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The performance of unsteady Reynolds-Averaged Navier–Stokes equations (URANS) for simulations of
flow and dispersion fields around isolated cubical buildings has been examined in this study. URANS
results were compared with those obtained from steady-RANS (SRANS) computations and experiments.
The comparison determines not only the applicability of URANS simulations, but also the contribution of
unsteady large-scale fluctuations to pollutant dispersion around buildings. Three different source loca-
tions, i.e. upwind, rooftop and downwind releases, were considered for pollutant dispersion around the
building. It was found that the improvement of the predicted concentration field achieved by URANS
largely depends on the source location. Although this improvement was not as significant in the upwind
and rooftop release cases, the prediction accuracy achieved by URANS was substantially improved for the
downwind release case, for which, the unsteady-RANS simulations yielded larger estimates of the mo-
mentum and concentration diffusions behind the building than SRANS did, improving the accuracy of the
estimation of the mean concentration.

& 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Air pollution near and around buildings is an important en-
vironmental problem. However, it is difficult to predict pollutant
dispersions with certainty because of the complexity of the in-
teraction between atmospheric flow and flow around buildings. A
micro-scale computational fluid dynamics (CFD) technique has
been used as a powerful tool for investigating such complex in-
teractions, as reviewed in several studies (Li et al., 2006; Blocken
et al., 2011; Tominaga and Stathopoulos, 2013; Di Sabatino et al.,
2013; Blocken, 2014; Lateb et al., 2016; Tominaga and Stathopou-
los, 2016). The CFD technique has several advantages, for instance,
it can provide the entire flow and dispersion field data, without
suffering from similarity requirements.

The pollutant dispersion process is highly influenced by large
and complex velocity fluctuations generated around buildings.
These fluctuations occur over a wide range of both temporal and
spatial scales. Except for changes in the atmospheric boundary
layer itself, the velocity fluctuations around buildings consist of
89
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large-scale organized motion and small-scale turbulence. The
large-scale organized motion around buildings is represented by
non-stationary flows, such as periodic or quasi-periodic flows in-
volving deterministic patterns. The turbulence can be modeled by
RANS (Reynolds-Averaged Navier–Stokes) equations but the large-
scale motion cannot be reproduced by steady-RANS (SRANS)
computation. Numerous studies have compared steady-RANS and
unsteady computational methods, such as Large Eddy Simulation
(LES), for dispersion modeling around buildings (Stevens et al.,
2000; Xie and Castro, 2009; Dejoan et al., 2010; Santiago et al.,
2010; Tominaga and Stathopoulos, 2010, 2011, 2012; Salim et al.,
2011; Gousseau et al., 2011a,b; Yoshie et al., 2011). LES has been
shown to yield better results than RANS for concentration dis-
tributions, because the horizontal and vertical diffusions of con-
centration are reproduced well by LES. The improvement can be
mainly attributed to the fact that LES is able to capture the physics
of separated regions, and produces time-dependent and three-
dimensional flow information, such as the Reynolds stresses, that
cannot be extracted from RANS (Murakami et al., 1992; Rodi, 1997;
Bechmann, 2006; Tominaga et al., 2008a). However, because tur-
bulence modeling is completely different in RANS and LES, it is
very difficult to isolate the influence of large-scale flow unsteadi-
ness on the predicted dispersion field. Therefore, unsteady-RANS
93
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Fig. 1. Schematics of cases analyzed.
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(URANS) computations should be viewed as potentially valuable in
clarifying this influence.

