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The recent growth in the number of sinkhole occurrences due to human activities has highlighted the need for better
understanding and prediction of the problem. This paper investigates the use of Broms and Bennermark’s original
stability number for trapdoor problems in cohesive soil. The shear-strength-reduction method built in a finite-difference
method software program (FLAC) is used to obtain the factor of safety (FOS) under different combinations of pressures
for collapse and blowout. Unlike previous research on the use of critical pressure ratios, the FOS results are now
functions of the original stability number and depth ratio. The obtained numerical results are compared and validated by
using rigorous upper- and lower-bound finite-element limit analysis, as well as other existing solutions available in the
literature. Surface failure extents are also examined in the paper. The dimensionless ratios employed in this study are
useful for preparing design charts with a broad range of trapdoor geometries and soil parameters.
Notation
C soil cover
D tunnel diameter
E extent of the failure surface
H depth from the ground surface to the trapdoor opening
N ‘designed’ stability number
Nc critical stability number
r2 correlation coefficient
Su undrained shear strength of soil
W trapdoor width
g soil unit weight
ss surcharge pressure
st support pressure
F internal friction angle of soil

Introduction
Sinkholes present environmental risk through subsidence or
sudden ground collapse, leading to loss of life and infrastructure.
The recent growth in the number of sinkhole occurrences due to
human activities, such as urbanisation, mining and agricultural
development, has highlighted the need for better understanding
and prediction of the problem (Drumm et al., 2009).

Sowers (1996) outlined the sub-profile of karst soil and described
the process of forming a sinkhole. It was suggested that in
limestone areas, the gradual erosion of rock at a depth caused by
the passing of underground water leads to subsidence of
overburden deposited soil, resulting in a saucer-shaped
depression. Field investigation studies (Newton, 1976; Sowers,
1996) also suggested that the underground voids, created either
naturally or by humans, initiated in cracks between the
underground rocks. As indicated by Tharp (2003), the initial size
of the cavity does not reflect the actual size of the trapdoor at
collapse because the size of the initial cavity will grow further
due to internal erosion and will create a reverse-funnel shape.
A considerable number of studies have been published on the
stability of trapdoors. A study was initiated by Terzaghi (1936),
who experimentally investigated the effect of distributed stress in
sand. The study categorised the failure as either an active or a
passive mode and described active failure as occuring due to
overburden pressure and passive failure occurring as an uplifting
force such as an anchor.

Through laboratory experiments and field data collection, Broms
and Bennermark (1967) stated that the support pressure required to
maintain the stability of an opening on a vertical wall should equate
to overburden pressures (surcharge and self-weight) and the
undrained shear strength of the soil multiplied by a ‘factor’. The
stability number (N) was therefore defined in the following equation

N ¼ ss þ gH − st

Su1.

where ss is the surface surcharge pressure; st is the support
pressure; H is the depth of the opening; g represents the soil unit
weight; and Su is the undrained shear strength of the soil. Broms
and Bennermark (1967) also concluded that the opening would be
unstable when the overburden pressure (ss + gH) is six times
greater than the undrained shear strength of the soil.

One of the most influential studies of underground stability comes
from Davis et al. (1980), who used an analytical approach to
study tunnel heading stability. Davis et al. (1980) used the limit
analysis theorem to determine upper-bound and lower-bound
solutions to the problem. In their approach, unlike the original
Broms and Bennermark (1967) stability number approach, the
problem was approached differently by using a critical pressure
ratio (ss − st)/Su, which is a function of the strength ratio (gD/Su)
and depth ratio (H/W), as indicated in Equation 2. Numerous
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studies have since been performed using this approach (Augarde
et al., 2003; Drumm et al., 2009).

N ¼ ss − st

Su
¼ f

gD
Su

,
C

D

� �
2.

