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1. Introduction

1.1. A Brief Homage on Nitrides

A deep breath and billions of trillions of gas molecules flood our lungs, providing us properly dosed

oxygen vital for life. The main components of the Earth’s atmosphere are nitrogen (N2, 78.08 vol-%,

75.52 wt-%), oxygen (O2, 20.95 vol-%, 23.14 wt-%), and argon (Ar, 0.93 vol-%, 1.29 wt-%) besides trace

gases and aerosols such as CO2 and H2O.[1] Paradoxically, in the Earth’s crust, oxygen is considered to

be the most abundant element (46.60 wt-%) besides a very low nitrogen level (0.0056 wt-%).[2,3] Why

does our Earth feature those contrary ratios of oxygen and nitrogen? And why is this relevant to this

thesis?

Figure 1.1.: Elemental nitrogen is the major component of the Earth’s atmosphere, whereas oxygen is the most
abundant element in the Earth’s crust. This fact is attributable to the different chemical behavior of the reactive O2

and the inert N2 molecule.

Elemental oxygen is consumed by all living creatures and formed within plants during the process

of photosynthesis. The oxygen level of the Earth’s atmosphere is thus maintained by a continuous cy-

cle of consumption and recreation. The predominant state of elemental oxygen is the diradical form

1



1. Introduction

that features a nominal double bond with a bonding energy of 498 kJ·mol−1 (Figure 1.1).[4] This double

bond can be readily activated by moderate heat or enzymes, which makes oxygen a reactive species.

Moreover, owing to its high redox potential (E0 = +1.229 V; O2(g), H+/H2O(l)),[5] oxygen is easily re-

duced to the oxidation state −II and therefore acts as a strong oxidizer, which is in line with its high

electron affinity (−1.46 eV) and electronegativity (3.5).[4,6] In contrast, elemental nitrogen features a tri-

ple bond (941 kJ·mol−1, Figure 1.1) that is almost twice as stable as the oxygen double bond.[4] Owing

to the positive electron affinity of nitrogen (+0.07 eV) and its negative redox potential (E0 = −0.736 V;

N2(g), NH3/OH–), it does not form stable isolated anions.[5,7] Therefore, N2 may be classified as an inert

gas rather than as a reactive species. That is why the Earth’s atmosphere is enriched with unreacti-

ve molecular nitrogen, whereas the Earth’s crust is mainly composed of oxide (O2–) materials. Herein,

oxo(alumo)silicates appear as the most abundant constituents, while the trace amounts of nitrogen pre-

dominantly exist in the form of the ammonium ion NH +
4 .[2] Nitride (N3–) minerals, such as Qingsongite

(BN),[8] Sinoite (Si2N2O),[9] Nierite (Si3N4),[10] Osbornite (TiN),[11] Siderazot (Fe5N2),[12] Carlsbergite

(CrN),[13] or Roaldite (Fe4N),[14] however, are very rare and mostly located within meteorites.[15,16]

Synthetic nitrides, however, are extensively investigated by modern solid-state chemistry, as they fea-

ture intriguing materials properties, such as wide band gap semiconductivity, thermal, chemical, and

mechanical resilience, as well as ion conductivity. Therefore, synthetic nitrides are applied in nume-

rous state-of-the-art technologies, such as solid-state LED lighting (GaN-based semiconductors and ni-

tridosilicate-based phosphors),[17–23] 4th/5th generation of mobile communications (4G/5G, GaN-based

semiconductors),[24–26] and high-performance ceramics (e. g. Si3N4, BN).[27–29] Furthermore, nitride ma-

terials are discussed to rise to one of today’s most urgent challenges, namely the future supply and storage

of renewable and clean energy.[30–38] The preparation of nitrides in laboratories, however, is challenging,

considering the inert character of elemental nitrogen and its positive electron affinity, as briefly outli-

ned above. Besides the strict exclusion of moisture and oxygen, the key challenge of nitride synthesis is

the unfavored reduction of elemental nitrogen to the nitride oxidation state (−III) and the subsequently

stabilization of the nitride ion N3– against untoward oxidation. The success story of nitride materials,

therefore, is the particular merit of decades of fundamental research, from which various preparative

techniques have been developed.