In previous research, URANS simulations have been success-
fully used for flows with deterministic unsteadiness, such as vor-
tex shedding in the wake of a two-dimensional obstacle with a
low-turbulence approach flow (Kato and Launder, 1993; Rodi,
1993; Murakami and Mochida, 1995; Shimada and Ishihara, 2002;
Ramesh et al., 2006; Mannini et al., 2010a, 2010b; Pellegrino and
Meskell, 2013). However, only few examples exist of the applica-
tion of URANS to flows around three-dimensional bluff bodies
exposed to relatively high-turbulence approach flows, such as at-
mospheric boundary layer flows, which are common in wind en-
gineering. Such flows involve complex interactions between large-
scale organized unsteady flow and random turbulence motions. In
an early application of URANS to a flow around a three-dimen-
sional bluff body, Iaccarino et al. (2003) demonstrated that a UR-
ANS simulation based on the v2-f turbulence model (Durbin, 1995)
could predict periodic shedding and could also produce much
better agreement with experimental data than that obtained by
SRANS computation for a flow over a wall-mounted cube. Isaev
and Lysenko (2009) also found that URANS adequately predicted
the characteristics of periodic turbulent separated flows for the
same flow configuration as shown by Iaccarino et al. (2003). Shao
et al. (2012) used three non-linear k-ε models to predict flow
around an isolated high-rise building with unsteady computations.
The study reported that the non-linear models could reproduce
the periodic fluctuations and improve the prediction accuracy of
the recirculation flow behind the building. Recently, Tominaga
(2015) confirmed that URANS computations could reproduce
large-scale fluctuations around a high-rise building model and
improve the prediction accuracy of the flow behind the building.
Because URANS simulation significantly enhances the reproduc-
tion of the mixing effect behind a building, it is expected to be
particularly effective in the prediction of pollutant dispersions
around buildings, as noted by Tominaga and Stathopoulos (2013).
However, almost no examples exist of the application of URANS to
near-field dispersion around buildings.

In this study, the performance of URANS in simulating flow and
pollutant dispersion fields around isolated cubical buildings with
different source locations was examined by comparing the results
with those obtained by SRANS computation and experiments. This
aims to clarify not only the applicability of URANS, but also the
influence of large-scale flow unsteadiness on the predicted dis-
persion field, by investigating the difference between the results of
SRANS and URANS. Such an experiment can be done only by UR-
ANS, in which the large-scale flow unsteadiness can be isolated.
The impact of the source locations on the difference is also dis-
cussed regarding unsteady flow behaviors around the building.
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132Fig. 2. Incident profiles of mean velocity U and turbulent kinetic energy k.
2. Description of wind tunnel experiments

The experimental data compared here is a part of the database
provided for use in validating CFD simulations by the Research In-
stitute for Environmental Management Technology, the National
Please cite this article as: Tominaga, Y., Stathopoulos, T., Steady and un
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Institute of Advanced Industrial Science and Technology (AIST) (Ii-
zuka et al., 2008; AIST, 2013). This database was constructed by a
study group of CFD applied to atmospheric environmental assess-
ment on behalf of the Japan Society for Atmospheric Environment
(Kondo et al., 2009; Mizuno, 2013; Meroney et al., 2016). In this
experiment the concentrations on the ground floor were measured
precisely, because the intent was to evaluate the applicability of
different models to the environmental impact assessment.

2.1. Building configurations

An isolated cubical building was adopted as the basic building
configuration. Although the experiments were conducted for eight
different source locations in total, the typical three locations were
selected for evaluation in this study. A schematic of the three cases
is shown in Fig. 1.

2.2. Experimental settings

The experiments were carried out in the closed-circuit atmo-
spheric boundary layer wind tunnel at AIST, which has a test
section of 20 m length and a cross-section of 3.0�2.0 m². Vortex
generators with height of 0.4 m were used to create an approach-
flow wind profile representative of the lower part of a neutral
atmospheric boundary layer. The mean streamwise velocity of this
incident flow follows the 1/7 power law. Fig. 2 shows the incident
vertical profiles of the dimensionless mean velocity U/UH (UH: the
inflow velocity at the building height H) and turbulent kinetic
energy k/UH², i.e. those measured at a location 11.7 m downstream
from the inlet of the wind tunnel, which is the origin of all mea-
surements. Please note that the profiles were confirmed to be al-
most identical at further downstream locations. The building
Reynolds number, which was determined by H (0.1 m) and UH