Koutsabeloulis and Griffiths (1989) used the displacement finite-
element method to investigate soil displacement in active and passive
modes of the trapdoor problem. Martin (2009) introduced a new slip-
line solution for a shallow trapdoor. Craig (1990) utilised a centrifuge
model to investigate the critical stability of a circular cavity. Using
the centrifugal approach, many experimental investigations of
trapdoor stability have been carried out by researchers, such as
Abdulla and Goodings (1996) and Jacobsz (2016). Recently,
Keawsawasvong and Ukritchon (2017) studied active trapdoor
problems with a linear increase in undrained shear strength with
depth using finite-element limit analysis (FELA).

Although extensive research has been carried out on the stability
of trapdoors in the past, most of the studies have predominately
focused on the use of the critical pressure ratio ((ss − st)/Su).
Very few studies have used the original stability number approach
(Broms and Bennermark, 1967) to study soil stability and further
explore the relationship between the stability number and the
factor of safety (FOS). In this paper, the shear-strength-reduction
method (SSRM) is used with the finite-difference method (FDM)
to obtain the FOS for a wide range of stability numbers (N) and
depth ratios (H/W). This study also investigates the extent of
sinkhole collapse on the ground surface. The results are validated
by using FELA and other previous published studies. These FOS
results are used to produce comprehensive design charts for the
problem of trapdoor stability.

Statement of the problem and modelling
technique
The development of cover-collapse sinkholes is a complex procedure
due to the continuous expansion of the cavity size over the time. To
simplify the problem, it is assumed that the cavity is in the critical
stage where the failure is imminent. Figure 1 shows the problem
definition of an idealised horizontal trapdoor underlying a
homogeneous layer of cohesive soil. The undrained soil is modelled
as uniform Mohr–Coulomb material with a zero soil internal friction
angle (F = 0). Su is the undrained shear strength, and g is the soil
unit weight. The trapdoor opening width is W, and the depth from
the surface to the trapdoor opening is notated as H.

Note that the combination of surcharge pressure (ss), overburden
pressure (gH) and support pressure (st) can produce failure in
either a collapse or a blowout. For undrained clay without volume
loss during plastic shearing, stability results are independent of
loading directions, and Broms and Bennermark’s original
undrained stability number is a suitable design parameter (Shiau
and Al-Asadi, 2018). For drained soils, the original stability
number is not applicable.
2
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A broad range of stability numbers (N = −15–15) and depth ratios
(H/W = 1–10) have been chosen to cover all possible
investigations of collapse and blowout. Note that the actual values
of ss, st, g, Su, H, and W used in the analyses are insignificant
and are not to be reported here due to the nature of the
dimensionless definition. The SSRM is adopted to solve the FOS,
which is a function of the stability number N and the depth ratio
H/W, as shown in the following equation

FOS ¼ f N ,
H

W

� �
3.

Due to the lack of previous literature on implementing the FOS
approach as well as correlating the stability number N to the FOS,
it is important to use two techniques for the comparison of results.
For this reason, both the FDM and FELA were used to analyse
the problem in this paper.

The FDM is one of the oldest techniques used in numerical studies
and is a powerful method for analysing complex geotechnical
stability problems involving non-linear solutions (Itasca, 2003). A
typical grid for simulating the trapdoor stability problem in the FDM
is shown in Figure 2. To improve the computational efficiency, a
symmetrical condition is considered. This symmetrical condition is
particularly important for deep cases that normally require more
central processing unit time. An effective domain should be such that
it is large enough to present the entire velocity field. Both the left and
the right boundaries of the mesh were fixed in the x-direction,
allowing the soil to move in a vertical direction. The lower boundary
of the mesh was restrained in both the x- and y-directions except
where the trapdoor opening is positioned. The trapdoor opening was
not restrained so the soil body can freely move downwards into the
cavity. A Fish script was developed to assist in auto mesh generation
and problem solving of the trapdoor problem using SSRM (Shiau
and Sams, 2019; Shiau et al., 2018). The Fish development was a
Surcharge pressure (σs)

Potential slip
surface

γ H + σs

W/2

Soil unit weight  
Undrained shear strength of soil
Undrained friction angle; Φu = 0  
Stability number

N =
Su

Support pressure (σt)

Half
trapdoor
opening

H

σs + γ H – σt

γ
Su
Φu
N

Figure 1. Problem definition
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particularly important tool in this study, as it allows parametric study
to be conducted efficiently.

