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ABSTRACT
The aim of this work is to extend the classical capital growth theory pertaining to
frictionless financial markets to models taking into account various kinds of frictions,
including transaction costs and portfolio constraints. A natural generalization of the
notion of a benchmark investment strategy (Platen, Heath and others) is proposed,
and it is shown how such strategies can be used for the analysis of growth-optimal
investments. The analysis is based on the classical von Neumann-Gale model of
economic growth, a stochastic version of which is used in this study as a framework
for the modeling of financial markets with frictions.

KEYWORDS
Capital growth theory, transaction costs, random dynamical systems, convex
multivalued operators, von Neumann-Gale dynamical systems, rapid paths.

1. Introduction

Capital growth theory deals with the following multiperiod investment problem: start-
ing from some initial wealth available at time 0, find a self-financing trading strat-
egy that maximizes the long-run growth rate of investor’s wealth. This problem has
been investigated by various authors: Kelly [43], Latané [47], Breiman [8], Thorp [74],
Ziemba and Vickson [77, 78], Algoet and Cover [3], MacLean et al. [53–55], Hakansson
and Ziemba [30], and others (the state of the art in the field is reviewed in MacLean et
al. [56]). However, for the most part, results available in this literature pertain to fric-
tionless markets. Some specialized models of markets with frictions have been studied,
e.g., by Hausch and Ziemba [31], Taksar et al. [73], Iyengar and Cover [34], Akian et
al. [1], and Iyengar [35].

To extend capital growth theory to models of asset markets with frictions, we use
the mathematical framework of von Neumann-Gale dynamical systems. Such systems
are described in terms of set-valued operators specifying for every state “today” a
set of possible states “tomorrow”. Characteristic features of the operators associated
with von Neumann-Gale systems are certain properties of convexity and homogeneity.
The original theory of von Neumann-Gale dynamics (von Neumann [79], Gale [26] and
Rockafellar [66]) aimed basically at the mathematical modeling of economic growth.
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This theory, in its classical form, was purely deterministic: it did not reflect the influ-
ence of random factors on economic growth. The importance of taking these factors
into account was realized early on. In the 1970s, Dynkin [20–22], Radner [64, 65] and
their research groups made first steps in developing stochastic analogues of the von
Neumann-Gale growth model. The initial attack on the problem left many questions
unanswered since studies in this direction faced serious mathematical and conceptual
difficulties. Substantial progress was made only in the 2000s [5, 23, 24], when new
mathematical techniques were developed that made it possible to resolve a number of
fundamental problems in the field.

A new stage in the theory of von Neumann-Gale systems began when Dempster et
al. [17] observed that stochastic systems of the von Neumann-Gale type can serve as a
natural and convenient framework for the modeling of financial markets with frictions.
The first results in this direction obtained in [17] were concerned with no-arbitrage
pricing and hedging in markets with proportional transaction costs. Extensions of
these results to more general models, taking into account market interactions, were
given by Evstigneev and Zhitlukhin [25].

The first applications of von Neumann-Gale dynamics to capital growth theory
under proportional transaction costs were provided by Bahsoun et al. [6]. The main
focus of that work was on the analysis of rapid paths in von Neumann-Gale systems,
generating in financial market models benchmark strategies (numeraire portfolios), see
Platen and Heath [62] and Long [52], and their applications in the theory of growth-
optimal investments. In the model examined in [6], as in many other discrete-time
capital growth models, short sales were ruled out, so that admissible portfolios were
represented by non-negative vectors. Mathematically, this means that the state space
of the von Neumann-Gale dynamical system under consideration is the non-negative
cone Rn+ in the linear space Rn.

In real financial markets, short sales are typically allowed but restricted by vari-
ous trading rules (which might be different for different stock exchanges). The most
common rule of this kind is expressed in terms of margin requirements, stating that
only those portfolios are admissible for which at any moment of time the value of
all long positions exceeds the value of all short positions with some excess (margin).
In this work, we develop a capital growth model described in terms of a class of
von Neumann-Gale dynamical systems in which short selling is allowed under some
constraints including, in particular, margin requirements. We assume that the sets
of admissible portfolio vectors, as well as self-financing constraints, are described by
random cones depending on stochastic factors influencing the market. A crucial math-
ematical assumption under which our theoretical tools are applicable is the condition
that the cones under consideration are polyhedral, i.e., generated by a finite number
of (possibly random) extreme vectors. Under this condition, we show that the main
results of [5, 6, 24] can be extended to our more general model, and moreover, deduced
from those in the papers cited. From the mathematical point of view, this assumption
might seem restrictive, but it is acceptable in the applied perspective, since most, if
not all, common models of financial markets with frictions satisfy this requirement.

The paper is organized as follows. Section 2 describes the von Neumann-Gale dy-
namical systems we deal with. In Section 3 the main assumptions and results are
formulated. Sections 4 and 5 provide proofs of the main results. In Section 6, we apply
the general results obtained to a specialized model that covers most of the known
examples and applications. The Appendix contains some general mathematical facts
used in this work.
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2. Von Neumann-Gale dynamical systems in the financial context

A von Neumann-Gale multivalued dynamical system is defined by a sequence of cones1

Xt, t = 0, 1, 2, ..., in linear spaces and cones

Gt ⊆ Xt−1 ×Xt, t = 1, 2, ....

Elements of Xt are states of the system at time t, Xt are state spaces, and Gt are
transition cones. Sequences x0, x1, ... such that

(xt−1, xt) ∈ Gt, t = 1, 2, ...,

are called paths (trajectories) of the dynamical system.
A stochastic von Neumann-Gale dynamical system is defined as follows. Let

(Ω,F , P ) be a complete probability space and F0 ⊆ F1 ⊆ ... ⊆ F a sequence of
σ-algebras containing all sets in F of measure zero. For each t = 0, 1, 2, ..., let Xt(ω)
be a random closed cone in a topological linear space L (Xt(ω) is the random state
space at time t). Further, let Gt(ω) ⊆ Xt−1(ω)×Xt(ω), t = 1, 2, ..., be random closed
cones. It is assumed that the cones Xt(ω) and Gt(ω) depend Ft-measurably2 on ω,
which means that they are determined by events occurring prior to time t. Let Lt
(t = 0, 1, ...) be a linear space of Ft-measurable vector functions x(ω), ω ∈ Ω, with
values in L. We say that a vector function x(ω) is a random state of the system and
write x ∈ Xt if x ∈ Lt and x(ω) ∈ Xt(ω) almost surely (a.s.). A sequence of random
states x0 ∈ X0, x1 ∈ X1, ... is called a path of the dynamical system under consideration
if

(xt−1(ω), xt(ω)) ∈ Gt(ω) (a.s.).

An stationary (autonomous) version of the stochastic von Neumann-Gale dynamical
system is defined as follows. Let T : Ω → Ω be an automorphism of the probability
space (Ω,F , P ), i.e., a one-to-one mapping of Ω onto itself such that T and T−1 are
F-measurable and preserve the measure P :

P (T−1Γ) = P (TΓ) = P (Γ), Γ ∈ F .

We shall say that the stochastic von Neumann-Gale dynamical system is autonomous,
or stationary, if

T−1(Ft) = Ft+1, Xt(Tω) = Xt+1(ω), and Gt(Tω) = Gt+1(ω). (1)

The mapping T is interpreted as a time shift : if Γ ∈ Ft is an event occurring by time
t, then T−1(Γ) ∈ Ft+1 is an analogous event occurring one unit of time later (by time
t + 1). Autonomous systems serve as a framework for stationary models in various
applications (e.g. [79], [26], [23] and [24]).

1A set in a linear space is called a (convex) cone if it contains together with any vectors a and b the vector
λa+ µb, where λ and µ are any non-negative numbers. We will assume that all the cones under consideration

contain non-zero vectors.
2A set X(ω) ⊆ L is said to depend Ft-measurably on ω if the graph {(ω, a) : a ∈ A(ω)} of the multivalued

mapping ω 7→ A(ω) belongs to the σ-algebra Ft ⊗ B(L), where B(·) is the Borel σ-algebra. A random set is a
set X(ω) ⊆ L depending F-measurably on ω.
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In this work we consider stochastic von Neumann-Gale dynamical systems for
which L is an N -dimensional linear space RN and Lt is the space L∞t (RN ) =
L∞(Ω,Ft, P,RN ) consisting of essentially bounded Ft-measurable functions with val-
ues in RN . Those systems for which Xt(ω) = RN+ will be called canonical. They are
relatively well examined, and our central goal will be to extend the corresponding
results to the general setting in which Xt(ω) are cones that do not necessarily coincide
with RN+ and, moreover, depend on t and ω.

In financial applications, random states xt ∈ Xt of a von Neumann-Gale system
represent (contingent) portfolios of assets that can be chosen by an investor at date t.
These portfolios are specified by random Ft-measurable vectors of dimension N , where
N is the number of assets traded at each date. Portfolio positions can be measured
either in terms of ”physical units” of assets, or in terms of their values. The transition
cones Gt(ω) define self-financing constraints: a portfolio x can be transferred to a
portfolio y at date t (under transaction costs) if and only if (x, y) ∈ Gt(ω). The cones
Xt(ω) can specify various constraints on admissible portfolios, such as short selling
constraints for some or all assets, or margin requirements (long portfolio positions
must compensate with a certain excess its short positions). Paths x0, x1, x2, ... of the
dynamical system at hand are feasible (self-financing) trading strategies, describing
possible scenarios of the investor’s actions at the financial market influenced by random
factors. The fact that Gt(ω) and Xt(ω) are cones means that the model takes into
account in the most general way proportional transaction costs.

Financial market models with proportional transaction costs were discussed already
in the 1970s. Their origin goes back to the consumption–investment model suggested
by Magill and Constantinides in [57] as a natural generalization of the Merton model
[59]. However, Leland’s paper [48] was likely to be the most important for the industry
because of its easy practical implementation. The approach of Leland’s paper has been
extended to various situations by Kabanov and Safarian [41], Denis and Kabanov
[18], Lépinette [50], and others. The size of the bid-ask spreads for realistic values of
transaction costs has been discussed, e.g., by Zhao and Ziemba [75, 76] and Leland [49].
An important role in establishing the field was played by the work of Jouini and Kallal
[38], Pham and Touzi [61], Kabanov [39], Koehl et al. [45, 46], Cadenillas and Pliska
[10], Cadenillas [9], Chalasani and Jha [12], Akian et al. [1], Bouchard and Touzi [7],
Delbaen and Kabanov [16], Kabanov et al. [40], Janeček and Shreve [32], De Valliere
and Kabanov [19], Liu and Loewenstein [51], Jacka and Berkaoui [36], Jacka et al.
[37], Guasoni et al. [29], Albanese and Tompaidis [2], and others. For a comprehensive
review of this literature we refer to the monograph ”Markets with Transaction Costs”
by Kabanov and Safarian [42]. For more recent work see Lépinette et al. [28], Roux
and Zastawniak [68–71], Roux [67], and Kifer [44].