(1.7 m/s), was 1.2�104. The aerodynamic roughness length z0,
deduced from the line fitted to the mean velocity profile, was
0.002 m. Applying this z0 value to the logarithmic law, the friction
velocity u* for the experimental conditions can be calculated to be
approximately equal to 0.2 m/s. The roughness Reynolds number
steady RANS simulations of pollutant dispersion around isolated
amics (2017), http://dx.doi.org/10.1016/j.jweia.2017.02.001i
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Fig. 3. Experimental setup for the concentration measurements (courtesy of
Dr. H. Kondo, National Institute of Advanced Industrial Science and Technology).
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based on these values of z0 and u* was approximately 23. There-
fore, these experimental conditions satisfy the criteria for a fully
rough surface (Snyder and Castro, 2002). The gas exit was modeled
as a square of area equal to 1.3�10-5 m2 for the upwind case and
2.8�10�5 m2 for the rooftop and downwind cases. A concentra-
tion of 10% ethane was emitted at 813 cc/min for the upwind re-
lease case and 400 cc/min for the rooftop and downwind release
cases. These emission rates correspond to momentum ratios (M) of
0.65 and 0.14, respectively. M is defined as the ratio of Ve/UH,
where Ve is the exhaust velocity.

2.3. Measurements

The wind velocity was measured using a laser Doppler anem-
ometer (Dantec Dynamics, Fiber flow, BSA F60 Flow Processor),
and the concentration was measured using a carbon–hydrogen
analyzer (HADA-01, Kimoto Electric). Fig. 3 shows the experi-
mental setup for the concentration measurements. The time
averaging was conducted for periods of 240 s to obtain the sta-
tistical values with a sampling rate of 200 Hz for the velocity, and
120 s with 1 Hz for the concentration. The mean and standard
deviation of the three velocity components were measured in the
vertical mid-plane (y/H ¼ 0) and the horizontal plane at z ¼ 0.5H.
Mean concentrations were also measured in the vertical mid-
plane and the horizontal plane on the ground (z/H ¼ 0). Fig. 4
Fig. 4. Measurement points in (a) the vertical mid-plane and (b) the hor

Please cite this article as: Tominaga, Y., Stathopoulos, T., Steady and un
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shows the locations of the measurement points in each plane for
the rooftop release case. Although the locations of the measure-
ment points were slightly different for the other two cases, their
resolutions were almost identical.
3. Description of CFD simulations

3.1. Computational geometry and grid

The computational domain encompassed a volume of 16H(x)�
12H(y)�7H(z), which was discretized into approximately 0.6 million
hexahedral cells for the rooftop release case and 1.2 million hexahe-
dral cells for the upwind and downwind release cases. The compu-
tational domain and boundary conditions are shown in Fig. 5(a). The
applied grid on the building and ground surfaces for the downwind
release case are also shown in Fig. 5(b). A large number of grids was
necessary to reproduce the stacks for the upwind and downwind
release cases. The building width and height were divided into ap-
proximately 20 cells each for all cases. In this study, a grid-sensitivity
analysis was performed based on two additional grids: a coarser grid
and a finer grid for the rooftop release case. As mentioned earlier, the
basic grid had 557,032 cells, where each building side was assigned 20
cells. The coarser grid had 200,900 cells and the finer grid had
1,520,289 cells, where each building side was assigned 15 and 27 cells,
respectively. In the results, though a certain deviation was observed
between the coarser grid and the basic grid in terms of the peak of the
concentration, significant grid sensitivity was not found for the other
parts. Therefore, the resolutions of the building and the gas exit
adopted in the basic grid were retained for other cases.