The numerical process of the FELA and SSRM is based on the
limit theorems of classical plasticity, which were described by
Lyamin and Sloan (2002a, 2002b) and Sloan (2013). The details
of the formulation will not be repeated here. It is worth noting
that the new technique utilises the finite-element discretisation to
deal with complicated geometry and loading conditions and the
plastic bounding theorems to bracket the true limit load using
 [ University of Southern Queensland] on [22/12/19]. Published with permission
upper- and lower-bound solutions. Figure 3 shows the mesh used
in the paper. The domain sizes of the models were carefully
chosen by observing the non-zero velocity fields, so as to
minimise boundary effects. Note that the symmetrical faces are
fixed only in the normal direction (i.e. x-direction) to allow
vertical movement, so as the outer face boundary. Similar to the
FDM mesh, the lower face is restrained in the x- and y-directions
and the top face is free to displace in all directions. The solutions
are then triggered by involving the shear-strength-reduction
technique stated in the paper by Krabbenhoft and Lyamin (2015).

The SSRM was utilised as early as 1975 by Zienkiewicz et al.
(1975) and many other researchers to investigate various
geotechnical engineering problems (Griffiths and Lane, 1999;
Krabbenhoft and Lyamin, 2015; Matsui and San, 1992;
Michalowski, 2002; Ugai and Leshchinsky, 1995; Yang and
Drumm, 2002). Although the SSRM provides a straightforward
solution to many geotechnical problems, such as slopes and
retaining walls, this method has seldom been used in the analysis
of underground stability problems (Shiau et al., 2017, 2018). In
this study, the SSRM and FOS approach is adopted to analyse the
stability of the trapdoor in collapse and blowout conditions. A
total of 690 trapdoor cases are studied using the FDM, upper-
bound FELA (FELA UB) and lower-bound FELA (FELA LB).
Numerical results of the extensive investigation are presented in
the form of design charts and equations.

Results and discussions
Comprehensive findings of this study are presented in Tables 1–3 for
a broad range of stability numbers (N = −15–15) and depth ratios
(H/W = 1–10). Using the data in the tables, Figure 4 plots the FOS
results of collapse and blowout from the analyses of lower bound,
upper bound and finite differences for the depth ratio of H/W = 3.
The results show that the curves are in hyperbolic form where FOS
and N are the vertical and horizontal asymptotes, respectively. The
general equation of the curve is presented as follows

Nc ¼ FOS � N4.

Equation 4 suggests that for a given depth ratio (H/W = 3), any 
combination of FOS and N on the curve yields a unique value. 
This unique value is the critical stability number (Nc), which 
corresponds to an FOS of 1. By drawing an FOS = 1 horizontal 
line in Figure 4, the two intersection points give an NC value of 
4·925 for the collapse and −4·930 for the blowout.

When the supporting pressure ratio (SPR, st/Su) is greater than the 
overburden pressure ratio (OPR ((ss + gH)/Su)), the negative value 
of N represents a blowout movement. Contrary to this, a positive 
value of N indicates that the soil moves in the collapse condition. 
This occurs when the overburden pressure ratio ((ss + gH)/Su)) is 
greater than the supporting pressure ratio (st/Su). As N further 
increases, an incipient collapse is reached where FOS = 1 and the 
corresponding N is the critical Nc. When the supporting pressure
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Figure 2. A typical FDM mesh used for the problem
Support pressure (σt)
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Figure 3. A typical FELA adaptive mesh used for the problem
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ratio (st/Su) is equal to the overburden pressure ratio ((ss + gH)/
Su)), N is equal to zero and FOS is at a maximum (infinite) where
a ‘stressless’ scenario exists on the asymptote line.
4
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Broms and Bennermark’s original Equation 1 can be rearranged
into a form that is more amenable to analysis, as shown in the
following equation
Table 1. FOS for various N and H/W values (FDM)
N