The generality of the von Neumann-Gale framework makes it possible to substan-
tially enhance and broaden the scope of the models of financial markets with propor-
tional transaction costs. In particular, one can include into consideration various kinds
of portfolio constraints, such as margin requirements, specified by random cones. One
can incorporate not only standard single-currency market models but also multicur-
rency models (see Kabanov [39], Kabanov and Safarian [42] and references therein).
For various examples and applications of the von Neumann-Gale approach to ques-
tions of asset pricing and hedging see Dempster et al. [17]. The results obtained in
[17] were extended by Evstigneev and Zhitlukhin [25] in two new directions: ”soft”
hedging in terms of risk measures (rather then a.s. superreplication) and the analysis
of a system of interacting financial markets with the structure of interactions between
them described in terms of a directed graph. In the present paper (see Section 6), we
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apply the general theory to a multicurrency financial market model with proportional
transaction costs in which not only currencies but also dividend-paying assets (e.g.
shares of stock) are traded. In this setting, interest rates for borrowing and lending
might differ from each other and might be different for different currencies. The main
results are concerned with capital growth theory for such markets both in stationary
and nonstationary settings.

Let X∗t (ω) denote the dual cone of Xt(ω):

X∗t (ω) = {p ∈ RN : pa ≥ 0, a ∈ Xt(ω)},

where pa is the scalar product of the vectors p and a in RN . For shortness, we will
use the notation L1

t (RN ) for the space L1(Ω,Ft, P,RN ) of integrable Ft-measurable
vector functions with values in RN . A dual path (dual trajectory) is a sequence of
vector functions p1(ω), p2(ω), ... such that pt ∈ L1

t (RN ) and for almost all ω we have:

pt(ω) ∈ X∗t−1(ω), t = 1, 2, ...,

and

p̄t+1(ω)b ≤ pt(ω)a for all (a, b) ∈ Gt(ω), t = 1, 2, ..., (2)

where p̄t+1(ω) := Etpt+1(ω) and Et(·) = E(·|Ft) is the conditional expectation given
Ft.

Note that for a canonical system, we have X∗t−1(ω) = RN+ , so that elements pt of a

dual path are functions belonging to the non-negative cones L1,+
t (RN ) of the spaces

L1
t (RN ).
It follows from (2) that for any path x0, x1, ..., the random sequence pt+1xt, t =

0, 1, ..., is a supermartingale with respect to the filtration F1 ⊆ F2 ⊆ ... and the
random sequence p̄t+1xt, t = 0, 1, ..., is a supermartingale with respect to the filtration
F0 ⊆ F1 ⊆ .... This is immediate from the relations:

Etpt+1xt = p̄t+1xt ≤ ptxt−1 (a.s.), t = 1, 2, ...,

and

Et−1p̄t+1xt ≤ Et−1ptxt−1 = p̄txt−1 (a.s.), t = 1, 2, ...,

following from (2).
A standard argument using measurable selection (see Theorem 7.1 in the Appendix)

shows that (2) holds if and only if

Ept+1(ω)yt(ω) ≤ Ept(ω)xt(ω) (3)

for all pairs (xt(ω), yt(ω)) of functions in L∞t (RN )× L∞t (RN ) such that

(xt(ω), yt(ω)) ∈ Gt(ω) (a.s.).

In the financial context, dual paths are termed consistent price systems — see
Jouini and Kallal [38], Cvitanić and Karatzas [14], Schachermayer [72], Guasoni et al.
[29], Kabanov and Safarian [42] and others. The coordinates pit of the vectors pt are
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interpreted as market consistent prices of assets if portfolio positions are measured
in terms of units of assets. If they are measured in monetary terms, then pit might
be interpreted as market consistent discount factors. The idea of this notion goes
back to the notion of competitive prices supporting competitive paths, maximizing
profits over each time period t − 1, t in the theory of economic dynamics, — see,
e.g., Malinvaud [58], Radner [63], Gale [27], Peleg [60], Dasgupta and Mitra [15], and
Clark [13]. Consistent price systems generalize the concept of an equivalent martingale
measure involved in classical no-arbitrage criteria pertaining to frictionless markets;
for a rigorous formulation and proof of this assertion see [17, Theorem 9.3].

A central notion in this theory is the notion of a rapid path. Let us say that a dual
path p1, p2, ... supports a path x0, x1, ... if

pt+1xt = 1, t = 0, 1, ... (a.s.). (4)

A trajectory is called rapid if there exists a dual trajectory supporting it.
The term ”rapid” is motivated by the fact that

p̄t+1yt
ptyt−1

≤ p̄t+1xt
ptxt−1

= 1, t = 1, 2, ... (a.s.)

for each path y0, y1, ... with ptyt−1 > 0 (see (2) and (4)). This means that the
path x0, x1, ... maximizes the conditional expectation given Ft of the growth rate
pt+1yt/ptyt−1 at each time t, the maximum being equal to 1. Growth rates are mea-
sured by using the random “price systems” pt. Another justification of the above term
is related to the fact that rapid paths are asymptotically growth-optimal almost surely:
they exhibit the fastest growth over an infinite time horizon with probability one (see
Theorem 3.4 below).

In the context of the present model, rapid paths may be regarded as analogues
of benchmark strategies (numeraire portfolios), see Platen and Heath [62] and Long
[52]. As we have noticed, the price system (or the system of discount factors) (pt)
involved in the definition of a rapid path is such that the value pt+1xt of the portfolio
xt is always equal to one, while for any other feasible sequence (yt) of contingent
portfolios (self-financing trading strategy), the values pt+1yt form a supermartingale.
In models with unlimited short selling (cf. [62]), one can speak of martingales rather
than supermartingales.

3. Assumptions and the main results

For a vector a, let us denote by B(a, r) the ball {b : |b− a| ≤ r}, where | · | is the sum
of the absolute values of the coordinates of a vector. Let us introduce the following
conditions.

(G1) For all t ≥ 1, ω ∈ Ω and a ∈ Xt−1(ω), the set {b : (a, b) ∈ Gt (ω)} is non-empty.
(G2) For each t ≥ 1 there is a constant Mt such that the set Gt (ω) is contained in

{(a, b) : |b| ≤Mt|a|} for all ω ∈ Ω.
(G3) For every t ≥ 1 there exist a strictly positive constant αt > 0 and a bounded

vector function ẑt(ω) = (x̂t−1(ω), ŷt(ω)) such that x̂t−1(ω) is Ft−1-measurable, ŷt(ω)
is Ft-measurable and B(ẑt(ω), αt) ⊆ Gt(ω) for all ω.

(F) There exist Ft-measurable random vectors ft,k(ω), k = 1, ...,K, such that for
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each ω we have ft,k(ω) 6= 0,

Xt(ω) =

{
a : a =

K∑
k=1

ft,k(ω)ck for some ck ≥ 0, k = 1, ...,K

}
(5)

and

θt|c| ≤ |
K∑
k=1

ft,k(ω)ck | ≤ Θt|c|, c = (c1, ..., cK) ∈ RK+ , (6)

where 0 < θt < Θt (t = 0, 1, ...) are constants and K is a natural number.
In financial terms, condition (G1) states that any feasible portfolio a ∈ Xt−1(ω) can

be transformed — by selling and buying assets under transaction costs — to a feasible
portfolio b ∈ Xt(ω). The possibility of this transformation is expressed by the fact that
(a, b) ∈ Gt(ω). The vector b can be equal to zero; in this case we speak of portfolio
liquidation. Assumption (G2) means the uniform boundedness of the random set-
valued operator a 7−→ {b : (a, b) ∈ Gt(ω)}. Suppose that the self-financing conditions
are defined in terms of bid and ask prices. Then (G2) holds if these prices are uniformly
bounded and uniformly bounded away from zero. Condition (G3) is an assumption of
non-degeneracy of the model: the cone Gt(ω) is assumed to have a (uniform) interior
point.

Let us discuss condition (F). The representation (5) of the cone Xt(ω) means that
this cone is polyhedral : it is spanned on a finite set of Ft-measurable random vectors
ft,k(ω) 6= 0, k = 1, ...,K (generators of Xt(ω)). By virtue of (5), we have

Xt(ω) = Ft(ω)RK+ , (7)

where Ft(ω) : RK+ → RN is the linear operator transforming c = (c1, ..., cK) ∈ RK+ into

a =
∑K

k=1 ft,k(ω)ck ∈ RN . The inequalities in (6) can be written

θt|c| ≤ |Ft(ω)c| ≤ Θt|c|, c = (c1, ..., cK) ∈ RK+ . (8)

For a real number r define r+ := max{r, 0} and r− := max{−r, 0}, so that r = r+−
r−. If c = (c1, ..., cK), then c+ and c− stand for the vectors with the coordinates (ck)+
and (ck)−, respectively. Note that the second inequality in (8) implies the analogous
inequality holding for all c ∈ RK , and not only for c ∈ RK+ . Indeed, we have Ftc =
Ftc+ − Ftc−, and so

|Ftc| = |Ftc+ − Ftc−| ≤ |Ftc+|+ |Ftc−| ≤ Θt(|c+|+ |c−|) = Θt|c|.

We formulate an assumption on the cone Xt(ω) that guarantees the validity of
condition (6) and has a natural financial interpretation.

(M) There exists a constant µt > 1 such that

µt

N∑
i=1

ai− ≤
N∑
i=1

ai+ for all a = (a1, ..., aN ) ∈ Xt(ω). (9)
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Proposition 3.1. If the cone Xt(ω) is representable in the form (5) with some gen-
erators ft,k(ω), and condition (M) holds, then Xt(ω) is representable in the form (5)
with generators ft,k(ω) satisfying (6), i.e., Xt(ω) satisfies condition (F).

To explain the meaning of condition (M) suppose that positions of a portfolio
a ∈ Xt(ω) are measured in terms of their values (expressed in some price system). Then

the sums
∑N

i=1 a
i
+ and

∑N
i=1 a

i
− represent the total value of the long and the short

positions of a, respectively. Condition (9) means that for admissible portfolios, the long
positions must cover the short ones with a certain margin µt. Margin requirements
of the type (9) are quite common in financial practice. They restrict short selling to
exclude bankruptcy under sudden price jumps.

Proof of Proposition 3.1. Since ft,k(ω) 6= 0, we can assume without loss of gener-
ality that all the generators ft,k(ω) of the cone Xt(ω) are normalized: |ft,k(ω)| = 1.
Then the second inequality in (6) will hold with Θt = 1.

To prove the first inequality, consider the non-random cone X̃t = {a ∈ RN : µt|a−| ≤
|a+|}, so that Xt(ω) ⊆ X̃t. Observe that since µt > 1 we have X̃t ∩ (−X̃t) = {0}.
Therefore, the minimum of the continuous function v(c, f1, . . . , fK) := |

∑
k ckfk| is

strictly positive on the compact set {(c, f) : c ∈ RK+ , |c| = 1, fk ∈ X̃t, |fk| = 1, k =
1, . . . ,K}. Then θt can be taken equal to this minimum.

The results of this paper are concerned with general (non-stationary) and stationary
von Neumann-Gale dynamical systems. The main result pertaining to the former ones
is as follows.

Theorem 3.2. Let conditions (G1)-(G3) and (F) hold. Let x0 be a function in X0

such that B(x0(ω), ε) ⊆ X0(ω) (a.s.), where ε is a strictly positive constant. Then the
following assertions are valid.

(i) For each n ≥ 1, there exists a finite rapid path of length n with the initial state
x0(ω).