3.2. Boundary conditions

The boundary conditions were set using basic guidelines
(Franke et al., 2007, 2011; Tominaga et al., 2008b), and the profiles
of the streamwise velocity and turbulent kinetic energy k were
imposed on the inlet based on the experimental data (cf. Fig. 2).
The values of ε were determined based on the assumption of the
local equilibrium Pk ¼ ε, where Pk is the production term in the k
equation. The wall function was applied to the ground and
building surfaces. The standard wall functions (Launder and
Spalding, 1974) were applied to the wall boundaries. The functions
were modified to reflect the effect of the roughness on the ground
using the equivalent sand-grain roughness height ks and
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Fig. 5. Computational details: (a) Computational domain, boundary conditions;
(b) Computational grid on building and ground surfaces for downwind release case.
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roughness constant Cs. The horizontal inhomogeneity of the at-
mospheric boundary layer was limited by adapting ks and Cs to the
inlet profiles using the equation proposed by Blocken et al. (2007),
namely, ks ¼ 9.793z0/Cs, where z0 is the aerodynamic roughness
length of the terrain. The selected values were ks ¼ 0.6�10-5 m
and Cs¼1.0. Symmetric boundary conditions were imposed at the
sides and top of the domain, implying zero normal velocity and
zero gradients for all variables at these boundaries. Zero static
pressure was imposed at the outlet of the domain.

3.3. Turbulence model

The Renormalisation Group (RNG) k–ε model (Yakhot et al.,
1992) was adopted, with a modification of the dissipation-rate ɛ
equation to reflect the lag between the input of energy at a dis-
crete frequency and the response of the dissipative motions, ac-
cording to Younis and Zhou (2006). The modification was made by
introducing an additional term representing a positive (produc-
tion) source in the ɛ equation. The modified production term of ɛ is
obtained as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= +

( )
ε εP C P

T
C

T
1 1

1
k

t
t

p
1

Tt in a conventional turbulence closure is usually obtained as
k/ε, and Tp is an introduced time scale for the periodic motion. Ct is
a proportionality coefficient, whose value here of 0.38 was pro-
posed in the literature (Younis and Zhou, 2006). If the periodic
motion is negligible (i.e., =∞Tp ), Eq. (1) would yield the conven-
tional production term of the ε-equation for typical k-ε models. Tp
is expressed as follows:

=
+

( + ) ( )
T

Q k

D Q k Dt/ 2
p

t

t

Here, Q is the ensemble mean kinetic energy (≡ Ui
1

2
2) and kt is

the turbulent kinetic energy. The term ( + )D Q k Dt/t can be simpli-
fied to∂( + ) ∂Q k t/t using a fixed grid.

This modification can be applied to any type of k-ε model.
Tominaga (2015) demonstrated that the URANS computation using
Please cite this article as: Tominaga, Y., Stathopoulos, T., Steady and un
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the RNG k-ε model could reproduce the periodic fluctuation be-
hind the building by introducing this modification, while im-
proving the prediction accuracy of the velocity field compared to
the results of the SRANS computations using the same model for
the flow field around a high-rise building with a 1:1:2 shape. The
RNG k-ε model was adopted as a representative of the revised k-ε
models, because among the SRANS computations with five dif-
ferent turbulence models, namely, the standard k–ε model
(Launder and Spalding, 1972), RNG k–ε model, realizable k–ε
model (Shih et al., 1995), standard k–ω model (Wilcox, 1998), and
the k–ω shear stress transport (SST) model (Menter, 1994), it
showed the best performance in reproducing the reverse flow on
the roof. Although the URANS computation using the k-ω SST
model successfully reproduced unsteady fluctuations without this
modification, the computation significantly underestimated the
turbulent kinetic energy around the building, and the flow se-
paration around the building corners was therefore significantly
overestimated. Based on the information from Tominaga (2015),
the εmodification was applied to the RNG k–εmodel in this study.

3.4. Solver settings

The commercial software ANSYS FLUENT 14.5 was used for the
SRANS and URANS computations. A control volume approach was
used to solve the flow equations. All the transport equations were
discretized using the QUICK scheme, and the pressure interpola-
tion was of the second order. The semi-implicit method for pres-
sure-linked equations (SIMPLE) algorithm was used for the pres-
sure–velocity coupling of the SRANS computation. The time in-
tegration of the URANS computation was second-order implicit,
and the non-iterative fractional step method, with the time step
set to 1�10-2 s, was used for time advancement. Time-averaging
was considered for all statistical values in the URANS for the non-
dimensional time scale t* ¼ tUH/H ¼ 200. The performance of this
approach was evaluated for the flow field around a high-rise
building model (Tominaga, 2015). The local mass fraction of ethane
was predicted through the solution of its convection–diffusion
equations. The turbulent Schmidt number was set to 0.7 (Tomi-
naga and Stathopoulos, 2007).
4. SRANS and URANS: Comparison of flow fields