H/W
1
 2
 3
 4
 5
ssion by
6

 the ICE under
7

 the CC-BY li
8
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9
 10
−15·00
 0·14
 0·26
 0·33
 0·38
 0·42
 0·44
 0·47
 0·49
 0·51
 0·53

−12·50
 0·17
 0·31
 0·39
 0·45
 0·50
 0·53
 0·56
 0·59
 0·62
 0·63

−10·00
 0·22
 0·39
 0·49
 0·56
 0·62
 0·67
 0·71
 0·74
 0·77
 0·79

−7·50
 0·29
 0·52
 0·66
 0·76
 0·83
 0·89
 0·94
 0·99
 1·02
 1·06

−5·00
 0·43
 0·78
 0·99
 1·13
 1·24
 1·33
 1·41
 1·49
 1·53
 1·59

−3·00
 0·72
 1·30
 1·65
 1·89
 2·08
 2·23
 2·35
 2·46
 2·56
 2·65

−2·00
 1·08
 1·95
 2·47
 2·83
 3·11
 3·34
 3·53
 3·70
 3·83
 3·98

−1·00
 2·16
 3·90
 4·94
 5·67
 6·24
 6·70
 7·09
 7·42
 7·67
 7·98

−0·75
 2·88
 5·20
 6·59
 7·57
 8·32
 8·94
 9·46
 9·90
 10·24
 10·66

−0·50
 4·32
 7·80
 9·89
 11·35
 12·49
 13·40
 14·17
 14·83
 15·42
 15·95

−0·25
 8·64
 15·60
 19·77
 22·74
 25·04
 26·93
 28·52
 29·91
 31·16
 31·90

0·00
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity

0·25
 8·63
 15·59
 19·74
 22·65
 24·92
 26·73
 28·26
 29·58
 30·90
 31·50

0·50
 4·31
 7·79
 9·86
 11·32
 12·43
 13·34
 14·10
 14·75
 15·38
 15·95

0·75
 2·88
 5·19
 6·57
 7·54
 8·29
 8·89
 9·39
 9·83
 10·23
 10·58

1·00
 2·16
 3·89
 4·93
 5·65
 6·21
 6·66
 7·04
 7·37
 7·66
 7·91

2·00
 1·08
 1·95
 2·46
 2·82
 3·10
 3·33
 3·52
 3·68
 3·83
 3·95

3·00
 0·72
 1·30
 1·64
 1·88
 2·07
 2·22
 2·34
 2·45
 2·55
 2·62

5·00
 0·43
 0·78
 0·99
 1·13
 1·24
 1·33
 1·40
 1·47
 1·53
 1·58

7·50
 0·29
 0·52
 0·66
 0·75
 0·83
 0·89
 0·94
 0·98
 1·02
 1·05
10·00
 0·22
 0·39
 0·49
 0·56
 0·62
 0·67
 0·71
 0·74
 0·76
 0·79

12·50
 0·17
 0·31
 0·39
 0·45
 0·50
 0·53
 0·56
 0·59
 0·61
 0·63

15·00
 0·14
 0·26
 0·33
 0·38
 0·41
 0·44
 0·47
 0·49
 0·51
 0·53
Table 2. FOS for various N and H/W values (FELA UB)
N

