, pH 7.4) to 1 mM and stored at 4°C.  

100 nmol of the initial DNA library containing approximately 6 x 1016 unique sequences 

(Equation 1) was used in the first round of selection.  

The library was added to 600 µL aptamer binding buffer (2.7 mM KCl, 137 mM NaCl, 1.5 mM 

KH2PO4, 15.2 mM Na2HPO4, 0.02% Tween-20, 2.5 mM MgCl2, pH 7.4) in 1.5 mL Eppendorf 

tube and heated to 95°C for 10 minutes. As the solution cooled to room temperature, the 

oligonucleotides folded into their respective tertiary structures. Subsequently, 1 µL of anti-cN1A 

antibodies was added to the library, and the solution was incubated on a roller at room 

temperature for one hour during which time some of the aptamers bound to the antibodies (Figure 

8, A).  

 

Library diversity = (n)*(Avogadro’s number), where n = moles of library used  

Library diversity in round one = 100 x 10-9 mol x 6.022 x 1023 mol-1 = 6 x 1016 sequences 

 

 

 

Library diversity = (n)*(Avogadro’s number), where n = moles of library used  

Library diversity in round one = 100 x 10-9 mol x 6.022 x 1023 mol-1 = 6 x 1016 sequences 

 

Equation 1. Sequence diversity of the DNA library. 

 

Equation 2. Sequence diversity of the DNA library: 

Figure 8. Schematic representation of the stages of positive selection of aptamers against anti-cN1A binding 
site. 
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To isolate specific antibody/aptamer complexes where the aptamer was interacting with the anti-

cN1A binding site, the suspension was challenged with the immobilised cN1A protein (Figure 

8, B). For this, Microtitre 96 well plates were coated with N-terminal histidine-tagged cN1A 

protein (RefSeq NP_115915.1; Cat. No. P1EF001; GenScript, New Jersey, USA) diluted with 

0.05 M carbonate-bicarbonate buffer (34.3 mM Na2CO3, 15.7 mM NaHCO3, pH 9.6) to the final 

concentration of 20 μg/mL as per the standard ELISA protocol (section 2.2).  

Following the incubation, the aptamer/antibody solution was added to 9.4 mL PBST (2.7 mM 

KCl, 137 mM NaCl, 1.5 mM KH2PO4, 15.2 mM Na2HPO4, 0.1% Tween-20, pH 7.4) in a 15 mL 

conical tube and mixed inversion to achieve final antibody dilution of 1:10,000. For the 

separation, 50 µL of the solution was added to each cN1A-coated well. The plates were sealed 

and incubated at room temperature for two hours. During the incubation, the antibodies that were 

either not aptamer-bound or bound at a site that does not interfere with antibody/cN1A 

interaction were captured by the immobilised cN1A and cleared from the supernatant. The 

supernatant now containing the desired aptamers as well as unbound oligonucleotides was 

collected from each well and pooled into a 15 mL tube (Figure 8, C).  

To isolate the antibody-bound and unbound aptamers, the supernatant was incubated with 0.5 µL 

biotin-conjugated goat anti-human IgG, IgM, IgA (H+L) secondary antibodies (Cat. No. 

A18851; Invitrogen, Rockford, IL, USA) on a tube rotator for one hour at room temperature 

(Figure 8, D).  

Meanwhile, 5 µL of Dynabeads® M-280 streptavidin magnetic beads (Cat. No. 11205D; 

Invitrogen, Vilnius, Lithuania) were washed with 1 mL PBST and added to the secondary 

antibody/anti-cN1A/aptamer solution. The mix was placed on a tube rotator for a further 30 

minutes to allow for the biotin-streptavidin interaction to occur. Following the incubation, the 

tube was placed on a magnet for 3 minutes, and the supernatant containing unbound aptamers 

was removed and discarded leaving only the desired binders attached to the beads (Figure 8, E). 
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The beads were then washed five times with 500 µL PBS. Each addition of PBS was followed 

by thorough vortexing and placing on a magnet for 3 minutes. Following the last washing cycle, 

the beads were resuspended in 100 µL of Tris-EDTA buffer, pH 8.0 (83% UltraPure 1 M Tris-

HCI Buffer, pH 7.5 (Cat. No. 15567027; Invitrogen, Rockford, IL, USA), adjusted pH to 8.0 

with 5M NaOH, 17% UltraPure 0.5M EDTA, pH 8.0 (Cat. No. 15575020; Invitrogen, Rockford, 

IL, USA)) and transferred into a 1.5 mL Eppendorf tube. The suspension was then heated to 

95°C for 10 minutes to denature the proteins and elute the DNA. The mixture was cooled to room 

temperature and placed on a magnet for 3 minutes. The supernatant containing selected aptamers 

was removed into a clean 1.5 mL Eppendorf tube and stored at -20°C.  

2.5. Polymerase chain reaction (PCR). 

All PCR reactions were performed using Phusion high-fidelity PCR master mix with HF buffer 

(Cat. No. F531; Thermo Fisher Scientific, Vilnius, Lithuania) and UltraPure™ DNase/RNase-

free distilled water (Cat. No. 10977015; Invitrogen, Rockford, IL, USA). Forward primer 

5΄-20T-iSp9-ACAAAGCGACACACAGGAGCC-3΄ and reverse primer 5΄-

GGACAGGACCACACCCAGCG-3΄ were synthesised by Integrated DNA Technologies, 

Coralville, IA, USA. Aptamer amplification was performed by a LifeTouch thermal cycler 

(Bioer Technology, Hangzhou, P.R. China) in 50 µL PCR reactions containing the reagents and 

volumes presented in Table 3. A positive control of 10 μM initial DNA library and a negative 

control containing no DNA template were included in each PCR run.  
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Table 3.Component volumes of a single 50 µL polymerase chain reaction for 
the amplification of the selected DNA aptamers. 

Reagents Volume per reaction (µL) 

Phusion Master Mix  25.0 

Forward primer (10 uM) 2.0 

Reverse primer (10 uM) 2.0 

UltraPure water  18.0 

DNA template/UltraPure water 3.0 

Total volume 50.0 

 

The optimal cycling conditions were developed by T. Wang (unpublished) and are summarised 

in Table 4. 

Table 4. Polymerase chain reaction program for the selected DNA aptamers amplification. 

Cycle Step Temperature (°C) Time (sec) 

1. Initial denaturation (polymerase activation) 98 30 

2. Denaturation 95 30 

3. Annealing 51.6 40 

4. Extension  72 45 

Repeat steps 2-4 for n cycles    

 

2.5.1. Initial amplification of the selected aptamers.  

The aptamer library used in the first round of selection consists of randomly generated DNA 

sequences, hence every oligonucleotide copy is unique. Thus, it was necessary to perform an 

initial ten-cycle amplification to create additional copies of each sequence.  From the second 

round of selection onward, the initial amplification was performed to increase the amount of the 
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DNA template available, subsequently increasing the final amount of each amplicon available 

for the following SELEX cycle.  

For the initial amplification, 50 µL PCR reactions (Table 3) were set up in Axygen® 8-strip PCR 

tubes (Cat. No. PCR-0108-LP-C; Corning) and amplified using the standard PCR program 

(Table 4). The double-stranded product of amplification (excluding the controls) was pooled into 

one volume. 10 µL were retained and stored at -20°C as a selected library backup.  The remaining 

fraction was used as a template for the analytical PCR.   

2.5.2. Analytical aptamer amplification. 

Analytical PCR was performed to identify the optimal number of amplification cycles that would 

yield the highest amount of product of the expected size without producing additional undesired 

by-product.  