The flow fields obtained using SRANS and URANS were com-
pared for the condition without gas emissions. The present URANS
computation successfully reproduced the periodic fluctuation
around the building. Fig. 6 shows time histories of the lateral ve-
locity V at the three different source positions. Note that points A
and C exactly correspond to the source locations for the upwind
and downwind release cases, but point B is located at 0.05H above
on the gas exit for the rooftop release case. A clear periodic fluc-
tuation with a period of t*E12 is evident. The fluctuation ampli-
tude at point A at the front of the building is rather small. How-
ever, the amplitudes of the fluctuations at points B and C are re-
latively large: 0.08UH at point B, located near the roof, and 0.1UH at
point C, located behind the building. At points B and C, the am-
plitudes are almost identical, but the phases are slightly shifted.
The non-dimensional standard deviation of the fluctuations of the
lateral velocity V, sv/UH, reproduced by URANS is 0.06 at point C,
whereas it was 0.16 in the experiment at the same point. Even
though the turbulent component of the fluctuations is not in-
cluded in sv/UH by URANS, it seems to be much weaker than that
observed in the experiment (Tominaga, 2015).

The mean streamlines and total turbulent kinetic energy ktotal
at the vertical center section are shown in Fig. 7. ktotal can be
calculated by summing its two components, namely, the turbulent
steady RANS simulations of pollutant dispersion around isolated
amics (2017), http://dx.doi.org/10.1016/j.jweia.2017.02.001i
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Fig. 6. Time histories of the ensemble-averaged lateral velocity V at (near) the source position obtained by URANS computation without gas emission.
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Fig. 7. Comparison of flow fields for SRANS and URANS: (a) Streamlines of mean flow, (b) Total turbulent kinetic energy ktotal.
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kinetic energy due to the stochastic turbulent fluctuation kt, and
that due to the periodic fluctuation produced by the large-scale
flow, kp.

= + ( )k k k 3total t p

= ̃
( )

k u
1
2 4p i

2

ũi: periodic fluctuations, ̃ = − ̅u U ui i i
Ui: ensemble-averaged velocity
u̅i: time-averaged velocity
Here, kt can be obtained by simply solving its transport equa-

tion using the RANS computation, whereas kp is calculated by the
time integration of the unsteady fluctuation of the ensemble-
averaged velocity Ui over a certain period. Therefore, ktotal ¼ kt for
the SRANS computation, and ktotal ¼ kt þ kp for the URANS
computation. Fig. 8 compares the vertical and horizontal dis-
tributions of the streamwise component of the time-averaged
velocity U and ktotal obtained by SRANS and URANS computations
with respective experimental values. The agreement between the
experimental and computational results is generally good. The
differences between the SRANS and URANS results are small in the
present case, in contrast to those in previous studies in which
SRANS and URANS were compared (Iaccarino et al., 2003; Tomi-
naga, 2015). Fig. 9 compares the two components of total kinetic
energy, i.e., the stochastic turbulent component, kt (SRANS and
URANS) and the periodic component, kp (only URANS) at the
vertical center plane. The URANS computation slightly under-
estimates the stochastic turbulent component, kt, in comparison
with the SRANS, because the effect of the ε modification acts as a
positive source term in the ε equation. The periodic component,
kp, in URANS is relatively small compared to the stochastic com-
ponent, kt. Therefore, because the increase in kp is offset by the
Please cite this article as: Tominaga, Y., Stathopoulos, T., Steady and un
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decrease in kt in URANS, the difference in the total turbulent ki-
netic energy (kpþkt) between SRANS and URANS is small in the
present study.
5. SRANS and URANS: Comparison of concentration fields