H/W
1
 2
 3
 4
 5
 6
 7
 8
 9
 10
−15·00
 0·13
 0·25
 0·32
 0·37
 0·41
 0·44
 0·46
 0·48
 0·50
 0·52

−12·50
 0·16
 0·30
 0·38
 0·44
 0·49
 0·52
 0·55
 0·58
 0·60
 0·62

−10·00
 0·20
 0·37
 0·48
 0·55
 0·61
 0·65
 0·69
 0·73
 0·75
 0·78

−7·50
 0·26
 0·50
 0·64
 0·74
 0·81
 0·87
 0·92
 0·97
 1·01
 1·04

−5·00
 0·40
 0·74
 0·96
 1·10
 1·22
 1·31
 1·38
 1·45
 1·51
 1·56

−3·00
 0·66
 1·24
 1·59
 1·84
 2·03
 2·18
 2·31
 2·42
 2·51
 2·60

−2·00
 0·99
 1·85
 2·38
 2·76
 3·04
 3·27
 3·46
 3·62
 3·78
 3·90

−1·00
 1·98
 3·70
 4·77
 5·51
 6·11
 6·53
 6·93
 7·24
 7·55
 7·80

−0·75
 2·64
 4·95
 6·34
 7·36
 8·11
 8·72
 9·22
 9·66
 10·06
 10·40

−0·50
 3·96
 7·39
 9·53
 11·03
 12·21
 13·07
 13·85
 14·50
 15·11
 15·60

−0·25
 7·92
 14·79
 19·06
 22·05
 24·30
 26·13
 27·71
 28·99
 30·22
 31·20

0·00
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity

0·25
 7·92
 14·79
 19·06
 22·05
 24·32
 26·13
 27·71
 28·99
 30·22
 31·20

0·50
 3·96
 7·42
 9·53
 11·03
 12·16
 13·07
 13·85
 14·50
 15·11
 15·60

0·75
 2·64
 4·95
 6·34
 7·36
 8·11
 8·72
 9·22
 9·67
 10·06
 10·40

1·00
 1·98
 3·70
 4·77
 5·51
 6·08
 6·53
 6·93
 7·25
 7·55
 7·80

2·00
 0·99
 1·85
 2·38
 2·76
 3·04
 3·27
 3·46
 3·62
 3·78
 3·90

3·00
 0·66
 1·24
 1·59
 1·84
 2·03
 2·18
 2·31
 2·42
 2·51
 2·60

5·00
 0·40
 0·74
 0·96
 1·10
 1·22
 1·31
 1·38
 1·45
 1·51
 1·56

7·50
 0·26
 0·50
 0·64
 0·74
 0·81
 0·87
 0·92
 0·97
 1·01
 1·04
10·00
 0·20
 0·37
 0·48
 0·74
 0·61
 0·65
 0·69
 0·73
 0·75
 0·78

12·50
 0·16
 0·30
 0·38
 0·44
 0·49
 0·52
 0·55
 0·58
 0·60
 0·63

15·00
 0·13
 0·25
 0·37
 0·37
 0·41
 0·44
 0·46
 0·48
 0·50
 0·52
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st ¼ ss þ gH − Nc � Suð Þ5.

Using Equation 5, a critical supporting pressure st (when FOS = 1)
can be determined as long as Nc is known. Note that there is only
one unique Nc (±) for a particular depth ratio and Nc is a function of
 [ University of Southern Queensland] on [22/12/19]. Published with permission
the depth ratio H/W regardless of the undrained shear strength of the
soil. It is therefore important to study the effect of H/W on the critical
stability number Nc. Figure 5 shows such a relationship between Nc

and H/W. Note that the critical stability number (Nc) increases non-
linearly as H/W increases, and the gradient of the curve decreases for
large values of Nc. The area bounded by the collapse and the
blowout curves represents the safe zone where FOS > 1. As the
stability number (N) approaches zero (OPR = SPR), the FOS
becomes infinite. Also, see the asymptote in Figure 4.
Table 3. FOS for various N and H/W values (FELA LB)
N

H/W
1
 2
 3
 4
 5
 by the I
6

CE under the C
7

C-BY license
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9
 10
−15·00
 0·13
 0·24
 0·31
 0·36
 0·39
 0·42
 0·45
 0·47
 0·49
 0·50