50 µL PCR reactions (Table 3) were prepared in single Axygen® PCR tubes (Cat. No. PCR-

02D-A; Corning) to be amplified at varied number of cycles using the standard PCR program 

(Table 4). All reaction tubes were inserted into one thermocycler, the cycling was manually 

paused after the extension phase of the relevant cycle, and the corresponding reaction tube was 

removed. A positive control was amplified for 10 cycles, and a negative control was amplified 

for the maximum number of cycles in the PCR run.  

Following the amplification, all tubes were kept at room temperature.  

2.5.3. Agarose gel electrophoresis. 

In the first SELEX cycle, PCR product was resolved on 4% agarose gel which was prepared by 

dissolving UltraPure™ agarose powder (Cat. No. 16500500; Invitrogen, Rockford, IL, USA) in 

TAE buffer (40 mM Trizma base; 20 mM glacial acetic acid, 1 mM EDTA, pH 8.3). The 

suspension was heated in a microwave in 10-15-second pulses to facilitate agarose powder 

dissolution. Once prepared, the agarose solution was kept liquid at +70°C. 
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To cast one ~ 4 mm thick gel, liquid agarose solution was poured into a clear 7 x 7 cm casting 

tray with 1.00 mm comb inserted. After 20 minutes, the polymerised gel in its tray was placed 

into a horizontal electrophoresis cell (Owl EasyCast B1 mini gel electrophoresis system, Thermo 

Scientific) and submerged in TAE buffer.  

DNA samples were prepared by combining 10 µL of the PCR product from each reaction with 

2 µL of TrackIt cyan/yellow loading dye (Cat. No. 10597012; Invitrogen, Vilnius, Lithuania). 

The wells were loaded with 10 µL of each sample and Ultra low range DNA ladder (Cat. No. 

10597012; Invitrogen, Vilnius, Lithuania). The electrophoresis was performed at 80 volts for 60 

minutes.  

Next, the gel was stained for 10 minutes with GelStar nucleic acid gel stain (Lonza, Rockland, 

ME, USA) followed by a wash with deionised water for 20 minutes. The resolved bands were 

visualised with Fusion Fx imaging platform and software (Vilber Lourmat, France).  

2.5.4. Aptamer amplification for the next round of selection. 

Once the optimal number of cycles was determined, the remaining selected aptamers were 

amplified using the standard PCR program (Table 4) by preparing 50 µL reactions (Table 3) in 

Axygen® 8-strip PCR tubes.  

2.6. Denaturing polyacrylamide gel electrophoresis. 

To cast one 12.5% 8M urea polyacrylamide gel, a solution was prepared by combining 3,125 μL 

of 40% SureCast™ acrylamide (Cat. No. HC2040; Life Technologies, Carlsbad, CA, USA), 

4.8 g of urea, 1 mL of 10 M TBE buffer (890 mM Trizma base, 20 mM EDTA, 890 mM boric 

acid, pH 8.0) and MilliQ water to a total volume of 9.96 mL and gently heating in a 40°C water 

bath for 5-10 minutes to dissolve urea. Once the solution was uniformly transparent, it was 

cooled to room temperature before adding 33 μL of 30% ammonium persulfate. 30% ammonium 

persulfate was prepared by dissolving 300 mg of SureCast™ ammonium persulfate (Cat. No. 

HC2005; Life Technologies, Carlsbad, CA, USA) in 1 mL of MilliQ water and stored as 40 μL 
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aliquots at -20°C.  The polyacrylamide solution was mixed by inversion, and 4 μL of SureCast™ 

TEMED (Cat. No. HC2006; Life Technologies, Carlsbad, CA, USA) was added and gently 

mixed by inversion. The solution was immediately poured into a 1.5 mm thick casting cassette 

(Bio-Rad) and fitted with 1.5 mm 5-well comb (Bio-Rad) or a 1.0 mm thick casting cassette 

(Bio-Rad) and fitted with 1.0 mm 10-well comb (Bio-Rad). The gel was left to polymerise for 

15 minutes. Once set, the casting cassette was removed from its holder and inserted into an 

electrophoresis Mini-Protean® tetra cell (Bio-Rad) opposite another gel or a buffer dam. The 

internal chamber was filled with 1 M TBE buffer (89 mM Trizma base, 2 mM EDTA, 89 mM 

boric acid, pH 8.0), while the cell was filled with the same buffer to the “2 Gels” mark (~500 mL 

total buffer volume). If three or four gels were run simultaneously, the tank was filled to the “4 

Gels” mark (~1 L total buffer volume). The well-comb was removed, and the wells were flushed 

with the surrounding buffer using 1000 µL pipette to remove urea precipitate. The gel was pre-

warmed by running the electrophoresis at 15 watts for 30 minutes.  

Meanwhile, equal volumes of PCR product (dsDNA) and formamide loading buffer (63% 

formamide; 0.5 mM EDTA, 0.0003% xylene cyanole, 0.00065 % bromophenol blue, 0.0003% 

orange G) were combined in 1.5 mL Eppendorf tubes and heated at 95°C for 10 minutes to 

denature DNA. An unamplified positive control was prepared by combining 0.6 µM initial 

aptamer library with an equal volume of formamide loading buffer and heating at 95°C for 10 

minutes. The control was included in one gel only per each SELEX cycle.  

Once the gel was pre-warmed, the wells were flushed twice with the surrounding buffer using 

1000 µL pipette to remove any further urea precipitate that might have formed. The five-well 

gels were loaded with 158 µL of sample per well while the ten-well gels were loaded with 28 µL 

of sample per well. All unoccupied wells were filled with loading buffer diluted with an equal 

volume of MilliQ water. The electrophoresis was run at constant 15 watts for 25-35 minutes until 

the dye travelled to the bottom edge of the gel. Once complete, the gel was removed from the 
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cassette and stained for 10 minutes with GelStar nucleic acid gel stain (Lonza, Rockland, ME, 

USA), followed by a 10-minute wash with deionised water. To avoid the damaging effects of the 

ultraviolet light on DNA and introducing mutations into the oligonucleotide library, the gel was 

viewed with a Dark Reader blue LED transilluminator (Clare Chemical Research, Dolores, CO, 

USA).  

2.7. Electroelution from polyacrylamide gel. 

Pur-A-Lyzer™ midi dialysis tubes (3.5K molecular weight cut off; Cat. No. PURD35050; 

Sigma-Aldrich) were filled with 800 μL UltraPure™ DNase/RNase-free distilled water (Cat. No. 

10977015; Invitrogen, Rockford, IL, USA) to hydrate the membranes. After five minutes, one 

slice of gel containing the selected aptamers was added to each tube. The lids were carefully 

closed to avoid introducing air bubbles. The tubes were inserted into a holding tray and oriented 

so that the membranes were perpendicular to the electric current. The tray was placed in a 

horizontal electrophoresis tank (Cleaver Scientific, UK) and submerged with 0.5 M TBE buffer 

(44.5 mM Trizma base, 1 mM EDTA, 44.5 mM boric acid, pH 8.0). The electrical current was 

applied at a constant 100 V for 45-50 minutes. The process of elution was monitored by viewing 

the gel slices inside the tubes with blue LED transilluminator (Clare Chemical Research, 

Dolores, CO, USA). Once no more dye could be seen inside the gel, the tubes were placed back 

into the electrophoresis tank, and the polarity of the electric current was reversed for two minutes 

at 100 V to release the DNA from the membranes. Upon completion, the tubes were carefully 

opened, and the eluate was pipetted five times before being transferred into a 1.5 mL Eppendorf 

tube. The eluate was concentrated in a Genevac miVac (Scitek) rotational vacuum concentrator 

at 56°C for 35 minutes to achieve the final volume of 50 μL.   

