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ABSTRACT
Electron–ion bremsstrahlung (free–free) emission and absorption occur in many astrophysical
plasmas for a wide range of physical conditions. This classical problem has been studied
multiple times, and many analytical and numerical approximations exist. However, accurate
calculations of the transition from the non-relativistic to the relativistic regime remain sparse.
Here we provide a comprehensive study of the free–free Gaunt factors for ions with a low
charge (Z ≤ 10). We compute the Gaunt factor using the expressions for the differential
cross-section given by Elwert and Haug (EH) and compare to various limiting cases. We
develop a new software package, BRpack, for direct numerical applications. This package
uses a combination of pre-computed tables and analytical approximations to efficiently cover
a wide range of electron and photon energies, providing a representation of the EH Gaunt
factor to better than 0.03 per cent precision for Z ≤ 2. Our results are compared to those of
previous studies highlighting the improvements achieved here. BRpack should be useful in
computations of spectral distortions of the cosmic microwave background, radiative transfer
problems during reionization or inside galaxy clusters, and the modelling of galactic free–free
foregrounds. The developed computational methods can furthermore be extended to higher
energies and ion charge.

Key words: radiation mechanisms: general – cosmic background radiation – diffuse radia-
tion.

1 IN T RO D U C T I O N

The bremsstrahlung (BR) or free–free emission process is highly
relevant in many astrophysical plasmas (e.g. Blumenthal & Gould
1970; Rybicki & Lightman 1979). As such, it has been studied
extensively in the literature (e.g. Menzel & Pekeris 1935; Karzas &
Latter 1961; Brussaard & van de Hulst 1962; Johnson 1972; Kel-
logg, Baldwin & Koch 1975; Hummer 1988), with early theoretical
works reaching all the way back to the pioneering stages of quantum
mechanics (Kramers 1923; Gaunt 1930; Sommerfeld 1931; Bethe &
Heitler 1934; Sommerfeld & Maue 1935; Elwert 1939).

BR is the main process responsible for the X-ray radiation of
galaxy clusters (e.g. Gursky et al. 1972; Cavaliere & Fusco-Femiano
1976; Sarazin 1986); it provides a source of soft photons relevant to
the thermalization of spectral distortions of the cosmic microwave
background (CMB; Sunyaev & Zeldovich 1970a, b; Hu & Silk
1993; Chluba & Sunyaev 2012); and is a very important radiation
mechanism close to compact objects (Shakura & Sunyaev 1973;
Narayan & Yi 1995; McKinney et al. 2017). In addition, it is one
of the main galactic foregrounds for CMB temperature anisotropy
studies (Planck Collaboration IX 2016). It is thus important to have

� E-mail: jens.chluba@manchester.ac.uk

an accurate representation of this process, a problem that can be
cast into computations of the free–free Gaunt factor, which extend
the classical Kramers formula (Kramers 1923) by quantum and
relativistic corrections.

Here we are interested in typical electron energies corresponding
to temperatures of � 10−7 keV (a few K) up to a few tens of keV
(�109 K). This broad range of conditions is present in astrophysical
plasmas of the early and late Universe (redshift z � 1–109), cov-
ering both non-relativistic and mildly relativistic thermal electron
populations. Two main approaches have featured in the literature:
At non-relativistic energies, the analytic expressions summarized
by Karzas & Latter (1961, hereafter KL) can be applied, while at
higher energies the Bethe–Heitler formula (Bethe & Heitler 1934,
hereafter BH) is valid. The KL formulae provide a non-perturbative
description of the BR emissivity assuming non-relativistic electron
velocities1 (i.e. electron speeds |ε|/c � 1), while the BH expression
utilizes the first-order Born approximation (αZ � 1) for relativistic
electrons. Although it is well known that higher order Coulomb
corrections and shielding effects become important for high ion
charge Z and extreme electron energies (e.g. Tseng & Pratt 1971;
Roche, Ducos & Proriol 1972; Haug 2008), the KL and BH formulae

1The ion is assumed to rest before and after the interaction.
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are accurate in their respective regimes. For intermediate energies,
no simple expressions exist that allow describing the Gaunt factor
in the transition between the KL and BH limits.

The computation of the KL and BH Gaunt factors and their ther-
mal averages is fairly straightforward, and various approximations
and computational schemes have been developed (KL; Brussaard &
van de Hulst 1962; Itoh, Nakagawa & Kohyama 1985; Hummer
1988; Nozawa et al. 1998; Itoh, Kawana & Nozawa 2002). To
bridge the gap between these two limits, van Hoof et al. (2015)
combined the non-relativistic KL expressions and BH formula to
mimic the transition. It is, however, possible to directly model the
transition using the differential BR cross-section of Elwert & Haug
(1969, hereafter EH). This cross-section is based on Sommerfeld–
Maue eigenfunction (Sommerfeld & Maue 1935) and is valid for
low ion charge over a wide range of electron and photon energies.
It was shown that the cross-section naturally approaches the non-
relativistic and relativistic limits (EH), thus joining the two regimes.
However, it still has to be integrated over the particle momenta and
thermally averaged, a task that will be studied here.

In this paper, we investigate the EH expression computing the
total BR Gaunt factor and thermal averages for ionic charge Z ≤
10, having applications to the evolution of CMB spectral distortions
and the reionization process in mind, where hydrogen and helium
(i.e. Z ≤ 2) dominate. We numerically integrate the differential EH
cross-section and compare the obtained results to various limiting
cases. The differential cross-section is simplified and several new
approximations are presented (Section 2.4). The main numerical
challenge is the demanding evaluation of hypergeometric functions,
which we reduce to the evaluation of one real function (see
Appendix C). We in detail discuss the domains of validity of
the various expressions (Sections 3 and 4) and directly compare
with previous calculations (Section 4.5). All our results can be
reproduced with BRpack,2 which uses a combination of pre-
computed tables and analytic approximations to efficiently represent
the EH, BH, and KL Gaunt factors over a wide range of electron
and photon energies. A compression of the required data at low and
high photon energies is achieved by analytic considerations.

2 BR C RO SS-SECTIONS

In this section, we provide a comprehensive summary of existing
analytic expressions for the BR emission cross-section.3 An im-
proved expression for the differential cross-section was given by
EH. One crucial feature is that at high energies the EH formula
naturally reduces to the BH formula, while at low energies the non-
relativistic expression of KL is recovered. Thus, the EH formalism
allows computing the total BR cross-section for the intermediate
case. However, the evaluation of the cross-section is cumbersome
and it is therefore crucial to understand its limiting cases.

2.1 Classical Kramers BR formula

In the classical limit, the BR cross-section for the emission of a
photon at energy ω = hν/mec2 by an electron with momentum p1

2BRpack will be made available at www.chluba.de/BRpack.
3The absorption cross-section can be deduced by interchanging the roles of
the initial/final electron, denoted by momenta p1 and p2, respectively. All
momenta and energies are expressed in units of mec and mec2, respectively.

reads (Kramers 1923; KL)

dσK(ω,p1)

dω
= 2αZ2

√
3

σT

p2
1ω

. (1)

Here, α is the fine structure constant, Z is the ion charge, and σ T

is the Thomson cross-section. Due to energy conservation, only
photons with energy ω ≤ ωmax = γ 1 − 1 can be emitted. Here,
γ1 = (1 + p2

1)1/2 is the Lorentz factor of the initial electron. The
ratio of the BR emission cross-sections discussed in the following
sections and the Kramers approximation then defines the related
Gaunt factor.

2.2 Exact non-relativistic BR cross-section

The exact non-relativistic (NR) BR emission cross-section can be
cast into the form4 (KL; Hummer 1988)

dσNR(ω,p1)

dω
= dσK(ω,p1)

dω
gNR(ω,p1)

gNR(ω,p1) =
√

3

4π
F (η1, η2) G0

{[
η1 η2 + 1

2

(
η1

η2
+ η2

η1

)]
G0

− (1 + η2
1)(1 + η2

2)

6
G1

}
(2a)

G�(η1, η2, x) = (−x)�+1 (1 − x)
i(η1+η2)

2 e−πη1

× 2F1 (1 + � + iη1, 1 + � + iη2, 2� + 2, x) (2b)

ηi = αZγi

pi

, x = − 4η1η2

(η1 − η2)2
, 1 − x = (η1 + η2)2

(η1 − η2)2

F (η1, η2) = 4π2η1η2

(1 − e−2πη1 )(1 − e−2πη2 )
, (2c)

with p2 =
√

p2
1 + ω(ω − 2γ1). The functions G� are all real func-

tions (see Appendix A). Since the scattered electron momentum
obeys p2 ≤ p1, one also has η1 ≤ η2. As shown in Appendix A1,
the NR Gaunt factor can be further simplified to

gNR(ω,p1) ≡ −
√

3

2π
F (η1, η2)

(η1 + η2)2

(η1 − η2)2
G0 G′

0 (3)

with G′
0 = ∂xG0 evaluated at x = −4η1η2/(η1 − η2)2. This eases

the numerical computation of gNR greatly because only G0 has to be
computed. In a similar manner, we will reduce the EH expression
to a function of G0 and G′

0 (Appendix C).
The functions, G�(η1, η2), are rather hard to evaluate for the

range of momenta we require. In particular, for ω < 10−6ωmax and
at p1 < 10−3, the computations become difficult due to catastrophic
cancellations of large numbers. At p1 > 10−3, we use simple
recursion relations similar to KL and Hummer (1988) outlined in
Appendix A3. At ω < 10−20ωmax, we use the soft-photon limit of
equation (2) derived in Appendix B (where we also kept higher
order terms). It can be cast into the simple form

gsoft
NR (ω,p1) ≈

√
3

2π
FE(η1, η2)

{
ln

(
4η1η2

(η1 − η2)2

)
− Re [H (iη1)]

}

FE(η1, η2) = η2

η1

1 − e−2πη1

1 − e−2πη2
, (4)

4We modified the definitions of ηi to match the relativistic form of EH. The
effects of this modification will be illustrated below and are found to slightly
improve the agreement with the EH result.
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which closely matches the NR calculation even at higher frequencies
(up to ω � 10−3ωmax). Here, H(z) denotes the harmonic number (see
Appendix B). The remaining cases can be evaluated using arbitrary
number precision (e.g. with Mathematica). Alternatively, the
differential equation for G0 can be solved, which also directly gives
G′

0 without further effort (see Appendix A2).
To quickly compute the non-relativistic Gaunt factor, we tabulate

it for charge Z = 1 as a function of p1 and w = ω/ωmax at p1 ∈
[5 × 10−8, 10−3] and5 w ∈ [10−20, 1], which in turn allows us to
obtain the thermally averaged Gaunt factor down to temperatures
comparable to Te � 1 K. Tables for the non-relativistic absorption
Gaunt factor were also given by van Hoof et al. (2014) and
can be reproduced using the emission Gaunt factor. The results
for ionic charge Z > 1 can be obtained by interpolating those
for Z = 1 using the simple mapping gNR(p1, ω) → gNR(p∗

1 , ω
∗)

with

p∗
i = pi/Z√

1 + (pi/Z)2[Z2 − 1]
, ω∗ = γ ∗

1 − γ ∗
2 . (5)

Overall, our procedure gives better than 0.01 per cent numeri-
cal precision for the non-relativistic cross-section at all ω and
p1. To further improve the non-relativistic Gaunt factor, one
can multiply it by γ 2

1 to capture the leading order relativistic
correction

gcorr
NR (p1, ω) = γ 2

1 gNR(p1, ω). (6)

As we will show, this indeed improves the range of applicability of
the KL formula (see Section 2.3 for discussion).

