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Topological properties of electronic states in multivalley two-dimensional materials, such as mono-
and bilayer graphene, or thin films of rhombohedral graphite, give rise to various unusual magneto-
transport regimes. Here, we investigate the tunability of the topological magnetic moment (related
to the Berry curvature) of electronic states in bilayer graphene using strain and vertical bias. We
show how one can controllably vary the valley g-factor of the band-edge electrons, g∗v , across the
range 10 < |g∗v | < 200, and we discuss the manifestations of the topological magnetic moment in
the anomalous contribution towards the Hall conductivity and in the Landau level spectrum.

Strain in bilayer graphene (BLG), sketched in Fig. 1,
affects its low-energy electronic properties far greater
than in its monolayer allotrope [1–5], generating qual-
itative changes in its low-energy spectrum close to the
neutrality point. The earlier-discussed effects [1–3] of
unilateral strain and shear deformations in Bernal (A′B)
stacked bilayers include the Lifshitz transition [6] for
weakly n-doped and p-doped structures, accompanied by
a redistribution (even a coalescence) of the Berry phase
±π singularities in the bilayer’s electronic bands [1, 7].
These changes are caused by the interplay between the
intralayer and skew (AB′) interlayer hopping parameters
of electrons, modified by the deformations.

A transverse displacement field, induced by electro-
static gating of bilayers, is another factor that qualita-
tively changes their electronic properties. The displace-
ment field generates an asymmetry between the layers,
opening up a gap in the energy spectrum [7, 8] and
smearing the Berry phase singularities into “hot spots”
of Berry curvature, Ω±(p), located near the valley cen-
ters K± (sign-inverted distributions are found in oppo-
site valleys, Ω+(p) = Ω−(−p)). According to the fun-
damental properties of Bloch-Wannier functions [9, 10],
a finite Berry curvature of the electronic bands is associ-
ated with a finite intrinsic angular momentum, therefore,
a resulting magnetic moment of the plane-wave states of
the electrons in the corresponding parts of the Brillouin
zone (BZ) of the material [9–11]. The experimental sig-
natures of such topological magnetic moments (TMM),
with anomalously large effective g-factors (gv ∼ 10−100),
have recently been predicted [11] and, consequently, ob-
served experimentally [12–15] in the studies of magne-
totransport characteristics of electrostatically controlled
wires in bilayer graphene. The Berry curvature and re-
lated intrinsic angular momentum are also associated
with a “Hall-like” drift of electrons in a direction perpen-
dicular to an external electric field, which causes topo-
logical valley currents [16] at B = 0 and an anomalous
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FIG. 1. Top. Unstrained (left) and strained (right) bilayer
graphene (BLG) with the intra- and interlayer couplings γ0,3,4

(modified by the strain) marked along the relevant hopping
directions. Bottom. The magnitude of the valley g-factor at
the conduction band edge of BLG, |g∗v |, as a function of the in-
terlayer asymmetry gap, ∆, for uniaxial strains of magnitude
δ = 0% and 2% applied along the zigzag (ZZ) and armchair
(AC) directions. Inset shows |g∗v | against uniaxial strain (up
to δ = 4%) for various orientations of the strain tensor axes
and ∆ = 20 meV (strain values used in the plot are marked
by shapes). These images also characterize the effect of shear
deformations described by Eq. (2) later in the text.

contribution toward the Hall conductivity of a 2D mate-
rial subjected to an external magnetic field [17].

In this paper, we study the interplay between strain
and the interlayer asymmetry gap [7] in BLG in deter-
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FIG. 2. Top row. The dispersion ε(k) of bilayer graphene in the K− valley for ∆ = 20 meV and a unstrained; b 2% uniaxial
strain along the zigzag axis and c 2% uniaxial strain along the armchair axis (shear with parameters set by the relation in
Eq. (2)). Black lines indicate the van Hove singularity. Bottom row. Contour maps of the valley g-factor gv.

mining topological properties of electronic states, such
as the Berry curvature, recently analyzed in [18–20], and
the topological magnetic moment, and their manifesta-
tions in the magnetotransport characteristics and Lan-
dau level spectra of bilayers. The outcome of this anal-
ysis is summarized in Fig. 1, where we show how strain
and shear increase the size of the effective valley g-factor

for electrons and holes near the respective band edges of
the gapped BLG, g∗v , giving rise to its tunability by two
orders of magnitude.

