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Abstract

We consider the problem of recovering a circular arrangement of data instances with

respect to some proximity measure, such that nearby instances are more similar. Ap-

plications of this problem, also referred to as circular seriation, can be found in various

disciplines such as genome sequencing, data visualization and exploratory data anal-

ysis. Circular seriation can be expressed as a quadratic assignment problem, which

is in general an intractable problem. Spectral-based approaches can be used to find

approximate solutions, but are shown to perform well only for a specific class of data

matrices. We propose a bilevel optimization framework where we employ a spherical

embedding approach together with a spectral method for circular ordering in order to

recover circular arrangements of the embedded data. Experiments on real and synthetic

datasets demonstrate the competitive performance of the proposed method.
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1. Introduction

Seriation is an exploratory combinatorial data analysis technique used for the iden-

tification of trends of gradually varying similarities between patterns. It operates by

reordering a set of arbitrary patterns so that similar ones are placed proximately while

dissimilar ones further apart. In essence, seriation aims at inferring an ordering (per-5

mutation) consistent with an underlying linear order of the data. Different seriation

algorithms work by simultaneously interchanging the rows and columns of a similar-

ity or dissimilarity matrix in order to optimize a specific objective. Originating from

the field of archeology where it was used to infer the chronological order of a set of

graves based on the artifacts recovered from them [1], seriation has found application10

in several areas such as sociology and psychology [2], gene sequencing and bioinfor-

matics [3], and exploratory data visualization [4] to identify global patterns (e.g., the

number or tendency of clusters). In this context, it has been put to practice to reveal

patterns in microarray data [5], and to arrange words or documents in text mining based

on their co-occurrence statistics in order to track the flow of conversations [6]. More15

recently, [7] developed mechanisms for comparing and fusing generated orderings, [8]

introduced the notion of robust seriation along with various modeling formulations and

solution procedures for that problem, and [9] proposed a set of scalable approximate

methods for seriation that can highlight global or local similarity pattern structure. A

systematic experimental analysis of seriation methods and measures can be found in20

[10].

In many cases however, the data objects may be arranged around a closed contin-

uum yielding a rather circular underlying order. This often occurs in disciplines where

the data instances are characterized by a cyclic procedure, e.g., in biology where partic-

ular cells can have a cyclic evolution procedure [11, 12], or in tomographic reconstruc-25

tion of a planar object based on its projections taken at various angles in [0, 2π] [13]. In

such situations, we are interested in recovering object orderings around a closed con-

tinuum that maintain the seriation effect, placing similar objects closely. In a matrix

representation, this can be visualized as a symmetric matrix of pairwise similarities

between objects where elements of each row/column decrease monotonically while30
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(a) Equispaced points
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(b) Randomly allocated points

(c) Circulant-CR map of (1a) (d) General CR map of (1b)

Figure 1: Illustration of two different types of CR similarity matrices generated by distances

between pairs of points residing on a circle.

moving to the right/bottom until some specific element and then increase again mono-

tonically until the end of each row/column and fold back from the left/top of the matrix.

Matrices of this form are called circular-Robinsonian (CR) [14]. Two different exam-

ples of CR similarity matrices are illustrated in Figure 1 that highlight their structural

differences according to different object arrangement on the circle. Higher intensi-35

ties in the maps correspond to higher similarities between objects. As in the seriation

problem, combinatorial optimization procedures or heuristics are sought here to simul-

taneously interchange rows and columns of such matrices in order to bring them in a

CR form.
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The aforementioned combinatorial problem, also referred to as circular seriation [15,40

16] can be modeled as an instance of the quadratic assignment problem (QAP) [17],

where a circulant-CR dissimilarity matrix is involved to represent absolute positional

differences of n data objects arranged evenly on a circle. As a QAP instance, circular

seriation is also an NP-hard combinatorial problem with (n−1)! possible discrete solu-

tions corresponding to different permutations [18]. Solving this problem to optimality45

can prove impractical when the problem size becomes large. In the ideal and infrequent

case where the data can be rearranged to form a circulant-CR similarity matrix, an op-

timal solution can be identified in polynomial time by sorting the patterns according

to the order of the inverse tangent of the angle between the first two non-trivial eigen-

vectors of a normalized Laplacian [13, 16]. In any other case however, this spectral50

solution is only guaranteed to approximately minimize the circular seriation problem

and therefore alternative approaches are desirable.

Since exact methods such as branch-and-bound [19] and dynamic programming

approaches [20] can only be practical for QAP instances of small sizes, suboptimal al-

gorithms and heuristics that maintain good running time performance are often needed.55

Some of them include improvement methods, such as local search, tabu search [21],

simulation approaches such as simulated annealing, and relaxation-based algorithms in

the context of graph matching [22, 23, 24]. Nevertheless, such methods are restricted

to act explicitly on the given set of similarities by only optimizing the corresponding

QAP objective and may thus fail to correctly capture the underlying order of the data.60

To overcome this limitation, we propose a bilevel optimization framework that employs

a spherical embedding approach along with a spectral method for circular ordering to

recover a circular arrangement of the embedded representations. This allows for the

generation of flexible embedded data points arranged in a circular way that conforms

with their original similarities. The resulting ordering yields better circular seriation65

performance than most compared approaches in terms of various measures.