2.3 Bethe–Heitler cross-section

At high energies (p1 � 10−2 Z), the Bethe–Heitler
cross-section, derived using the first-order Born approximation,
becomes valid. It can be cast into the form6 (e.g. BH; Jauch &
Rohrlich 1976)

dσBH(ω,p1)

dω
= dσK(ω,p1)

dω
gBH(ω,p1)

gBH(ω,p1) =
√

3

π

[
p1p2

4
− 3

8
γ1γ2

(
p1

p2
+ p2

p1

)
+ γ1γ2 L

+ 3

8
ωL

{(
1 + γ1γ2

p2
1

)
λ1

p1
−
(

1 + γ1γ2

p2
2

)
λ2

p2

+ω

[
1+ γ1γ2

p2
1p

2
2

+ γ 2
1 γ 2

2

p2
1p

2
2

]}

+ 3

8

(
γ2p2

p2
1

λ1 + γ1p1

p2
2

λ2 − 2λ1λ2

)]
,

λi = ln(γi + pi), L = ln

[
γ1γ2 + p1p2 − 1

ω

]
. (7)

Since this expression only involves elementary functions, it can be
evaluated very efficiently. It is equivalent to the one used in Itoh
et al. (1985), Nozawa et al. (1998), and van Hoof et al. (2015) after
transforming to their variables.

5This is one of the benefits of using the emission Gaunt factor as it has a
finite upper limit at ωmax = γ 1 − 1.
6Note a missing factor of 2 in the L-term of Jauch & Rohrlich (1976).

At low frequencies, p1 � p2 and γ 1 � γ 2, such that

gBH ≈
√

3

π

{
γ 2

1

[
ln

(
2p2

1

ω

)
− 1

2
− 1

4γ 2
1

]
+ 3

4

(
γ1

p1
− λ1

)
λ1

}
.

(8)

For increasing p1, this expression scales like � γ 2
1 , which causes

a large boost of the BR emissivity. For convenience, it is therefore
good to absorb this extra factor into the Kramers approximation
and define the BR Gaunt factor with respect to this modified
Kramers approximation, i.e. dσ corr

K /dω = γ 2
1 dσK/dω. The modified

Kramers cross-section can still be thermally averaged analytically
(see equation 19) such that this modification does not cause any
additional complications.

It is also well known that the BH approximation can be improved
by adding the so-called Elwert factor (Elwert 1939), which already
appeared in equation (4). This then yields

g∗
BH(p1, ω) ≈ FE(η1, η2) gBH(p1, ω), (9)

which improves the agreement with the EH Gaunt factor, in
particular, in the short-wavelength limit (ω � ωmax). In our com-
putations, we shall always use g∗

BH(p1, ω) for the Bethe-Heitler
limit.

2.4 Elwert–Haug cross-section

Considering BR in the EH case is a lot more challenging. No
analytic expression for the total cross-section, dσ/ dω, has been
given. However, EH provide an expression for the differential cross-
section that allows us to describe the transition between the non-
relativistic and relativistic regimes.

Starting from EH, but significantly rewriting the differential
cross-section (see Appendix C), we find

d3σEH

dμ1dμ2dφ2
= dσK(ω,p1)

dω

d3gEH(ω,p1)

dμ1dμ2dφ2
(10a)

d3gEH

dμ1dμ2dφ2
= 3

√
3

8π2
p1p2 F (η1, η2)M2(ω,p1, μ1, μ2, φ2),

(10b)

where d3gEH/ dμ1dμ2dφ2 defines the EH Gaunt factor that is
differential in three angles, characterized by the direction cosines,
μi = pi · k/p1ω, and the polar angle φ2 between the incoming
photon and outgoing electron. After introducing the auxiliary
variables:

η∞ = αZ, η± = η1 ± η2

μi = pi · k

p1ω
, μ12 = p1 · p2

p1p2
= μ1μ2

+ cos(φ2)
√

1 − μ2
1

√
1 − μ2

2

πi = piμ1, π12 = p1p2μ12, κi = 2(γi − piμi) = 2(γi − πi)

χi = pi

√
1 − μ2

i , χ12 = χ1χ2 cos(φ2)

τi = 4γ 2
i − q2, τ12 = 4γ1γ2 − q2

q2 = |p1 − p2 − k|2 = p2
1 + p2

2 + ω2 + 2 [ω(π2 − π1) − π12]

ξ =
[(

p1 + p2

ω

)2

− 1

]
q2

κ1κ2
≡ μ̃q2

κ1κ2

κ = η+
η∞

= γ1

p1
+ γ2

p2
, ρ = 1

p1
+ 1

p2
,
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the required matrix element can be cast into the compact form

M2 = 1

q4

{[
JBH − 2

η−
η+

ξ D1 + η2
−

η2+
ξ 2 D2

]
η2

+G2
0

4(1 − ξ )2

+ JBH [ξG′
0]2

}

JBH = τ1
χ2

2

κ2
2

+ τ2
χ2

1

κ2
1

− τ12
2χ12

κ1κ2
+ (χ2

1 + χ2
2 − 2χ12

) 2ω2

κ1κ2

D1 = τ1
χ2

2

κ2
2

− τ2
χ2

1

κ2
1

+ (χ2
1 − χ2

2

) 2ω2

κ1κ2
+
(

L1

κ1
+ L2

κ2

)
ω

ρ

D2 = τ1
χ2

2

κ2
2

+ τ2
χ2

1

κ2
1

+ τ12
2χ12

κ1κ2
+ (χ2

1 + χ2
2 + 2χ12

) 2ω2

κ1κ2

+ 8ω2

κ1κ2
−
(

L1

κ1
− L2

κ2

)
2ω

ρ
+ L3

ω2

ρ2

L1 = κ
[
π1

(
π12 + p2

2

)− (π1 + π2 − ω) p1p2 + (2 − π1π2)ω
]

+ 2
ω

p1
(π1 + π2 − ω)

L2 = κ
[
π2

(
π12 + p2

1

)− (π1 + π2 + ω) p1p2 − (2 − π1π2)ω
]

− 2
ω

p2
(π1 + π2 + ω)

L3 = μ̃ ω2

[
1 − π1π2

p1p2
+ γ1 + γ2

p1p2

γ1 + γ2 + π1 + π2

p1p2

]
− 2ρ2,

(11)

where G0 and G′
0 are both evaluated at x = 1 − ξ in equation (2).

Expressed in this way indeed simplifies the computation of the
cross-section significantly and also allows one to more directly
read off limiting cases. For instance, in the BH limit, one has
M2 = JBH/q4 (EH). Alternatively, the cross-section in the form
Appendix (C15) can be applied. Both approaches give excellent
results when using the numerical method described next.

2.4.1 Numerical evaluation of the EH cross-section

To evaluate the total EH cross-section, we have to integrate equa-
tion (10a) over μ1, μ2, and φ2. This is a non-trivial task even for
modern computers. At low frequencies, large cancellation issues
arise, which can be cured using suitable variables. At both large
and small values of p1, the evaluation of hypergeometric functions
furthermore becomes cumbersome even when applying suitable
transformations for the argument. Luckily, in many of the extreme
cases, we can resort to the non-relativistic and Bethe–Heitler
formulae. Nevertheless, intermediate cases have to be explicitly
computed.

First, it is helpful to convert the integral over φ2 into an integral
over ξ . This also reduces the number of evaluations for the
hypergeometric functions, which significantly improves the com-
putational efficiency. The symmetry of the integrand in φ2 implies∫ 2π

0 dφ2 = 2
∫ π

0 dφ2 = 2
∫ ξmax

ξmin

dφ2
dξ

dξ = 2
∫ �ξtot

0
dφ2
dξ

d�ξ with

�ξ = ξ − ξmin, cos(φ2) = 1 − 2
�ξ

�ξtot
(12a)

�ξtot = 4 μ̃ χ1χ2

κ1κ2
,

dφ2

dξ
= 1√

�ξ (�ξtot − �ξ )
(12b)

ξmin = μ̃
(
p2

1 + p2
2 + ω2 + 2 [ω(π2 − π1) − (π1π2 + χ1χ2)]

)
κ1κ2

.

(12c)

This transformation is crucial for improving the stability of the
code near the maxima of 1/q4; however, to further improve matters,

one also has to use �μ21 = μ2 − μ1 instead of μ2. At low
frequencies, the integrand picks up most of its contributions from
around μ1 � μ2. Hence this variable more naturally allows us to
focus evaluations around the poles. After these transformations,
we also regroup contributions and analytically cancel leading order
terms ∝ μ1 and ∝ p1. As an example, for ξmin we find

ξmin = μ̃

κ1κ2

{
�p2

21 − 2p1p2(S1�S21 + μ1�μ21)

+ 2[p1�μ21 + �p21(μ1 + �μ21)]ω + ω2
}

(12d)

with �p21 = p2 − p1, Si =
√

1 − μ2
i , and �S21 = S2 − S1. It is

also important to treat the differences �p21 and �S21 analytically
for small ω and �μ21.

The contributions ∝ Di in equation (11) become small at low
frequencies and do not cause any serious numerical issues. However,
we have to regroup the terms in JBH. We found

JBH = 4

(
γ2

χ1

κ1
− γ1

χ2

κ2

)2

−
(

χ1

κ1
− χ2

κ2

)2

q2

+ (τ12 + 2ω2)
�ξ

μ̃
+ (χ1 − χ2)2 2ω2

κ1κ2
(13)

to provide numerically stable results. Here we used the identity
χ1χ2 − χ12 = κ1κ2�ξ/[2μ̃]. This procedure allows us to compute
the Bethe–Heitler limit by numerical integration of the differential
cross-section even at extremely low frequencies (w = ω/[γ 1 − 1]
� 10−14), highlighting the numerical precision of our method.

The computations for the EH case over a wide range of energies
require a few additional steps. The biggest remaining problem is the
evaluation of terms related to the hypergeometric functions. These
can be either treated by using the real functions G0 and G′

0 like for
the NR case or by expressing matters in terms of |A|2 and |W|2
(see Appendix C14 for definitions). We studied both approaches but
eventually used the former in our final calculations, finding it to be
more efficient as the evaluation of G0 using the differential equation
approach simultaneously yields G′

0 without further effort. Both the
approaches gave consistent results, and we also validated the various
versions of writing the EH cross-section given the significant steps
involved in the derivation (see Appendix C).

At w > 10−6 and also ξ � 10−8, we used the recursion relations
for G0 and the hypergeometric function series to compute G0 and
G′

0. At w ≤ 10−6, we tabulated G0 and G′
0 for ξ ∈ [10−8, 107] every

time p1 and w changed to accelerate the evaluations. To extend
the evaluation to ξ � 107 in this regime, we used the following
asymptotic expansions for G0 and G′

0

G2
0 ≈

(
1 − e−2πη1

2πη1

)2 [
φ2 + 2η2

1

φ(2 + φ)

ξ

]
[
ξG′

0

]2 ≈
(

1 − e−2πη1

2πη1

)2 [
1 − 2η2

1

(1 + φ)

ξ

]
φ = lnξ − 2 Re[H (iη1)]. (14)

Finally, instead of computing the total cross-section, we numerically
integrate the difference with respect to the BH case (modified by
the Elwert factor). This improves the numerical precision and rate
of convergence. To obtain the Gaunt factors at all energies of the
photon, we use the standard variables (i.e. φ2 and μ2) at w � 10−2,
which we found to perform better in this regime.