All concentrations are expressed in this paper in non-dimen-
sional form. The non-dimensional concentration C* is defined as
follows:

* =
( )

C
C
C 50

where C0 is the reference concentration, expressed as:

=
( )

C
Q

H U 6
e

H
0 2

and Qe is the pollutant exhaust rate.
The following validation metrics were used to quantify the

agreement between the computational and experimental results
(Schatzmann et al., 2009): the hit rate q, the fraction of the pre-
diction within a factor of 2 of the observations (FAC2), the frac-
tional bias (FB), and the normalized mean square error (NMSE).
These metrics can be expressed as follows:
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Fig. 9. Comparison of two components of total kinetic energy for SRANS and URANS at vertical center plane: (a) Stochastic turbulent component, kt; (b) Periodic component, kp.

Table 1
Validation metrics for the three cases considered in the present study.

Cases SRANS URANS

q FAC2 FB NMSE q FAC2 FB NMSE

Upwind release 0.24 0.70 0.06 2.56 0.27 0.63 0.09 2.13
Rooftop release 0.55 0.76 -0.28 0.84 0.60 0.81 -0.14 0.82
Downwind release 0.44 0.84 -0.43 1.25 0.65 0.83 0.03 0.83
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In these definitions, Oi and Pi are the observed (measured) and
predicted (computed) values of a given variable for sample i, re-
spectively, and N is the number of data points. The square brackets
denote averaging over the entire dataset. The ideal values of the
metrics that correspond to perfect agreement are 1.0 for q and
FAC2 and 0 for FB and NMSE. Previous studies suggest the fol-
lowing judgment criteria for these metrics for concentration:
FAC240.5, |FB|o0.3, NMSEo4 (Schatzmann et al., 2009; Hanna
et al., 2004).

In this study, the metrics for mean concentration consider 216,
187 and 143 measurement points on the vertical plane (y ¼ 0) and
108, 117 and 93 points on the horizontal plane (z ¼ 0) for the
upwind, rooftop and downwind release cases, respectively. The
thresholds for q are Dq ¼ 0.25 and Wq ¼ 0.05 (Schatzmann et al.,
2009). The computational results of the metrics for SRANS and
URANS are listed in Table 1.
Please cite this article as: Tominaga, Y., Stathopoulos, T., Steady and un
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5.1. Upwind release case

Table 1 shows that there is no significant difference between
SRANS and URANS. The value of NMSE, which expresses the
variability of data, is slightly improved in URANS. This is because
the overestimation of concentration, observed in both computa-
tions, is slightly improved in URANS as indicated in the scatter plot
of Figs. 10 and 11 shows the comparison of the mean non-di-
mensional concentration C* for SRANS and URANS at the vertical
center plane (y ¼ 0) and the horizontal plane on the ground (z ¼
0). In both CFD computations, the concentrations behind the
building are underestimated, as shown in Fig. 11(a). At the hor-
izontal plane – see Fig. 11(b) – a peak of the concentration is ob-
served at the side of the building in both CFD cases; its locations
steady RANS simulations of pollutant dispersion around isolated
amics (2017), http://dx.doi.org/10.1016/j.jweia.2017.02.001i
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Fig. 10. Scatter plots of non-dimensional concentration C* for upwind release case for SRANS and URANS in comparison with respective experimental values.
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differ from that of the experiment. Although this peak value be-
comes slightly smaller in URANS than SRANS, the value is still
overestimated. This is because the concentration released at the
upwind position was more resistant to entrainment to the wake
region of the building in CFD than it was in the experiment. Fig. 12
shows the iso-surfaces of the mean non-dimensional concentra-
tion C*¼10 around the building obtained by the SRANS and UR-
ANS computations. It is clearly observed that the concentrations
are transported to the downwind direction by the horseshoe
vortex in front of the building. However, the iso-surfaces of the
concentrations are straightly extended to the downwind direction
with that of SRANS going deeper in comparison with that of
Fig. 12. Iso-surfaces of mean non-dimensional concentration C*¼10 a

Please cite this article as: Tominaga, Y., Stathopoulos, T., Steady and un
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URANS. This can be explained based on the temporal velocity
fluctuation at the source location that is very small, as shown in
Fig. 6.