The rest of the paper is organized as follows. In Section 2, we present recent devel-

opments in the field and the current state-of-the-art algorithms. In Section 3, we give a

detailed description of the proposed algorithm providing essential information on vari-

ous optimization-related aspects. Section 4 contains detailed experimental evaluations70
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and comparisons along with relevant analyses, while Section 5 concludes the present

work.

2. Related work

The problem of arranging objects around a circle was first discussed in [25] and [15].

Towards this direction, circular unidimensional scaling was developed in [26] where75

reconstructed distances between object pairs had to represent the original pattern prox-

imities as closely as possible. In the same context, [14] and [18] introduced the notions

of CR and strongly CR matrices, respectively, in an effort to model a more robust fitting

of data objects along a closed continuum.

The problem of embedding data in lower dimensional spaces while preserving their80

original characteristics and proximities has been very popular over the last decades for

exploratory data analysis and feature generation tasks. Laplacian eigenmaps (LE) [27],

Multidimensional scaling (MDS) [28] and Locally Linear Embedding (LLE) [29] are a

few typical methods that deal with this problem by exploiting the structure of the orig-

inal data instances using local neighborhood graphs. An overview of various types of85

dimensionality reduction methods can be found in [30]. Also, other works operate on

pairwise relations of heterogeneous data types to generate low-dimensional represen-

tations on a joint common space [31]. Many of the aforementioned approaches have

been extended to map proximities on the sphere [32] to suit applications where the

data lie on spherical manifolds. In the more recent work of [33], the authors propose to90

isometrically embed dissimilarities between objects in spherical and hyperbolic spaces.

Recently, several methods have employed embedding-based algorithms for arrang-

ing data objects around a close continuum. These include the work in [34] which

recovers a circular ordering by sorting the inverse tangent of the angle between the

two main eigenvectors of a correlation matrix, and the work in [13] that also relies95

on the angular position between the first two non-trivial eigenvectors resulting from a

Laplacian embedding problem. In a similar context, [35] propose the rank-two ellipse

seriation method based on iterative application of correlations of the original dissimi-

larities to converge directly to a two-dimensional subspace. More recently, [36] tackle
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the problem of recovering circular orderings of cell-cycle generated data by also em-100

ploying MDS and by sorting the angle between the first two embedding coordinates,

while [16] propose a unifying framework for capturing the order of general filamentary

structures by identifying local data neighborhoods in a lower dimensional space using

suitable spectral methods for linear or circular seriation.

In this work we propose a circular seriation method where data instances are em-105

bedded in a low-dimensional hypersphere and ordered using a spectral method operat-

ing within a bilevel optimization framework.

3. Proposed methodology

3.1. Preliminaries

Let π denote a permutation that corresponds to a mapping (treated also for conve-

nience as a vector) of the set [n] = {1, 2, . . . , n} onto itself. We use the convention

that a permutation presents a list of objects, and this implies that the object with label

πi is assigned position i. This can also be represented by an n× n matrix Π from the

set of n! permutation matricesMn, with elements defined by

Πij =

 1, if πi = j,

0, otherwise.
(1)

The above allows the conversion Πe = π between the two structures, where e =110

(1, 2, ..., n)> is the identity permutation.

Combinatorial problems that involve the optimal arrangement of objects can be

modeled via objective functions parametrized by permutation vectors or permutation

matrices. In particular, the previously mentioned QAP describes models that are quadratic

with respect to a permutation matrix, and is expressed as

QAP(A,B) , tr
[
ΠAΠ>B>

]
=

n∑
i,j=1

AπiπjBij , (2)

where A and B are the problem parameter matrices.

For circular seriation we are interested in QAP instances with A being a symmetric

data-dependent matrix that encapsulates the pairwise similarities between n objects
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and B a circulant-CR dissimilarity matrix with elements [15]

Bij =

|i− j|, if |i− j| ≤ bn2 c,

n− |i− j|, if |i− j| > bn2 c.
(3)

The above acts as a circular seriation template where the elements of the first row

(column) increase monotonically while moving to the right (bottom) until the bn2 c-

th element and then decrease again monotonically until the end of the row (column),115

and fold back from the left (top) of the matrix. Note that the turning point can also

be defined to be any index within (1, n) for each row (column), producing different

circular seriation effects [37], but throughout this work for simplicity we use the model

of Eq. (3).

In the ideal case where A can be rearranged to a circulant-CR matrix, it has been

shown [16] that the spectral-based approach proposed by Coifman [13] can solve the

circular seriation problem and provide approximate solutions for general CR matrices.

In detail, the method initially solves the following Laplacian embedding problem

arg min
Z∈Rn×k

tr
[
Z>Lrw

AZ
]

s.t. Z>Z = Ik,

(4)

where Z represents an embedding matrix with each row {zi}ni=1 corresponding to the120

coordinates of the i-th embedded data point, and Lrw
A = In − diag

(
A1n

)−1
A with

1n being the constant vector of all ones; the diag(·) operator contextually forms either

a vector from the diagonal of a matrix or a diagonal matrix from a vector. Lrw is a

normalized Laplacian motivated by its close approximation of the Laplace-Beltrami

operator on curves even when the data is distributed nonuniformly [13]. Due to the125

orthogonality constraint Z>Z = Ik Eq. (4) can be solved with an eigen-decomposition.