At very low photon energies (w � 10−14), even the procedure
described above was no longer sufficient. However, just like for
the non-relativistic Gaunt factor, at those energies the asymptotic
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Figure 1. Non-relativistic Gaunt factor (equation 2) for Z = 1. The usual
definition relative to the Kramers formula (dσ/ dω ∝ 1/[p2

1ω]) is applied.
The lines are for different values of p1, varied by factors of 10. The non-
relativistic formula becomes inaccurate at p1 � 10−1 (dashed lines).

behaviour is reached. Motivated by equation (4), we thus used

gsoft
EH (ω,p1) ≈

√
3

2π
FE(η1, η2) A

{
ln

(
4η1η2

(η1 − η2)2

)
− B

}
, (15)

with the free parameters A and B to extrapolate the Gaunt factor
towards low energies. In practice, we use w = 10−8 and 10−6 to
determine the free parameters for any of the cases at w � 10−10.
Since we are able to directly compute cases down to w � 10−14, we
could validate these extrapolations explicitly.

Given the numerical challenges of multidimensional integration,
we expect errors to become noticeable at � 10−4 relative precision.
To carry out the numerical integrals, we used nested Patterson
quadrature rules and the CUBA library.7 Both procedures yield
consistent results. We also checked many of our results using
Mathematica; however, BRpack was found to be faster.

3 R E S U LT S F O R TH E G AU N T FAC TO R

In this section, we present our results for the BR emission Gaunt
factor, illustrating its main behaviour. We also determine the range
of applicability of the various approximations, focusing on low-
charge ions (Z ≤ 10). In particular, the cases Z = 1 and 2 (hydrogen
and doubly ionized helium) are of relevance to us, as these ions are
the most common in the early Universe. To present and store the
results, it is convenient to use w = ω/[γ 1 − 1] as the frequency
variable, implying w ≤ 1. Indeed, this is one of the benefits of
working with the emission Gaunt factor instead of the absorption
Gaunt factor, as the w is bounded from above.

3.1 Non-relativistic approximation

In Fig. 1, we illustrate the non-relativistic Gaunt factor for ionic
charge Z = 1. At low photon energies, the simple asymptotic
dependence given by equation (4) is observed. At p1 � 10−1,
the non-relativistic approximation becomes inaccurate as we will
see more quantitatively below (cases with the dashed lines in the
figure). The Gaunt factors for Z > 1 and p1 ≤ 10−2 Z show similar

7http://www.feynarts.de/cuba/

Figure 2. Numerically evaluated non-relativistic Gaunt factor (equation 2)
for Z = 1. The results for Z > 1 can be constructed using simple variable
mapping, as given in equation (5).

characteristics as those for Z = 1. They can be obtained by simple
mapping of variables (equation 5), which essentially leads to p1

→ p1/Z and ω → ω/Z2 to leading order. For larger values of Z,
additional corrections become important. A wider parameter range
is covered in Fig. (2), for further illustration.

In equation (2), we used ηi = αZγ i/pi instead of ηKL
i = αZ/pi

given in KL. This choice is motivated by the expressions of EH,
which also depends on this modified variable. The main difference
is that at p1 � 1 (i.e. ηi → 0) the KL expression yields a Gaunt
factor that asymptotes to a constant shape. In the (C15) Gaunt
factor, this leads to a significant drop at high photon energies as we
will see below (cf. Fig. 10). This drop is not seen for the EH result
and the change of variables indeed reduces the departures. From
our pre-computed tables, the KL case can be obtained by simply
replacing pi → pi/γ i in the evaluation. However, in the following
discussion, we shall use the modified version of the NR expression,
as the main conclusions do not change.

3.2 Relativistic Bethe–Heitler approximation

In Fig. 3, we illustrate the Gaunt factor in the relativistic regime
using the Bethe–Heitler approximation with the Elwert factor,
equation (9). We scaled out a factor of γ 2

1 (see the discussion in
Section 2.3) to moderate the Gaunt factor variations. As we will
see below, this modification also reduces the dynamic range for
the thermally averaged Gaunt factor at high frequencies (compare
Figs 12 and 13). At low electron momenta (p1 � 10−2), the Bethe–
Heitler formula overestimates the Gaunt factor significantly. The
BH formula also does not explicitly depend on the charge Z and thus
is unable to capture Coulomb corrections that become important for
larger values of Z and for low values of p1 (e.g. EH).

3.3 Intermediate regime and domains of validity of the
various approximations

For large electron momenta, the EH cross-section asymptotes
towards the BH formula as long as Z is not too large (i.e. Z � 10). To
illustrate the Gaunt factor based on the expressions given by EH, it
is thus convenient to compare the values directly to the BH formula.
In Fig. 4, we present the results for various electron momenta p1 =
{0.01, 0.012, 0.015, 0.02, 0.03, 0.04, 0.05, 0.1, 0.3}. Note that
some of the curves are not labelled explicitly, and that for the NR
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section by the standard Kramers formula, we also scaled out a factor of
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1 (see Section 2.3 for discussion). The Gaunt factor does not change
significantly for electron momenta p1 � 10−2 and indeed is inapplicable in
that regime.
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Figure 4. Comparison of the Elwert–Haug and non-relativistic Gaunt
factors with the Bethe–Heitler formula for Z = 1 (upper panel) and 2 (lower
panel). At p1 � 0.01, the NR and EH Gaunt factors agree extremely well,
while for p1 � 0.03 the NR Gaunt factor underestimates the EH result. The
EH formula converges towards the BH approximation at p1 � 0.2–0.3.

Figure 5. Regions in which the NR approximations and BH formula are
valid. The coloured areas are the (p1, w) subspaces where the relative
difference between the EH Gaunt factor and the labelled formula is less
than 0.3‰ (Top panel), 1‰ (Middle panel), or 1 per cent (Bottom panel).
The white area is where the calculation using the EH Gaunt factor is
required to achieve the required precision. The improved NR approximation
significantly extends the reach of the NR expression. The root-mean-square
temperature θ rms

e = kT rms
e /mec

2 = p2
1/3 is shown for a comparison.

case only those for p1 ≤ 0.05 are presented as the others significantly
underestimate the EH result.

For Z = 1, the departures of the EH Gaunt factor from the BH
approximation are smaller than 8 per cent for the chosen p1 values.
Even the NR formula works very well up to8 p1 � 0.05. As expected,
the EH formula approaches the BH cross-section at p1 � 0.2–0.3,
corresponding to kinetic energies in excess of E1 � 10 keV. For
charge Z = 2 (lower panel of Fig. 4), similar trends can be observed;
however, the departures from the BH formula generally are bigger
for fixed p1 since p∗

1 ≈ p1/Z reduces. This means that for larger
values of Z, the Gaunt factor remains closer to the NR case up to
larger values of p1, i.e. gEH(p1, ω, Z) ≈ gEH(p1/Z, ω/Z2, Z = 1).

To more quantitatively assess the validity of various approxi-
mations, we ran comparisons for the Gaunt factors asking when
they depart by more than a fixed relative precision from the
EH calculation. The results of this comparison for Z = 1 are
summarized in Fig. 5. As expected, the Bethe–Heitler formula
correctly approximates the cross-section in the relativistic regime
(blue region), namely above p1 � 0.05–0.15 if we require a
maximum 1‰ deviation (middle panel). Relaxing this requirement
(bottom panel), the region in which BH is valid overlaps with the

8This conclusion is not changed significantly when using the original version
for the non-relativistic Gaunt factor with ηi = αZ/pi.
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Figure 6. Same as in Fig. 5 but for Z = 2. The areas requiring the full EH
evaluation slightly increased. Also, in comparison to Z = 1, the boundary
of the NR formula is shifted downward by roughly a factor of 2.

region, in red, where the non-relativistic (NR) approximation is
applicable, i.e. the two approximations depart from each other by
less than 2 per cent. For clarity, we mention that in the purple
areas mark the overlap of the red (NR) and blue (BH) regions.
Our improved NR approximation, i.e. equation (6), which takes
into account the leading order relativistic correction, significantly
enlarges the applicability of the NR formula (orange area). We
also highlight that the NR soft-photon approximation, equation (4),
works extremely well below and to the left of the dot dashed line;
for higher photon energies, the respective full expression has to be
evaluated.

The presence of regimes in which neither the NR limit nor the BH
approximations are valid (white areas in Fig. 5) makes it clear that
any precise calculation involving BR processes needs to carefully
assess when the simplified expressions can be used, and eventually
resort to the EH cross-section evaluation in the intermediate regime.
It is, however, impressive that for Z = 1 at 1 per cent precision only
the BH and NR expressions are needed and a simple switch at p1

� 0.05 should suffice when combining these two. With BRpack,
all cases can be efficiently modelled using one function evaluation
with appropriate arguments.

For Z = 2, we reach similar conclusions as for Z = 1 (Fig. 6).
The regions requiring the full EH evaluation slightly increase given
the importance of terms ∝ αZ. Overall, the boundary of the NR
approximation shifts roughly by a factor of 2, which is expected
from gEH(p1, ω, Z) ≈ gEH(p1/Z, ω/Z2, Z = 1). Again at 1 per cent
precision, the BH and NR formulae are sufficient for representing
the intermediate Gaunt factor, while at � 0.1 per cent the EH result
is needed. WithBRpack, all cases can be considered and compared.

Figure 7. Regions requiring EH evaluation to achieve 1 per cent accuracy
for ion charges Z = 4–10. BRpack allows representing the Gaunt factor
over the whole domain. The coloured regions, where approximations can be
safely used, refer to the case for Z = 10.

Figure 8. Same as Fig. 7 but for 0.1 per cent precision. At this precision, the
BH formula is inaccurate for Z ≥ 7 and 10−3 � w ≤ 1. The non-relativistic
region is quite narrow (orange region) for the considered temperatures.

3.4 Gaunt factors for 2 < Z ≤ 10

We have seen that for Z = 1 and 2, the departures from the EH
calculation only become visible at the � 0.1 per cent level (Figs 5
and 6). For larger ion charge, corrections become increasingly
important ultimately exceeding the 1 per cent level. Here we restrict
our discussion to cases with Z ≤ 10 as higher order Coulomb
corrections are expected to become relevant for larger ion charge
(Roche et al. 1972; Haug 2008, 2010), a problem that we leave to
future work.

In Fig. 7, we show the domains in which the full EH Gaunt factor
evaluation is required to achieve 1 per cent precision. For Z = 3, we
find that a combination of the BH and NR Gaunt factors remains
sufficient at this precision, but for Z = 4 a small domain requiring
the EH evaluation appears. As expected, this domain grows with
increasing charge Z. For Z = 10, one expects � 1 per cent cor-
rections over a significant range of photon energies at p1 � 0.2,
corresponding to an rms temperature Te � 108 K (θe � 0.02).