To describe electrons in the Kξ (ξ = ±) valley of bi-
layers, we use the low-energy Hamiltonian written in the
(A,B′, A′, B) sublattice basis (marked in Fig. 1),

Hξ =


− 1

2∆ v3π + w3 −v4π† − w∗4 v0π
†

v3π
† + w∗3

1
2∆ v0π −v4π − w4

−v4π − w4 v0π
† 1

2∆ + δε γ1
v0π −v4π† − w∗4 γ1 − 1

2∆ + δε

 ; (1)

wj =
3

4
[e−i2ξθ(δ − δ′)(ηj − η0)− 2

√
3eiξϕρηj ]γj , (j = 3, 4).

Here, π = ξpx + ipy and v0,3,4 =
√

3aγ0,3,4/2~ are
determined by the intra- (γ0) and interlayer (γ1,3,4)
Slonczewski-Weiss hopping parameters [22], marked on
the bilayer lattice in Fig. 1, and a is the lattice constant.
For completeness, we take into account the dimer asym-
metry δε which, together with γ4, breaks the particle-hole
symmetry of the spectrum. The interlayer asymmetry,
∆ = −eEzd, is induced by a transverse electric field Ez,
where d is the interlayer distance and e < 0 is the electron
charge. The effect of strain is incorporated in Eq. (1) in
the form of gauge fields w3,4, with the magnitude of w3

partly enhanced by the Coulomb interaction [1, 3]. These
come from the directional dependence of the γ0,3,4 cou-
plings [1, 2, 23], generated by strain and shear (relative
shift of the layers). Note that the vertical γ1 coupling is
unaffected to first order in the strain amplitude. Here, θ
is the angle between the zigzag crystallographic direction
in graphene and the principal axis of the the strain tensor
with components δ and δ′ = −0.165δ [24]; shear defor-
mations are described by ρ = δr/a, the interlayer lattice
shift normalized by the lattice constant, where ϕ is the
angle between the shear direction and the armchair axis.
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FIG. 3. The zero magnetic field density of states (DoS) and
numerically calculated Landau levels of bilayer graphene for
B > 0.1 T in the K+ (orange) and K− (blue) valleys of bi-
layer graphene with an interlayer asymmetry ∆ = 20 meV
and a 2% uniaxial zigzag strain and b 2% uniaxial armchair
strain (or related shear with parameters set by the relation in
Eq. (2)). The van Hove singularities are highlighted as black
dot-dashed lines. A semiclassical approximation [21] for Lan-
dau levels near the band edges in Fig. 2b and c (black lines) is
used to extrapolate to B = 0. Note that the two-fold degen-
eracy of LLs at lower energies in b is unique to the armchair
direction of strain for which the spectrum in Fig. 2c features
two degenerate minivalleys. This is lifted in the vicinity of
the van Hove singularities. For an arbitrary orientation of
the strain axes, the minivalleys are not degenerate even at
B = 0.

Their effect is quantified using the Grüneisen parame-

ters ηj = rAB
γj

∂γj
∂rAB

, with the values η0 ∼ −3 [25, 26] and

η3,4 ∼ −1 taken from the literature [27]. Note that an
uniaxial strain of magnitude δ at an angle θ is equivalent
to the shear deformation of magnitude ρ and direction ϕ,

ρ = 0.336δ
η0 − η3
η3

; ϕ = 180◦ − 2θ. (2)

Note that for |w4| < |w3| � γ1 the effects of w4 on the
spectral properties and kinetic parameters of electrons in
a BLG is negligible.

Without any strain and for ∆ = 0, the BLG spec-
trum in the K± valley [28] features a central Dirac cone
with a Berry phase ∓π, surrounded by three Dirac points
with Berry phase ±π (giving a total topological charge
of ±2π). Strain causes the displacement in the momen-
tum plane and a coalescence of ±π singularities, whereas
opening up a gap spreads them into hot spots of Berry
curvature [10, 18, 29–31],

Ωzn = −2 Im
∑
m 6=n

〈n|∂pxH|m〉 〈m|∂pyH|n〉
(εn − εm)2

.