The final output is a circular ordering obtained from sorting the inverse tangent of the

angle between the first two non-trivial eigenvectors of Lrw
A . The main steps of this

spectral approach are described in Algorithm 1.

Nevertheless, in most cases where the data matrix is far from an ideal circulant-130

CR form, the previous spectral approach is not guaranteed to solve circular seriation

and in practice can have poor performance [16]. Alternatively, QAP solvers, such as
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Algorithm 1 Spectral Method for Circular Seriation
Input: data points x1, . . . ,xn ∈ Rk

Output: permutation matrix Π ∈Mn

1: function CircularSeriation(X)

2: Construct weight matrix W from the pairwise distances of {xi}ni=1

3: Set G = diag
(
W1n

)−1
W diag

(
W1n

)−1

4: Compute normalized Laplacian Lrw
G and its first two non-trivial eigenvectors v2,v3

5: Calculate ξ : ξ(i) = tan−1(v3(i)/v2(i)) + 1[v2(i) < 0]π

6: return Π that sorts ξ in ascending order

simulated annealing, tabu search and evolutionary approaches [21], can be employed

but these can be sensitive to noise in the data or absence of strong circular trends in

the patterns as they are restricted to operate on the given similarities that may not fit135

perfectly the assumed template. The idea here, is that instead of working solely with the

set of original similarities to optimize explicitly the objective of Eq. (2), we use a hybrid

model that additionally seeks more flexible low-dimensional pattern representations

embedded on a (k − 1)-dimensional sphere. The motivation for spherical embeddings

relies on the observation that when the underlying order of the data is circular these140

may lie on arcs or circles. In particular, we optimize a bi-objective function under the

constraints that the data representations are arranged around a closed continuum such

that their latent ordering is preserved. In the following subsection we give a detailed

description of the proposed methodology.

3.2. Circular object arrangement using a bilevel model145

Our goal is to generate a set of optimal embedded points {zi}ni=1 lying on the unit

sphere of dimension k − 1 (with k � n) that are arranged circularly and at the same

time maintaining overall their original similarities. Although k can be set to any value,

in practice it was observed that smaller values yield better performance. For the opti-

mizing model, we combine a least-squares loss function, together with a QAP objective

involving the cosine similarities ZZ> of the embedded points and the circular template
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of Eq. (3) to penalize embedded points deviating from a circular order. A weighted

combination of these two objectives allows for the generation of a more flexible cir-

cular arrangement of patterns while preserving on average their original similarities.

To enforce the circular ordering, we constrain the permutation to capture the circu-

lar ordering of the current embedded representations in a secondary optimization step.

Additional constraints are also used to avoid trivial cases whereby all embedded data

collapse on a single point cluster on the unit sphere. We formulate the above require-

ments in the following optimization

min
Z∈Rn×k

Π∈Mn

{
φ(Z,Π) ,

∑
i>j

(
Rij − ‖zi − zj‖2

)2

+
1

n
tr
[
ΠZZ>Π>B>

]}
(5a)

s.t. diag
(
ZZ>

)
= 1n, (5b)

1>nZ = 0>k , (5c)

Π ∈ arg min
Π′∈Mn

f
(
Z
)
, (5d)

where 0k is the constant vector of all zeros, and Rij = max(d(A))
n [d(A)]ij . Here d(·)

can be any function that converts similarities to dissimilarities which is then scaled to

effectively combine the two objectives for the optimization. To ensure the embed-

ded points lie on the (k − 1)-dimensional unit sphere, we enforce constraint (5b).

However, the objective φ(Z,Π) can admit a minimum energy equal to
∑
i>j R

2
ij +150

2
n

∑
i>j Bij =

∑
i>j R

2
ij + n2

4 for even n, or
∑
i>j R

2
ij + (n−1)2(n+1)

4n for odd n,

due to the trivial solution with all embedded data patterns collapsing on a single point.

To control this, we use constraint (5c) which forces the coordinates of the embedded

representations zi to be centered. Additionally, this constraint encourages better sepa-

ration among the embedded points (other trivial cases of points collapsing on just few155

antipodal clustered configurations may arise only when the original data support such

configurations).