(ii) There exists an infinite rapid path with the initial state x0(ω).

An important property of infinite rapid paths, which determines their role in capital
growth theory, is their a.s. asymptotic optimality. A path x0, x1, ... is called asymptot-
ically growth-optimal if for any other path y0, y1, ... there exists a supermartingale ξt
such that

|yt|
|xt|
≤ ξt, t = 0, 1, ... (a.s.).

The property of asymptotic growth-optimality, as defined above, has the following
important implications. If |yt|/|xt| ≤ ξt, t = 0, 1, ... (a.s.), where ξt is a supermartin-
gale, the following assertions hold.

(a) For any constant a > 0

P

(
sup
t≥0

|yt|
|xt|
≥ a
)
≤ Eξ0

a
,

and, in particular, supt(|yt|/|xt|) < ∞ a.s., i.e. no strategy can grow asymptotically
faster than x0, x1, ... (a.s.).
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(b) The strategy x0, x1, ... maximizes a.s. the exponential growth rate:

lim sup
t→∞

1

t
ln
|yt|
|xt|
≤ 0 a.s.

(c) For any stopping time τ

E
|yτ |
|xτ |
≤ Eξ0 and E ln

|yτ |
|xτ |
≤ lnEξ0.

Assertion (a) follows from Doob’s inequality for non-negative supermartingales:
P (supt ξt ≥ a) ≤ Eξ0/a. Assertion (b) is immediate from that supt(|yt|/|xt|) < ∞
a.s. The first part of assertion (c) holds because Eξτ ≤ lim inft→∞Eξτ∧t ≤ Eξ0 by
Fatou’s lemma and Doob’s stopping theorem applied to bounded stopping times τ ∧ t.
The second part of (c) follows from there by Jensen’s inequality.

Note that the above properties (a)–(c) remain valid (but maybe with different con-
stants in the right-hand sides of the inequalities in (a) and (c)) if |xt| and |yt| are
replaced by φt(ω, xt) and φt(ω, yt) respectively with any function φt(ω, b), possibly
random and depending on t, which satisfies the following condition.

(L) There exist non-random constants 0 < l ≤ L such that l|b| ≤ φt(ω, b) ≤ L|b| for
all t, ω and b ∈ Xt(ω).

As an example of such a function, we can consider the liquidation value of a portfolio
b = (b1, ..., bN ) ∈ Xt(ω):

φt(ω, b) =

N∑
i=1

(1− λ+t,i(ω))bi+ −
N∑
i=1

(1 + λ−t,i(ω))bi−, (10)

where 0 ≤ λ+t,i(ω) < 1 and λ−t,i(ω) ≥ 0 are transaction cost rates for selling and buying

assets assets (for details see Section 6). Conditions under which the function (10)
satisfies (L) are given in Proposition 3.3 below.

Proposition 3.3. Let all the cones Xt(ω) be representable in the form (5) and the
margin requirement (M) is satisfied with µt = µ independent of t. If there exist con-
stants Λ,Λ such that 0 < Λ ≤ 1−λ+t,i(ω) and 1+λ−t,i(ω) ≤ Λ for all ω, t, i, and µΛ > Λ,

then the liquidation value φt(ω, b) defined in (10) satisfies condition (L).

Proof. For every b = (b1, ..., bN ) ∈ Xt(ω), we have φt(ω, b) ≤ |b+|−|b−|, so the second
inequality in condition (L) holds with L = 1.

Let us show the first inequality in (L). For every b ∈ Xt(ω), we have

φt(ω, b) ≥ Λ|b+| − Λ|b−| ≥
(
Λ− Λ/µ

)
|b+|.

Using that |b+| ≥ |b−|, the above inequality yields φt(ω, b) ≥ l |b| with constant l =(
Λ− Λ/µ

)
/2 > 0.

Let us introduce the following condition:
(G4) There exist a real number γ > 0 and a natural number m such that for

every t ≥ 0 and every random vector yt ∈ Xt, one can find random vectors yt+1 ∈
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Xt+1, . . . , yt+m ∈ Xt+m satisfying

(yt, yt+1) ∈ Gt+1 (ω) , . . . , (yt+m−1, yt+m + y) ∈ Gt+m (ω) (a.s.) (11)

for each y ∈ L∞t+m(RN ) with |y(ω)| ≤ γ|yt(ω)| (a.s.).
Condition (G4) and its versions are used practically in all studies on von Neumann-

Gale dynamical systems, both deterministic and stochastic ones. Mathematically, (G4)
says that from any state yt ∈ Xt of the von Neumann-Gale system at hand one can
reach in m steps some state yt+m ∈ Xt+m together with any y′ ∈ Xt+m for which the
distance |yt+m(ω)− y′(ω)| is not greater than γ|yt(ω)| (a.s.). Clearly this implies that
yt+m(ω) is a (uniform) interior point of Xt+m(ω) (a.s.). In the financial context, (G4)
typically holds for m = 1 and essentially means a possibility of constructing a fully
diversified portfolio yt+m starting from any non-zero portfolio, with proper estimates
of the coordinates of the vector yt+m via the norm |yt| of the vector yt — compare
with condition (G5) below.

The next result shows that under fairly general assumptions, any rapid path is
asymptotically growth-optimal.

Theorem 3.4. If condition (G4) and condition (G2) with a constant Mt = M inde-
pendent of t hold, then any rapid path is a.s. asymptotically growth-optimal.

Remark 1. Theorem 3.4 remains valid if condition (G4) is replaced by the following
one:

(G5) The cones Xt(ω) (t = 0, 1, ...) contain RN+ . There exist a real number γ > 0
and a natural number m such that for every t ≥ 0 and every random vector yt ∈ Xt,
there are random vectors yt+1 ∈ Xt+1, . . . , yt+m ∈ Xt+m, satisfying

(yt, yt+1) ∈ Gt+1(ω), ..., (yt+m−1, yt+m)) ∈ Gt+m(ω) (a.s.)

and

yt+m(ω) ≥ γe|yt| (a.s.). (12)

For a proof of this assertion see Proposition 4.5 in Section 4.

Let us formulate the main result pertaining to stationary (autonomous) systems.
Let T : Ω→ Ω be an automorphism of the given probability space (Ω,F , P ) such that
conditions (1) hold. In the stationary framework, an important role is played by a
class of paths called balanced. A path x0, x1, x2, ... is termed balanced if there exist an
F0-measurable vector function x(ω) which is normalized by the condition |x(ω)| = 1
(a.s.) and an F1-measurable scalar function λ(ω) > 0 with E| lnλ(ω)| < +∞ such that

x0(ω) = x(ω); xt(ω) = λ(ω)...λ(T t−1ω)x(T tω), t ≥ 1. (13)

This definition expresses the idea of growth with stationary proportions and at a
stationary rate. Clearly a pair of functions x(ω) and λ(ω), where x ∈ X0 and λ(ω) is
an F1-measurable scalar function with E| lnλ(ω)| < +∞, generates a balanced path
if and only if |x(ω)| = 1 (a.s.) and

(x(ω), λ(ω)x(Tω)) ∈ G1(ω) (a.s.). (14)
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A balanced path maximizing the expectation of the logarithm of the growth rate
E lnλ(ω) is called a von Neumann path. Note that condition (14) implies (by virtue
of (G2)) that λ(ω) is essentially bounded.

A dual path p1, p2, ... is called balanced if there exist an F1-measurable vector func-
tion p(ω) and an F1-measurable scalar function λ(ω) > 0 such that

p1(ω) = p(ω), pt(ω) =
p(T t−1ω)

λ(ω)...λ(T t−2ω)
, t = 2, 3, .... (15)

By virtue of (15) and using the invariance properties Gt+1(ω) = Gt(Tω) and p̄t+1 =
T p̄t we can see that a function p(ω) ∈ L1

1(RN ) and an F1-measurable scalar function
λ(ω) > 0 with E| lnλ(ω)| < +∞ generate a balanced dual path if and only if for
almost all ω we have:

p(ω) ∈ X∗0 (ω), t = 1, 2, ..., (16)

and

E1p(Tω)b

λ(ω)
≤ p(ω)a for all (a, b) ∈ G1(ω). (17)

A triplet of functions (x, p, λ) forms a von Neumann equilibrium if the sequence
x0, x1, ... defined by (13) is a balanced path and the sequence p1, p2, ... defined by (15)
is a dual balanced path supporting it.

Note that a triplet (x, p, λ) is a von Neumann equilibrium if and only if the following
conditions hold:

• x(ω) is a function in X0 normalized by the condition |x(ω)| = 1 (a.s.);
• λ(ω) > 0 is an F1-measurable scalar function with E| lnλ(ω)| < +∞ satisfying

(14) and maximizing E lnλ(ω) among all balanced paths;
• p(ω) ∈ L1

1(RN ), and conditions (16), (17) and

p(ω)x(ω) = 1

are fulfilled for almost all ω.

Theorem 3.5. Suppose that conditions (F) and (G1)-(G4) hold, the constants Mt,
αt, θt, Θt do not depend on t, and

ft+1,k(ω) = ft,k(Tω), ẑt+1(ω) = ẑt(Tω).

Then a von Neumann equilibrium exists.

This result has the following important consequence. Let (x, p, λ) be a von Neumann
equilibrium, and consider the balanced path (xt)

∞
t=0 generated by the pair (x, λ). By

the definition of an equilibrium, it is rapid. Consequently (see Theorem 3.4), it is
asymptotically growth-optimal. Thus, by virtue of Theorem 3.5, there exists a balanced
path that is asymptotically growth-optimal in the class of all, not necessarily balanced
paths!
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4. General (non-stationary) model

This section contains proofs of the results related to general (non-stationary) models
of financial markets. We first establish Theorem 3.2 by deducing it from analogous
results known for canonical von Neumann-Gale systems. At the end of the section, we
prove Theorem 3.4 on the asymptotic optimality of rapid paths.

Let us assume that condition (F) holds. A stochastic von Neumann-Gale dynamical
system G defined by the state spaces Xt(ω) and the transition cones Gt(ω) generates
a canonical von Neumann-Gale system H with the state spaces RK+ and the transition
cones

Ht(ω) :=
{

(c, d) ∈ RK+ × RK+ : (Ft−1(ω)c, Ft(ω)d) ∈ Gt(ω)
}
.

We will call H the canonical von Neumann-Gale dynamical system induced by G.

Proposition 4.1. If G satisfies one of the conditions (G1)-(G3), then H satisfies
one the following corresponding conditions.
(H1) For all t ≥ 1, ω ∈ Ω and c ∈ RK+ , the set {d : (c, d) ∈ Ht (ω)} is non-empty.
(H2) For each t ≥ 1 there is a constant M ′t such that the set Ht (ω) is contained in
{(c, d) : |d| ≤M ′t |c|} for all ω ∈ Ω.
(H3) For every t ≥ 1 there exist a strictly positive constant δt > 0 and a bounded
vector function ŵt(ω) = (ût−1(ω), v̂t(ω)) such that ût−1(ω) is Ft−1-measurable, v̂t(ω)
is Ft-measurable and B(ŵt(ω), δt) ⊆ Ht(ω) for all ω.