When tightening the precision requirement to 0.1 per cent, we
obtain the domains shown in Fig. 8. We only computed the EH
Gaunt factor up to p1 = 2 (kinetic energy � 600 keV), finding that
for Z ≥ 7 and 10−3 � w ≤ 1 the BH formula is inaccurate. Since for
higher kinetic energies, additional corrections become important
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Figure 9. EH Gaunt factor relative to BH formula for w = 10−2 and 1 as
a function of p1 and varying values of Z. At low photon energies, the EH
expression clearly approached the BH formula when increasing p1, while in
the short-wavelength limit departures from the BH formula remain visible
in the shown range of p1.

(e.g. Haug 2010), we limited our tables to p1 ≤ 2. For accurate
and efficient representation of the EH Gaunt factor, BRpack can be
used at � 0.01 per cent numerical accuracy up to p1 = 2. Above this
value of p1, we resort to the BH formula. This causes inaccuracies
in the high-frequency tail of the thermally averaged Gaunt factor,
as we explain below. However, the differences are limited to �
0.1 per cent for Z ≤ 4, and remain smaller than 0.5 per cent even
for Z ≤ 10 (see Fig. 9).

3.5 High electron momenta

In our discussion, we only considered cases up to electron momenta
p1 = 2. For Z = 10, this already revealed that the BH formula
is inaccurate at the level � 0.1 per cent in the short-wavelength
limit. Using the EH cross-section, we can explore this aspect a little
further. In Fig. 9, we illustrate the departures of the EH Gaunt factor
from the BH formula for w = 10−2 and 1 and several values of Z. For
Z = 4, this shows that even up to very high electron momentum, the
EH Gaunt factor does not depart by more than 0.1 per cent from the
BH formula. This statement extends to the cases Z < 4. BRpack,
which only contains tables up to p1 = 2, thus represents the EH
Gaunt factor to better than � 0.1 per cent for Z ≤ 4. For Z ≤ 2, even
a precision � 0.03 per cent can be guaranteed.

At Z > 4, the departures of the EH Gaunt factor from the BH
formula exceed the level of 0.1 per cent in the short-wavelength
limit (ω � γ 1 − 1). For Z > 4 and w � 1, BRpack thus does not
reproduce the EH Gaunt factor at p1 > 2 beyond the � 0.5 per cent
level. This causes inaccuracies in the thermally averaged EH Gaunt
factor at very high photon energies (see the next section). At lower
values of w, the BH limit is again approached, with departures
� 0.15 per cent at p1 > 2, w ≤ 10−2, and Z ≤ 10. Therefore, the
low-frequency tail of the EH Gaunt factor should be reproduced to
high precision.

We emphasize again that with BRpack we did not attempt to
represent the EH Gaunt factor at p1 > 2 more rigorously as it is clear
that other corrections will also become relevant there. However, at
those energies, the total number of emitted photon is exponentially
small, such that this should not cause any major limitations for most
applications.

4 TH E R M A L LY AV E R AG E D G AU N T FAC TO R S

Describing the interactions of photons and electrons in the general
case is quite complicated. However, for many astrophysical applica-
tions, one can neglect anisotropies in the medium (at least locally)
and simply describe the evolution of the average electron and
photon distribution functions. Coulomb interactions further drive
the electron distribution quickly towards a relativistic Maxwell–
Boltzmann distribution function (see equation 18 below). Electron–
ion degeneracy effects can furthermore be neglected (but can be
easily added) unless temperatures in excess of the pair-production
threshold are being considered. In particular, for the evolution of
CMB spectral distortions, the above conditions are the most relevant
(e.g. Chluba & Sunyaev 2012; Chluba 2014; Lucca et al. 2019).

4.1 Average BR emissivity in the Kramers limit

To define the thermally averaged Gaunt factors, we first introduce
the averaged BR photon production term of the plasma:

dNγ

dt dω

∣∣∣∣
em

= NiNe

∫
p2

1f (p1) |εrel| dσ (ω,p1)
dω

dp1. (16)

Here, Ni is the ion number density of charge Z; Ne is the electron
number density corresponding to the electron momentum distribu-
tion function, f(p1), which we normalized as

∫
p2

1f (p1) dp1 = 1.
The relative speed of the colliding particles is further given by
|εrel| = cp1/γ1, which becomes |εrel| ≈ cp1 in the non-relativistic
limit. Equation (16) assumed that the ions are at rest (i.e. recoil
effects due to the finite mass of the nucleus can be neglected),
and that the momentum distribution of the electrons is described
in this frame. Inserting the Kramers cross-section, equation (2),
into equation (16), the BR emissivity in the classical limit then
reads

dNγ

dt dω

∣∣∣∣
K

em

≈ 2αZ2

√
3

NeNiσTc

ω

∫ ∞

pmin

p1f (p1) dp1

≈ 2
√

2αZ2

√
3πθe

NeNiσTc

ω
e−ω/θe , (17)

where pmin is the minimal electron momentum that is required to
produce a photon of energy ω = hν/mec2. This is determined by ω =
γ min − 1, which yields pmin = √

ω(2 + ω) ≈ √
2ω. In the last step

of equation (17), we used a non-relativistic Maxwell–Boltzmann
distribution function, fnr(p) = √

2/π θ−3/2
e e−p2/2θe with dimen-

sionless electron temperature θ e = kTe/mec2 to carry out the
integral.

The above expressions explicitly assume p1, ω � 1. Even without
quantum corrections, to generalize the Kramers approximation to
higher temperatures/energies, we shall use the relativistic Maxwell–
Boltzmann distribution function

frMB(p) = e−γ (p)/θe

K2(1/θe) θe
, (18)

where K2(x) is the modified Bessel function of second kind.9 We
also keep the full relativistic expression for |εrel| = cp1/γ1 and
furthermore realize that at low frequencies the overall BR cross-
section scales as � γ 2

1 /[p2
1ω] towards higher electron energies (see

the discussion about Bethe–Heitler limit). Thus, after multiplying
the Kramers approximation, equation (2), by γ 2

1 and carrying

9The relativistic Maxwell–Boltzmann distribution is defined with the nor-
malization

∫
p2frMB(p) dp = 1.
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out the thermal average with the above modification, we have
the relativistically improved Kramers approximation for the BR
emissivity:

dNγ

dt dω

∣∣∣∣
K,rel

em

= 2
√

2αZ2

√
3πθe

NeNiσTc

ω
e−ω/θe I(ω, θe) (19a)

I(ω, θe) =
√

πθe

2
eω/θe

∫ ∞

pmin

p1γ1f (p1) dp1

=
√

πθe

2

e−1/θe

K2(1/θe)

[
(1 + ω)2 + 2θe(1 + ω) + 2θ2

e

]
≈ (1 + ω)2

[
1 +
(

2

1 + ω
− 15

8

)
θe

]
. (19b)

This shows that in the classical treatment the improved asymptotic
scales as ∝ (1 + ω)2 e−ω/θe for low temperatures. The origin of
this correction is not quantum-mechanical but simply due to
special relativistic effects. This modification absorbs the leading
order corrections towards the BH limit, as we discuss next. We
also mention that in equation (19) the temperature-dependent
factor,

R(θe) =
√

πθe

2

e−1/θe

K2(1/θe)
≡
∫∞

0 p2e−p2/2θe dp∫∞
0 p2e−(γ−1)/θe dp

≈ 1 − 15

8
θe + 345

128
θ2

e − 3285

1024
θ3

e , (20)

is directly related to the differences in the normalization of the
non-relativistic and relativistic Maxwell–Boltzmann distributions.
At high temperatures, the corrections can become sizable, giving
R(θe) � 0.98 at kTe = 5 keV and R(θe) � 0.84 at kTe ≈ 50 keV,
and thus should be taken into account for accurate calculations.

4.2 Definition of thermally averaged Gaunt factors

The main quantity that enters the BR emission term in the photon
Boltzmann equation, as well as the electron temperature evolution
equation, is the thermally averaged Gaunt factor. It can be simply
obtained by comparing the total plasma emissivity with the emis-
sivity in the Kramers limit and is usually computed as

ḡ(ω, θe) =
∫∞

pmin

p3
1

γ 1 f (p1) dσ (ω,p1)
dω

∣∣
K

g(ω,p1) dp1∫∞
pmin

p3
1

γ 1 f (p1) dσ (ω,p1)
dω

∣∣
K

dp1

=
∫∞

pmin

p1
γ 1 f (p1)g(ω,p1) dp1∫∞
pmin

p1
γ 1 f (p1) dp1

≡
∫ ∞

0
e−ξ g

(
ω,p1 =

√
(ω + θeξ )(2 + ω + θeξ )

)
dξ.

(21)

In the last step, we explicitly assumed that the electrons follow a
non-degenerate, relativistic Maxwell–Boltzmann distribution.10

In the non-relativistic limit (γ 1 � 1), equation (21) is a very
good choice. However, for p1 � 1, the Gaunt factor scales ∝ γ 2

1 at
low frequencies (see Section 2.3). It is thus useful to multiply the
Kramers cross-section by γ 2

1 , which then yields a slightly modified

10We have
∫ ∞

pmin

p1
γ 1 f (p1) dp1 = ∫ ∞

pmin

p1
γ 1 f (p1) dp1 = e−(1+ω)/θe /

K2(1/θe) in this case, which cancels a corresponding factor from the
numerator.

definition for the BR Gaunt factor:

ḡrel(ω, θe) =
∫∞

pmin
p1γ1f (p1) grel(ω,p1) dp1∫∞

pmin
p1γ1f (p1) dp1

=
∫∞

pmin

p1
γ1

f (p1) dp1∫∞
pmin

p1γ1f (p1) dp1
ḡ(ω, θe)

≡ ḡ(ω, θe)

(1 + ω)2 + 2(1 + ω)θe + 2θ2
e

grel(ω,p1) = γ −2
1 g(ω,p1). (22)

This redefinition reduces the dynamic range of the Gaunt factor and
is thus very useful for compressing the data in tabulations. The final
BR emission term then takes the form

dNγ

dt dω

∣∣∣∣
em

= 2
√

2αZ2

√
3πθe

NeNiσTc

ω
e−ω/θe I(ω, θe) ḡrel(ω, θe) (23a)

= 2
√

2αZ2

√
3πθe

NeNiσTc

ω
e−ω/θe R(θe) ḡ(ω, θe), (23b)

where I(ω, θe) is given by equation (19b) and R(θe) by equa-
tion (20). Both definitions, of course, give exactly the same answer
for the overall BR emission term. Nevertheless, in applications,
ḡrel(ω, θe) is beneficial since it does not scale as strongly with
temperature and can also be extrapolated towards high photon
energies without further computation (see the discussion below).

4.3 Thermally averaged NR and BH Gaunt factors

In this section, we illustrate the effects of thermal averaging on the
non-relativistic and Bethe–Heitler Gaunt factors. We also consider
the improvements by adding a factor of γ 2

1 to the Kramers’ and NR
formulae to capture the main relativistic correction. This leads to a
more moderate scaling of the Gaunt factor at high frequencies and
also improves the agreement with the EH result.