The dialysis tubes were used multiple times within the same experiment. They were stored at 

room temperature filled with 800 µL UltraPure™ water and submerged into TBE buffer.  
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2.8. Ethanol precipitation of oligonucleotides.  

Two methods of ethanol precipitation of the eluted oligonucleotides were trialled. In the first 

instance, the sample was combined with 1/10th volume of 1 M ammonium acetate and two 

volumes of absolute ethanol. The eluant solution was incubated at -20°C for 48 hours. After 

incubation, the mix was centrifuged (Allegra 64R, Beckman Coulter) at 21,000 RCF at 4°C for 

40 minutes to pellet the DNA. The supernatant was removed and discarded while 500 µL of cold 

70% ethanol was added to the DNA/salt pellet, mixed with a pipette and centrifuged at 21,000 

RCF at 4°C for 10 minutes to pellet the clean DNA. The supernatant was once again removed 

and discarded, and the pellet was left to dry out for 10-15 minutes. The DNA was then 

resuspended in 50 μL of UltraPure™ water.  

In the second instance, the sample was combined with 1/10th volume of 3 M sodium acetate and 

incubated for 15 minutes. Next, two volumes of absolute ethanol were added to the eluant and 

incubated at -20°C for 2 hours. After incubation, the centrifugation, washing, drying and 

resuspension steps were performed as before.   

2.9. Zymo oligo clean and concentrator kit.  

Purification of the eluted aptamers was performed with Zymo® oligo clean and concentrator kit 

(Cat. No. D4060; Zymo Research, USA) following the manufacturer’s instructions. For this, 

50 µL of sample was combined with 100 µL of binding buffer in a 1.5 mL Eppendorf tube and 

mixed with a pipette. 400 µL of absolute ethanol at room temperature was added and mixed with 

a pipette. The solution was transferred into a spin column inserted into a collection tube and 

centrifuged (Microfuge 16, Beckman Coulter) at 10,000 RCF for 30 seconds. The supernatant 

was discarded, and 750 µL of the washing buffer was added to the spin column. The column was 

centrifuged at 10,000 RCF for 30 seconds, followed by another centrifugation at 16,000 RCF for 

1 minute. The flow-through in the collection tube was again discarded. The spin column was 

transferred into a 1.5 mL Eppendorf tube, and 15 µL of UltraPure™ water was added directly to 
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the filter. The spin column was once again centrifuged at 10,000 RCF for 30 seconds. The 

collected supernatant containing clean aptamers in water was analysed by NanoDrop ND-1000 

spectrophotometer to determine the final aptamer concentration in the solution.  

2.10. NanoDrop DNA quantification. 

Oligonucleotide quantity and purity was determined by analysing 2 μL of a sample with 

NanoDrop ND-1000 spectrophotometer. Prior to loading on the spectrophotometer, the samples 

were warmed up to 37°C in the water bath to ensure consistency as the temperature can greatly 

affect absorbance values. The absorbance was analysed by NanoDrop 1000 software 

version 3.7.1.  
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CHAPTER 3. Results and discussion. 

3.1. Patients’ sera screening with anti-cN1A ELISA.  

A diagnostic ELISA for the detection of circulating anti-cN1A antibodies was developed in 

2016.4 The assay is an indirect type of ELISA where serum circulating antibodies are captured 

by the immobilised cN1A protein (Figure 9). Bound antibodies are then detected indirectly by 

horseradish peroxidase (HRP)-labelled secondary antibodies. HRP is an enzyme that catalyses 

the oxidation of TMB by hydrogen peroxide resulting in the production of blue colour which can 

be detected at 650 nm. Detection of the primary reaction colour, however, can introduce 

undesired well-to-well variability into the assay as it continues to develop over time with no true 

endpoint. Therefore, sulphuric acid stop solution is used to terminate the reaction after 10 

minutes consistently for each well. Upon the acid addition, the colour changes to yellow with the 

absorption maximum at 450 nm.  

The absorbance measurement represents the amount of light intensity lost when it passes through 

the sample well (Figure 10). If the light intensity (I) of the serum-containing well is less than the 

light intensity of the well containing all the other ELISA components but no serum (I0), then the 

sample has absorbed some of the light (Equation 3). 

Figure 9. Indirect anti-cN1A ELISA. Serum is challenged with immobilised cN1A protein. Bound anti-cN1A 
antibodies are detected by HRP-conjugated goat anti-human antibodies via colourimetric reaction of HRP with 
H2O2 in presence of TMB.  
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In the semi-quantitative ELISA performed, the sample absorbance was calculated relative to the 

absorbance value obtained from the healthy sera pool.   

Initially, the ELISA was developed to detect IgG antibodies only by using secondary antibodies 

that were raised to specifically recognise human IgG. However, it has been shown that circulating 

anti-cN1A antibodies comprise of IgG, IgA and IgM isotypes.42 Hence, in the present 

experiment, the variety of the secondary antibodies was expanded to include IgG, IgA and IgM 

recognition in addition to the so-called “pan” detection antibodies that were not isotype specific.  

A cohort of forty-eight patients with clinically diagnosed IBM was analysed by the anti-cN1A 

ELISA. Reactivity against cN1A was detected in eighteen patients (38%) (Figure 11). This 

finding is comparable with the previously reported data where on average 55% (35.5%-80%) of 

IBM patients were found seropositive with the cN1A ELISA (Table 1).  

Regarding specific isotypes, six patients were seropositive for IgG only (33% of seropositive 

Figure 11. Anti-cN1A status of IBM patients as determined by the ELISA 
(n = 48). Seropositive absorbance ratio cut-off values: IgG/M/A >= 2.5; 
IgG >= 4.2; IgM >=2.3; IgA >= 5.4 

Figure 10. Light at 450 nm absorbed by the sample and blank ELISA wells. I, I0 = change in light intensity. 

 

A = I – I0, where 

A – sample absorbance  

I – the light intensity of the sample well 

I0 – the light intensity of the blank well  

Equation 3. ELISA sample absorbance.  
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patients), one for IgA only (6%) and two for IgM only (11%). The remaining 50% of patients 

had multiple autoantibody isotypes present at above the normal ranges.  

The patient selected for donating blood for anti-cN1A purification was assayed positive for IgG 

(absorbance ratio = 11.0), IgA (absorbance ratio = 39.1) and IgM isotypes (absorbance ratio 

= 2.5).  

3.2. Anti-cN1A purification from IBM serum.   

Serum anti-cN1A purification was achieved by capture with cN1A-coated magnetic beads. The 

process of cN1A protein conjugation to magnetic beads utilises a cobalt-based immobilised 

metal-affinity chromatography (IMAC) chemistry, where cobalt ions immobilised on magnetic 

polymer beads bind recombinant proteins containing a short polyhistidine tag.72 Out of all the 

amino acids, histidine forms the strongest interaction with cobalt ions which is stable at neutral 

pH but can be disrupted at low pH of ~6.0. By using near-neutral pH buffers for the antibody 

purification, I was able to keep cN1A conjugated to the beads throughout the entire purification 

process. Cycles of serum depletion were repeated until the absorbance values obtained by the 

ELISA for the depleted serum were within 10% of the blank well containing no serum.   