−12·50
 0·16
 0·29
 0·37
 0·43
 0·47
 0·51
 0·54
 0·56
 0·58
 0·60

−10·00
 0·20
 0·36
 0·46
 0·54
 0·59
 0·64
 0·67
 0·70
 0·73
 0·75

−7·50
 0·26
 0·48
 0·61
 0·72
 0·79
 0·85
 0·90
 0·94
 0·97
 0·75

−5·00
 0·39
 0·72
 0·93
 1·08
 1·18
 1·27
 1·34
 1·40
 1·46
 1·51

−3·00
 0·65
 1·20
 1·54
 1·78
 1·97
 2·12
 2·24
 2·35
 2·43
 2·51

−2·00
 0·97
 1·79
 2·32
 2·68
 2·95
 3·18
 3·37
 3·52
 3·65
 3·79

−1·00
 1·94
 3·58
 4·65
 5·36
 5·92
 6·34
 6·74
 7·03
 7·30
 7·57

−0·75
 2·59
 4·79
 6·20
 7·17
 7·90
 8·46
 8·95
 9·39
 9·76
 10·03

−0·50
 3·89
 7·21
 9·28
 10·73
 11·77
 12·72
 13·49
 14·05
 14·60
 15·10

−0·25
 7·72
 14·41
 18·59
 21·45
 23·54
 25·44
 26·97
 28·10
 29·21
 30·10

0·00
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity
 Infinity

0·25
 7·78
 14·32
 18·53
 21·47
 23·61
 25·44
 26·95
 28·10
 29·21
 30·29

0·50
 3·86
 7·21
 9·21
 10·73
 11·80
 12·72
 13·48
 14·05
 14·60
 15·15

0·75
 2·59
 4·76
 6·20
 7·15
 7·87
 8·46
 8·98
 9·39
 9·78
 10·10

1·00
 1·95
 3·58
 4·65
 5·37
 5·90
 6·34
 6·74
 7·03
 7·30
 7·57

2·00
 0·97
 1·80
 2·32
 2·68
 2·97
 3·18
 3·37
 3·51
 3·65
 3·76

3·00
 0·65
 1·20
 1·54
 1·79
 1·98
 2·12
 2·24
 2·35
 2·43
 2·51

5·00
 0·39
 0·72
 0·93
 1·07
 1·18
 1·27
 1·35
 1·41
 1·46
 1·51

7·50
 0·26
 0·48
 0·62
 0·72
 0·79
 0·85
 0·90
 0·94
 0·97
 1·01
10·00
 0·20
 0·36
 0·46
 0·54
 0·59
 0·64
 0·67
 0·70
 0·73
 0·75

12·50
 0·16
 0·29
 0·37
 0·43
 0·47
 0·51
 0·54
 0·56
 0·58
 0·60

15·00
 0·13
 0·24
 0·31
 0·36
 0·40
 0·42
 0·45
 0·47
 0·49
 0·50
–16 –12 –8 –4 0 4 8 12 16

0

4

8
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16
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FOS = 1 FOS = 1

Nc = N × FOS

Nc(FDM) = 4·925Nc(FDM) = –4·930 (FDM)

This is an asymptote – when
N approaches zero, FOS 
increases to its infinite value.

For a given depth such as H/W = 3,
Nc(FDM) is 4·925 for the collapse
and –4·930 for the blowout side.

Collapse sideBlowout side

N

FDM
UB 
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Figure 4. FOS plotted against N (UB, LB and FDM) for a depth
ratio of H/W = 3
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Note that the critical stability number (Nc) represents the ‘design’
N value when FOS = 1. This is the failure envelope for FOS = 1.
Also, note that FOS ˃ 1 when a design N value is located within
the failure envelope and FOS < 1 when a design N value is
located outside the failure envelope.

The finite-difference results of Nc were chosen for the regression
analysis. These are presented in Equations 6 and 7 for collapse
and blowout, respectively, with a correlation coefficient r2 =
0·998.

Nc FDMð Þ ¼ 2�51 � ln
H

W

� �
þ 2�17

6.

Nc FDMð Þ ¼ −2�51 � ln
H

W

� �
− 2�17

7.

Using Equations 1 and 4, the FOS can be determined with the
following equation

FOS ¼ Nc

N
¼ Nc � Su

ss þ gH − st8.

Substituting Equations 6 and 7 into Equation 8, Equation 9 can be
used to determine the FOS for known design parameters (ss, st, g,
H, W and Su).