4.3.1 Karzas–Latter case

We start our discussion by reproducing the results from KL for
the non-relativistic Gaunt factor. Similar figures can also be found
in van Hoof et al. (2014). To obtain this result, we need to use
ηKL

i = αZ/pi instead of ηi = αZγ i/pi in equation (2). We fur-
thermore approximate the relative speed by |εrel| ≈ p1 and assume
a non-relativistic Maxwellian, fnr(p) = √

2/π θ−3/2
e e−p2/2θe . The

minimal momentum is furthermore set to pmin ≈ √
2ω. With this,

the Gaunt factor’s thermal average, equation (21), reduces to

ḡKL(ω, θe) =
∫∞√

2ω
p1e−p2

1/2θegKL(ω,p1) dp1∫∞√
2ω

p1e−p2
1/2θe dp1

=
∫∞

ω/θe
e−ξ gKL

(
ω,p1 = √

2θeξ
)

dξ∫∞
ω/θe

e−ξ dξ

≡
∫ ∞

0
e−ξ gKL

(
ω, p1 =

√
2(ω + θeξ )

)
dξ, (24)

which is equivalent to equation (21) of KL after switching to the
absorption Gaunt factor (exchange of the roles of the incoming and
outgoing electrons and use of energy conservation). It also directly
follows from equation (21) for θ e, ω � 1.

Fig. 10 illustrates the thermally averaged Gaunt factor for varying
temperature and Z = 1 using the approximations of KL. At high
photon energies, a steep drop of the Gaunt factor is observed. This is
not found for the EH result even at these relatively low temperatures
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Figure 10. Thermally averaged Gaunt factor with definitions as in KL for
Z = 1 (see Section 4.3.1 for details). The steep drop at high photon energies
is because relativistic boosting is not accounted for, an effect that is cured
by our modified non-relativistic expression (see Figs 11 and 15).
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Figure 11. Thermally averaged Gaunt factor in the non-relativistic limit
(equation 2) for Z = 1 when using the standard definition, equation (21),
for the thermal average. The replacement of ηKL

i = αZ/pi by ηi = αZγ i/pi

removes the unphysical drop of the KL Gaunt factor at high energies (cp.
Fig. 10).

and is simply caused by the fact that in the tail of the electron
distribution function relativistic correction cannot be neglected.
By switching back to ηi = αZγ i/pi instead of ηKL

i = αZ/pi and
inserting this into equation (21) [i.e. not setting factors of γ i to
unity], we obtain the results in Fig. 11. The unphysical drop of the
Gaunt factor at high energies is removed by this transformation and
the Gaunt factor becomes constant at x =ω/θ e � 3/θ e or hν � 3mec2.
Although this already is an improvement of the non-relativistic
expression, it still underestimates the result at high frequencies.
However, the Gaunt factor can now be extrapolated to any higher
frequency using a finite range in x. Another improvement can be
achieved by adding a factor of γ 2

1 to the NR cross-section, as will
be discussed below (see Fig. 15).

4.3.2 Bethe–Heitler case

To illustrate the BH case, we first use equation (7) in equation (21),
obtaining the results presented in Fig. 12. In this case, our results
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Figure 12. Thermally averaged relativistic BH Gaunt factor for Z = 1 and
varying temperatures (θ e = {10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 0.3}).
The BH Gaunt factor exhibits a steep increase at high frequencies. At
temperatures Te � 5.9 × 108 K (θ e � 0.1), extra boosting by � 〈

γ 2
1

〉
becomes relevant. Both aspects can be captured by redefining the thermal
average (see Fig. 13), which reduces the dynamic range of the Gaunt
factors.
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Figure 13. Same as in Fig. 12 but using our modified definition for the
thermal average, equation (22). The dynamic range is greatly reduced by
the redefinition of the thermal average.

are in very good agreement with those obtained by Nozawa
et al. (1998) and van Hoof et al. (2015). The BH Gaunt factor
shows a steep increase towards high frequencies. At temperatures
Te � 5.9 × 108 K (θ e � 0.1), an additional increase of the overall
Gaunt factor amplitude by � 〈γ 2

1

〉 � 1 + 3θe + 15θ2
e /2 further-

more becomes noticeable. Both aspects can be avoided by using the
relativistically improved Kramers cross-section for reference. This
approach is taken for our modified thermal average, equation (22),
and illustrated in Fig. (13). The modification captures the main
relativistic effects and greatly reduces the dynamic range of the
Gaunt factors, which is beneficial for numerical applications. Again,
extrapolation of the Gaunt factor to very high energies is possible
using a finite range in x, since ḡrel(ω, θe) becomes roughly constant
at x = ω/θ e � 3/θ e or hν � 3mec2. In BRpack, we make use of this
property.
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Figure 14. Thermally averaged Gaunt factor using the integrated ex-
pressions of EH in equation (22) for Z = 1 and varying temperatures
(corresponding to θ e = {10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 0.1,
0.3}).

4.4 Thermally averaged Gaunt factor for the EH case

We are now in the position to compute the thermally averaged EH
Gaunt factor. In Fig. 14, we illustrate the results over a wide range of
temperatures and photon energies. We directly used our modified
definition for the thermal average, equation (22), which greatly
reduces the dynamic range. This definition is ideal for tabulation
of the result, and is used in BRpack. At high photon energies, the
result can be obtained by extrapolation; however, the net emission
vanishes in this limit for any practical purposes. To our knowledge,
this is the first precise representation of the thermally averaged EH
Gaunt factor for hydrogen over an as vast range of energies. Cases
for Z ≤ 10 can also be quickly computed using BRpack.

4.4.1 Comparison with simple approximations

We now compare the various approximations for the thermally aver-
aged Gaunt factor with the those obtained from the EH expressions.
For electron temperature Te = 5.9 × 104 K (θ e = 10−5) and Z =
1, the results are shown in Fig. 15, using the standard definition
for the Gaunt factor thermal average, equation (21). As expected,
the Bethe–Heitler approximation works extremely well at high
frequencies, where all contributions indeed arise from relativistic
electrons of the Maxwellian. In contrast, the NR expressions work
very well at low frequencies. As already shown in Section 3.3,
the agreement with the EH result can be further improved by
multiplying the cross-section by a factor of γ 2

1 , which captures the
main relativistic boosting effect. The overall scaling of the EH result
is well represented by our improved non-relativistic expression
given in equation (6).

4.4.2 Domains of validity

For a more quantitative accuracy assessment of the NR and BH
formulae, we again perform a comparison similar to the one
discussed in Section 3.3. We compute the thermally averaged Gaunt
factor using solely the BH formula or the NR expression and then
ask for which pairs (x, θ e) it deviates from the one obtained using
EH by less than a given threshold. The corresponding regions
for Z = 1 and 2 are displayed in Fig. 16, in red for the NR
approximation and in blue for the BH formula. From top to bottom,

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

x = hν / k T
e

10
-2

10
-1

10
0

10
1

G
au

nt
 fa

ct
or

Non-relativistic following KL61
Non-relativistic, this work

NR with added factor of γ
1

2

Bethe-Heitler
Elwert-Haug

T
e
 = 5.9 x10

4
 K

Figure 15. Thermally averaged Gaunt factors for Z = 1 when using the
standard definition, equation (21), for the thermal average and various
limits for the cross-section. The EH result is shown for a comparison.
BH works very well at high photon energies, while the non-relativistic
expressions capture the behaviour at low energies. An improvement of the
non-relativistic expression is obtained when adding a factor of γ 2

1 .

the required agreement is at least 0.3‰, 1‰, and 1 per cent. Some
caveats about the BH validity region should be mentioned here.
Due to the structured behaviour of the averaged Gaunt factor (cf.
Fig. 15), several disconnected regions are identified as valid when
using the described thresholding procedure, especially for high-
accuracy thresholds. We thus only highlight the points (x, θ e) such
that (x̃, θe) ∈ BH validity region for all x̃ ≥ x. Overall, we find
that a combination of the BH and NR expressions for Z � 10
leads to a good description of the full EH Gaunt factor over a
wide range of photon energies and electron temperatures unless
a precision � 1 per cent is required. For Z = 1 and 2, we expect
BRpack to provide a better than 0.03 per cent level representation
of the thermally averaged EH Gaunt factor at all photon energies. In
particular, the low-frequency part of the EH emission spectrum
should be represented very accurately up to mildly relativistic
temperatures kTe � 50 keV.

We also note that since for Z ≤ 10 we only tabulated the EH
Gaunt factor up to p1 = 2, at x � 1.2/θ e, we always switch to the
BH result. The error with respect to the full EH evaluation should
be limited to � 0.5 per cent (see Fig. 9), which again should not
cause any severe limitations for astrophysical applications at θ e �
0.1.

4.5 Comparison with previous works

The thermally averaged Gaunt factors for the cross-section expres-
sions of KL and Bethe–Heitler formula were previously considered
in detail (Itoh et al. 1985; Nozawa et al. 1998; Itoh et. al. 2000;
van Hoof et al. 2014, 2015). For the non-relativistic regime, the KL
definition for the thermally averaged Gaunt factor, equation (24),
was used. For the BH limit, the Gaunt factor definition of the
aforementioned works relates to ours, equation (21), by

ḡItoh(ω, θe) = R(θe) ḡ(ω, θe). (25a)

In Itoh et. al. (2000), fits were given over a limited range of photon
energies and temperatures, while van Hoof et al. (2014, 2015)
provided extensive tables covering a wide range of temperatures,
photon energies, and ion charges Z. We were able to reproduce the
results of van Hoof et al. (2014, 2015) for the KL and BH limits,
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Figure 16. Regions in which the NR and BH approximations can be used to
calculate the thermally averaged Gaunt factor. The coloured areas show the
(x, θ e) domains where the relative difference with respect to the thermally
averaged EH Gaunt factor is 0.3‰ (Top panel), 1‰ (Middle panel), or
1 per cent (Bottom panel) for Z = 1. The dashed line displays the boundary
of the BH region for Z = 2. The NR regions for Z = 1 and 2 coincide at the
plot resolution. In the white areas, the EH formula is required.

finding excellent agreement. We also confirmed the results of Itoh
et. al. (2000) at x = (10−4)–(20) finding very good agreement.

In van Hoof et al. (2015), the KL and BH limits were ‘merged’
to mimic the transition between the non-relativistic and relativistic
regimes. However, no explicit assessment of the accuracy of this
procedure was provided. As we saw in Section 3.3, for low ion
charge Z ≤ 10, we can expect departures to become visible at the
level of 0.1–1 per cent. For Z = 1 and 2, we find the EH calculation
to agree with van Hoof et al. (2015) at the 0.1 per cent level, while
for higher charges the differences do exceed this level. Again, this
outcome is expected given the discussion of Section 3.3.

In Fig. (17), we show our result for the EH Gaunt factor and
relative difference with respect to van Hoof et al. (2015) for several
temperatures and ion charge Z = 10. For the comparison, we
took the exact values from the tables provided by van Hoof et al.
(2015) without any interpolation. The departures are visible at the
� 0.1–1 per cent level around x � (1)–(104) and low temperatures,
θ e � 0.01. We also see an abrupt drop in the relative difference
around x � 3, x � 300 and 3 × 104 for the three shown cases. This
is because our tables for the EH Gaunt factor only extend up to
p1 = 2, such that at very high photon energies we always converge
to the BH result, and thus agree with van Hoof et al. (2015) to high
precision. Note, however, that at these high photon energies hardly
any BR emission is expected such that errors should remain minor
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Figure 17. Direct comparison of the EH Gaunt factor with the values given
by van Hoof et al. (2015) for Z = 10. The dashed lines show the relative
differences in per cent. At x � (1)–(103), the departures can reach the per cent
level at low and intermediate temperatures. The abrupt drop of the relative
differences (absolute value) at high frequencies is due to our limited tables
of the total EH Gaunt factor (see the text for explanation).

for astrophysical applications. The low-frequency region is much
more crucial in this respect and we expect our thermally averaged
Gaunt factor to be highly accurate there (�g/g � 0.1 per cent at x
� 1 for Z ≤ 10).