Purification under native conditions and elution of the captured antibodies with a gentle elution 

buffer yielded biologically active purified anti-cN1A. Their affinity for the target protein was 

confirmed by the ELISA, which produced concentration-dependent absorbance values with a 

maximum of 0.73 (Figure 12).   

Purified anti-cN1A antibodies were resolved on SDS-PAGE alongside the commercial 

biotinylated goat IgG (Figure 13). Goat IgG at ~147 kDa including the biotin label (Figure 13, 

6) was used as a positive control and a weight marker. While a single band was expected for the 

commercially purified IgG, two additional bands can be observed – one of ~55 kDa (Figure 13, 

7) corresponding to the immunoglobulin heavy chain and one of ~25 kDa (Figure 13, 8) 
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corresponding to the light chains. These bands are evidence of some degree of degradation 

presumably due to the extended storage time of the sample.  

The bands from non-reduced human immunoglobulins were not well defined due to a 

heterogenous mix of isotypes and clones of anti-cN1A (Figure 13, non-reduced). Nevertheless, 

I can identify a band at the top (Figure 13, 1) produced by a heavy protein, likely IgM, that did 

not migrate into the resolving gel during the electrophoresis. A faint band at ~162 kDa (Figure 

13, 2) corresponds to a small amount of IgA. The widest band covers a range of ~150 to ~50 kDa 

(Figure 13, 3). This band may contain complete IgG of ~150 kDa as well as some 

Figure 13. Resolution of purified polyclonal anti-cN1A and goat IgG on 
gradient SDS-PAGE. 6 μL of anti-cN1A and 3.5 μL of goat IgG were 
combined with equal volumes of non-reducing or reducing (0.35 mM 
DTT) loading buffers. Electrophoresis was performed at 90 volts for 1.45 
hours. NC – loading buffer only.  
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Figure 12. ELISA to determine purified anti-cN1A biological activity. 
Wells were coated with 20 μg/mL cN1A protein. Bound antibodies 
were detected with goat anti-human horseradish peroxidase (HRP)-
conjugated antibodies against IgG/M/A and visualised via TMB 
substrate reaction at 450 nm. Mean of duplicate measurements are 
plotted. Error bars represent standard deviation.  
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immunoglobulin heavy chains ~55 to ~65 kDa. A band corresponding to immunoglobulin light 

chains of ~25 kDa (Figure 13, 4) can be found directly below it. The appearance of these bands 

provides evidence of some degree of anti-cN1A degradation that could have been resulted from 

any step of the purification process. The fraction of the degraded ant-cN1A is, however, small 

and should not have any significant consequences for the selection process. The nature of the 

two faint bands of less than 20 kDa (Figure 13, 5) could not be identified. 

The presence of DTT in the reducing buffer combined with heating of the samples to 95°C caused 

denaturation of the proteins by cleaving the disulfide bridges. It is evident by the presence of the 

faint band of ~144 kDa (Figure 13, 10) that denaturation conditions were insufficient to 

completely reduce goat IgG. The other band (Figure 13, 11) corresponds to the IgG heavy chain 

of ~55 kDa. The light chains cannot be observed.  

Reduced anti-cN1A sample produced one wide band stretching from ~55 to ~23 kDa (Figure 13, 

9) presumably containing light and heavy chains, although they cannot be distinguished from 

each other.  

To conclude, the resolution of anti-cN1A on SDS-PAGE has provided evidence of a small degree 

of degradation that the protein suffered during the purification process. The segregated heavy 

and light chains will not present an obstacle for the selection process since they will be readily 

eliminated by the first capture step of SELEX.   

The final concentration of the purified anti-cN1A was determined by the colourimetric BCA 

protein assay. The assay relies on the conversion of Cu2+ to Cu1+ ions by a protein in an alkaline 

medium. The generated Cu1+ ions react with bicinchoninic acid (BCA) to produce a purple-

coloured product with an absorbance maximum at 562 nm (Figure 14).73 
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 In the current experiment, the quantification of purified anti-cN1A was achieved by a direct 

comparison to the set of BSA standards of known concentrations up to 2000 μg/mL that were 

assayed under the same conditions as the sample (Figure 15). The near-linear increase of 

absorbance with the increased protein concentration enabled a construction of a standard colour 

response curve (Figure 16). Two sample absorbance measurements corresponding to 1:2 and 1:7 

anti-cN1A dilutions were placed within the colour response curve and used in the equation. The 

concentration of the anti-cN1A antibodies was determined to be 970 ± 59 µg/mL. The total 

amount of purified anti-cN1A antibodies was 6.5 mg.  

  

Figure 14. BCA reactions chain: A. chelation of Cu2+with protein to 
produce Cu1+; B. formation of purple colour by the BCA/ Cu1+ complex. 
Image source: Bing Zhao @ Researchgate.  

Figure 15. The bicinchoninic acid (BCA) assay for anti-cN1A antibodies 
quantitation. Colour response of the bovine serum albumin (BSA) standard 
titrated from 0 to 2000 μg/ and titrated anti-cN1A samples. 
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3.3. In vitro SELEX. 

The primary aim of this project was the selection of aptamers that can neutralise anti-cN1A 

binding to their target protein. The process used for the in vitro development of such aptamers 

followed a modified procedure based on the standard SELEX framework described in Section 

1.4.1. Two SELEX cycles were performed during this study, each consisting of the consecutive 

steps of the aptamer library incubation with anti-cN1A antibodies; isolation of the neutralising 

aptamers; aptamer amplification; DNA strand separation; and aptamer purification.  

Each step will be reviewed in detail in this section.  
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Figure 16. The colour response curve of the bovine serum albumin standard constructed 
from duplicate values. Mean absorbance for each sample was adjusted to the mean of 
blank (working reagent only). Absorbance values are presented on the x axis for the ease 
of further calculations. The curve is fitted with a polynomial trendline. The equation 
where y represents protein concentration and x represents absorbance is used to 
calculate the anti-cN1A concentrations: y = 119.54x2 + 647.74x - 13.339 
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3.3.1. Capture SELEX for the neutralising aptamers isolation.  

One of the prerequisites to a successful SELEX is the separation of bound and free aptamers. 

Traditionally, such separation is enabled by immobilisation of a selection target to a solid phase, 

such as microfluidic slips, magnetic chips, agarose-based resin or magnetic beads.62 Our 

approach was to isolate specific antibody/DNA complexes where the aptamer was interacting 

with the antibody’s binding site. To achieve this, we chose to immobilise the antibodies’ protein 

target - cN1A - to a 96-well ELISA plate. Only free antibodies or those targeted by aptamers 

outside of the binding site can interact with cN1A and remain captured in the well, while the 

supernatant containing specifically-bound and free aptamers is removed and retained. To ensure 

that most non-neutralising aptamers are removed from further selection, it was necessary to 

determine anti-cN1A concentration at which most of the circulating antibodies are captured by 

the immobilised cN1A.  

The optimum anti-cN1A concentration was determined by the ELISA with serially titrated anti-

cN1A antibodies. Each dilution was successively incubated twice with the target protein (Figure 

17). Mean absorbance values obtained from each incubation were plotted against the 

corresponding antibody concentrations (Figure 18). The data presented shows that cN1A binding 

sites saturation is achieved at anti-cN1A concentration of 0.32 μg/mL as evidenced by the 

Figure 17. Schematic representation of the ELISA to determine 
optimum anti-cN1A concentration for capture with 20 µg/mL cN1A. 
Each dilution of anti-cN1A was consecutively incubated in a cN1A-
coated well for two hours.  
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plateauing maximum absorbance value of ~0.7. It is unclear, however, why there is an 

incomplete capture of the antibodies at the concentrations much lower than that of the cN1A 

binding saturation.  Even at 0.04 μg/mL, there is a transfer of uncaptured antibodies into the 

second incubation well (Figure 18). Could it be due to the polyclonal nature of the antibodies so 

that the increased concentration results in competition between the anti-cN1A molecules and 

favours binding of the clones with the highest affinity and avidity for the target? Current data is 

insufficient to support this hypothesis; however, exploring the molecular mechanisms underlying 

this result could offer further insights into the nature of the anti-cN1A interaction with their 

target.  