In Fig. 2, we illustrate the cumulative effect of the
strain (δ = 2%, corresponding to |w3| = 19 meV and
|w4| = 5 meV) and a gap (∆ = 20 meV) on the BLG
spectrum in the K− valley, where the role of strain is to
deform the three minivalleys at the BLG band edge [7, 32]
into two [1, 2, 29]. For weak or no strain, the conduction
band edge is near the valley centre for small ∆, before
jumping to the three surrounding minivalleys which ap-
pear for larger ∆, as shown in Fig. 2a. For larger strains,
this band edge evolves continuously with strain and ∆.
Moreover, the particle-hole symmetry breaking caused by
the hopping γ4 and energy shift δε of the dimer orbitals
makes the bilayer band gap indirect for strain applied
along the zigzag direction, as marked on Fig. 2b. For
strain applied along the armchair axis, the band edges
remain degenerate in Fig. 2c.

In the bottom panels of Fig. 2, we show the variation
of the topological magnetic moment of the plane wave
states of electrons across the Brillouin zone, computed
using the relation derived in Ref. [10],

µzn = −e~ Im
∑
m6=n

〈n|∂pxH|m〉 〈m|∂pyH|n〉
εn − εm

≡ ξµBgv,

where, for a band n, we sum across all three other bands
m 6= n. This parameter reflects the valley splitting
induced by simultaneous inversion (by Ez) and time-
inversion (by B) symmetry breaking. We express µz in
units of the Bohr magneton µB , hence, present its val-
ues in terms of the valley g-factor, gv. The dependence
of gv at the conduction band edge, g∗v , on the gap size,
for BLG with no strain and 2% strain applied along the
zigzag and armchair axis of graphene is shown in Fig. 1,
together with a map describing the variation of g∗v with
the change of the strain magnitude and orientation of
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its axes. Since gv is a function of momentum, the jump
in the position of the band edge with respect to ∆ for
no or small strain results in the jump in |g∗v | (and sign
change of g∗v) seen at ∆ ∼ 55 meV for zero strain in Fig. 1.
For larger strains, the band edge and corresponding |g∗v |
evolve continuously as a function of ∆. Using a 2-band
model [1, 33], which can be solved analytically, we es-
timate [34] that for |w3| & ∆, g∗v ∼ −102ξ|w3|/∆, in a
good agreement with the numerical result.

FIG. 4. The density of states and numerically calculated Lan-
dau levels in both valleys for B > 0.25 T of bilayer graphene
with an interlayer asymmetry ∆ = 100 meV and 2% uniaxial
armchair strain, with equivalent shear given by Eq. (2). The
line convention is shared with Fig. 3. Similarly to Fig. 3b,
Landau levels with energies below the saddle point are 2-fold
degenerate in each valley.

We also use the Hamiltonian in Eq. (1) to com-
pute [35] the Landau level (LL) spectra in a simultane-
ously strained and vertically biased bilayer, in particular
in the case of ∆ ∼ |w3|. In Fig. 3, we show the LL spectra
for a bilayer with ∆ = 20 meV and, due to 2% uniaxial
strain applied along the zigzag (ZZ) and armchair (AC)
directions (or a ρ = 1.3% shear anti-parallel and paral-
lel to the AC axis according to Eq. (2)), |w3| = 19 meV
and |w4| = 5 meV. Alongside this, we show the density
of states (DoS) of the spectra at B = 0, marking van
Hove singularities, and we extrapolate the LL spectra to
the zero-field limit using semiclassical quantization [21]
in the two minivalleys shown in Fig. 2b and c. While for
an arbitrary orientation of the strain tensor axes these
minivalleys are not degenerate, for strain applied along
an armchair direction, the mirror symmetry of the crys-
tal, retained despite the deformations, provides the de-
generacy of the minivalleys. This also results in a double

degeneracy of LLs at low energies which is lifted by mag-
netic breakdown that takes place at the saddle points
in the spectra shown in Fig. 2c. For the larger gap
∆ = 100 meV� |w3|, the effects of lattice deformations
are diminished, so that the LL spectra in Fig. 4 roughly
coincide with what has been found earlier in gapped bi-
layers [32].