Proof. Suppose (G1) holds. Consider any c ∈ RK+ . Then Ft−1(ω)c ∈ Xt−1(ω), and so
there exists b ∈ Xt(ω) with (Ft−1(ω)c, b) ∈ Gt(ω). Since Xt(ω) = Ft(ω)RK+ , there is
d ∈ RK+ such that Ft(ω)d = b. Thus

(Ft−1(ω)c, Ft(ω)d) = (Ft−1(ω)c, b) ∈ Gt(ω),

and so (c, d) ∈ Ht(ω), which proves (H1).
Assume that condition (G2) is satisfied: |b| ≤ Mt|a| for all (a, b) ∈ Gt(ω). Let

(c, d) ∈ RK+ × RK+ belong to Ht(ω), i.e. (Ft−1(ω)c, Ft(ω)d) ∈ Gt(ω). By virtue of (8),
we have |Ft−1(ω)c| ≤ Θt−1|c|,

θt|d| ≤ |Ft(ω)d| ≤Mt|Ft−1(ω)c| ≤MtΘt−1|c|,

and so |d| ≤M ′t |c|, which yields (H2) with the constant M ′t = θ−1t MtΘt−1.
Consider the vector function ẑt(ω) = (x̂t−1(ω), ŷt(ω)) involved in (G3). By using

(7) and a measurable selection theorem (see Theorem 7.1 in the Appendix), we can
construct an Ft−1-measurable vector function ût−1(ω) and an Ft-measurable vector
function v̂t(ω) with values in RK+ such that

Ft−1(ω)ût−1(ω) = x̂t−1(ω) and Ft(ω)v̂t(ω) = ŷt(ω).

By virtue of the first inequality in (8), the function ŵt(ω) = (ût−1(ω), v̂t(ω))
is bounded. If (c, d) is a vector in RK+ × RK+ such that |(c, d) − ŵt(ω)| ≤
δt := αt/max{Θt−1,Θt}, then |(Ft−1(ω)c, Ft(ω)d) − ẑt(ω)| ≤ αt. Consequently,
(Ft−1(ω)c, Ft(ω)d) ∈ Gt(ω), and so (c, d) ∈ Ht(ω). Thus B(ŵt(ω), δt) ⊆ Ht(ω), which
proves (H3).
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To apply the results of the previous work to the dynamical system H, we will need
the following simple fact.

Remark 2. Condition (H3) implies the following one.
(h3) For every t ≥ 1 there exist a strictly positive constant ζt > 0 and a bounded

vector function ŵt(ω) = (ût−1(ω), v̂t(ω)) such that ût−1(ω) is Ft−1-measurable, v̂t(ω)
is Ft-measurable, ŵt(ω) ∈ Ht(ω) for all ω, and v̂t(ω) ≥ ζte (coordinate-wise) for all ω,
where e = (1, ..., 1) ∈ RK+ .

Observe that the function ŵt(ω) involved in (H3) has the properties described in
(h3) with ζt = δt/K. Indeed, we have |ζte| = δt. Thus (ût−1(ω), v̂t(ω)− ζte) ∈ Ht(ω),
and so v̂t(ω)− ζte ∈ RK+ , which means that v̂t(ω) ≥ ζte.

Let us examine relations between paths in H and G.

Proposition 4.2. (a) If (ut) is a path in the dynamical system H, then the sequence
of functions xt(ω) = Ft(ω)ut(ω) forms a path (xt) in the dynamical system G.

(b) If (xt) is a path in G, then for each t there exists an Ft-measurable function
ut(ω) such that xt(ω) = Ft(ω)ut(ω). The sequence (ut) is a path in H.

Proof. (a) The function xt(ω) is Ft-measurable, and xt(ω) ∈ Xt(ω) by virtue of (7).
Furthermore, xt(ω) is essentially bounded because |Ft(ω)ut(ω)| ≤ Θt|ut(ω)| (see (8)).
Since (ut−1(ω), ut(ω)) ∈ Ht(ω) (a.s.), we have

(Ft−1(ω)ut−1(ω), Ft(ω)ut(ω)) ∈ Gt(ω) (a.s.)

by the definition of Ht(ω). Thus (xt) is a path in G.
(b) Let (xt) be a path in G. Since xt(ω) ∈ Xt(ω) = Ft(ω)RK+ (a.s.), by the measurable

selection theorem there exists an Ft-measurable function ut(ω) with values in RK+ such

that xt(ω) = Ft(ω)ut(ω) (a.s.). In view of (8), we have |ut(ω)| ≤ |xt(ω)|θ−1t (a.s.), so
that ut is essentially bounded. Finally, we obtain

(Ft−1(ω)ut−1(ω), Ft(ω)ut(ω)) = (xt−1(ω), xt(ω)) ∈ Gt(ω) (a.s.)

because (xt) is a path in G. This means that (ut−1(ω), ut(ω)) ∈ Ht(ω) (a.s.), which
proves that (ut) is a path in H

The path (xt) in the dynamical system G defined by xt(ω) = Ft(ω)ut(ω) will be
called the image of the path (ut) in H. A key role in the proof of Theorem 3.2 is played
by the following result.

Theorem 4.3. Let (ũt) be a path in the dynamical system H and (x̃t) its image. If
(ũt) is rapid, then (x̃t) is rapid in G.

Proof. Suppose ũ0, ũ1, ... is a rapid path in the dynamical system H, i.e., there exists
a dual path q1, q2, ... (qt ∈ L1

t (RK+ )) supporting it:

qt+1(ω)ũt(ω) = 1 (a.s.), t ≥ 0,

and for almost all ω,

q̄t+1(ω)d− qt(ω)c ≤ 0, (c, d) ∈ Ht(ω), t ≥ 1,
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where q̄t+1 := Etqt+1. Define x̃t := Ftũt. Let us show that (x̃t) is a rapid path in the
dynamical system G.

Fix some t ≥ 1. By the definition of Ht(ω), a pair of vectors (c, d) ∈ RK+ × RK+
belongs to Ht(ω) if and only if (Ft−1(ω)c, Ft(ω)d) ∈ Gt(ω). Thus with probability 1
(for all ω in a set Ω1 of full measure), we have

q̄t+1(ω)d− qt(ω)c ≤ 0,

for any (c, d) ∈ RK+ × RK+ satisfying

(Ft−1(ω)c, Ft(ω)d) ∈ Gt(ω).

We will fix ω ∈ Ω1 and omit it in the notation, if this does not lead to ambiguity.
Since ẑt = (x̂t−1, ŷt) = (Ft−1ût−1, Ftv̂t) is contained in Gt(ω) together with a ball of
radius αt, we can apply the Kuhn-Tucker theorem (see Theorem 7.2 in the Appendix)
to the convex set X consisting of non-negative vectors (c, d) in RK+ ×RK+ , the function
Φ(c, d) = q̄t+1d − qtc, the cone Z = Gt(ω) and the mapping R transforming (c, d)
into (Ft−1(ω)c, Ft(ω)d) ∈ RN × RN . By using a measurable selection argument, we
construct Ft-measurable functions at(ω) and bt(ω) taking values in RN such that for
all ω ∈ Ω1,

btb− ata ≤ 0, (a, b) ∈ Gt(ω), (18)

q̄t+1d− qtc− [btFtd− atFt−1c] ≤ 0, (c, d) ∈ RK+ × RK+ , (19)

and

|bt|+ |at| ≤ 2Nα−1t (qtût−1 − q̄t+1v̂t). (20)

Let us show that the sequence of vector functions

pt(ω) := at(ω), t ≥ 1,

forms a dual path in the dynamical system G supporting the path (x̃t). The fact that
E|at(ω)| <∞ follows from (20). By setting first c = 0 and then d = 0 in (19), we get

q̄t+1d ≤ btFtd, d ∈ RK+ , t ≥ 1, (21)

qtc ≥ atFt−1c, c ∈ RK+ , t ≥ 1. (22)

For all pairs (x, y) of functions in L∞t (RN )×L∞t (RN ) with (x, y) ∈ Gt(ω) (a.s.), there
exist Ft-measurable vector functions u(ω) and v(ω) taking values in RK+ , such that
y = Ftv, x = Ft−1u and (u, v) ∈ Ht(ω) (a.s.). The functions u and v are essentially
bounded by virtue of the first inequality in (8). Therefore

Eptx = Eatx ≥ Ebty = EbtFtv

≥ Eq̄t+1v = Eqt+1v ≥ Eat+1Ftv = Ept+1y ,

which yields (3) for t ≥ 1. In this chain of relations, the first inequality holds because
bty ≤ atx (a.s.) as long as (x, y) ∈ Gt(ω) (a.s.), which follows from (18). The second
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inequality is a consequence of (21) and the third follows from (22) with t+ 1 in place
of t.

For t ≥ 0 we have

pt+1x̃t = at+1x̃t = at+1Ftũt ≤ qt+1ũt = 1 (a.s.), (23)

where the inequality follows from (22) with t replaced by t+ 1. Furthermore, we get

Ept+1x̃t = Eat+1x̃t ≥ Ebt+1x̃t+1 = Ebt+1Ft+1ũt+1

≥ Eq̄t+2ũt+1 = Eqt+2ũt+1 = 1.
(24)

In this chain of relations, the first inequality holds because (x̃t, x̃t+1) ∈ Gt+1(ω) (a.s.)
and the second follows from (21) with t+ 1 in place of t. By combining (23) and (24),
we conclude that pt+1x̃t = 1 (a.s.).

Let us show that for all t ≥ 1 and almost all ω ∈ Ω,

pt(ω)a ≥ 0 for a ∈ Xt−1(ω),

i.e. pt(ω) ∈ X∗t−1(ω) (a.s.). Denote by Ωt the set of those ω for which btFt ≥ 0. By
virtue of (21), we have P (Ωt) = 1. Fix any ω ∈ Ωt, a ∈ Xt−1(ω) and consider some
c ∈ RK+ for which Ft−1(ω)c = a. In view of (H1), there exists d ∈ RK+ such that
(c, d) ∈ Ht(ω). Then btFtd ≤ atFt−1c by virtue of (18). From this we get

pta = atFt−1c ≥ btFtd ≥ 0,

which completes the proof.

The following results in the case of a canonical von Neumann-Gale dynamical system
are obtained in [5], Theorem 1.

Theorem 4.4. Let conditions (H1)-(H3) hold. Let u0(ω) be a vector function in
L∞0 (RK) such that u0(ω) ≥ δe for some constants δ > 0. Then the following assertions
are valid.

(i) For each n ≥ 1, there exists a finite rapid path of length n with the initial state
u0(ω).

(ii) There exists an infinite rapid path with the initial state u0(ω).

Proof of Theorem 3.2. Let x0 be a function in X0 such that B(x0(ω), ε) ⊆ X0(ω)
(a.s.), where ε is a strictly positive constant. By virtue of (7) and the measurable
selection theorem, there exists an F0-measurable function u0(ω) with values in RK+ such
that x0(ω) = F0(ω)u0(ω) (a.s.). By virtue of the first inequality in (8), the function
u0(ω) is bounded. Let us prove u0(ω) ≥ δe, where δ = ε/K and e = (1, ..., 1) ∈ RK+ .
To this end, we define y(ω) = F0(ω)δe and observe that

|y(ω)| = δ |F0(ω)e| = δ|
K∑
k=1

f0,k(ω)| ≤ ε,

where the inequality follows form the fact we can assume that f0,k(ω), k =
1, 2, ...,K, ω ∈ Ω are normalized. Then x0(ω) − y(ω) ∈ X0(ω) (a.s.), and so there
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exists an F0-measurable function h(ω) with values in RK+ such that

F0(ω)u0(ω)− F0(ω)δe = F0(ω)h(ω).