According to the data presented here, complete clearance of the antibodies was achieved at 

0.01 μg/mL corresponding to 1:81,000 dilution (Figure 18). Such low concentration, however, 

was impractical for SELEX as each capture step would require a large number of coated ELISA 

plates to complete the selection. Therefore, concentration of 0.1 µg/mL corresponding to 

1:10,000 dilution was arbitrarily selected for the early rounds of SELEX capture. Consideration 

was given to the fact that some non-specific aptamers might be carried over to the next selection 

Figure 18. ELISA to determine anti-cN1A concentration at which complete 
clearance can be achieved. Wells were coated with 20 μg/mL cN1A protein. 
Anti-cN1A (970 μg/ml) were serially titrated as 1:1000, 1:3000, 1:9000, 
1:27,000, 1:81,000 and consecutively incubated inside coated wells twice for 2 
hours at room temperature. Bound antibodies were detected with goat anti-
human horseradish peroxidase (HRP)-conjugated antibodies against IgG/M/A 
and visualised via TMB substrate reaction at 450 nm. Mean of duplicate 
measurements are plotted. Error bars represent standard deviation.  
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cycle; however, in theory, they would be subsequently removed during the repeated capture 

SELEX steps.  

The separation of antibody/aptamer complexes and free aptamers was another critical step in the 

SELEX process. In the first instance, we planned to resolve the supernatant on a native 

polyacrylamide gel and identify bound antibodies by the shift in the electrophoretic mobility.74 

Given that we were targeting polyclonal antibodies of many isotypes, and their mobility on the 

gel was dependent not only on their molecular weight but also on the electrical charge and tertiary 

structure of the individual immunoglobulin molecules, it would have been extremely challenging 

to obtain a sufficiently high resolution to observe the shift. Additionally, it has been shown that 

upon aptamer binding, individual proteins may undergo conformational changes that result in 

further reduction in gel resolution.75 Thus, we chose to capture anti-cN1A/aptamer complexes 

with streptavidin magnetic beads interacting with biotinylated anti-human antibodies. The 

interaction of biotin with a bacterial protein streptavidin is one of the strongest non-covalent 

reactions in nature. It has numerous application in protein-ligand experiments due to its high 

specificity, fast reaction rate and stability under a wide range of conditions.76 What’s more, a 

comprehensive array of biotinylated proteins is commercially available for molecular 

applications.  

In this stage of SELEX, biotinylated goat anti-human antibodies raised against IgG, IgA and IgM 

isotypes, formed conjugates with aptamer-bound anti-cN1A antibodies and were subsequently 

captured by Dynabeads® covered in a single streptavidin layer. During a short incubation, the 

streptavidin-biotin interaction occurred allowing the separation of the selected antibody-bound 

aptamers from unbound oligonucleotides.  

3.3.2. Selected aptamers amplification. 

While the clearance of magnetic beads was not strictly required for the amplification, we chose 

to elute the aptamers off the beads by heat denaturation and remove the beads from the 
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suspension using a magnet. The precleared suspension containing the selected aptamers was then 

PCR amplified. 

The PCR method developed by Kary Mullis in 1983 is based on the ability of a DNA polymerase 

to synthesise a DNA strand complementary to the provided DNA template.77 Most polymerases 

are strictly limited to adding free bases to an existent 3΄ hydroxyl group. Therefore, annealing of 

a synthetic primer comprising a specific oligonucleotide sequence is necessary to create a starting 

point for the extension by the polymerase.  

In the current SELEX procedure, the initial DNA library was synthesised to include specific 

primer-binding sites at each end of the random sequence, and the primers of complementary 

sequences to those binding sites were produced (Figure 19). The forward primer additionally 

features a poly-T tail conjugated to the main sequence by an iSp9 linker. During the extension 

of the sense strand from the reverse primer, the iSp9 linker serves as a terminator for the 

polymerase. In this way, the generated double-stranded PCR product contains asymmetric 

strands - the sense strand of 81 nucleotides of the identical sequence to the initial library, and the 

irrelevant anti-sense strand of 101 nucleotides of the complementary sequence. The difference 

Figure 19. PCR amplification of the selected aptamers using asymmetric primers. N40 is the random sequence 
of 40 nucleotides; cN40 is the complementary random sequence of 40 nucleotides; iSp9 is a linker.  
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in primer lengths is necessary for the separation of the sense- and the anti-sense DNA strands 

discussed in section 2.6.  

The choice of a polymerase was an important consideration for the SELEX outcome. In the past, 

the preference was given to error-prone polymerases that had high mutation rates. This choice 

was targeted at increasing the aptamer pool sequence diversity by introducing random 

mutations.62 However, it was also noted that error-prone polymerases added uncertainty and less 

control over the selection process. Given that our initial aptamer pool already contained over 

1016 sequences, the complications of introducing mutations outweighed the benefits of additional 

diversity; hence, a high-fidelity polymerase was chosen for the amplification. Phusion DNA 

polymerase mix with HF buffer used in this project has a reported mutation rate of 1.81 x 10-6, 

which was the lowest among the six high-fidelity polymerases investigated by Hestand et al.78 

3.3.3. The importance of analytical PCR.  

An issue that consistently arises in SELEX studies is the formation of unwanted by-product 

(sometimes termed “parasitic DNA”) during PCR amplification. This phenomenon was 

investigated by Tolle et al.79 In their work, the authors observed a formation of two types of by-

products they termed the ladder-type and non-ladder type that were both longer than the expected 

DNA product. In the first round of SELEX, I similarly observed these two kinds of by-products 

(Figure 20). Tolle et al. suggested possible mechanisms that could explain such by-product 

Figure 20. Resolution of PCR product on 4% agarose gel under 100 V electrophoresis 
showing a non-ladder (A and B) and a ladder-type (B) by-products. PC – positive control of 
the initial oligonucleotide library at 10 μM; NC – negative control containing no DNA 
template.  
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formation.79 In their hypothesis, both events are initiated by one of the primers binding to a region 

within the random sequence and being elongated by the polymerase (Figure 21). One of the 

events can lead to a duplication of a primer-binding site resulting in an ever-increasing by-

product length, seen as ladder-type bands (Figure 20, B). However, if the primer binds within 

the random region but does not create an entirely new binding site, the resulting by-product will 

be longer but will not be infinitely extended. Such by-product will subsequently produce non-

ladder type bands (Figure 20, A).  

Tolle et al. observed the formation of the parasitic DNA throughout the entire SELEX. It was 

demonstrated by these authors and others that the appearance of the by-product formed a PCR 

bias where it was preferentially amplified by the polymerase and resulted in dominating the 

selection pool compromising the success of SELEX.79, 80  I was pleased not to encounter any 

parasitic DNA in the second round of selection. Possible reasons for this observation could be 

Figure 21. Mechanisms of the non-ladder (A) and ladder (B) type PCR by-product formation 
proposed by Tolle et al.  
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the elimination of all the sequences that were structurally able to form by-product in the first 

selection round, as well as a lower DNA concentration of the template which led to the 

consumption of the PCR reaction reagents earlier in the amplification cycles (Figure 22, A).  