FOS ¼ Nc

N
¼ �2�51 � ln H=Wð Þ � 2�17½ � � Su

ss þ gH − st9.

Equation 9 is also presented graphically in Figure 6. The design
contour map of FOS was constructed based on the FDM
numerical solutions.

By rearranging Equation 8, one can determine the required
support pressure st for a given FOS using the following equation

st ¼ ss þ gH −
Nc � Su
FOS

� �
10.

Comparison
Figure 7 and Table 4 compare the Nc values obtained in this paper
with those in the published literature. The comparison shows that
the FDM results of Nc are considerably lower than the analytical
upper-bound solutions of Davis (1968) for large H/W. Although
Davis’s investigation had been improved by Gunn (1980) by
using the three rigid block parameters, the analytical upper-bound
solutions of Gunn (1980) are still 4·0–12·9% larger than the
current FDM.
6
ed by [ University of Southern Queensland] on [22/12/19]. Published with permi
The comparison in Figure 7 also shows some 0·65–15·00%
difference between the FDM results and the results by Sloan et al.
(1990) for the range of depth ratios (H/W = 1–10) studied.
Although Sloan et al. (1990) carried out extensive research on
trapdoor stability, the use of linear programming was a major
drawback on the solution accuracy. In particular, the lower bound
shows a large variation in comparison with FDM. The slip-line
solutions of Martin (2009) were limited to shallow depth ratios up
to H/W = 2. Martin’s results agree well with the current FDM
solutions of H/W = 1 and 2. Keawsawasvong and Ukritchon
(2017) presented averaged upper- and lower-bound solutions for a
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wide range of depth ratios (H/W) for homogeneous and non-
homogeneous clays. In general, their results of homogeneous clay
agree well with the FDM results. Overall, the predicted trend of
FDM results shows a good agreement with the FELA LB and UB
solutions.

Failure extent
Results of the failure extent investigation are shown in Figure 8. The
distance of failure extent was determined by inspection of the
velocity vector plots produced in the program. Figure 8 suggests that
the failure extent ratio (E/W) is linearly proportional to the depth ratio
(H/W). The linear relationship is presented in the following equation

E

W
¼ 1�39 H

W

� �
þ 0�13

11.

A practical conclusion can be drawn from Table 5, showing that
an approximately 55° line can be drawn from the centre of the
trapdoor to the outer boundary of the failure surface to estimate
 [ University of Southern Queensland] on [22/12/19]. Published with permission
the failure extent. Note that this investigation is valid for all
values of stability numbers (N).

Work examples
Determine the FOS
An old vertical mining shaft has no internal pressure and no
surcharge pressure. For the given parameters (Su = 154 kPa, g =
18 kN/m3, H = 36 m and W = 6 m), determine the FOS.

■ Since there is no internal pressure, only the collapse failure
should be considered.

■ The stability number is N = gH/Su = 4·21.
■ Using H/W = 6 and N = 4·21, Equation 9 gives an FOS of

1·58 for the collapse.
■ Using H/W = 6 and N = 4·21, Figure 6 gives an approximate

FOS of 1·6.
■ An actual computer analysis of this case gives an FOS of 1·63.

What is the critical support pressure st when FOS = 1?

■ Using Equation 6, Nc = 3·45 for collapse.
■ From Equation 10, st = ss + gH − (Nc × Su/FOS) = 100 +

(18 × 10) − (3·45 × 30/1) = 176·5 kPa.
Table 4. Comparison of Nc values
H/W

Present study
 Davis (1968)
 Gunn (1980)
 Sloan et al. (1990)
 by the ICE
Keawsawasvong and Ukritchon (2017)
 under the CC-BY license 
Martin (2009)
FDM
 LB
 UB
 LB
 UB
 LB
 UB
 LB
 UB
 Average (LB and UB)
 Slip-line
1
 2·16
 1·94
 1·98
 2·00
 2·00
 1·40
 2·05
 1·83
 2·00
 2·14
 1·96