For larger values of Z, the departures exceed the per cent level.
We numerically evaluated the case Z = 20, finding differences with
respect to van Hoof et al. (2015) at the level of � 2–3 per cent
around x � (1)–(104) and temperatures θ e � 0.01. However,
for higher ionic charge also additional Coulomb corrections and
shielding effects should also be accounted for, such that we leave a
more quantitative comparison to future work. BRpack should yield
reliable results for Z ≤ 10 and θ e � 0.1 at � 0.5 per cent precision.
For Z ≤ 4, the EH Gaunt factor should be reproduced at the level of
� 0.1 per cent precision.

5 C O N C L U S I O N

We presented a comprehensive study of the free–free Gaunt factor,
g(ω, p1), and its thermally averaged version, which is relevant to
many astrophysical applications. Our focus was on ions with low
ionic charge (Z ≤ 10), for which we computed the BR Gaunt factors
using the differential cross-section expressions given by EH. We
compared our results with various approximations and previous
Gaunt factor computations, illustrating the domains of validity and
their precision (e.g. Fig. 5). Our results for gEH(ω, p1) should be
accurate at the level of � 0.03 per cent for Z ≤ 10 and p1 ≤ 2. For the
thermally averaged EH Gaunt factor, we expect our computations to
yield � 0.1 per cent precision at kTe � 50 keV for Z ≤ 4 and slightly
better (�g/g � 0.03 per cent) for Z ≤ 2. For Z ≤ 10, we expect an
overall precision of � 0.5 per cent for the thermally averaged EH
Gaunt factor at temperatures kTe � 50 keV.

We simplified the computations of the EH differential cross-
section, showing that the hypergeometric function evaluations can
be reduced to an evaluation of one real function. This function
can be computed using an ordinary differential equation and thus
improves the computational precision and efficiency greatly. In a
similar manner, we showed that the non-relativistic Gaunt factor can
also be related to the same real function (see equation 3). Overall,
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our numerical procedure allows us to precisely compute the EH
Gaunt factor over a wide range of energies, with extensions to
low and high photon energies obtained using analytic expressions.
Coulomb corrections and shielding effects are expected to become
important for Z > 10 and at high electron energies. These can, in
principle, be added using our computational method.

We developed new software package, BRpack, which allows
efficient and accurate representation of the NR, BH, and EH Gaunt
factors for Z ≤ 10, both for individual values of the electron
and photon momenta as well as for thermally averaged cases. It
should prove useful for computations of CMB spectral distortions
and radiative transfer problems in the intergalactic medium at
low redshifts. We can furthermore use the Gaunt factor for im-
proved modelling of the free–free emission from our own galaxy,
potentially even taking non-thermal contributions into account
without major complications. Our procedure can also be applied
to computations of the e − e and e− − e+ BR processes (e.g. Haug
1985, 1975; Itoh et al. 2002), which will be important at higher
plasma temperatures (kTe/mec2 � 1).

While with BRpack a numerical precision of better than
� 0.01 per cent can be reached for any photon and electron energy,
it is clear that this does not fully reflect the accuracy of the Gaunt
factor. Higher order Coulomb corrections, shielding effects, and
radiative corrections are not accounted for by the EH expression.
These invalidate the cross-section at higher energies and for large
ion charge (Tseng & Pratt 1971; Roche et al. 1972; Haug 2008).
However, even at the temperatures and photon energies of interest
to us (kTe � few × keV), corrections may become relevant at
� 0.1 per cent accuracy. In this case, exact calculations using Dirac-
wave functions (e.g. Tseng & Pratt 1971; Poškus 2018, 2019) for
the electron may be required. Given the many applications of the
BR process in astrophysics, accurate calculations with the goal to
provide comprehensive, user-friendly, quasi-exact representations
of the process for a wide range of conditions should be undertaken.
We look forward to further investigations of the problem.
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Lucca M., Schöneberg N., Hooper D. C., Lesgourgues J., Chluba J., 2019,

preprint (arXiv:1910.04619)
McKinney J. C., Chluba J., Wielgus M., Narayan R., Sadowski A., 2017,

MNRAS, 467, 2241
Menzel D. H., Pekeris C. L., 1935, MNRAS, 96, 77
Narayan R., Yi I., 1995, ApJ, 452, 710
Nozawa S., Itoh N., Kohyama Y., 1998, ApJ, 507, 530
Planck Collaboration IX, 2016, A&A, 594, A9
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APPENDIX A : PRO PERTIES O F G�

We first prove that G� is real. Starting from equation (2b), this can
be seen with

G∗
�(η1, η2, x) = (−x)�+1 (1 − x)

−i(η1+η2)
2 e−πη1

2F1 (1 + � − iη1, 1 + � − iη2, 2� + 2, x)

= (−x)�+1 (1 − x)
−i(η1+η2)

2 (1 − x)i(η1+η2) e−πη1

2F1 (1 + � + iη1, 1 + � + iη2, 2� + 2, x)

≡ G�(η1, η2, x), (A1)

where we used 2F1 (a, b, c, x) = (1 − x)c−a−b
2F1(c − a,c −

b, c, x) for the hypergeometric function. More generally, one can
show that

f (x) (1 − x)
±i(a+b)

2 2F1 (c ± ia, c ± ib, 2c, x) (A2)

f (x) (1 − x)
±i(a−b)

2 2F1 (c ± ia, c ∓ ib, 2c, x) (A3)

are all real functions for real a, b, c, and x. These relations are very
useful when studying recurrence relations for G� (Appendix A3). In
particular, it is beneficial to include f (x) = √

1 − x in the definition
of G�(x).

A1 Relation between G0 and G1

To simplify the computation of the non-relativistic Gaunt factor, it is
useful to study the relation between G0 and G1. The hypergeometric
functions related to G�(x) are F�(x) = 2F1(1 + � + iη1, 1 + � +
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iη2, 2(� + 1), x). Taking the first and second derivatives of F0 with
respect to x, we find

F ′
0 = 1

2
(1 + iη1)(1 + iη2)2F1 (2 + iη1, 2 + iη2, 3, x)

= 1

2
(1 + iη1)(1 + iη2)(1 − x)−1−iη+

2F1 (1 − iη1,1 − iη2,3,x)

(A4a)

=
[
G′

0 −
(

1

x
− iη+

2(1 − x)

)
G0

]
eπη1

(1 − x)−i
η+
2

(−x)
(A4b)

F ′′
0 = 1 + iη+

1 − x
F ′

0 +
(
1 + η2

1

) (
1 + η2

2

)
6(1 − x)

F1 (A4c)

with η± = η1 ± η2. For the differential equation of F0, we have

x(1 − x)F ′′
0 + [2 − (3 + iη+)x]F ′

0 − (1 + iη1)(1 + iη2)F0 = 0.

Inserting equation (A4c) then yields(
1 + η2

1

) (
1 + η2

2

)
6

xF1 + 2(1 − x)F ′
0 − (1 + iη1)(1 + iη2)F0 = 0.

Multiplying this equation by G0/F0 = (−x) (1 − x)
iη+

2 e−πη1 and
combining with equation (A4b), we then obtain

−
(
1 + η2

1

) (
1 + η2

2

)
6

G1 + 2(1 − x)G′
0

−
[

2

x
− 2 − iη+ + (1 + iη1)(1 + iη2)

]
G0

= −
(
1 + η2

1

) (
1 + η2

2

)
6

G1 + 2(1 − x)G′
0

+
[
η1 η2 + 1

2

(
η1

η2
+ η2

η1

)]
G0 = 0.

←→ G′
0 =
[
η1 η2+ 1

2

(
η1

η2
+ η2

η1

)]
G0 −

(
1 + η2

1

)(
1 + η2

2

)
6

G1.

(A5)

By comparing with equation (2), we can thus obtain equation (3).

A2 Differential equation for G0

Since G0 and G′
0 are both real functions, it is useful to study

the associated differential equation directly. From the differential
equation for the hypergeometric function F0, we find

x(1 − x)2G′′
0 − x(1 − x)G′

0 +
[
η1η2 + η2

−
4

x

]
G0 = 0. (A6)

This can be converted into a set of first-order equations

G′
0 = H0 (A7a)

H ′
0 = H0

1 − x
−
[

η1η2

x
+ η2

−
4

]
G0

(1 − x)2
. (A7b)

This system has regular singular points at x = 0, 1, and ∞. For our
problems, we need the solution at x < 0. Choosing a starting point
very close to the origin, convenient initial conditions are

G0(x) ≈ −e−πη1x
[
1 + x

2
(1 − η1η2)

]
(A8a)

H0(0) = G′
0(0) ≈ −e−πη1 [1 − x(1 − η1η2)] . (A8b)

These allow solving the problem for various values of η1 and η2 of
interest using a solver based on the Gear’s method (Chluba, Vasil &
Dursi 2010). Due to the factor e−πη1 , this procedure is limited to

p1 � 8 × 10−5 Z. At lower values of p1, we can start with rescaled
initial conditions and then reinitialize the solver after appropriate
intervals multiplying portions of e−πη1 . For required values of x,
this leads to numerically stable results.

A3 Recursion relation for G�

Here we briefly rederive recurrence relations for G� following a
procedure that is similar to that of KL and Hummer (1988). The
same relations are useful for the EH cross-section computation, as
we show below. The starting point is

G�(x) = (−x)�+1 (1 − x)
iη+

2 e−πη1

× 2F1 (1 + � + iη1, 1 + � + iη2, 2(� + 1), x) , (A9)

with η± = η1 ± η2. To obtain the recurrence relations, one expresses
2F1 in terms of G�. We first define11 G̃� = √

1 − x G� and then
write

F�(x) = G̃�(x) (−x)−(�+1) (1 − x)−
iη+

2 − 1
2 eπη1 . (A10)

This can then be inserted into the differential equation for the
hypergeometric functions (which F�(x) fulfils), yielding

x2(1 − x)2G̃′′
� (x)

=
{

�(� + 1) − [η1η2 + �(� + 1)] x − 1 + η2
−

4
x2

}
G̃�(x).

In the evaluation of the non-relativistic cross-section, we always
have x < 0. Assuming |x| < 1/2, one can use the ansatz G̃�(x) =
(−x)�+1 e−πη1

∑
n anx

n, which yields

a0 = 1, a1 = �(� + 1) − η1η2

2� + 2

an = (κn� − λn�) an−1 − (μn� + νn�) an−2

κn� = �(� + 1) + 2(n − 1)(2� + n)

n(2� + 1 + n)
, λn� = η1η2

n(2� + 1 + n)
,

μn� = [2(� + n) − 3]2

4n(2� + 1 + n)
, νn� = (η1 − η2)2

4n(2� + 1 + n)
(A11)

for the coefficients, and thus G�(x) = (−x)�+1 e−πη1
∑

n an

xn/
√

1 − x.
Hummer (1988) directly evaluated αn = an xn; however, in our

applications, we also evaluate G� for varying x at fixed values of
η1 and η2. In this case, it is better to store the required values of an

instead. The real gains are marginal in any case, in particular since
for the evaluation of the sum one can compute xn = x (xn−1) in
each step at hardly any extra cost. We also did not find the stability
of the expressions to improve by changing the procedure. Stability
issues could be solved using arbitrary number precision or resorting
to the differential equation for G0.