5.2. Rooftop release case

Table 1 shows clearly that the general performance of CFD
predictions for the rooftop release case is the best among the three
cases. In this case, the shortcoming of RANS is not apparent, al-
though URANS computation slightly improves all metrics relative
to SRANS. Fig. 13 shows the scatter plots of the non-dimensional
concentration C* by SRANS and URANS in comparison with ex-
perimental results. While SRANS shows a rather high concentra-
tion relative to the experiment, URANS predicts a concentration
generally lower than that of SRANS and shows a gradient close to
one in the approximate expression. Fig. 14 compares the mean
non-dimensional concentration C* for SRANS and URANS at the
vertical center plane (y¼0) and the horizontal plane on the
ground (z¼0). In the vertical section, both CFD computations es-
timate the concentration peak at the building height to be larger
than experimentally measured. However, the overestimation is
slightly improved by URANS. On the ground, the lateral gradient of
the concentration becomes gentle in URANS and the concentration
distribution by the experiment is well reproduced, especially at x/
H¼6.0. Fig. 15 shows the iso-surfaces of the mean non-dimen-
sional concentration C* ¼ 1 around the building obtained by the
SRANS and URANS computations. Although there is no large dif-
ference, the shape predicted by SRANS is developed more sharply
in the downwind direction than that of URANS. The more diffusive
concentration distributions in URANS are attributed to the re-
production of large-scale velocity fluctuations near the source and
behind the building, as shown in Fig. 6.
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5.3. Downwind release case

Table 1 shows that the performance of URANS is most im-
proved over that of SRANS for the downwind release case. This is
probably because the largest velocity fluctuation is reproduced by
URANS at the source location (see Fig. 6). Scatter plots of the non-
dimensional concentrations C* by SRANS and URANS in compar-
ison with those measured in the experiment are shown in Fig. 16.
Although no large differences are seen in the values of FAC2, many
points are concentrated around the 45° line in the URANS case.
Fig. 17 compares the distributions of the non-dimensional
Fig. 15. Iso-surfaces of mean non-dimensional concentration C* ¼ 1 a

Please cite this article as: Tominaga, Y., Stathopoulos, T., Steady and un
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concentration C* behind the building. For the vertical distribution
shown in Fig. 17(a), the concentration near the source is largely
overestimated by the SRANS computation. However, this over-
estimation is improved in URANS. Fig. 17(b) shows the ground
plane URANS results, in which the concentration diffusion in the
lateral direction is estimated to be larger than that in the SRANS
results and agrees well with the experiment. Fig. 18 shows the iso-
surfaces of the mean non-dimensional concentration C* ¼
1 around the building obtained by the SRANS and URANS com-
putations. The difference between SRANS and URANS is the
greatest for this configuration. The shape is stretched sharply in
the downwind direction in SRANS, but is shorter and more roun-
ded in URANS. The effect of the time-dependent organized motion
reproduced by URANS on the concentration field, the time-series
iso-surfaces of the ensemble-averaged non-dimensional con-
centration C* ¼ 1 around the building is illustrated in Fig. 19. The
time-dependent periodic fluctuation of the ensemble-averaged
concentration is clearly observed.
6. Additional considerations

The performance of URANS simulations for flow and dispersion
fields around isolated cubical buildings was examined by com-
paring the results with those obtained from SRANS computations
and experiments. The following points should be considered in the
comparisons:

� The present URANS computations, which used the RNG k-ɛ
model with the ɛ modification, could reproduce the periodic
fluctuation around the building. However, the ɛ modification is
not the only way to reproduce the fluctuation. In fact, the k-ω
SST model could also reproduce the periodic fluctuation around
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the building under the same computational conditions of the
present study in our preliminary tests. The present study used
the same turbulence model in SRANS and URANS, namely the
turbulence model that showed good performance in the SRANS
computation in a previous study (Tominaga, 2015). The combi-
nation of URANS and other turbulence models needs more
consideration in further study.