2
 3·90
 3·59
 3·71
 3·17
 4·56
 2·76
 3·75
 3·54
 3·75
 4·07
 3·91

3
 4·93
 4·63
 4·78
 4·18
 6·06
 3·57
 4·94
 4·45
 4·93
 5·14
 —
4
 5·65
 5·37
 5·51
 4·62
 7·19
 4·08
 5·79
 5·11
 5·61
 5·97
 —
5
 6·21
 5·92
 6·08
 5·00
 8·00
 4·55
 6·55
 5·55
 6·12
 6·54
 —
6
 6·66
 6·35
 6·53
 5·44
 8·82
 4·88
 7·11
 5·92
 6·47
 6·90
 —
7
 7·04
 6·74
 6·92
 —
 —
 5·22
 7·62
 6·16
 6·78
 7·23
 —
8
 7·37
 7·03
 7·25
 —
 —
 5·49
 8·13
 6·43
 7·02
 7·50
 —
9
 7·65
 7·30
 7·55
 —
 —
 5·73
 8·54
 6·57
 7·27
 7·74
 —
10
 7·91
 7·55
 7·80
 —
 —
 5·94
 8·93
 6·72
 7·44
 7·94
 —
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Figure 8. Failure extent
Table 5. Determination of failure extent
Depth
ratio,
H/W
Actual
depth,
H: m
Measured
surface half-
failure extent,

E/2: m
Angle, p =
tan−1

[H/(E/2)]: °
Ratio of
failure extent
to trapdoor
width, E/W
1
 6
 4·50
 53·1
 1·50

2
 12
 8·50
 54·7
 2·83

3
 18
 12·5
 55·2
 4·17

4
 24
 17·5
 53·9
 5·83

5
 30
 20·5
 55·7
 6·83

6
 36
 25·5
 54·7
 8·50

7
 42
 30·5
 54·0
 10·17

8
 48
 35·0
 53·9
 11·67

9
 54
 36·5
 55·9
 12·17

10
 60
 41·5
 55·3
 13·83
Half-cavity size (W/2) = 3m
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Estimate the depth of a sinkhole (H)
An existing sinkhole has a diameter of 10 m. Estimate the depth
of the sinkhole using the following parameters for cohesive soil:
Su = 54 kPa and g = 19 kN/m3.

■ Note that Equation 11 is independent of the design parameter
N. The only needed information is E.

■ From Equation 11, 10/W = 1·39 × (H/W) + 0·13.
■ By ignoring the small value of (0·13W), the depth (H) is

found to be 7·19 m.

Design of a supported cavity (st)
An FOS of 4 is required for the design of an underground military
bunker where the surcharge pressure is given as ss = 50 kPa. The
following parameters are known: Su = 25 kPa, g = 18 kN/m3, H =
40 m and W = 30 m.

■ Using Equation 6, the critical stability number is Nc = 2·89.
Note that Figure 5 can also be used to find the Nc value.

■ Substitute the Nc value into Equation 10, st = ss + gH − (Nc ×
Su/FOS) = 50 + (18 × 40) − (2·9 × 25/4) = 752 kPa.

■ The required pressure to support the cavity for an FOS of 4 is
752 kPa.
Conclusion
This study successfully investigated the stability of trapdoor
problems using Broms and Bennermark’s original stability
number. Numerical results of this study were obtained by utilising
the SSRM. Three numerical techniques were used – namely, the
FDM, FELA UB and FELA LB.

The FOS was found to be a function of the depth ratio (H/W) and
stability number (N). The numerical results suggest that the FOS
increases when the stability number (N) decreases. The FOS
becomes very large when the stability N is very small. Further
investigation on failure mechanisms indicates a linear relationship
between the failure extent ratio (E/W) and the depth ratio (H/W).
The failure angle (q) measured from the centre of the opening (W)
to the outer boundary of the failure surface is approximately equal
to 55° for all depth ratios (H/W).

This investigation has improved the understanding of trapdoor
stability and associated surface failure extent. Further study is needed
for a more realistic three-dimensional analysis of sinkhole failure.
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