Problem (5) forms a parametric bilevel optimization problem of mixed discrete and

continuous variables and can be solved sequentially as a two-stage decision problem

with each level’s variable treated as a parameter for the other [38]. Function f(·) in160

the lower level optimization problem (5d) can be any function of Z which when op-

timized recovers a circular ordering of the embedded points currently existing in the
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upper level, e.g. f
(
Z
)

= tr
[
ΠAZΠ>B>

]
with AZ being any symmetric similarity

matrix constructed from Z. In our case, we employ Coifman’s spectral method [13]

described in Algorithm 1 due to its simplicity and efficiency. An approximate solu-165

tion to (5) can be found using the augmented Lagrangian multipliers method (ALMM),

where the upper level optimizes the Lagrangian formulation accommodating Eqs. (5a),

(5b) and (5c), and in each steepest descent iteration the feasible point of the upper level

problem is used to find an approximate solution for the lower level problem (using

Algorithm 1 to recover a circular ordering). Subsequently, the upper level is updated170

accordingly and this two-stage process continues iteratively until convergence. Prob-

lem (5) effectively relies on two parameters that interact to capture different aspects

of the problem, that is Z and Π to gradually capture locations and order, respectively.

The locations are continually adjusted to fit the original similarities and comply with

the current ordering, while the ordering is being adjusted to follow the current embed-175

ded representations. This fact provides more flexibility in the optimization procedure

to result to better seriation results in terms of various measures, without high sensitivity

and over-reliance to the data similarity matrix and its conformity to the given seriation

template.

The augmented Lagrangian of Eqs. (5a)-(5c) is

L
(
Z,Π,λ,µ, ρλ, ρµ

)
=
∑
i>j

R2
ij +

1

n
tr
[
ΠZZ>Π>B>

]
+ tr

[
Z>VZ

]
− 2tr

[
Z>UZ

]
+
〈
λ,1>nZ

〉
+
ρλ
2

∥∥1>nZ
∥∥2

2

+
〈
µ,diag

(
ZZ>

)
− 1n

〉
+
ρµ
2

∥∥diag
(
ZZ>

)
− 1n

∥∥2

2
,

(6)

where λ ∈ Rk and µ ∈ Rn contain the Lagrange multipliers of the n + k constraints

and ρλ, ρµ > 0 are the corresponding penalty parameters. Note, that the loss function∑
i>j

(
Rij−‖zi − zj‖2

)2

can be equivalently expressed as
∑
i>j R

2
ij+tr

[
Z>VZ

]
−

2tr
[
Z>UZ

]
, with

Vij =

−1, i 6= j,

n− 1, i = j,

10



and

Uij =


− Rij

‖zi−zj‖2
, if i 6= j ∧ ‖zi − zj‖2 6= 0,

0, if i 6= j ∧ ‖zi − zj‖2 = 0,

−
∑
j 6=i Uij , if i = j.

Consequently, the following bilevel problem can be solved

min
Z∈Rn×k

Π∈Mn

L
(
Z,Π,λ,µ, ρλ, ρµ

)
s.t. Π = CircularSeriation

(
Z
)
,

(7)

where the upper-level problem can be solved as an unconstrained problem using any

standard steepest descent method. Here we employ a BFGS Quasi-Newton method

with a cubic line search procedure, where the gradient of the augmented Lagrangian

with respect to Z is calculated as

∇ZL
(
Z,Π,λ,µ, ρλ, ρµ

)
= 2VZ− 2UZ +

2

n
Π>B>ΠZ

+ 1nλ
> + 2 diag

(
µ
)
Z + 2ρµ

(
ZDZ− Z

)
+ ρλJZ.

(8)

with ZD = diag
(

diag
(
ZZ>

))
and J = 1n1>n . The use of an augmented Lagrangian180

approach allows for a more flexible embedding procedure on spheres of adjusting radii

regulated by penalty values until a better circular configuration is located. We refer to

this approach as Circular Seriation using Bilevel Optimization (CSBO).

3.3. CSBO initialization

The objective in Eq. (5a) is not necessarily convex in Z and the minimization pro-

cess can get trapped in a local minima. In such cases, it is extremely useful to seed the

optimization with another method, such as the spectral [13], or classical MDS [39], or

any other fast method providing a reasonable starting point. In our case, we initialize

problem (5) by solving the following a variant of Eq. (4), given by

arg min
Z∈Rn×k

tr
[
Z>LAZ

]
s.t. diag

(
ZZ>

)
= 1n,

1>nZ = 0>k ,

(9)
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Figure 2: (a) QAP objective values for the initialization method and CSBO logged at each steep-

est descent iteration. (b) Circular ordering proximity in terms of absolute Kendall’s τ [40, 16]

and PPC [7], between permutations recovered at consecutive optimization steps in CSBO. Values

closer to 1 indicate lesser change between consecutive solutions.

because it showed better performance in practice. Problem (9) embeds points on the

sphere while maintaining their similarities using the unnormalized Laplacian LA of

A. As before, we need to ensure that the embedded points are centered to avoid the

trivial solution of a single collapsed cluster. We solve an unconstrained version of

problem (9) where the constraints are converted to penalty functions and solve it again

with a Quasi-Newton method. The final ordering is determined by the angle of first

two embedding coordinates as in step 5 of Algorithm 1. We specifically solve

arg min
Z∈Rn×k

tr
[
Z>LAZ

]
+ σ

∥∥1>nZ
∥∥2

2
+ σ

∥∥diag
(
ZZ>

)
− 1n

∥∥2

2
, (10)

where σ = max(A) × n. Empirical observations showed that repeating this multiple185

times, starting from different random Z on the sphere, and keeping the best to seed