Then u0(ω) = δe+h(ω), which means u0(ω) ≥ δe. Here, we use the fact that F0(ω) is
the one-to-one operator, which follows from (8).

By virtue of Proposition 4.1, conditions (H1)-(H3) hold. Then by assertion (i) of
Theorem 4.4, for each n ≥ 1, there exists a finite rapid path (ut)

n
t=0 of length n with

the initial state u0(ω). Let xt = Ftut. By virtue of Theorem 4.3, (xt)
n
t=0 is the rapid

path of length n in the dynamical system G with the initial state x0(ω). Further, by
assertion (ii) of Theorem 4.4, there exists an infinite rapid path (ut) with the initial
state u0(ω). If we put xt = Ftut and use Theorem 4.3, we conclude that (xt) is the
infinite rapid path in G. The proof is complete.

Proof of Theorem 3.4. Let x0, x1, ... be a rapid path supported by a dual path
p1, p2, .... For all y ∈ L∞t+m(RN ) with |y(ω)| ≤ γ|yt(ω)|, by using (2) and (11), we have

pt+myt+m−1 ≥ p̄t+m+1(yt+m + y) = p̄t+m+1yt+m + p̄t+m+1y ≥ p̄t+m+1y (25)

because p̄t+m+1yt+m ≥ 0 (a.s.). The last inequality is valid since yt+m (ω) ∈ Xt+m (ω)
and pt+m+1 (ω) ∈ X∗t+m (ω) (a.s.), which yields pt+m+1yt+m ≥ 0 (a.s.) and so
p̄t+m+1yt+m ≥ 0 (a.s.). Put

y =
p̄t+m+1

|p̄t+m+1|
γ|yt|. (26)

Then |y(ω)| = γ|yt(ω)| and y ∈ Xt+m. Consequently, (25) can be applied to y defined
by (26). Observe that

p̄t+m+1y =
||p̄t+m+1||2

|p̄t+m+1|
γ|yt| ≥ |p̄t+m+1|N−1γ|yt|, (27)

where || · || is the Euclidean norm in RN (note that || · || ≥ | · |/
√
N). Further, the

equality pt+m+1xt+m = 1 implies p̄t+m+1xt+m = 1, and so

|p̄t+m+1||xt+m| ≥ 1, (28)

and it follows from (G2) with a constant Mt = M independent of t that

|xt+m| ≤Mm|xt|. (29)

By combining (28) and (29), we get

|p̄t+m+1| ≥M−m|xt|−1, (30)

and by using (27), (25) and (30), we obtain

pt+myt+m−1 ≥M−mN−1γ|yt||xt|−1,

16



which yields

pt+1yt ≥ Et+1pt+m+1yt+m−1 ≥M−mN−1γ|yt||xt|−1.

Since pt+1yt is a non-negative supermartingale, the proof is complete.

We provide a version of Theorem 3.4 in which (G4) is replaced by another assump-
tion.

Proposition 4.5. Theorem 3.4 remains valid if condition (G4) is replaced by (G5).

Proof. Let x0, x1, ... be a rapid path supported by a dual path p1, p2, .... Since Xt(ω) ⊇
RN+ , any pt+1(ω) ∈ X∗t (ω) is non-negative (a.s.). By using this, (2), (12) and the fact
that |pt+m+1| ≥ M−m|xt|−1, which follows from the equality pt+m+1xt+m = 1 and
(G2) with a constant Mt = M independent of t, we get

pt+1yt ≥ Et+1pt+m+1yt+m ≥ γEt+1|pt+m+1||yt|
≥ γEt+1(M

−m|xt|−1)|yt| = γM−m|xt|−1|yt|.

Thus |xt|−1|yt| is dominated by a non-negative supermartingale pt+1yt, which com-
pletes the proof.

5. Stationary Model

In the case of a stationary system, let us assume that conditions (F) and (G1)-(G4)
hold and suppose, additionally, that

ft+1,k(ω) = ft,k(Tω), (31)

ẑt+1(ω) = ẑt(Tω), and the constants Mt, αt, θt and Θt do not depend on t. Clearly
(31) implies that Xt+1(ω) = xt(Tω). Let us formulate analogues of the conditions
(G1)-(G4) in the case of a stationary model as follows.

(G1
′
) For all ω ∈ Ω and a ∈ X0(ω), the set {b : (a, b) ∈ G1 (ω)} is non-empty.

(G2
′
) There is a constant M such that the set G1 (ω) is contained in {(a, b) : |b| ≤

M |a|} for all ω ∈ Ω.
(G3

′
) There exist a strictly positive constant α > 0 and a bounded vector function

ẑ1(ω) = (x̂0(ω), ŷ1(ω)) such that x̂0(ω) is F0-measurable, ŷ1(ω) is F1-measurable and
B(ẑ1(ω), α) ⊆ G1(ω) for all ω.

(G4′) There exists a natural number m such that for every random state y0 ∈ X0,
one can find a real number γ > 0 and random states y1 ∈ X1,...,ym ∈ Xm, satisfying
with probability one

(y0 (ω) , y1 (ω)) ∈ G1 (ω) , ..., (ym−1 (ω) , ym (ω) + y (ω)) ∈ Gm (ω) (32)

for all y ∈ L∞m (RN ) with |y(ω)| ≤ γ|y0(ω)|.
Observe that the above conditions are versions of conditions (G1)-(G4) formulated

for one moment of time t = 0. Clearly in the stationary case, these requirements hold
for some t if and only if they hold for each t.
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Proposition 5.1. If G satisfies one of the conditions (G1′)-(G4′), then H satisfies
one of the following corresponding conditions.

(H1′) For all ω ∈ Ω and c ∈ RK+ , the set {d : (c, d) ∈ H1 (ω)} is non-empty.
(H2′) There is a constant M ′ such that the set H1 (ω) is contained in {(c, d) : |d| ≤

M ′|c|} for all ω ∈ Ω.
(H3

′
) There exist a strictly positive constant δ > 0 and a bounded vector function

ŵ1(ω) = (û0(ω), v̂1(ω)) such that û0(ω) is F0-measurable, v̂1(ω) is F1-measurable and
B(ŵ1(ω), δ) ⊆ H1(ω) for all ω.

(H4
′
) There exists a natural number m such that for every non-negative function

u0 ∈ L∞0 (RK), one can find a real number γ′ > 0 and non-negative vector functions
u1 ∈ L∞1 (RK),...,um ∈ L∞m (RK), satisfying with probability one

(u0 (ω) , u1 (ω)) ∈ H1 (ω) , ..., (um−1 (ω) , um (ω) + u (ω)) ∈ Hm (ω)

for all u ∈ L∞m (RK) with |u(ω)| ≤ γ′|u0(ω)|.

Proof. If one of the conditions (G1′)-(G3′) holds, then the analogous condition holds.
The proof is exactly the same as the proof of Proposition 4.1, with the additional
assumption that the constants Mt, αt, θt and Θt do not depend on t.

Suppose (G4′) holds. Consider any non-negative vector function u0 ∈ L∞0 (RK).
Let y0(ω) = F0(ω)u0(ω). The function y0(ω) is F0-measurable, and y0(ω) ∈ X0(ω)
by virtue of (7). Furthermore, y0(ω) is essentially bounded because |F0(ω)u0(ω)| ≤
Θ|u0(ω)| (see (8)). Then by virtue of (G4′) there exist a natural number m, a real
number γ > 0 and random states y1 ∈ X1,...,ym ∈ Xm, satisfying (32) with probability
one for all y ∈ L∞m (RK) with |y(ω)| ≤ γ|y0(ω)|. Since for every 1 ≤ t ≤ m, yt(ω) ∈
Xt(ω) = Ft(ω)RK+ (a.s.), by the measurable selection theorem, there exists an Ft-
measurable function ut(ω) with values in RK+ such that yt(ω) = Ft(ω)ut(ω) (a.s.). In
view of (8), the function ut is essentially bounded. Thus for every 0 ≤ t ≤ m− 2, we
obtain

(Ft(ω)ut(ω), Ft+1(ω)ut+1(ω)) = (yt(ω), yt+1(ω)) ∈ Gt+1(ω) (a.s.),

which yields (ut(ω), ut+1(ω)) ∈ Ht+1(ω) (a.s.). Put γ′ = K−1Θ−1θγ and consider
u ∈ L∞m (RK) with |u(ω)| ≤ γ′|u0(ω)|. We wish to prove

(um−1 (ω) , um (ω) + u(ω)) ∈ Hm (ω) (a.s.).

To this end, let us first prove that um (ω) + u(ω) ∈ RK+ . If we put y(ω) =
−γ′|u0(ω)|Fm(ω)e, then we have

|y(ω)| ≤ KΘγ′|u0(ω)| ≤ KΘγ′θ−1|y0(ω)| = γ|y0(ω)|,

where both inequalities follow from (8) and the fact that y ∈ L∞m (RN ). Thus,
(ym−1 (ω) , ym (ω) + y (ω)) ∈ Gm (ω) and so there exists an Fm-measurable function
h(ω) ∈ RK+ such that Fm(ω)h(ω) = ym (ω) + y (ω). As a consequence, we have

Fm(ω)um (ω) = Fm(ω)
(
h(ω) + γ′|u0(ω)|e

)
,
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and so um (ω) = h(ω) + γ′|u0(ω)|e, which yields um (ω) ≥ γ′|u0(ω)|e. Consequently,

um (ω) + u(ω) ≥ γ′|u0(ω)|e+ u(ω) ≥ |u(ω)|e+ u(ω) ≥ 0.

Now put y(ω) = Fm(ω)(um (ω) + u(ω))− Fm(ω)um (ω). Observe that

|y(ω)| ≤ Θ|um (ω) + u(ω)− um (ω) | = Θ|u(ω)| ≤ Θγ′|u0(ω)|
≤ Θγ′θ−1|y0(ω)| = K−1γ|y0(ω)| ≤ γ|y0(ω)|,

and y ∈ L∞m (RN ). Thus we have

(Fm−1(ω)um−1(ω), Fm(ω)(um (ω) + u(ω)))

= (ym−1 (ω) , ym (ω) + y (ω)) ∈ Gm(ω) (a.s.),

which means that (um−1 (ω) , um (ω) + u(ω)) ∈ Hm (ω) (a.s.).

To apply the results of the previous work to the dynamical system H, we will need
the following fact.