Nitridosilicates and nitridophosphates are considered to be two of the best examined classes of nitri-

des, as they feature an immense structural and elemental diversity.[39–41] Their fundamental investigations

2



have repeatedly been pioneering in the emerging field of nitride solid-state chemistry, especially in the

terms of preparative techniques, considering advanced synthetic approaches such as high-pressure high-

temperature techniques[41–43] or ion exchange reactions, for instance.[44] Just as the oxosilicate class

of compounds is derived from silicon dioxide SiO2, silicon nitride Si3N4 and phosphorus nitride P3N5

appear as the parent compounds of nitridosilicates and nitridophosphates, respectively. Thus far, three

Si3N4 polymorphs (α-, β-, and γ-Si3N4) were reported, which all have extensively been investigated

at ambient and high pressures in terms of their structural, elastic, and materials properties.[27,45–48] In

contrast, phosphorus nitrides appear rather sparsely examined in terms of their materials properties and

structural behavior at high pressures. Within this thesis, the term phosphorus nitrides is deemed to des-

cribe not only the binary compound P3N5 itself, but the whole collective of all P/N compounds that form

neutral covalent networks, including multinary compounds such as phosphorus oxide nitrides (PON,

P4N6O),[49,50] phosphorus nitride imides (PNNH, P4N6NH),[51,52] as well as double nitrides,∗ such as

SiPN3 and BeP2N4.[54,55]

It is apparent that phosphorus nitrides are a highly diverse class of compounds, although their fun-

damental examination has been restricted by challenging syntheses, and their high-pressure behavior

has mostly been discussed on the basis of theoretical studies, previously. This thesis therefore strives

to remedy the deficiencies in fundamental research on phosphorus nitrides in terms of their preparation

and high-pressure behavior. Within the following sections the present state of research of phosphorus

nitrides is briefly outlined, commenting their structural chemistry (Section 1.2), established preparative

techniques (Section 1.3), as well as their high-pressure polymorphism (Section 1.4), in order to finally

frame the strategic objective of this thesis that involves the development of a new synthesis strategy and

structural in situ investigations at high pressures (Section 1.5).

∗Liebau introduced the term double oxide to describe ternary silicon oxides with the second cation having a similar electro-
negativity than Si (e. g. ZnSiO3).[53] Referring to Liebau’s definition, the term double nitride, however, is used to describe
ternary nitrides, in which the cations feature the same coordination polyhedra rather than a similar electronegativity (e. g.
BeP2N4, SiPN3).[54,55]
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1. Introduction

1.2. The Structural Chemistry of Phosphorus Nitrides

The basic research on P/N compounds may be distinguished into molecular, polymeric, and solid-state

chemistry, though all of these branches of chemistry are also to some degree intertwined. Numerous

molecular and polymeric PV and PIII derivates of phosphorus amides as well as phosphazanes and

phosphazenes (e. g. (PNCl2)3, Figure 1.2a)[56,57] were reported, of which an overview is provided in

literature.[58,59] Moreover, the diatomic molecule PIIIN was prepared and investigated on its spectrosco-

pic and thermal stability.[60,61] Within the field of solid-state chemistry, in turn, structures of PN, PN2,

PN3, P2N3, and P3N4 were investigated by theoretical studies,[62–64] and phosphorus oxide nitride glas-

ses were experimentally examined.[65,66] The preparation of crystalline solid-state P/N compounds has

been focused on phosphorus nitrides and nitridophosphates, thus far. The binary nitride P3N5 was initi-

ally synthesized in 1903 through ammonolysis of P4S10 as formally described in Equation 1.1.[67] The

crystal structure of α-P3N5, however, was first solved in 1997 from a sample that was crystallized by a

gentle thermal decomposition of [P(NH2)4]I at 825 ◦C (Equation 1.2), since previously only disordered

mixtures of α- and β-P3N5 had been obtained.[52,68]

3 P4S10 + 20 NH3 4 P3N5 + 30 H2S (1.1)

3 [P(NH2)4]I α-P3N5 + 3 NH4I + 4 NH3 (1.2)

Figure 1.2.: Hexachloro-cyclo-triphosphazene (PNCl2)3 is a molecular compound that has been used as a precursor
in phosphorus nitride synthesis (a).[56,57] The unique crystal structure of α-P3N5 (b) is built up from edge-sharing
(cyan) and all-side vertex-sharing PN4 tetrahedra (gray, c).[52] P: gray, N: blue.
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α-P3N5 crystallizes in a unique structure type that is built up from chains of edge-sharing PN4 te-

trahedra, which are interconnected by all-side vertex-sharing PN4 tetrahedra (Figure 1.2b, c). The PN4

tetrahedron is therefore considered the fundamental building unit of phosphorus nitrides, reminiscent of

SiO2 structures. Phosphorus nitrides, however, may also feature edge-sharing PN4 tetrahedra (Figure 1.2

and 1.3),[52,69] which in silicates is only controversially discussed for fibrous silica.[70] This may be due

to nitrogen featuring a higher valence than oxygen, which enforces a higher degree of condensation in

nitride structures, as discussed below.[71] Moreover, owing to similar energies of the 3p(P) and 2p(N)

orbitals,[72] the P–N bond has a highly covalent character, which reduces the effective charges and thus,

the electrostatic repulsion between two tetrahedra centers.