To investigate whether the concentration of primers in the reaction mix was the limiting factor 

for the maximum amount of PCR product that could be achieved, I increased the primers fraction 

from 0.4 μM to 1 μM per 50 μL reaction. Upon resolution of the PCR product on a 

polyacrylamide gel, I still observed the plateau in the amount of the amplified product after the 

16th cycle (Figure 22, B). Therefore, I concluded that the concentration of dNTPs in the reaction 

mix was the limiting factor in the final amount of the amplified DNA product, and 0.4 μM was 

carried over as the optimum primer concentration for amplification of the selected library.   

Of note, I chose to visualise the PCR product on polyacrylamide gel in the second SELEX round 

because of its higher resolution than agarose gel. Since the concentration of DNA obtained in 

the second round was much lower than in the first, polyacrylamide gel was more suitable to 

observe even a small amount of by-product if there was any present.  

To conclude, optimisation of the amplification cycles in the first round of SELEX was aimed at 

maximising the amount of DNA of the expected size while minimising the amount of PCR by-

product formed. In the second round, however, the optimisation was primarily directed at 

maximising the amount of DNA obtained while consuming the least PCR reagents.  

Figure 22. Resolution of the analytical PCR product on denaturing 12.5% 8M urea polyacrylamide gel. PCR was 
performed with 0.4 μM primers per 50 μL reaction (A) or 1.0 μM primers per 50 μL reaction (B). In both cases 16 
cycles of amplification produced the optimum amount of ssDNA of 81 bp. 
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3.3.4. PCR amplification bias.  

Upon resolution of the amplified DNA on dPAGE in every round of SELEX, it was noted that 

the sense strand was preferentially amplified resulting in 21-29% more PCR product (Figure 23).  

While some SELEX protocols integrate a feature of asymmetric amplification where one primer 

is used in higher concentration than the other, our PCR was performed with equal amount of the 

forward and the reverse primers in each reaction. The efficiency of the PCR amplification was 

likely influenced by the effectiveness of the primer annealing that can be dictated by many 

factors, including primer length, molecular weight, melting temperature and GC content. 

Characteristics of the primer pair used for the amplification are presented in Table 5. The higher 

melting temperature of the reverse primer at 66.6°C versus 64.6°C suggests a more stable binding 

to the DNA template resulting in higher amplification efficiency.  

Table 5. Physical characteristics of the PCR primers used for amplification with Phusion DNA polymerase 
(calculated using Thermo Scientific Tm calculator).  

 Forward primer Reverse primer 

Sequence  5΄-ACAAAGCGACACACAGGAGCC-3΄ 5΄-GGACAGGACCACACCCAGCG-3΄ 

Length (bp) 21 20 

Molecular 

weight (g/mol)  

6427.2 6106.0 

Tm (°C) 64.6 66.6 

GC (%) 57.14 70.00 

Figure 23. Examples of PCR amplification bias towards the selected aptamers. PCR 
products obtained in the 1st and 2nd rounds of SELEX were resolved on 12.5% 8M 
urea polyacrylamide gel.  
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3.3.5. Amplified DNA strand separation.  

It was essential to separate the sense- and the anti-sense strands of the double-stranded PCR 

product since upon denaturation their complementary sequences would tend to reanneal into 

double-stranded molecules at ambient temperatures. In theory, tertiary structures of the double-

stranded DNA would differ from the initially selected aptamers and would likely have a 

diminished affinity for the target.  

The separation of the DNA strands is a common requirement for SELEX, and various 

methodologies have been developed to achieve this.62 One of the most widely applied separation 

methods involves the incorporation of biotin into the anti-sense DNA strand through the forward 

primer biotinylation, and subsequent removal of this strand from the pool with streptavidin-

conjugated magnetic beads. While this strategy is time-efficient and straightforward, it has been 

associated with an increased generation of a PCR by-product (previously discussed).79 Therefore, 

in the current experiment, the strand separation was achieved by denaturing polyacrylamide gel 

electrophoresis (dPAGE). Polyacrylamide gel high resolution enabled the separation of the sense 

and the anti-sense DNA strands due to their 20-nucleotide length difference (Figure 19).  

As an additional advantage, resolution of the PCR product on dPAGE permitted preclearance of 

the DNA from undesirable sequences and molecules, such as PCR by-products, unincorporated 

primers and PAGE loading dyes (Figure 24).     
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3.3.6. Selected aptamers purification from polyacrylamide gel. 

Upon resolution on a polyacrylamide gel, the bands corresponding to the sense DNA strand were 

identified and excised from the gel requiring an elution step to free the DNA from the gel (Figure 

25).  

Traditionally, elution was performed by a “crush and soak” method developed in the 1970s, 

where agarose or polyacrylamide gel slices containing the sample were pulverised into a paste, 

and the DNA was diffused into an elution buffer over 18 to 36 hours.81 Although not attempted 

Figure 24. Resolution of the PCR product on denaturing 12.5% 
8M urea polyacrylamide gel visualised under blue LED light. 
This method allows for the strand separation and preclearance 
of the amplified aptamers from undesired impurities such as 
unincorporated primers and loading dyes. 

Figure 25. Stages of aptamer purification. A. PCR-amplified DNA was resolved on a 12.5% 8M 
urea denaturing polyacrylamide gel. B. 81-nucleotide sense strand was identified and excised 
from the gel. C. Aptamer-containing slices of gel were collected into a 1.5 mL Eppendorf tube.  
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during this experiment, the “crush and soak” method has been reported to recover as little as 30% 

to 50% of the sample DNA.82 Additionally, crushing the gel may release various gel matrix 

material, such as water-soluble polyacrylamide molecules into the eluted sample and could 

interfere with the SELEX process.83 Considering the small size of the oligonucleotides in our 

library, a simple passive diffusion from intact gel slices could be a viable alternative to the “crush 

and soak”. Diffusion was attempted into either water or 1 M ammonium acetate. The elution 

process was monitored by examining the gel slices under the blue LED illuminator. After twenty-

six hours, no oligonucleotides remained within the gel in the ammonium acetate elution tube, 

while it took thirty-six hours for the oligonucleotides to elute into water. Both samples were then 

ethanol precipitated using 1 M ammonium acetate salt. The precipitation resulted in a massive 

loss of aptamers – the concentration of DNA in the clean sample was below the NanoDrop 

detection limit (data not presented). A protocol from Harvard University suggested that 

oligonucleotides of less than 220 bases are refractive to precipitation in the presence of 

ammonium ions.84 Subsequently, further precipitation experiments were carried out using 

sodium acetate.  

Electroelution of aptamers from a polyacrylamide gel was also investigated in an attempt to 

decrease the elution time. The initial electroelution experiment was performed for 20 minutes at 

120 volts in 1 M TBE buffer. As shown in Figure 26, A, these conditions were insufficient to 

withdraw the DNA out of the gel. Increasing the voltage to 200 for 10 minutes resulted in more, 

Figure 26. DNA remaining within the polyacrylamide gel slice after 
electroelution as seen under the blue LED light. A. Elution was 
performed at 120 volts for 20 minutes. B. Further elution was 
performed at 200 volts for 10 minutes. 
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but not all DNA exiting the gel (Figure 26, B). Complete DNA elution was achieved by 

increasing both the voltage to 200 volts and the elution time to 30 minutes. 4,200 ng of DNA 

was recovered via this method and ethanol precipitated with 3 M sodium acetate. Following the 

precipitation, only 635 ng of DNA was recovered (15% of the eluted fraction). I hypothesised 

that the increased salt concentration in the eluted samples due to warming of the elution buffer 

as a consequence of the increased voltage could have caused inefficient ethanol precipitation. 