Remark 3. Condition (H4′) implies the following one.
(h4′) There exists a natural number m such that for every non-negative function

u0 ∈ L∞0 (RK), one can find a real number ρ > 0 and non-negative vector functions
u1 ∈ L∞0 (RK), ..., um ∈ L∞m (RK), satisfying with probability one

(u0 (ω) , u1 (ω)) ∈ H1 (ω) , ..., (um−1 (ω) , um (ω)) ∈ Hm (ω)

and

um(ω) ≥ ρe|u0|,

where e = (1, ..., 1) ∈ RK+ .
Observe that the functions u1,...,um involved in (H4′) have the properties described

in (h4′) with ρ = γ′/K. This is so because, if um (ω) +u(ω) ∈ RK+ for all u ∈ L∞m (RK)
with |u(ω)| ≤ γ′|u0(ω)| then um(ω) ≥ eρ|u0|. Indeed, the inequality um(ω) ≥ ρe|u0(ω)|
can be written as um(ω) + v(ω) ∈ RK+ where v := −ρe|u0| and |v(ω)| = γ′|u0(ω)|.

A key role in the proof of Theorem 3.5 is played by the following result.

Theorem 5.2. Let (u0, q1, λ1) be a triplet of functions forming a von Neumann equi-
librium in the dynamical system H. Then there exists a triplet (x̃0, p̃1, λ̃1) forming a
von Neumann equilibrium in the dynamical system G.

Proof. Suppose (u0, q1, λ1) is a triplet of functions forming a von Neumann equilib-

rium in the dynamical system H. Then for almost all ω, we have q1(ω) ∈ L1,+
1 (RK),

(u0(ω), λ1(ω)u1(ω)) ∈ H1(ω), q1(ω)u0(ω) = 1,

and

q̄2(ω)d

λ1(ω)
− q1(ω)c ≤ 0, (c, d) ∈ H1(ω),
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where u1 = Tu0, q2 = Tq1 and q̄2 = E1q2. By the definition of H1(ω), a pair of vectors
(c, d) ∈ RK+ ×RK+ belongs to H1(ω) if and only if (F0(ω)c, F1(ω)d) ∈ G1(ω). Thus with
probability 1 (for all ω in a set Ω1 of full measure), we have

q̄2(ω)d

λ1(ω)
− q1(ω)c ≤ 0,

for any (c, d) ∈ RK+ × RK+ satisfying

(F0(ω)c, F1(ω)d) ∈ G1(ω).

We will fix ω ∈ Ω1 and omit it in the notation, if this does not lead to ambiguity.
Since ẑ1 = (x̂0, ŷ1) = (F0û0, F1v̂1) is contained in G1(ω) together with a ball of radius
α, we can apply the Kuhn-Tucker theorem (see Theorem 7.2 in the Appendix) to the
convex set X consisting of non-negative vectors (c, d) in RK+ × RK+ , the function

Φ(c, d) = q̄2d/λ1 − q1c,

the cone Z = G1(ω) and the mapping R transforming (c, d) into (F0(ω)c, F1(ω)d) ∈
RN × RN . By using a measurable selection argument, we construct F1-measurable
functions a1(ω) and b1(ω) taking values in RN such that for all ω ∈ Ω1,

b1b− a1a ≤ 0, (a, b) ∈ G1(ω), (33)

for all (c, d) ∈ RK+ × RK+ ,

q̄2d

λ1
− q1c− [b1F1d− a1F0c] ≤ 0 (34)

and

|b1|+ |a1| ≤ 2Nα−1(q1û0 −
q̄2v̂1
λ1

). (35)

Define x0 := F0u0. The function x0(ω) = F0(ω)u0(ω) is F0-measurable and x0 ∈ X0

by virtue of (7). Furthermore, x0(ω) is essentially bounded. Put

x1 = Tx0, x̃0 = x0/ |x0| , x̃1 = T x̃, and λ̃1 = λ1 |x1| / |x0| .

Let us show that the triplet (x̃0, p̃1, λ̃1) is an equilibrium in G. We have x̃0 ∈ X0 and
|x̃0| = 1. Since |u0| = 1 (a.s.), in view of (8) we have θ ≤ |x0| = |F0(ω)u0| ≤ Θ, and so
E| ln |x0|| <∞. Therefore

E ln λ̃1 = E lnλ1 + E ln |x1| − E ln |x0| = E lnλ1.

Further, we have

(x̃0, λ̃1x̃1) = (
x0
|x0|

,
λ1 |x1|
|x0|

x1
|x1|

) = (
x0
|x0|

,
λ1x1
|x0|

)
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= |x0|−1 (F0u0, λ1F1 (u1)) = |x0|−1 (F0u0, F1 (λ1u1)) ∈ G1(ω) (a.s.). (36)

Thus the pair of functions x̃0 and λ̃1 generates a balanced path.
Put p̃1 := |x0| a1. We can see from (35) that E|a1(ω)| < ∞, and so E|p̃1(ω)| < ∞.

By setting first c = 0 and then d = 0 in (34), we get

q̄2
λ1
≤ b1F1, (37)

q1 ≥ a1F0. (38)

By applying the operator T to both sides of inequality (38), we get

q2 ≥ a2F1, (39)

where a2 := Ta1. For all pairs (x, y) of functions in L∞1 (RN ) × L∞1 (RN ) such that
(x, y) ∈ G1(ω) (a.s.), there exist F1-measurable vector functions u and v taking values
in RK+ , such that x = F0u, y = F1v and (u, v) ∈ H1(ω) (a.s.). These functions are
essentially bounded in view of the first inequality in (8). By setting p̃2 = T p̃1, we get

Ep̃1x = E |x0| a1x ≥ E |x0| b1y = E |x0| b1F1v ≥ E
q̄2 |x0| v
λ1

= E
q2 |x0| v
λ1

≥ Ea2F1 |x0| v
λ1

= E
|x0| a2y
λ1

= E
p̃2y

λ̃1
= E

E1(p̃2)y

λ̃1
.

(40)

In this chain of relations, the first inequality holds because b1y |x0| ≤ a1x |x0| (a.s.)
as long as (x, y) ∈ G1(ω) (a.s.), which follows from (33). The second inequality is a
consequence of (37) and the third one holds by virtue of (39). The last equality is valid
since

p̃2

λ̃1
=

|x1| a2
λ1 |x1| / |x0|

=
|x0| a2
λ1

.

From (40) we obtain (in view of the equivalence of (2) and (3) that with probability
one

E1p̃1(Tω)b

λ1(ω)
≤ p(ω)a for all (a, b) ∈ G1(ω).

We have

p̃1x̃0 = |x0| a1
x0
|x0|

= a1F0u0 ≤ q1u0 = 1 (a.s.), (41)

where the inequality follows from (38). Further, we get

Ep̃1x̃0 = Ea1x0 ≥ Eb1λ1x1 = Eb1F1 (λ1u1) ≥ E
q̄2
λ1
λ1u1 = Eq2u1 = 1. (42)

In this chain of relations, the first inequality holds by virtue of (33) and because
(x0, λ1x1) ∈ G1(ω) a.s. (see (36)). The second follows from (37). By combining (41)
and (42), we conclude that p̃1x̃0 = 1 (a.s.).
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Let us show that for almost all ω ∈ Ω,

p̃1(ω)a ≥ 0 for a ∈ X0(ω),

i.e. p̃1(ω) ∈ X∗0 (ω) (a.s.). Denote by Ω1 the set of those ω for which b1(ω)F1(ω) ≥ 0.
By virtue of (37), we have P (Ω1) = 1. Fix any ω ∈ Ω1, a ∈ X0(ω) and consider some
c ∈ RK+ for which F0(ω)c = a. By virtue of (H1′), there exists d ∈ RK+ such that
(c, d) ∈ H1(ω). Then b1F1d ≤ a1F0c in view of (33). From this we get

p̃1a = |x0| a1F0c ≥ |x0| b1F1d ≥ 0.

It remains to show that the balanced path generated by (x̃0, λ̃1) is a von Neumann
path, i.e. E lnλ′1 ≤ E ln λ̃1 as long as λ′1 is an F1-measurable scalar function with
E| lnλ′1| < +∞ and such that (x′0, λ

′
1Tx

′
0) ∈ G1(ω) (a.s.) for some x′0 ∈ X0 with

|x′0(ω)| = 1. (a.s.). Consider an F0-measurable function u′0(ω) such that F0u
′
0 = x′0.

By virtue of (8), Θ−1 ≤ |u′0| ≤ θ−1. We have

F1(λ
′
1Tu

′
0) = λ′1F1(Tu

′
0) = λ′1TF0(u

′
0) = λ′1Tx

′
0.

Since (x′0, λ
′
1Tx

′
0) ∈ G1(ω) (a.s.), (u′0, λ

′
1Tu

′
0) ∈ H1(ω) (a.s.), and consequently

(
u′0
|u′0|

,
λ′1|Tu′0|
|u′0|

Tu′0
|Tu′0|

) ∈ H1(ω).

By using (33), we get

E lnλ′0 = E ln
λ′1|Tu′0|
|u′0|

≤ E lnλ1 = E ln λ̃1,

which shows that the triplet (x̃0, p̃1, λ̃1) forms a von Neumann equilibrium in the
dynamical system G.

An existence theorem for a von Neumann equilibrium in a canonical stationary von
Neumann-Gale dynamical system was obtained in [24], Theorem 1 and Proposition 3.
To formulate this result we introduce the following additional assumption (known in
Mathematical Economics as the “free disposal hypothesis”):

(FD) If (c, d) ∈ H1(ω), c′ ≥ c and 0 ≤ d′ ≤ d, then (c′, d′) ∈ H1(ω).

Theorem 5.3. Under assumptions (H1′), (H2′), (h4′) and (FD), a von Neumann
equilibrium exists.

It can be shown that condition (FD) in the present context is redundant: Theo-
rem 5.3 holds without it. To this end, let us define

Ĥ1(ω) :=
{

(c, d) ∈ RK+ × RK+ : there exists d̂ ≥ d such that (c, d̂) ∈ H1(ω)
}
.

It is clear that Ĥ1(ω) is a cone and H1(ω) ⊆ Ĥ1(ω).

Proposition 5.4. Ĥ1(ω) satisfies (FD).

22



Proof. Let (c, d) ∈ Ĥ1(ω) and 0 ≤ d′ ≤ d. Since (c, d) ∈ Ĥ1(ω), there exists d̂ ≥ d ≥ 0

such that (c, d̂) ∈ H1(ω). Then (c, d′) ∈ Ĥ1(ω), because d̂ ≥ d ≥ d′ ≥ 0. Observe that

if (c, d) ∈ Ĥ1(ω), then (c, 0) ∈ Ĥ1(ω).

Let (c, d) ∈ Ĥ1(ω) and c′ ≥ c. Put c′ = c + h, h ≥ 0. By virtue of condition

(H1′), (h, g) ∈ H1 (ω) ⊆ Ĥ1(ω) for some g ≥ 0, then (h, 0) ∈ Ĥ1 (ω). Therefore

(c′, d) = (c+ h, d) ∈ Ĥ1 (ω).

Proposition 5.5. If (u, q, λ) is a von Neumann equilibrium for Ĥ1(ω), then it is a
von Neumann equilibrium for H1(ω).