CSBO helps improve the final performance.
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Algorithm 2 ALMM-based CSBO

Input: dissimilarity matrix R ∈ Rn×n, initial points Z(0) ∈ Rn×k and Π(0) ∈ Mn

returned by (10), embedding dimensionality k

Parameters: ε = 10−1, γ = 5

Output: Z ∈ Rn×k,Π ∈Mn

1: Let t = 0,λ(0) = 0,µ(0) = 0, ρ
(0)
λ = ρ

(0)
µ = 1

2: while not converged do

3: g(t) = ∇ZL
(
Z(t),Π(t),λ(t),µ(t), ρ

(t)
λ , ρ

(t)
µ

)
4: Z(t+1) = arg minL

(
Z(t),Π(t),λ(t),µ(t), ρ

(t)
λ , ρ(t)

µ

)
5: Π(t+1) = CircularSeriation

(
Z(t+1)

)
6: if

∥∥g(t)
∥∥
∞ ≤ ε ∧

∥∥∥diag
(
Z(t+1)Z(t+1)>

)
− 1n

∥∥∥
2
< ε then

7: converged

8: end if

9: λ(t+1) = λ(t) + ρ
(t)
λ

(
1>nZ(t+1)

)
10: µ(t+1) = µ(t) + ρ

(t)
µ

(
diag

(
Z(t+1)Z(t+1)>

)
− 1n

)
11: ρ

(t+1)
λ = ρ

(t+1)
µ = γρ

(t)
λ

12: end while

13: return Z,Π

Figure 2a demonstrates the performance difference between problem (10) and the

seeded CSBO, in terms of QAP objective for each steepest descent iteration. It is

interesting to observe that problem (10) alone can recover orderings that yield good190

performance, but when used to initialize CSBO, performance and convergence are

significantly improved. This further highlights the benefit of the proposed approach.

Figure 2b shows how the ordering changes during the optimization for CSBO with

initialization and illustrates its fast convergence behavior. The complete steps of the

proposed framework are summarized in Algorithm 2, which runs on O(n3) time com-195

plexity since the most costly operation in each iteration is the eigen-decomposition of

step 5.
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4. Experimental results

We present a series of experiments in order to compare the proposed methodol-

ogy with other relevant methods1 such as heuristics and spectral-based approaches that200

approximately solve the circular seriation problem. Results are assessed using vari-

ous seriation measures and permutation proximities as well as the corresponding QAP

objective values (2). All methods are also compared in terms of running-time perfor-

mances. Several datasets ranging from synthetic to real are used in this comparison.

In particular, we experiment with the following methods:205

• CSBOk: the proposed algorithm for embedding dimensionality k.

• CSpectralA: a spectral method [13] that recovers a circular ordering based on the

first two non-trivial eigenvectors of the normalized Laplacian.

• CSpectralB: a spectral method [16] based on CSpectralA that recovers latent

orderings using pre-processed similarities based on object proximities in a low210

dimensional embedding space from a Laplacian embedding.

• FAQ: the Fast Approximate QAP method [22] based on the relaxation in the

Birkhoff polytope and the Frank-Wolfe method using Eq. (3) as a template.

• SA: a simulated annealing-based optimizer applied on problem (2) also based on

Eq. (3) as a template.215

• R2E: a rank-two ellipse seriation method based on iterative application of the

correlation function on the original dissimilarities [35].

• Circ-GnCR: the GnCR method [9] modified to accommodate circular seriation

by using the circulant positional templateBij =
[

cos(2π i−1
n )−cos(2π j−1

n )
]2

+[
sin(2π i−1

n ) − sin(2π j−1
n )
]2
, i, j ∈ {1, . . . , n}, which showed better perfor-220

mance in practice for that method.

1The code for the proposed algorithms and other evaluated methods is included in our Matlab toolbox for

seriation, available at http://pcwww.liv.ac.uk/∼goulerma/software/seriation.zip.
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Implementations of the algorithms are in MATLAB ver.9.4, and for timing compar-

isons we use a 3.4 GHz Intel i7 desktop with 8 GB of memory. We selected a range of

synthetic and real datasets, associated with a similarity matrix A ∈ Rn×n, where we

aim to recover a circular ordering of the data that can indicate relations among genes225

that have cyclic functionality, cortical functional areas of the human brain, semantic

contents of images with cyclic gradual variations, etc. These sets include:

• Synthetic datasets:

– Points On the Circle (POC): a 76×76 similarity matrix A generated, using

Euclidean distances and a Gaussian kernel, with points randomly placed on230

a circle.

– Points On the Ellipse (POE): a 94×94 similarity matrix A, generated as

above, with points randomly placed on an ellipse.

• Real datasets:

– Yeast Cell Cycle Gene Expression (Yeast): a 250×18 gene expression data235

matrix from 250 yeast saccharomyces cerevisiae cell cycle genes [11], con-

verted to dissimilarities using the same preprocessing used in [3], turned to

similarities by negation.

– Human brain functional coactivation network (Human Brain): a 638×638

similarity matrix A whose elements represent functional associations be-240

tween cortical areas in the human brain [41].