The formation of the topological magnetic moment
may also manifest itself in the anomalous contribution
towards the classical Hall effect in the bilayer. The lat-
ter is the result of a drift experienced by electrons in the
bands with a finite Ω, in the direction perpendicular to
the external electric field. Due to time-inversion symme-
try, the resulting drift currents have the opposite signs
in the opposite valleys (K±), compensating each other
at B = 0. However, a topological magnetic moment ±µz
leads to the splitting of BLG band edges between the
K± valleys, ±gvµBBz, and a valley contribution to the
imbalance in the filling of the band edge state, leading to
a finite anomalous Hall conductivity [16, 17],

σAxy = − e
2B

π2~3
∑
n

∮
εn(p)=εF

Ωznµ
z
n

|∇pεn|
dp. (3)

The former should be added to the classical Hall contri-
bution [17],

σHxy = − e
3τ2

π2~2
∑
n,γ

∮
εn(p)=εF

∂pxεn
|∇pεn|

(∇pεn ×B)γ
dp

mn,γy
,

(4)
where m−1n,αβ = ∂2εn/∂pα∂pβ and τ is the elastic scatter-
ing rate. The anomalous Hall conductivity originates
from the TMM and is not suppressed by scattering, so its
effect should be most pronounced in disordered bilayers.
In Fig. 5, we show both σAxy and the total Hall conduc-

tivity σxy = σHxy + σAxy against carrier density, ne, for a

strained and unstrained BLG with τ ∼ 10−13 s [36], and
∆ = 20 meV or 100 meV.

Overall, the results presented above demonstrate
that the topological characteristics of electron states in
gapped bilayer graphene can be substantially enhanced
by strain. This results in an anomalously large topo-
logical magnetic moment, leading to a valley splitting
of band-edge states by magnetic field in a bias-gapped
bilayer that leads to an anomalous correction to the
Hall conductivity. The enhancement of topological ef-
fects may also be detected by measuring photocurrents
induced by optically pumping bilayers using circularly
polarized light similarly to that studied earlier in un-
strained topological materials [17, 37].
Acknowledgments. We thank S. Slizovskiy, P. Makk,
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FIG. 5. Top to bottom. The anomalous Hall conductivity σAxy and total Hall conductivity σxy of bilayer graphene for a small
interlayer asymmetry ∆ = 20 meV (blue) and a large asymmetry 100 meV (orange) against carrier density ne. Left to right.
No strain, 2% uniaxial zigzag strain and 2% uniaxial armchair strain.
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[38] J. N. Fuchs, F. Piéchon, M. O. Goerbig, and G. Montam-

baux, The European Physical Journal B 77, 351 (2010).
[39] A. B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake,

and K. S. Novoselov, Phys. Rev. B 80, 165406 (2009).
[40] E. McCann and M. Koshino, Reports on Progress in

Physics 76, 056503 (2013).

http://dx.doi.org/ 10.1103/PhysRevB.79.205433
http://dx.doi.org/10.1021/nl101533x
http://dx.doi.org/10.1021/nl101533x
http://dx.doi.org/10.1103/PhysRevB.85.125403
http://dx.doi.org/10.1103/PhysRevB.77.113407
http://dx.doi.org/10.1103/PhysRevB.77.113407
http://dx.doi.org/10.1103/PhysRevLett.123.196403
http://dx.doi.org/10.1103/PhysRevLett.123.196403
http://dx.doi.org/10.1103/PhysRevB.92.235447
http://dx.doi.org/10.1103/PhysRevB.92.235447
http://dx.doi.org/ 10.1088/2053-1583/aad1ae
http://dx.doi.org/ 10.1088/2053-1583/aad1ae
http://dx.doi.org/10.1103/PhysRevLett.113.116602
http://dx.doi.org/10.1038/nphys245
http://dx.doi.org/10.1098/rsta.2007.2159
http://dx.doi.org/10.1098/rsta.2007.2159
http://dx.doi.org/10.1098/rsta.2007.2159
http://dx.doi.org/10.1140/epjb/e2010-00259-2
http://dx.doi.org/ 10.1103/PhysRevB.80.165406
http://dx.doi.org/10.1088/0034-4885/76/5/056503
http://dx.doi.org/10.1088/0034-4885/76/5/056503

	Engineering of the topological magnetic moment of electrons in bilayer graphene using strain and electrical bias
	Abstract
	References