Suboptimum precipitation conditions could have also been the cause. Optimisation of the ethanol 

precipitation protocol was not pursued further due to the limited amount of aptamers available 

for the experiments. Therefore, electroelution conditions were changed targeted at the reduction 

of salt contaminants. Complete elution of the DNA from the gel slices was achieved at 100 volts 

by extending the elution time to 45-50 minutes depending on the thickness of the gel slices and 

reducing the TBE buffer concentration to 0.5 M. Under these conditions, each 55 μL of the PCR 

product separated on the polyacrylamide gel yielded 3,800 – 4,200 ng of ssDNA.  

Clean-up of the electroeluted aptamers was then attempted with Zymo oligo clean and 

concentrator kit. Since the kit has not been used by our laboratory before, it was essential to 

determine its ability to recover the oligonucleotides in our library and to optimise the purification 

conditions. For this, I performed a purification of the initial aptamer library while determining 

the DNA concentration before and after the process with NanoDrop spectrophotometer. In the 

initial experiment, the centrifugation was performed at 7,800 RCF, yielding a recovery rate of 

70% (Figure 27). In the second experiment, the centrifugation speed was increased to 10,000 

RCF, yielding a recovery rate of 92% (Figure 27). The optimised conditions were applied to two 

electroeluted aptamer samples, of which 81 and 93% were recovered (Figure 27).    

Purification of aptamers marks the end of the selection cycle.  
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3.4. Determination of DNA quantity and quality with NanoDrop spectrophotometer. 

All nucleic acids strongly absorb ultraviolet (UV) light at 260 nm. By determining the 

absorbance at 260 nm (A260), DNA concentration in a sample can be calculated from the Beer-

Lambert law (Equation 4).  

As per the equation, the precise calculation of the DNA concentration depends on the knowledge 

of the exact extinction coefficient value, which is different for each of the four nucleotide bases. 

However, if the DNA sequence is unknown as it was in this study, NanoDrop calculates a sample 

DNA concentration by applying a constant for ssDNA based on the average extinction 

 

A260 = Ɛ260cl 

where A260 – absorbance at 260 nm, 

Ɛ260 - extinction coefficient of the oligonucleotide at 260 nm in L mol-1 cm-1, 

c - concentration in mol L-1, 

l - pathlength in cm 

Equation 4. The Beer-Lambert Law of light absorbance. 
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Figure 27. Aptamer recovery yield after purification with Zymo oligo clean and concentrator 
kit. 50 μL of either library or sample were combined with 200 μL of binding buffer and 400 μL 
of absolute ethanol. The samples were filtered by centrifuging at 7,800 x g (suboptimal) or 
10,000 x g (optimal) for 30 sec. The samples were washed with 750 μL of washing buffer and 
centrifuged at 7,800 x g (suboptimal) or 10,000 x g (optimal) for 30 sec. To dry out, the 
samples were centrifuged for further 16,100 x g. Samples were collected into 15 μL of 
UltraPure water by centrifuging at 7,800 x g (suboptimal) or 10,000 x g (optimal) for 30 sec.    
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coefficient for all four bases (Equation 5). The constant, therefore, assumes an even distribution 

of A, T, G and C, which is typically not the case with oligonucleotide sequences. Consequently, 

the concentration values obtained by NanoDrop for each sample are only indicative of the actual 

DNA concentration (Figure 28).  

Additionally, NanoDrop provides two measures to assess DNA purity. The absorbance at 280 nm 

indicates the presence of proteins and other substances that absorb at this wavelength. In this 

study, the ratio of 260/280 of ~1.8 was considered high-purity DNA (Figure 28).  

The ratio of 260/230 is another indicator of DNA purity. In our experiments, DNA eluted from 

polyacrylamide gel always produced a strong peak at 230 nm (Figure 28). It’s likely due to the 

presence of Tris molecules that had diffused from the gel and the TBE buffer, supporting the 

need for further purification of the eluted aptamers.85       

      

 

c = A260*33 

where c - concentration in mol L-1 

A260 – absorbance at 260 nm 

33 – ssDNA constant  

Equation 5. NanoDrop calculation of the single-stranded DNA concentration. 

Figure 28. A representative DNA quantity and quality determination with NanoDrop spectrophotometer. 



73 

 

3.5. Selected aptamers neutralisation efficacy.  

To investigate the selected aptamers neutralisation capacity following the second round of 

SELEX, ELISA was performed against cN1A protein challenged with anti-cN1A antibodies with 

and without the aptamers addition. Bound anti-cN1A were detected with goat anti-human IgG, 

IgM, IgA antibodies.  

In the first experiment, anti-cN1A antibodies were pre-incubated with increasing concentrations 

of aptamers for one hour at room temperature. Then, the ELISA was performed following the 

standard protocol. In line with my hypothesis, I was expecting to observe the reduction in anti-

cN1A binding as detected by the decrease in ELISA absorbance values. However, upon the 

aptamer addition, the absorbance remained unchanged or increased (Figure 29). The increase 

was dose-dependent until the plateau was reached at 12.5 pM.  

While unexpected, this data could result from the selected aptamers exclusively blocking 

monomeric immunoglobulins, either IgG or IgA (mostly monomeric in serum). In theory, 

blocking of these antibodies could change the composition of the primary bound 

immunoglobulins in each ELISA well by increasing the proportion of multimeric IgM.  

Figure 29. ELISA investigating aptamer neutralisation efficacy. Anti-cN1A was pre-
incubated with increasing concentrations of aptamers up to 50 pM prior to the addition 
to cN1A-coated wells (20 μg/mL) for one hour at room temperature. Goat anti-human-
IgG/A/M antibodies were used for detection. Each anti-cN1A:aptamer ratio was assayed 
in triplicate. Columns represent mean absorbance values. Error bars represent standard 
deviation.  

0.00

0.10

0.20

0.30

0.40

0 1 6.25 12.5 25 50

A
b

so
rb

an
ce

 (
4

5
0

 n
m

)

aptamer concentration (pM) 



74 

 

Given that IgM consists of five subunits, it is theoretically able to conjugate with five times more 

secondary antibodies than IgG or IgA potentially increasing the endpoint absorbance values.  

This hypothesis relies on two assumptions. Firstly, some low-affinity anti-cN1A must remain 

unbound in the ELISA well after two-hour incubation under our conditions. Secondly, aptamer 

blocking of IgM anti-cN1A must be insufficient to prevent their interaction with cN1A protein.  

I have demonstrated in the previous experiment (Figure 18) that the absorbance of 0.2 

corresponds to incomplete clearance of antibodies from the solution by cN1A at 20 μg/mL. From 

this, it can be extrapolated that excess low-affinity unbound antibodies may be present in the 

ELISA wells, even though it has not been empirically demonstrated in this experiment.  

Regarding the second assumption, it is possible that aptamers that were capable of binding IgM 

were eliminated from the selection pool. If some of the IgM subunits remained unblocked during 

the SELEX, the entire immunoglobulin could be captured by the target protein and avoid 

recovery in the supernatant for selection.  

To assess whether the selected aptamers blocking efficacy could be improved, another 

experiment was carried out where the aptamer incubation with anti-cN1A was increased from 

one hour to overnight. The ELISA was performed as before following the standard protocol. 