– Rotating Robot (Robot): a 72×72 similarity matrix A from 72 rotating

robot images [42] captured at 5 degrees apart, around 360 degrees and or-

ganized in 12 classes, each spanning 30 degrees. For the analysis of images

the SIFT [43] vector descriptors were employed with patches of 12 pixels245

long overlapping every 6 pixels. A bag-of-visual-words representation was

used and clustering was performed by k-means with a cluster size of 500.

To derive the similarity matrix we use the exponentiated χ2 distance.

– Fashion-MNIST (FMNIST): a 1,000×1,000 matrix A from the FMNIST

image dataset [44], where images represent different fashion products from250
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10 categories. To derive the similarity matrix, a similar preprocessing as in

the Robot dataset was applied.

– Drosophila Circandian Gene Expression (Drosophila): a 2,837×16 gene

expression data matrix X from 2,837 Drosophila melanogaster circandian

genes [12]. For the generation of the similarity matrix A we assume Aij =255 ∣∣x>i xj
∣∣, where xi is the i-th row of X.

4.1. Benchmark evaluation

Firstly, we evaluate the utility of the proposed algorithm in terms of the QAP objec-

tive and also the Hamiltonian cycle (HC) measure, proposed in [15] to assess circular

seriation with emphasis on the local structure of the ordering. We additionally intro-

duce a new measure for circular seriation that counts the number of CR violations of a

similarity matrix described by the following loss function

CRV(A) = min
ω∈[n−2]

{ ∑
i+ω<k<j

h(Ai,k, Ai,j) +
∑

i+ω<k<j

h(Ak−ω,j , Ai,j)

+
∑

j−ω≤i<k<j

h(Ai,j , Ai,k) +
∑

j−ω≤i<k<j

h(Ai,j , Ak,j)

}
,

(11)

where

h(x, y) =

0, if x > y,

1, otherwise.

Specifically, for each diagonal denoting a possible turning point in the matrix, we cal-

culate the number of Robinsonian violations on the left of the diagonal (last two sum-

mation terms of Eq. (11)) and the number of anti-Robinsonian violations on the right260

(first two summation terms of Eq. (11)). We report the minimum over all ω values

indicating the original turning point of the matrix and we refer to this measure as CRV

(Circular-Robinsonian Violations).

Since the values on different datasets are not comparable, for interpretability we

report a normalized value for each measure that quantifies the deviation from the best

performer for that dataset. For the i-th dataset the deviation for the j-th algorithm is

defined as

Θij =
∣∣∣ scoreij − besti

besti

∣∣∣. (12)
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Tables 1, 2 and 3 show the normalized deviation from the best QAP, HC and CRV

values respectively, for each algorithm and for the 7 datasets (boldfaced table entries265

denote best performance). For the proposed method, we experimented with various

values of embedding dimension k, but we present results for the two best performing

cases of k = 2, 3. We can see that for k = 2 the proposed method outperforms all

other algorithms in terms of QAP objective value. For the HC measure CSBO2 remains

competitive against the best performing FAQ in all datasets apart from Human Brain. In270

terms of CRV, CSBO performs best for k = 2, 3, while spectral-based methods remain

competitive. In general, the proposed approach maintains a competitive performance

also for k = 3 for all measures.

CSpectralA CSpectralB FAQ SA Circ-GnCR R2E CSBO2 CSBO3

POC 0 0 0 0 0 0 0 0

POE 0 0 0 0 0.0860 0 0 0

Yeast 0.0013 0.0025 0.0051 0 0.0159 0.0025 0.0005 0.0006

Human Brain 0.8509 0.1034 0 0.0424 0.1348 0.0230 0.0132 0.0325

Robot 0.0075 0.0018 0.0117 0.0038 0.0034 0.0036 0 0.0011

FMNIST 0.0086 0.0001 0.0086 0.0071 0.0461 0.0085 0 0.0079

Drosophila 0.0119 0.0139 0 0.0139 0.0317 0.0167 0.0048 0.0037

Average 0.1257 0.0174 0.0036 0.0096 0.0454 0.0078 0.0027 0.0065

Table 1: Deviation from the best QAP objective value across the 7 datasets.

Empirical evaluations have shown that depending on the problem at hand, different

embedding dimensions k can yield different performance, owing to the underlying di-275

mensionality of the data, but in general k = 2 appeared to perform best in the present

benchmark. It is worth noting the poor performance of the continuation-based Circ-

GnCR method, which in this case can be explained due to the nature of the involved

optimizing objective that cannot be rendered convex for the initial steps of the con-

tinuation scheme; this is an important attribute for the well-behavior of GnCR-based280

methods as shown by [9].