Proof. By definition of von Neumann equilibrium, u(ω) ≥ 0 is an F0-measurable
vector function normalized by the condition |u(ω)| = 1 (a.s.), λ(ω) > 0 is an F1-

measurable scalar function with E lnλ(ω) < +∞, q(ω) ∈ L1,+
t (RK) such that

(u(ω), λ(ω)u(Tω)) ∈ Ĥ1(ω) (a.s.), (43)

for almost all ω

E1q(Tω)b

λ(ω)
≤ q(ω)a for all (a, b) ∈ Ĥ1(ω) (44)

and q(ω)u(ω) = 1 (a.s.).
By virtue of (43) and the measurable selection theorem, there exists an F1-

measurable vector function g(ω) ≥ 0 such that (u(ω), λ(ω)u(Tω) + g(ω)) ∈ H1(ω)
(a.s.). By applying (44) to (u(ω), λ(ω)u(Tω) + g(ω)) and using the fact that
q(ω)u(ω) = 1 (a.s.), we obtain

Eq(Tω)g(ω) ≤ 0.

Since q(Tω)g(ω) ≥ 0 (a.s.), we conclude that q(Tω)g(ω) = 0 (a.s.) and so g(ω) =
0 (a.s.) because q(Tω) 6= 0 (a.s.). Therefore (u(ω), λ(ω)u(Tω)) ∈ H1(ω) (a.s.) and
(u, q, λ) > 0 is a von Neumann equilibrium for H1(ω). The proof is complete.

Proof of Theorem 3.5. By virtue of Proposition 5.1, conditions (H1′), (H2′) and

(H4′) hold. Note that these conditions hold true for Ĥ1 (ω). Therefore from The-
orem 5.3 and Proposition 5.4, we conclude that there exists a triplet of functions
(u, q, λ) forming a von Neumann equilibrium for Ĥ1 (ω) which is also an equilibrium
for H1(ω) by virtue of Proposition 5.5. Consequently, Theorem 5.2 guarantees that
there exists a triplet of functions (x, p, λ) forming a von Neumann equilibrium in the
dynamical system G.

6. A multicurrency model for a market with dividend-paying assets

In this section we describe a specialized model for a financial market with frictions
and provide conditions guaranteeing that Theorems 3.2, 3.4, and 3.5 can be applied
to this model. We consider a market where N assets are traded at dates t = 1, 2, . . . A
portfolio of assets is represented by a vector a = (a1, ..., aN ) ∈ RN . The ith component
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of this vector is equal to the value of the portfolio position corresponding to asset i.
The value is measured in terms of some numéraire. It is typically assumed that the
numéraire is the base currency (domestic cash). It does not necessarily need to be one
of the N assets. The set {1, 2, ..., N} of all the assets is decomposed into two subsets, I1
and I2, each of which may be empty. Those assets that are indexed by i ∈ I1 represent
currencies3 and those labeled by i ∈ I2 represent assets of other kind, typically shares
of stock.

For each t ≥ 1 and i, j = 1, . . . , N , the following Ft-measurable random variables
are given: the asset prices qt,i > 0 quoted in units of the numéraire, transaction cost
rates 0 ≤ λt,i,j < 1 (i 6= j) for exchanging asset i for asset j, and dividend yields or
interest rates 0 ≤ D+

t,i,j ≤ D
−
t,i,j for long and short positions. If a = (a1, ..., aN ) ∈ RN is

a portfolio, then ai/qt,i is the number of units of asset i held in it and Rt,i = qt,i/qt−1,i
is the (gross) return on asset i.

The variables λt,i,j have the following meaning. Suppose the trader reduces the value
of her ith portfolio position ai by θ ≥ 0 units of numéraire with the view to increasing
the jth position aj . Then the amount added to aj will be equal to θ − λt,i,jθ, where
λt,i,jθ is the transaction cost rate. This operation comprises currency exchange when
i, j ∈ I1, buying and selling assets j ∈ I2 for currencies i ∈ I1, and barter trading
when i, j ∈ J2.

The meaning of the variables D±t,i,j is as follows. If i ∈ I1, i.e. i represents a currency,

then D+
t,i,j and D−t,i,j might be non-zero only if j = i: the interest is paid in the same

currency (but measured in terms of the numeraire). If ai > 0, then D+
t,i,ia

i is the

interest paid by the amount of currency i worth ai > 0 units of numéraire. When
ai < 0, i.e. some amount of currency i has been borrowed, say, from a bank, then
D−t,i,ia

i indicates the amount that has to be returned, so that D−t,i,i represents the

bank’s interest rate for lending. The value of the dividends (in units of the numeraire)
that is paid by asset i ∈ I2 and added to the position corresponding to asset j ∈ I1 is
equal to D+

t,i,ja
i
+ −D−t,i,jai−. It is natural to assume that the dividends on stock i ∈ I2

are paid in some currency j(i) ∈ I1, so that D±t,i,j = 0 for j 6= j(i).
The market in the model at hand is organized as follows. At each date t, the trader

receives dividends and interest D+
t,i,ja

i
+ − D−t,i,ja

i
− on her portfolio a(ω) purchased

at the previous date t − 1. These amounts (positive or negative) are added to the
corresponding portfolio positions. After receiving dividend and interest payments, the
trader will have the portfolio dt(ω, a) = (d1t (ω, a), . . . , dNt (ω, a)) with the positions

djt (a) = Rt,ja
j +

N∑
i=1

(D+
t,i,ja

i
+ −D−t,i,ja

i
−), j = 1, . . . , N,

where the first term in the right-hand side represents the new value (in units of the
numéraire) of the portfolio position in asset j after the change of its price. Then the
trader can rearrange her portfolio into a new portfolio b(ω). The model assumes that
such a rearrangement is possible if and only if there exists an N ×N matrix Θ = (θi,j)

3Models of currency markets with proportional transaction costs (bid-ask spreads) were developed by Kabanov

and co-authors—see, e.g., [39, 42] and references therein.
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(a matrix of transactions) with non-negative elements such that for each j = 1, . . . , N

djt (a) +

N∑
i=1

((1− λt,i,j)θi,j − θj,i) ≥ bj . (45)

The element θi,j of the matrix Θ is the value of the part of the position in asset i
which is exchanged for asset j, and λt,i,jθi,j is the corresponding transaction cost.

Denote the left-hand side of (45) by ψjt (ω, a,Θ) and consider the vector-valued func-

tion ψt(ω, a,Θ) with the components ψjt (ω, a,Θ), j = 1, . . . , N . The above description
of the model corresponds to the cones

Gt(ω) :=
{

(a, b) ∈ Xt−1(ω)×Xt(ω) : ∃Θ ∈ RN×N+ : ψt(ω, a,Θ) ≥ b
}
,

where the inequality should be understood coordinatewise. As long as Xt−1 and Xt

are cones, the fact that Gt are cones follows from (45), where we need the assumption

D+
t,i,j ≤ D

−
t,i,j to ensure that the functions djt (a) are concave.

We will consider the cones Xt, that define portfolio constraints, of the following
form:

Xt(ω) =

{
a ∈ RN :

N∑
i=1

µ+t,i(ω)ai+ ≥
N∑
i=1

µ−t,i(ω)ai−

}
,

where 0 < µ+t,i ≤ µ−t,i are positive Ft-measurable random variables. These random
variables can be used to specify margin requirements, as, for example, in the following
two particular models:

Xt(ω) =
{
a ∈ RN : |a+| ≥ Ut|a−|

}
, (46)

or

Xt(ω) =

{
a ∈ RN : a1+ +

N∑
i=2

(1− λt,i,1)ai+ ≥ Ut

(
a1− +

N∑
i=2

(1− λt,1,i)−1ai−

)}
, (47)

where Ut > 1 are constants interpreted as margin coefficients: the trader must be able
to cover the short positions of the portfolio by its long positions with excess determined
by Ut. In (46) no transaction costs are taken into account in the computation of the
values of the short and long positions. In (47), the transaction costs are calculated
assuming that all the transactions performed to cover the short positions are done
through asset 1 (the base currency).

Note that the expression in parentheses on the right-hand side of the inequality in
(47) is equal to the numéraire value of the amount of asset 1 that is needed to close all
the short positions under transaction costs. The amount of asset 1 that is worth one
unit of the numeraire (i.e. 1/qt,1 units of asset 1) can be exchanged for the amount
of asset i, which has the value of (1 − λt,1,i)−1 units of the numeraire. Similarly, the
left-hand side of the inequality in (47) is the value of the amount of asset 1 which can
be obtained by exchanging all the long positions for asset 1.
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As a liquidation value function, which appears in condition (L), we will use

φt(ω, b) = b1 +

N∑
i=2

(1− λt,i,1(ω))bi+ −
N∑
i=2

(1− λt,1,i(ω))−1bi−. (48)

This function is equal to the numéraire value of the position in asset 1 that the trader
can obtain if she closes all the other positions, assuming that all the transactions are
done through asset 1, i.e. the long positions in assets i = 2, . . . , N are exchanged
for asset 1, and then asset 1 is exchanged to close all the short positions in assets
i = 2, . . . , N .

Now we provide sufficient conditions to guarantee that this model satisfies conditions
(F), (G1)-(G4), (L), and so Theorems 3.2 and 3.4 can be applied to it. Let Λ+

t,i =

1− λt,i,1, Λ−t,i = (1− λt,1,i)−1 for i = 2, . . . , N , and Λ±t,1 = 1.
We introduce the following conditions.
(A1) For each t, there exist constants Rt, Rt, Λt, Λt, and Dt such that 0 < Rt ≤

Rt,i(ω) ≤ Rt, D−t,i,j(ω) ≤ Dt, 0 < Λt ≤ Λ+
t,i(ω), and Λ−t,i(ω) ≤ Λt for all i, j, ω.

(A2) For each t, there exists a constant µt such that µ−t,i(ω)/µ+t,j(ω) ≥ µt for all ω,
i 6= j, and µt > νt, where

νt :=

(
1 +

Λt+1

Λt+1

)
Rt+1 +NDt+1

Rt+1 +NDt+1

and Dt ≥ 0 is a constant such that Dt ≤ D+
t,i,j(ω) for all ω, i, j.

The financial meaning of conditions (A1) and (A2) is as follows. The first two
inequalities in (A1) require the ratio Rt of asset prices at two consecutive dates to
be bounded away from zero and bounded from above by some constants. The third
inequality says that the dividend yields cannot be greater than the constants Dt. The
last inequalities state that the transaction costs both for buying and selling should not
be ”too high”. Condition (A2) requires that the size of the margin determined by the
relation µ−t,i(ω)/µ+t,j(ω) should not be ”too small” — at least, greater than νt. These

conditions are needed to verify the validity of assumptions (G1)–(G4) and (F).
Observe that for the particular example of the cones Xt(ω) in (46), if condition

(A1) is satisfied, then (A2) will hold if Ut > νt for each t. In (47), (A2) will hold
if (A1) holds and Ut ≥ νtΛ

+
t,i/Λ

−
t,j + εt for each t and i 6= j, where εt > 0 are some

constants.

Proposition 6.1. Let conditions (A1), (A2) hold. Then:
(a) the cones Xt(ω) satisfy condition (F) and the cones Gt(ω) satisfy conditions (G1)-
(G3);
(b) if µt, Rt, Rt, Λt, Λt, Dt do not depend on t, then Gt(ω) satisfy condition (G2)
with constant M not depending on t and condition (G4) with m = 1; if additionally
and µΛ > Λ, then the function φt defined in (48) satisfies condition (L).

We will need the following auxiliary result to prove Proposition 6.1.