Indeed, upon prolonged incubation, I observed a decrease in the final absorbance value of 25% 

for all antibody isotypes and 27% for IgG only (Figure 30). Using the data obtained from a 

Figure 30. ELISA investigating aptamer neutralisation efficacy. Anti-
cN1A was pre-incubated with 15 pM aptamers overnight at 4°C prior to 
the addition to cN1A-coated wells (20 μg/mL). Goat anti-IgG/M/A and 
anti-IgG antibodies were used for detection. Each condition was 
assayed once.  
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previous experiment (see Section 3.3.1), a standard absorbance curve was constructed (Figure 

31). The standard curve was fitted with a polynomial equation used to calculate the concentration 

of bound antibodies of all isotypes before and after the aptamer addition. It was determined that 

35% of anti-cN1A were neutralised following the overnight incubation with the selected 

aptamers. This data suggests that the aptamers selected after two cycles of SELEX may have low 

affinity against a subpopulation of anti-cN1A, possibly of IgM isotype. After prolonged 

incubation, even these low-affinity binders are capable of neutralising anti-cN1A interaction with 

their target protein.  

In future experiments, we will address the issue of the initial selection against IgM by isolating 

them from the anti-cN1A pool with streptavidin magnetic beads conjugated to biotinylated anti-

human-IgM antibodies. Once isolated, IgM will be fragmented into IgG-like subunits of 200 kDa 

using trypsin or 2-mercaptoethylamine (Figure 32). The selection from the initial aptamer pool 

will then be repeated to yield blockers against such fragmented IgM subunits.  

Figure 31. ELISA was performed with serially titrated anti-cN1A incubated for two hours at room temperature in 
wells coated with 20 μg/mL cN1A protein. Bound antibodies were detected with goat anti-human horseradish 
peroxidase (HRP)-conjugated antibodies against IgG/M/A and visualised via TMB substrate reaction at 450 nm. 
Mean of duplicate measurements are plotted and fitted with a polynomial trendline following the equation 
y=0.5247x2+0.0511x+0.0051 
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Figure 32. IgM fragments generated using trypsin, pepsin or 2-
mercaptoethylamine. Image adapted from: Thermo Scientific.  
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CHAPTER 4. Conclusion: aims achieved, lessons learnt and future directions. 

   

The work outlined in this thesis was aimed at selecting DNA aptamers that prevent binding of 

anti-cytosolic 5’-nucleotidase-1A antibodies to their target protein. The current knowledge of 

anti-cN1A antibodies’ structure is limited. Consistent with our findings, previous studies have 

demonstrated that the antibodies are polyclonal, meaning they target a variety of cN1A epitopes, 

and they exist as different isotypes.  The selection against such a heterogenous immunoglobulin 

pool inevitably adds complexity to an already complex and variable process. Nonetheless, 

targeting multiple binding sites may increase the chances of obtaining effective aptamers as a 

result of SELEX.  

As an additional obstacle, the target antibodies are not readily available. The only way to obtain 

anti-cN1A was to purify them from a seropositive IBM patient’s serum. Considering the 

advanced age and the declining health of many of the IBM patients in our cohort, it was 

challenging to obtain adequate amount of blood for purification. Nevertheless, we were fortunate 

to engage a patient with high antibody titres who was able to donate a sufficient volume of blood 

for this study. The purification methodology using magnetic beads was developed by modifying 

the manufacturer’s protocol. Once the methodology was established, repeated cycles of 

purification resulted in the isolation of 6.5 mg of anti-cN1A. This quantity was in excess of what 

was required for SELEX, therefore a large fraction of the purified antibodies was biobanked for 

future research.  

The selection methodology utilised in this work was based on the modified cyclical process of 

systematic evolution of ligands by exponential enrichment, otherwise known as SELEX. The 

method combines sequential stages of separating binding aptamers from the initial pool, 

amplifying the selected aptamers and creating a new aptamer pool by segregating and purifying 

the oligonucleotides. Similar to the natural selection of species, the strongest binders are enriched 

within the selection library at every cycle until only the most effective aptamers remain.  
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During this project, two selection cycles were completed. The first cycle was markedly 

challenging because every step required development and optimisation. Due to a significant loss 

of aptamers during the purification from polyacrylamide gel in the first round, insufficient DNA 

was remaining to carry over into the next SELEX cycle. Therefore, the first cycle was repeated 

using the initial library as the selection template. The number of amplification reactions was 

increased to ensure that an adequate amount of single-stranded DNA was obtained at the end of 

the cycle. The amplified binders from the repeated first cycle were combined with the binders 

selected previously and carried over to the following SELEX cycle. This way ensured that no 

effective aptamers were lost. Furthermore, a small amount of aptamers from each selection round 

was retained as a safeguard in case of a failed cycle guaranteeing that the SELEX process can be 

restarted from that cycle.  

At the end of the first round of SELEX, a total of 3,150 ng of ssDNA as measured by NanoDrop 

was obtained and taken forward to the next stage of selection. Following the capture SELEX, 

222 ng of ssDNA (7%) was retained. This result suggested that the screening method for 

neutralising aptamers was sufficiently stringent for the early cycles of SELEX.  

While I was successful in isolating some aptamers after two rounds of selection, it is yet to be 

determined whether these oligonucleotides are specific for anti-cN1A. To improve the aptamers 

specificity, the third SELEX cycle and every other cycle after that will include a counter-

selection step. The purpose of counter-selection is to remove any non-specific binders by 

incubating the aptamer pool with unrelated molecules, such as magnetic beads and secondary 

antibodies. At later stages of SELEX, the counter-selection will also include incubation with 

non-targeted human serum proteins. For this, the coating of an ELISA plate will be performed 

with human sera precleared from anti-cN1A immunoglobulins. The selected aptamers will then 

be incubated with the well-immobilised proteins allowing any non-specific aptamers to bind. 

The supernatant containing specific aptamers will be retained and used for further selection.  



79 

 

To assess the neutralising capacity of the selected aptamers, an ELISA was carried out where 

aptamer-blocked antibodies were challenged with immobilised cN1A. While the resultant 

absorbance values were expected to decrease with increasing aptamer concentration due to less 

anti-cN1A binding their target, I instead observed a dose-dependent increase in absorbance. I 

hypothesise that this result was due to the increased fraction of bound IgM that carry multiple 

binding sites for secondary antibodies prompting an increase in absorbance compared to the IgG 

and IgA-dominated antibody pool. This result strongly indicated that the selected aptamers have 

neutralising efficacy against IgG and IgA anti-cN1A. By increasing aptamer-antibody incubation 

time, we were able to demonstrate a 35% reduction in antibody-binding to cN1A suggesting that 

the selected aptamers carry neutralising capacity but have low avidity for anti-cN1A. I feel 

positive that ongoing selection following the established methodology will lead us to the 

development of aptamers with higher affinity and avidity for anti-cN1A immunoglobulins. 

Carrying out the selection against fragmented IgM will additionally increase the fraction of 

immunoglobulins against which the aptamers have blocking capacity.   

Extending this work, we plan to characterise the selected aptamers and evaluate their efficacy 

against anti-cN1A antibodies isolated from other IBM patients in the hope that they have broad 

neutralisation capacity. Furthermore, the generated aptamers will be modified for in vivo delivery 

and evaluated in a pre-clinical mouse model. Ultimately, we expect to advance the aptamers to 

human clinical trials with the aim to produce a novel therapeutic for anti-cN1A-positive IBM 

patients.  
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