For −2 < x < −1/2, to accelerate convergence one should rewrite
the expressions in terms of y = x/(x − 1), which maps the interval
into 1/3 < y < 2/3. Applying hypergeometric function relations, we
find

G�(y) = y�+1(1 − y)
iη−

2 e−πη1

× 2F1 (1 + � + iη1, 1 + � − iη2, 2� + 2, y) (A12a)

F�(y) = ˜̃G�(y) (−y)−(�+1) (1 − y)−
iη−

2 − 1
2 eπη1 (A12b)

11This reduces the number of terms.

MNRAS 492, 177–194 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/1/177/5651181 by U
niversity of M

anchester user on 16 January 2020



Bremsstrahlung Gaunt factors 191

with ˜̃G�(y) = (−1)�+1 √
1 − y G�(y). Comparing with equa-

tion (A10), we thus can again apply the recurrence relations,
equation (A11), for ˜̃G�(y) after replacing x → y = x/(x − 1) and η2

→ −η2.
To treat the problem at x < −2, we use z = 1/x, which maps the

interval into −1/2 < z < 0. In this case, two new recursions are
needed. Applying the hypergeometric function relations, we can
write

G�(z) = (−z)−(�+1) [−(1 − z)/z]
iη+

2 (−z)�+1 e−πη1

×
[

(−z)iη1��(η1, η2) 2F1 (1 + � + iη1, iη1 − �, 1

+ iη−, z) + (−z)iη2�∗
�(η1, η2) 2F1

× (1 + � + iη2, iη2 − �, 1 − iη−, z)

]

= (−z)
iη−

2 ��(η1, η2) H�(η1, η2, z) + (−z)−
iη−

2

×�∗
�(η1, η2) H ∗

� (η1, η2, z)

= 2Re
[
(−z)

iη−
2 ��(η1, η2) H�(η1, η2, z)

]

= Re [J�(z)] cos
[η−

2
ln(−z)

]

− Im [J�(z)] sin
[η−

2
ln(−z)

]

H�(η1, η2, z) = (1 − z)
iη+

2 2F1 (1 + � + iη1, iη1 − �, 1 + iη−, z)

J�(η1, η2, z) = 2��(η1, η2) H�(η1, η2, z)

��(η1, η2) = �(2� + 2) �(−iη−) e−πη1

�(1 + � − iη1) �(1 + � + iη2)
. (A13)

This means that, similar to KL and H88, one can make the ansatz

G�(z) = A�(z) cos
[η−

2
ln(−z)

]
+ B�(z) sin

[η−
2

ln(−z)
]
, (A14)

where A�(η1, η2, z) = Re[J�(η1, η2, z)] and B�(z) = −Im[J�(η1, η2,
z)] can both be written as a real power series in z. We also have
to rewrite the differential equation for G̃�(x) using x = 1/z, which
gives

z2(1 − z)2G̃′′
� (z) + 2z(1 − z)2G̃′

�(z)

=
{

�(� + 1)z2 − [η1η2 + �(� + 1)] z − 1 + η2
−

4

}
G̃�(z).

Multiplying G�(z) this by
√

(z − 1)/z and inserting it into the
differential equation for G̃�(z), we find the two equations

2a
(n)
� · A

(n)
� + η−b(n) · B

(n)
� = 0, (A15a)

η−b(n) · A
(n)
� − 2a

(n)
� · B

(n)
� = 0, (A15b)

a
(n)
� =

⎛
⎜⎜⎜⎝

n2

�(� + 1) − n(2n − 3) − 1 + η2
+ + η2

−
4

−�(� + 1) + n(n − 3) + 2 − η2
−
4

⎞
⎟⎟⎟⎠,

b(n) =
⎛
⎝ 2n

−4n + 3
2n − 3

⎞
⎠ (A15c)

for A
(n)
� = (A(n)

� , A
(n−1)
� , A

(n−2)
�

)T
and similar for B�. The sym-

metries of the coefficients imply B
(n)
� (η1, η2) = A

(n)
� (η2, η1). This

also means that the recursion relations for B
(n)
� (η1, η2) are identical

to those for A
(n)
� (η1, η2) when switching η1↔η2 and A

(n)
� → B

(n)
� .

Solving for A
(n)
� , we find

A
(n)
� = 1 + n(2n − 3) − �(� + 1) − η1η2 + 3

2 η2
−(1 − 1/n)

η2− + n2
A

(n−1)
�

− (n + � − 1)(n − � − 2) + 3
4 η2

−(1 − 2/n)

η2− + n2
A

(n−2)
�

+ η−
2�(� + 1) + 3n − 2 + 1

2

(
η2

+ + η2
−
)

n
(
η2− + n2

) B
(n−1)
�

− η−
2�(� + 1) + 3n − 4 + 1

2 η2
−

n
(
η2− + n2

) B
(n−2)
� . (A16)

The equations for B
(n)
� are obtained by switching variables, as

mentioned above. The initial conditions are

A
(0)
� = 2Re

[
�(2� + 2) �(−iη−) e−πη1

�(1 + � − iη1) �(1 + � + iη2)

]

B
(0)
� = −2Im

[
�(2� + 2) �(−iη−) e−πη1

�(1 + � − iη1) �(1 + � + iη2)

]
, (A17)

which both can be easily computed using standard libraries. This
then gives the solutions A�(η1, η2, z) =∑n A

(n)
� zn and similar for

B�(η1, η2, z).

A3.1 Dealing with ��(η1, η2)

To evaluate the initial conditions for the recurrence relations, we
need

��(η1, η2) = �(2� + 2) �(−iη−) e−πη1

�(1 + � − iη1) �(1 + � + iη2)

= �(2� + 2) �(−iη−) �(1 + � + iη1) �(1 + � − iη2) e−πη1

|�(1 + � − iη1) �(1 + � + iη2)|
= �(−iη−) �(1 + � + iη1) �(1 + � − iη2) ��. (A18)

Here we have

�� = �(2� + 2) e−πη1

|�(1 + � − iη1) �(1 + � + iη2)| (A19a)

�0 = Sinh(πη1) Sinh(πη2) e−πη1

π2η1 η2
(A19b)

�1 = Sinh(πη1) Sinh(πη2) e−πη1

π2η1 η2

6

(1 + η2
1)(1 + η2

2)
. (A19c)

This also shows that

F (η1, η2) = 4π2η1η2

(1 − e−2πη1 )(1 − e−2πη2 )
≡ eπη2

�0
, (A20)

which appears in the normalization of the non-relativistic Gaunt
factor.

APPENDI X B: LOW-FREQUENCY
A P P ROX I M AT I O N FO R T H E G AU N T FAC TO R

At low frequencies, the calculation of the Gaunt factor for the non-
relativistic limit becomes highly unstable. To obtain an approxima-
tion at low frequencies, we take the limits of G� for η2 → η1. With
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z = −1/x = η2
−/4η1η2, this yields

G0 ≈ 2
(

Re [�0] cos
[η−

2
ln(z)

]
− Im [�0] sin

[η−
2

ln(z)
] )

�G =
[
η1 η2 + 1

2

(
η1

η2
+ η2

η1

)]
G0 −

(
1 + η2

1

) (
1 + η2

2

)
6

G1

≈ 4η−
(
Im [�0] cos

[η−
2

ln(z)
]
− Re [�0] sin

[η−
2

ln(z)
])

Re [�0] ≈ −1 − e−2πη1

2πη1
Re [H (iη1)]

Im [�0] ≈ −1 − e−2πη1

2πη1
Im [H (iη1)] + 1

η−
, (B1)

where H(z) denotes the harmonic number of z. From this, one finds

gNR(ω,p1) ≈
√

3

π
FE(η1, η2) C0(η1, η2) �C(η1, η2)

FE(η1, η2) = η2

η1

1 − e−2πη1

1 − e−2πη2
,

�1 = Re [H (iη1)] , �2 = Im [H (iη1)] − 1

�η
,

C0(η1, η2) = �1 cos

[
�η

2
ln(−x)

]
+ �2 sin

[
�η

2
ln(−x)

]

�C(η1, η2) = η−

(
�2 cos

[
�η

2
ln(−x)

]
+ �1 sin

[
�η

2
ln(−x)

])
,

(B2)

with �η = η− = η1 − η2. Since at low frequencies �η � 1,
one can set cos

[
�η

2 ln(−x)
] � 1 and sin

[
�η

2 ln(−x)
] � �η

2 ln(−x).
Equation (B2) therefore further simplifies to the expression given
in equation (4).

To evaluate the real and imaginary parts of the harmonic number,
we use the explicit series when 0 < η1 < 10:

Re [H (ia)] =
∑
m=1

a2

m(a2 + m2)
, Im [H (ia)] =

∑
m=1

a

(a2 + m2)
,

(B3)

while for large argument, we have

Re [H (ia)] ≈ γE + ln a + 1

12a

(
1 + 1

10a2
+ 1

21a4
+ 1

20a6
+ 1

11a8

)

Im [H (ia)] ≈ π

2
− 1

2a
+ 2π

[
coth

(π

a

)
− 1

]
, (B4)

where γ E is the Euler constant. These approximations are extremely
useful at very low frequencies, ω/ωmax � 10−6, and large η1, i.e. p1

� 10−3.

APPENDIX C : EH C RO SS-SECTION

The starting point for our computations is the EH cross-
section. We shall use all definitions as in Section 2 and add the
auxiliary variables

μi = pi · k

p1ω
, κi = 2(γi − piμi) = 2(γi − πi) (C1a)

μ12 = p1 · p2

p1p2
= μ1μ2 + cos(φ2)

√
1 − μ2

1

√
1 − μ2

2 (C1b)

πi = piμ1, π12 = p1p2μ12, η∞ = αZ,

η± = η1 ± η2 (C1c)

χi = pi

√
1 − μ2

i , χ12 = χ1χ2 cos(φ2) (C1d)

τi = 4γ 2
i − q2, τ12 = 4γ1γ2 − q2, ζi = χ2

i − χ12, (C1e)

q2 = |p1 − p2 − k|2 = p2
1 + p2

2 + ω2

+ 2 [ω(π2 − π1) − π12] (C1f)

ξ = μ̃q2

κ1κ2
, μ̃ = μ

ω2
=
(

p1 + p2

ω

)2

− 1 ≡ 2(γ1γ2 + p1p2 − 1)

ω2
, (C1g)

ρ = 1

p1
+ 1

p2
, κ = γ1

p1
+ γ2

p2
, (C1h)

for further convenience. The Gaunt factor (differential in three
angles) can then be written as (EH)

d3gEH

dμ1dμ2dφ2
= 3

√
3

8π2
p1p2 F (η1, η2)M2(ω,p1, μ1, μ2, φ2)

(C2a)

M2 = e−2πη1

q4

{
E1

κ2
1

|A1|2 + E2

κ2
2

|A2|2 − 2E3

κ1κ2
Re[A∗

1A2]

+ F3 q4

κ2
1 κ2

2

|B|2 − 2q2
(
F1 κ2 Re[A∗

1B] + F2 κ1 Re[A∗
2B]
)

κ2
1 κ2

2

}
.