Lemma 6.2. Let conditions (A1), (A2) hold. Then
(a) For each t there exists a constant C1

t > 0 such that if a ∈ Xt(ω) then |a+| −
νt|a−| ≥ C1

t |a|.
(b) For each t there exists a constant C2

t such that if a ∈ Xt−1(ω), b ∈ Xt(ω) and
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|b| ≤ C2
t |a|, then (a, b) ∈ Gt(ω).

Proof. (a) Consider the non-random cone X̃t = {a ∈ RN : µt|a−| ≤ |a+|}. Condition
(A2) implies that Xt(ω) ⊆ X̃t, i.e. Xt(ω) satisfies condition (M) with constant µt.
Observe that the continuous function ht(a) = |a+| − νt|a−| is strictly positive on the
compact set Kt = X̃t ∩ {a : |a| = 1}. Indeed, since ht(a) ≥ (µt − νt)|a−| on X̃t, then
the equality ht(a) = 0 would imply |a−| = 0, and hence |a+| = ht(a) = 0, so that
|a| = 0. Then ht(a) attains a strictly positive minimum on Kt, which can be taken as
C1
t .
(b) Let a ∈ Xt−1(ω), b ∈ Xt(ω). Consider the transaction matrix Θ with the

elements θi,1 = (dit(a)− bi)+, θ1,i = (1− λt,1,i)−1(dit(a)− bi)− for i = 2, . . . , N and all
the other elements being zero. Then ψit(a,Θ) = bi for i = 2, . . . , N .

It is straightforward to check that for any numbers x, y we have (x−y)+ ≥ x+−y+
and (x− y)− ≤ x− + y+. Using this, we obtain

ψ1
t (a,Θ)− b1 =

N∑
i=1

(
Λ+
t,i(d

i
t(a)− bi)+ − Λ−t,i(d

i
t(a)− bi)−

)
≥

N∑
i=1

(
Λ+
t,i[d

i
t(a)]+ − Λ−t,i[d

i
t(a)]− − (Λ+

t,i + Λ−t,i)b
i
+

)
≥

N∑
i=1

(
Λt[d

i
t(a)]+ − Λt[d

i
t(a)]−

)
− (1 + Λt)|b|.

Observe that

[dit(a)]+ ≥ dit(a) ≥ Rtai+ +Dt|a+| −Rtai− −Dt|a−|,
[dit(a)]− ≤ Rtai− +Dt|a−|.

Hence

ψ1
t (a,Θ)− b1 ≥ Λt(Rt +NDt)|a+| − (Λt + Λt)(Rt +NDt)|a−| − (1 + Λt)|b|

= Λt(Rt +NDt)(|a+| − νt−1|a−|)− (1 + Λt)|b|
≥ C1

t−1Λt(Rt +NDt)|a| − (1 + Λt)|b|.

Then statement (b) can be fulfilled with the constant C2
t = C1

t−1Λt(Rt+NDt)/(1+Λt),
since in that case ψ1

t (a, T )− b1 ≥ 0, implying (a, b) ∈ Gt.

Proof of Proposition 6.1. (a) Let us show that each cone Xt is polyhedral. Put
ft,i,j = ei − (µ+t,i/µ

−
t,j)ej for i 6= j, where ei is the i-th basis vector in RN . Suppose

a ∈ Xt(ω), a 6= 0. Denote by I = {i : ai > 0}, J = {j : aj < 0} the sets of indices
of positive and negative coordinates of a and put δ = (

∑
j∈J µ

−
t,j |aj |)/(

∑
i∈I µ

+
t,ia

i).
Clearly, δ ≤ 1 as a ∈ Xt. Then

a = δ
∑
i∈I

∑
j∈J

aiµ−t,j |aj |∑
k∈J

µ−t,k|ak|
ft,i,j + (1− δ)

∑
i∈I

aiei.

Hence the cone Xt can be represented in the form (5) with N2 generators: ft,i,j and ei
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for i, j = 1, ..., N , j 6= i. As it was noted in the proof of statement (a) of Lemma 6.2,
the cones Xt satisfy (M). So, by Proposition 3.1, they also satisfy (F).

Condition (G1) follows from that, according to statement (b) of Lemma 6.2, for
any a ∈ Xt−1(ω) we have (a, 0) ∈ Gt(ω).

Let us prove (G2). Suppose (a, b) ∈ Gt. Since b ∈ Xt(ω), statement (a) of Lemma 6.2

implies that |b| ≤ (C1
t )−1

∑N
i=1 b

i. Moreover, there exists a transaction matrix Θ for
which (45) holds, so we have

|b| ≤ 1

C1
t

N∑
i=1

dit(a) ≤ 1

C1
t

(Rt +NDt)|a|. (49)

This implies the validity of (G2) with constant Mt = (Rt +NDt)/C
1
t .

Now we will prove condition (G3). Let x̂ = (1, ..., 1) ∈ RN . Put ẑt = (x̂, ŷt) with
ŷt = (C2

t /2)x̂. Observe that there exists δt > 0 such that B(ẑt, δt) ⊂ R2N
+ and therefore

B(ẑt, δt) ⊂ Xt−1 × Xt. Since |ŷt| < C2
t |x̂|, then one can find 0 < αt ≤ δt such that

|yt| ≤ C2
t |xt| for any zt = (xt−1, yt) ∈ B(ẑt, αt). Then statement (b) of Lemma 6.2

implies zt ∈ Gt for such zt. Hence, the pair (ẑt, αt) satisfies condition (G3).
(b) From the proof of statement (a) of Lemma 6.2 one can see, that if the constants

from condition (A1) do not depend on t, then it is possible to choose C1
t independent

of t. Then (49) implies that Mt can be chosen independent of t.
Let us prove that (G4) holds. It follows from the proof of Lemma 6.2, that the

constant C2
t can be chosen independent of t. Let γ = C2/(N + 1) and consider any

yt ∈ Xt. Put yt+1 = γ|yt|x̂. Then B(yt+1, γ|yt|) ⊆ RN+ ⊆ Xt+1. Hence for any y ∈ Xt+1

such that |y| ≤ γ|yt| we have yt+1 + y ∈ Xt+1, and then statement (b) of Lemma 6.2
implies that (yt, yt+1 + y) ∈ Gt+1, so condition (G4) holds with m = 1.

Finally, we prove that the function φt(ω, b) satisfies condition (L). Observe that

it can be represented in the form φt(b) =
∑N

i=1(Λ
+
t,ib

i
+ − Λ−t,ib

i
−). From the proof

of Lemma 6.2, it follows that the cones Xt satisfy condition (M) with constant µ
independent of t. Using the condition µΛ > Λ and applying Proposition 3.3, we see
that (L) is satisfied.

Now we provide a sufficient condition for the existence of a von Neumann equilibrium
in the stationary version of the model.

Proposition 6.3. Let T be an automorphism of the underlying probability space such
that

Ft+1 = T−1(Ft), µ±t+1,i(ω) = µ±t,i(Tω), Rt+1,i(ω) = Rt,i(Tω), .

λt+1,i,j(ω) = λt,i,j(Tω), D±t+1,i,j(ω) = D±t,i,j(Tω).

Let conditions (A1) and (A2) hold for some t and hence for all t. Then a von Neu-
mann equilibrium exists.

The validity of this proposition follows from Proposition 6.1 and Theorem 3.5.
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7. Appendix

7.1. A measurable selection theorem

Let (Ω,F , P ) be a probability space such that the σ-algebra F is complete with respect
to measure P (all subsets of F-measurable sets of measure 0 are F-measurable). Let
B be a complete separable metric space and B its Borel σ-algebra. Let ω 7→ A(ω) be
a multivalued mapping assigning a non-empty set A(ω) ⊆ B to each ω ∈ Ω.

Theorem 7.1. If {(ω, a) : a ∈ A(ω)} ∈ F × B, then for each ω one can select a point
α(ω) ∈ A(ω) such that the mapping α : (Ω,F)→ (B,B) is measurable.

For a proof of this result see, e.g., Castaing and Valadier [11].

7.2. The Kuhn-Tucker theorem

We formulate a version of this theorem that is used in this work. Let X ⊆ Rn be a
convex set, Φ : X → R1 a concave function, R : Rn → Rm a linear mapping and Z a
cone in Rm. Assume that the following assumption (Slater’s condition) holds.

(S) There exists an element x̂ of the set X such that the point ẑ := Rx̂ is contained
in Z together with a ball B(ẑ, γ) (γ > 0).

Theorem 7.2. Let x∗ be a point in X where the function Φ(x) attains its maximum
on X subject to the constraint Rx ∈ Z. Then there exists a linear functional g on Rm
such that

Φ(x)− gRx ≤ Φ(x∗), x ∈ X, (50)

and

gz ≤ 0, z ∈ Z. (51)

Furthermore, we have

|g| ≤ mγ−1[Φ(x∗)− Φ(x̂)]. (52)

Proof. For the existence of g see, e.g., Luenberger [33]. The estimate (52) is obtained
as follows. We have

0 ≥ gẑ = gRx̂ ≥ Φ(x̂)− Φ(x∗), (53)

where the first inequality follows from (51) and the second from (50). Since B(ẑ, γ) ⊆ Z,
if |h| ≤ γ, then ẑ−h ∈ Z, and so g(ẑ−h) ≤ 0, i.e. gh ≥ gẑ. By combining this inequality
with (53), we get

gh ≥ gẑ ≥ Φ(x̂)− Φ(x∗) (54)

for any h such that |h| ≤ γ. Therefore

|gh| ≤ Φ(x∗)− Φ(x̂)
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for all h with |h| ≤ γ. Put h = γm−1/2||g||−1g, where || · || is the Euclidean norm in
Rm. Then |h| = γm−1/2||g||−1|g| ≤ γ because |g| ≤

√
m||g|| for each g ∈ Rm. From

(54) we obtain

Φ(x∗)− Φ(x̂) ≥ |gh| = γm−1/2||g||−1||g||2 = γm−1/2||g|| ≥ γm−1|g|,

which proves (52).
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[32] K. Janeček and S. Shreve. Asymptotic analysis for optimal investment and consumption
with transaction costs, Finance and Stochastics 8 (2004) 181–206.

[33] D.G. Luenberger. Optimization by Vector Space Methods, Wiley, N. Y., 1997.
[34] G. Iyengar and T.M. Cover. Growth optimal investment in horse race markets with costs,

IEEE Transactions on Information Theory 46 (2000) 2675–2683.
[35] G. Iyengar. Universal investment in markets with transaction costs, Mathematical Finance

15 (2005) 359–371.
[36] S. Jacka and A. Berkaoui. On the density of properly maximal claims in financial markets

with transaction costs, Annals of Applied Probability 17 (2007) 716–740.
[37] S. Jacka, A. Berkaoui, and J. Warren. No arbitrage and closure results for trading cones

with transaction costs, Finance and Stochastics 12 (2008) 583–600.
[38] E. Jouini and H. Kallal. Martingales and arbitrage in securities markets with transaction

costs, Journal of Economic Theory 66 (1995) 178–197.
[39] Yu.M. Kabanov. Hedging and liquidation under transaction costs in currency markets,

Finance and Stochastics 3 (1999) 237–248.
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