Figure 3 shows similarity maps of the Yeast gene expression dataset for four dif-
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CSpectralA CSpectralB FAQ SA Circ-GnCR R2E CSBO2 CSBO3

POC 0 0 0 0 0 0 0 0

POE 0 0 0 0 0.1836 0 0 0

Yeast 0.0860 0.1219 0.0300 0 0.1170 0.0929 0.0743 0.1054

Human Brain 0.5455 0.3344 0.0355 0 0.4345 0.4056 0.3775 0.4380

Robot 0.1559 0.0519 0 0.0253 0.0958 0.1354 0.0580 0.1133

FMNIST 0.1994 0 0.1006 0.1259 0.1260 0.1892 0.0049 0.1906

Drosophila 0 0.0017 0.0267 0.0611 0.0602 0.0087 0.0485 0.0503

Average 0.1410 0.0728 0.0275 0.0303 0.1453 0.1188 0.0805 0.1282

Table 2: Deviation from the best HC score across the 7 datasets.

CSpectralA CSpectralB FAQ SA Circ-GnCR R2E CSBO2 CSBO3

POC 0.1277 0.1771 1.7852 3.1821 0 0 0.0631 0.0631

POE 0.4443 0.5295 0 0.4891 1.0011 0.4443 0.4419 0.4419

Yeast 0.1054 0.1162 0.1539 0 0.1736 0.0885 0.1026 0.1045

Human Brain 1.3291 0.2509 0 0.1124 0.3600 0.1268 0.1275 0.1532

Robot 0.2883 0.1725 0.8489 0.2661 0.2184 0.1211 0 0.0130

FMNIST 0.1033 0.0363 0.0778 0.0618 0.6043 0.2229 0 0.0826

Drosophila 0.2216 0.2287 0.0131 0.2393 0.2558 0.2348 0.0004 0

Average 0.4366 0.2519 0.4798 0.7251 0.4355 0.2064 0.1226 0.1431

Table 3: Deviation from the best CRV value across the 7 datasets.

ferent methods highlighting various circular seriation effects. SA and the proposed

method reveal slightly more distinct concentrations of high and low similarities. This

is also reflected in Tables 1, 2 and 3. In a similar fashion, Figure 4 demonstrates circu-285

larly seriated similarity maps of the Human Brain dataset along with the corresponding

functional association connectivity graphs. We can observe that the proposed method

can reveal functional associations between more cortical areas of the human brain com-

pared to CSpectralA, showing similar results to the original meta-analysis of [41], and

additionally suggesting a circular functional association among the different cortical290

18



areas.

(a) CSpectralA map (b) R2E map

(c) SA map (d) CSBO2 map

Figure 3: Reconstructed similarity maps of the Yeast dataset for four different methods. High

similarities (red) appear as block formations along the main diagonal and the anti-diagonal cor-

ners, while low similarities (blue) concentrate in off-diagonal regions.

As far as running-time performance is concerned, Figure 5 shows that when the

dataset size increases significantly, the proposed method becomes slower compared to

spectral methods. It has been empirically observed however, that in cases where the

data is near circulant, CSBO converges faster to a local solution. This can be explained295

as the corresponding QAP is easier to solve in the special case where the similarity

matrix is a circulant-CR one (as shown later in the Appendix). Figure 6 illustrates the

convergence behavior of CSBO for two different cases of similarity matrices. Overall,

the proposed method has a reasonable trade-off between running time and seriation
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(a) CSpectralA Human Brain map (b) CSBO2 Human Brain map

(c) CSpectralA connectivity graph (d) CSBO2 connectivity graph

Figure 4: Reconstructed similarity maps of the Human Brain dataset and corresponding func-

tional association connectivity graphs of the brain, for CSpectralA and CSBO2. Straight line

colors in the bottom plots correspond to groups of regions with similar functional association.

quality.300

4.2. Evaluating circularly ordered images using class information

We further assess the effectiveness of the proposed model using class label informa-

tion for two image datasets. We define the binary class association matrix as Cij = 1

iff objects i and j belong to the same class, and we use a suitably modified measure

for circular seriation, similar to [9], that quantifies the occurences a seriation algorithm
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0 10 20 30 40 50 60

number of iterations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Q
A

P
 v

a
lu

e

10
4

Non-circulant matrix

Circulant matrix

Figure 6: Convergence behavior of the proposed method for circulant and non-circulant CR

matrices.

places objects from different classes adjacently, as

δcount(π,C) ,
n−1∑
i=1

(
1− Cπ(i)π(i+1)

)
+
(
1− Cπ(1)π(n)

)
. (13)

Additionally, we employ another adapted measure for assessing circular orderings that

penalizes objects from the same class that are placed apart [9]. It can be formulated
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as (2), but the similarity matrix A is replaced with C, according to

cQAPsup(π,C,B) ,
n∑

i,j=1

Cπiπj
Bij . (14)

Table 4 shows results for the above measures and the two image datasets. For the

Robot dataset and for both measures, we can see that CSpectralB performs best, while

CSBO2 scores very closely. Figure 7 demonstrates two different circular seriation ef-

fects on the robot images for CSpectralA and CSBO2, with the latter recovering an305

order that reflects the smooth variation across the patterns as opposed to CSpectralA

which fails to do so. Similarly, for the FMNIST dataset, the proposed CSBO2 scores

very close to the best (FAQ) in terms of δcount, while both CSBO2 and CSBO3 perform

very well in terms of cQAPsup, with the latter scoring best. Figure 8 illustrates the un-

derlying cyclic order of the 10 different categories of FMNIST identified by CSBO2,310

which reveals a smooth variation according to the semantic content of the fashion im-

ages. In general, we can see that despite the fact that image seriation is challenging

due to the quality of the extracted image descriptors, the proposed approach appears to

perform well in terms of recovering circular orderings that place images of the same

category closely.315

δcount cQAPsup

Robot FMNIST Robot FMNIST

CSpectralA 53 518 1,924 1,068 (×104)