(C2b)

Here, M2 depends on the following functions:

V (η1, η2, ξ ) = 2F1 (iη1, iη2, 1, 1 − ξ ) (C2c)

W (η1, η2, ξ ) = 2F1 (1 + iη1, 1 + iη2, 2, 1 − ξ )

= 1

η1η2
∂ξV (η1, η2, ξ ) (C2d)

Ai = V − iξ ηiW, B = iη∞W (C2e)

E1 = (4γ 2
2 − q2

)
χ2

1 +
[
χ2

1 − χ12 + 2
(
1 + χ2

2

) ω

κ2

]
κ1ω (C2f)

E2 = (4γ 2
1 − q2

)
χ2

2 −
[
χ2

2 − χ12 − 2
(
1 + χ2

1

) ω

κ1

]
κ2ω (C2g)

E3 = (4γ1γ2 − q2) χ12 + 2(1 + χ12)ω2

+ [(χ2
1 − χ12

)
κ2 − (χ2

2 − χ12

)
κ1

] ω

2
(C2h)

F1 = ρ
(
χ2

1 − χ12

)+ κ
[
π1

(
π12 + p2

2

)+ (2 − π1π2)ω
]

(C2i)

−
(

κp1p2 − 2
ω

p1

)
[π1 + π2 − ω] (C2j)

F2 = ρ
(
χ2

2 − χ12

)+ κ
[
π2(π12 + p2

1) − (2 − π1π2)ω
]

(C2k)

−
(

κp1p2 + 2
ω

p2

)
[π1 + π2 + ω] (C2l)

F3 = μ

[
1 − π1π2

p1p2
+ γ1 + γ2

p1p2

γ1 + γ2 + π1 + π2

p1p2

]
− 2ρ2. (C2m)

We followed the original definitions as closely as possible but
already performed a few trivial simplifications. A few symmetries
are worth noting. The function E2 can be obtained from E1

by switching the roles of p1 ↔ p2 and negating ω → −ω or
equivalently k → −k. The function E3 remains invariant under this
transformation. Similar statements apply to the Fi’s.

It is difficult to work with the matrix element in the above
form, which furthermore suffers from severe numerical cancellation
issues. To simplify matters, we collect all coefficients of the
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main functions that are appearing. These are ∝ |V|2, ∝ Im[V∗W],
and ∝ |W|2, and after gathering terms, we find

|Ai |2 = |V |2 + 2ηiξ Im[V ∗W ] + η2
i ξ

2|W |2 (C3a)

|B|2 = η2
∞ |W |2 (C3b)

Re[A∗
1A2] = |V |2 + η+ξ Im[V ∗W ] + η1η2ξ

2|W |2 (C3c)

Re[A∗
i B] = −η∞Im[V ∗W ] − ηiη∞ξ |W |2. (C3d)

We also note that in comparison to EH a factor of e−2πη1 can be
absorbed into the definitions of V and W, since it is cancelled di-
rectly by a corresponding factor from the hypergeometric function,
and thus avoids spurious numerical instabilities for p1 � 1. By
regrouping terms, we then find

M2 = e−2πη1

q4

{(
E1

κ2
1

+ E2

κ2
2

− 2E3

κ1κ2

)
|V |2

+2ξ

[
η1E1

κ2
1

+ η2E2

κ2
2

− E3η+
κ1κ2

+
(

F1

κ1
+ F2

κ2

)
η∞
μ̃

]
Im[V ∗W ]

+ ξ 2

[
η2

1E1

κ2
1

+ η2
2E2

κ2
2

− 2E3η1η2

κ1κ2

+
(

η1F1

κ1
+ η2F2

κ2

)
2η∞
μ̃

+ F3
η2

∞
μ̃2

]
|W |2

}
, (C4)

where we used q2/κ1κ2 = ξ/μ̃. After simplifying the expressions
and defining V = e−πη1V and W = −ξe−πη1W , this then yields

M2 = 1

q4

{
J1|V|2 − 2J2 Im[V∗W] + J3|W|2

}
(C5a)

J1 ≡ JBH = τ1
χ2

2

κ2
2

+ τ2
χ2

1

κ2
1

− τ12
2χ12

κ1κ2
+ (ζ1 + ζ2)

2ω2

κ1κ2
(C5b)

J2 = τ1
η2χ

2
2

κ2
2

+ τ2
η1χ

2
1

κ2
1

− τ12
η+ χ12

κ1κ2
+ η−

2

(
ζ1

κ1
+ ζ2

κ2

)
ω

+ (η1ζ2 + η2ζ1)
2ω2

κ1κ2
+
(

F1

κ1
+ F2

κ2

)
η∞
μ̃

(C5c)

J3 = τ1
η2

2χ
2
2

κ2
2

+ τ2
η2

1χ
2
1

κ2
1

− τ12
2η1η2χ12

κ1κ2
+ η−

(
η1ζ1

κ1
+ η2ζ2

κ2

)
ω

+ [η2
1ζ2 + η2

2ζ1 + η2
−(1 + χ12)

] 2ω2

κ1κ2

+
(

η1F1

κ1
+ η2F2

κ2

)
2η∞
μ̃

+ F3
η2

∞
μ̃2

. (C5d)

The function J1 contains all terms relevant to the Bethe–Heitler
approximation. Even if written in this way the matrix element
already becomes more transparent, further simplifications are pos-
sible. First, we have the identity

η−
2

ω + ρ
η∞
μ̃

≡ 0 ←→ η∞
μ̃

= −η−ω

2ρ
. (C6)

This eliminates the ρ-terms from F1 and F2 while cancelling those
directly ∝ ω in J2 and J3:

J2 = τ1
η2χ

2
2

κ2
2

+ τ2
η1χ

2
1

κ2
1

− τ12
η+ χ12

κ1κ2

+ (η1ζ2 + η2ζ1)
2ω2

κ1κ2
+
(

F̃1

κ1
+ F̃2

κ2

)
η∞
μ̃

(C7a)

J3 = τ1
η2

2χ
2
2

κ2
2

+ τ2
η2

1χ
2
1

κ2
1

− τ12
2η1η2χ12

κ1κ2
+ η2

−ω2

2

+ [η2
1ζ2 + η2

2ζ1 + η2
−(1 + χ12)

] 2ω2

κ1κ2

+
(

η1F̃1

κ1
+ η2F̃2

κ2

)
2η∞
μ̃

+ F3
η2

∞
μ̃2

(C7b)

with F̃i = Fi(ρ = 0). The J1 terms are most relevant in the Bethe–
Heitler regime, and we thus recast J2 and J3 as

J2 = η1J1 − η−�1, J3 = η2
1J1 − 2η1η−�1 + η2

−�2 (C8a)

�1 = τ1χ
2
2

κ2
2

− τ12χ12

κ1κ2
+ ζ1

2ω2

κ1κ2
+
(

L1

κ1
+ L2

κ2

)
ω

2ρ
(C8b)

�2 = τ1χ
2
2

κ2
2

+ (1 + χ2
1

) 2ω2

κ1κ2
+ L2

κ2

ω

ρ
+ F3

ω2

4ρ2
(C8c)

L1 = κ
[
π1

(
π12 + p2

2

)− (π1 + π2 − ω) p1p2 + (2 − π1π2)ω
]

+ 2
ω

p1
(π1 + π2 − ω) (C8d)

L2 = κ
[
π2

(
π12 + p2

1

)− (π1 + π2 + ω) p1p2 − (2 − π1π2)ω
]

− 2
ω

p2
(π1 + π2 + ω) . (C8e)

Inserting these expressions back into equation (C5) and collecting
terms, we find

M2 = 1

q4

{
J1|A|2 − 2η−�1|C|2 + η2

−�2|W|2
}

(C9a)

|A|2 = |V|2 − 2η1Im[V∗W] + η2
1|W|2 (C9b)

|C|2 = η1|W|2 − Im[V∗W]. (C9c)

Expressed in this way indeed simplifies the evaluation of the cross-
section significantly and also allows one to more easily read off
limiting cases.

To explicitly evaluate the functions |A|2 and |W|2, we used
pre-computed tables obtained with Mathematica to improve
the precision as well as the Gauss series for the hypergeometric
function. As shown below, this also determines |C|2 at no additional
cost (see equation C14). At low frequencies (w � 10−6), one can
furthermore apply

|A|2 ≈
(

1 − e−2πη1

2πη1

)2 [
1 − 2η2

1

ξ
(1 + φ)

]

|W|2 ≈
(

1 − e−2πη1

2πη1

)2 [
φ2

(
1 + 2

ξ

)
+ 2η2

1

ξ
φ(2 + φ)

]
φ = ln ξ − 2 Re[H (iη1)] (C10)

to ease the computations. However, the methods relying on G0 and
G′

0 (next section) were found to be more efficient.

C1 Relating V and W to G0

While, in principle, we can already compute the EH cross-section
using the expression from the preceding section, one additional
obstacle can be overcome by directly relating the function V and W
to G0 and G′

0. One of the important benefits is that G0 and G′
0 are

a real-valued function, which greatly simplifies matters. Progress
can be made by starting from the differential equation for V, which
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with z = 1 − ξ reads

0 = z(1 − z)V ′′ + [1 − (1 + iη+)z]V ′ + η1η2V

= −η1η2

{
z(1 − z)W ′ + [1 − (1 + iη+)z]W − V

}
⇒ V = [(1 − z) − iη+z]W + z(1 − z)W ′. (C11)

Here, primes denote derivatives with respect to z. By comparing W
with G0, we find

W = eπη1 (1 − z)−
iη+

2

−z
G0(z) ↔ W = (1 − z)1− iη+

2

z
G0(z),

(C12)

which directly implies

|W|2 = ξ 2G2
0(1 − ξ )

(1 − ξ )2

≡ ξ 2 e−2πη1 |2F1 (1 + iη1, 1 + iη2, 2, 1 − ξ ) |2. (C13)

We then also have

W ′ = eπη1 (1 − z)−
iη+

2

−z2(1 − z)

×
[
z(1 − z)G′

0(z) − (1 − z)G0(z) + i
η+
2

zG0(z)
]

V = eπη1 (1 − z)−
iη+

2

{
i
η+
2

G0(z) − (1 − z)G′
0(z)
}

,

which related both W
′
and V to G0 and G′

0 only.
Since |V|2 = e−2πη1 |V |2, this then yields

|V|2 = η2
+
4

G2
0(z) + (1 − z)2[G′

0(z)]2

Im[V∗W] = −η+
2

(1 − z)

z
G2

0(z) = −η+
2

z

1 − z
|W|2.

Putting everything together, we finally obtain

|A|2 = (η+ + η−ξ )2

4ξ 2
|W|2 + ξ 2[G′

0(1 − ξ )]2 (C14a)

|C|2 = (η+ + η−ξ )

2ξ
|W|2 (C14b)

|W|2 = ξ 2G2
0(1 − ξ )

(1 − ξ )2
, (C14c)

which eliminates the need to compute |C|2 explicitly. Collecting
terms then results in

M2 = 1

q4

{[
J1 − 2δ D1 + δ2 D2

] η2
+G2

0(1 − ξ )

4(1 − ξ )2
+ J1[ξG′

0(1 − ξ )]2

}

δ = η−
η+

ξ, D1 = 2�1 − J1, D2 = J1 − 4�1 + 4�2. (C15)

This definition groups terms of similar order of magnitude in η±
and ξ . Inserting the definitions of �i and simplifying the expression
then give equation (11) for the EH matrix element.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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