� Fig. 6 shows that the large-scale fluctuations reproduced by
URANS were quite monotonic. Since the fluctuations with other
frequencies were not reproduced, there was probably a gap
Fig. 18. Iso-surfaces of mean non-dimensional concentration C* ¼ 1 for d
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between the energy of velocity fluctuations in URANS simula-
tions and the actual total energy of those in reality. This gap
may be a limitation of URANS.

� The run time required by the URANS computation was ap-
proximately five times longer than that by SRANS for each case.
These differences were simply caused by the computational
time required by time-averaging for a statistically long enough
period. Although it is difficult to directly compare the compu-
tational time of RANS with that of LES, the run time of LES can
be estimated to be approximately ten times longer than that of
URANS. This estimation is based on the assumption that the
number of grids required will be about 3.3 (¼1.53) times more
and the time-averaging period will be about three times longer
in LES than those required in URANS.

� For a flow around an isolated building, the large-scale organized
motions with periodic flows, such as that observed in the pre-
sent study, are relatively prominent. However, in a flow around
a group of buildings, such flows may disappear into the large
turbulence generated by the buildings. A more realistic case
with non-isolated buildings should be considered in order to
investigate the effect of surroundings on the performance of
URANS. In fact, Paik et al. (2009) investigated the performance
of URANS computation and various versions of detached eddy
simulation (DES) in resolving coherent structures in turbulent
flow around two cubes mounted in tandem on a flat plate for a
thin incoming boundary layer. They concluded that URANS
failed to capture key features of the mean flow, including the
second horseshoe vortex in the upstream junction, and sign-
ificantly underestimated turbulence statistics in most regions of
the flow. Salim et al. (2011) compared the performance between
SRANS, URANS and LES in the prediction of airflow and
pollutant dispersion within urban street canyons. They reported
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Fig. 19. Time series of the iso-surfaces of the ensemble-averaged non-dimensional concentration C* ¼ 1 for downwind release case obtained by URANS computation.
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that although solving for a transient solution, the results for
URANS did not vary with time when compared with those of
LES.
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7. Conclusions

The performance of URANS simulations of flow and dispersion
fields around isolated cubical buildings with different pollutant
release points was examined by comparing the results with those
obtained by SRANS simulations and experiments.

The following conclusions can be drawn from the results of this
research study:

� The recirculation flow behind the building was estimated by
URANS to be slightly shorter than that by SRANS. However, the
differences between SRANS and URANS were found to be small
for this case, in contrast to the results of previous studies that
compared SRANS and URANS. This is attributed to the increase
in the periodic component of k being offset by the decrease in
the turbulent component of k in URANS in the present study.

� It should be emphasized that the prediction accuracy of CFD
depends primarily on the source location for both SRANS and
URANS. In this study, both computational approaches yielded
better predictions for the rooftop release case than for the other
release cases.

� The improvement of the predicted concentration field achieved
by URANS largely depends on the source location. Although this
improvement was not as large for the upwind and rooftop re-
lease cases, the prediction accuracy achieved by URANS was
substantially better for the downwind release case.

� For the upwind release case, the effect of unsteady fluctuations
is very small, but the overestimated concentration in SRANS is
slightly decreased in URANS.

� For the rooftop release case, the prediction accuracy for the low-
concentration region in the downwind region was improved in
URANS. The more diffusive concentration distributions in UR-
ANS were attributed to the reproduction of large-scale velocity
fluctuations near the source and behind the building.

� For the downwind release case, the concentration diffusion in
the lateral direction behind the building was estimated to be
larger in URANS, and the concentration distribution agrees very
well with the results of the experiment.

� This study evaluated the contribution of unsteady large-scale
fluctuations to the pollutant dispersion around an isolated
building. Such contribution should be carefully considered in
validation studies using SRANS for pollutant dispersion around
an isolated building, which is often adopted in such studies.
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