CSpectralB 14 414 876 851 (×104)

FAQ 44 364 1,896 983 (×104)

SA 35 392 1,800 813 (×104)

Circ-GnCR 40 435 3,044 902 (×104)

R2E 51 473 1,916 848 (×104)

CSBO2 16 400 896 812 (×104)

CSBO3 49 456 1,872 820 (×104)

Table 4: δcount and cQAPsup measures for each algorithm for the labeled Robot and FMNIST

image datasets.
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(a) CSpectralA

(b) CSBO2

Figure 7: Image sequence of a robot captured throughout different angles, ordered circularly

using CSpectralA and CSBO2. For presentation reasons, a subset of the 72 robot images is

displayed here.

Finally we evaluate the ability of CSBO to find a solution that is close to the true un-

derlying ordering of the Robot dataset. Table 5 employs a modified absolute Kendall’s

τ score to calculate the rank correlation between two circular orderings [40, 16], and

also the agreement in terms of positional proximities using the PPC [7] measure. We

can see that CSpectralB and CSBO2 maintain scores close to the optimum, with the320

former scoring slightly better.

5. Conclusion

In this work we proposed a new algorithm for the circular seriation problem. Our

approach operates within a bilevel optimization framework by iteratively embedding

data instances circularly on a spherical space such that their original similarities are325

preserved. The flexibility of this approach is that it is not restricted to rely exclusively

on the original similarities, but it also maintains a set of low-dimensional representa-
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Figure 8: Circular ordering of the distinct image categories from the FMNIST dataset as recov-

ered by CSBO2.

|τ | PPC

CSpectralA 0.218 0.424

CSpectralB 0.995 1

FAQ 0.261 0.440

SA 0.241 0.428

Circ-GnCR 0.451 0.566

R2E 0.225 0.429

CSBO2 0.991 0.999

CSBO3 0.225 0.429

Table 5: Modified Kendall’s |τ | and PPC scores between final solution and true underlying

circular ordering, for the Robot dataset. Values closer to 1 indicate better ordering agreement.

tions to recover the underlying ordering in a more robust manner. This makes it a useful

alternative for exploratory data analysis as a means to recover a consistent arrangement

of gradually varying data in a wide range of applications. Its practical utility is demon-330

strated through experiments which show a very competitive performance against other

circular seriation methods in terms of various measures. As running time performance

is concerned, CSBO appears to be less scalable when the problem size rapidly increases
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and therefore a future improvement of this work would be to address this particular is-

sue.335

6. Appendix

In this appendix we show that given a circulant-CR similarity matrix (decreasing

circulant) S ∈ Rn×n
≥0 and a circulant-CR dissimilarity matrix (increasing circulant)

Q ∈ Rn×n
≥0 , then all cyclic shifts of the identity permutation are optimal solutions to

the problem QAP(S,Q).340

Let N∆ be a binary increasing symmetric circulant matrix, sufficiently defined by

its first row

N∆
ij =

 0 if |i− j| mod (n−∆ + 1) < ∆

1 otherwise,
(15)

for 1 ≤ j ≤ i ≤ n and with 1 ≤ ∆ ≤ bn/2c + 1, denoting the first element that

increases in the first row. Accordingly let the decreasing symmetric circulant matrix be

defined as

M∆
ij =

 1 if |i− j| mod (n−∆ + 1) < ∆

0 otherwise.
(16)

We can now define both S and Q as a conic combination of the binary circulant

matrices M∆ and N∆ [45], respectively, as

S = α0J +

bn/2c+1∑
∆=1

α∆M∆, (17)

Q = β0J +

bn/2c+1∑
∆=1

β∆N∆, (18)

with 1 ≤ α∆, β∆ ≤ bn/2c+1. In our case Q is a dissimilarity matrix and thus β0 = 0.

By definition, 〈M∆,N∆〉 = 〈M∆,J〉 − 〈M∆,M∆〉 = 0, and hence there exists no

permutation π that can result to a smaller value for QAP(M∆, N∆).
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It is easy to see that

〈M∆
π ,N

∆〉 ≥ 〈M∆,N∆〉

⇒
bn/2c+1∑

∆=1

β∆〈M∆
π ,N

∆〉 ≥
bn/2c+1∑

∆=1

β∆〈M∆,N∆〉

⇒ α0J +

bn/2c+1∑
∆=1

α∆〈M∆
π ,Q〉 ≥ α0J +

bn/2c+1∑
∆=1

α∆〈M∆,Q〉

⇒ 〈Sπ,Q〉 ≥ 〈S,Q〉. (19)

This concludes the proof that the identity permutation (including its n−1 cyclic shifts)

is an optimal solution to the problem QAP(S,Q).345
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