Tetrahedra-based structures can be classified by their degree of condensation κ that describes the ratio

of tetrahedra centers (T ) to tetrahedra corners (X): κ = n(T )/n(X). The degree of condensation of a

binary phase TxXy is predefined by its chemical formula, as all constituents can be regarded as either

tetrahedra centers or tetrahedra corners. Thus, κ is determined by the formal charge of the T and X ions

(Figure 1.3a). For a certain anion X (e. g. N–III), κ increases with decreasing charges of T , as illustrated

by the series P3N5 (T V, κ = 0.6), Si3N4 (T IV, κ = 0.75), BN (T III, κ = 1.0), and Be3N2 (T II, κ = 1.5).

In contrast, κ decreases for a certain cation T (e. g. PV), with higher oxidation states of X as illustrated

by P3N5 (X−III, κ = 0.6) and P2O5 (X−II, κ = 0.4). For tetrahedra-based structures, κ is bound at the

low end to 0.25, corresponding to non-condensed tetrahedra as illustrated for molecular POF3 (X−II/−I,

κ = 0.25).

The degree of condensation of tetrahedra networks, therefore, correlates with the coordination num-

ber of the anions X , as briefly discussed for POF3, P2O5, PON, P3N5, SiPN3, and BeP2N4 below and

illustrated in Figure 1.3c. While non-condensed POF3 tetrahedra solely feature terminal X [1] (X = O,

F) sites,[73,74] the lowly condensed structure of adamantane-like P2O5 (κ = 0.4) is built up from P4O10

units that feature terminal (X [1]) and twofold coordinated O sites (X [2]).[75] The condensed structure of

cristobalite-type PON, in contrast, solely features all-side vertex-sharing P(O/N)4 tetrahedra with two-

fold coordinated O and N sites (X [2]).[49] In highly condensed tetrahedra-based networks with κ > 0.5,

however, threefold coordinated X sites (X [3]) are mandatory, and thus are observed in P3N5, SiPN3, and

BeP2N4.[52,54,55] Structures with κ ≥ 1.0 even feature four-, five-, or sixfold coordinated X sites, as rea-

lized by BN, BeSiN2, and Be3N2, for instance.[76–78]
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1. Introduction

Figure 1.3.: The degree of condensation (κ) describes the ratio of tetrahedron centers (T = P, Si, B, Be) and
tetrahedron corners (X = N, O, F) and is predefined by the chemical formula of a certain compound. Thus, it is
affected by the formal charges of the T and X ions and may be tuned by mixed occupation sites, as apparent
from phosphorus oxide nitrides and mixed covalent nitrides (a, b). An increase in κ , therefore, necessitates an
increasing coordination number of the terminal/linking anions X as illustrated for POF3, P2O5, PON, P3N5, SiPN3,
and BeP2N4 (c). Referring to the formalism introduced by Niggli and further developed by Lima-de-Faria et al.,
the coordination number of a certain atom is given in superscripted square brackets within this thesis. P[4] thus,
refers to a fourfold coordinated P, for instance, and the P/N network of the α-P3N5 structure is expressed by
the systematic formula 3

∞

[
P[4]

3N[2]
3N[3]

2
]
. Herein, the dimensionality of the network is given by the superscript

number of dimensions, in which a structural unit has an infinite extension (here: 3
∞[...]).

[79,80]

It is therefore apparent that the structural chemistry of phosphorus nitrides is closely related to the

degree of condensation, which can be tuned by the substitution of P and N leading to mixed phosphorus

nitrides (e. g. SiPN3, BeP2N4) and phosphorus oxide/imide nitrides (e. g. PON, PNNH), for instance.†

Starting from phosphorus nitride P3N5 (κ = 0.6), κ is decreased when O2– or isolobal NH2– functionality

is introduced into the P/N network, which may formally be considered as a hydrolysis or ammonolysis of

†By the incorporation of electropositive metal cations Mm+ a decrease in κ is mandatory, opening the compound class of
nitridophosphates MxPyNz. For those anionic PyNz networks, κ is limited to a minimum value of 0.25, corresponding
to non-condensed tetrahedra (e.g. Li7PN4),[81] and its maximum value is limited to κ < 0.6. A detailed overview of the
preparative and structural chemistry of nitridophosphates is provided in literature.[41]
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P3N5 (Figure 1.3a). Reported representatives of phosphorus oxide nitrides and phosphorus imide nitrides

are P4N6O (κ ≈ 0.57),[50] PON (κ = 0.5, Figure 1.3c),[49] P4N6NH (κ ≈ 0.57),[69] and PNNH (κ =

0.5),[51] as well as the nitridic clathrate P4N4(NH)4(NH3) (κ = 0.5)[82] and the phosphorus imide oxide

nitride P8O8N6(NH)3 (κ ≈ 0.47).[83]

In contrast, κ can be increased by the incorporation of lower charged network forming elements such

as Si4+, B3+, or Be2+, which corresponds to a formal combination of variable amounts of the respective

binary nitrides, yielding mixed covalent nitrdes. This strategy was successfully used for the preparation

of SiPN3 (κ ≈ 0.67)[54] and BeP2N4 (κ = 0.75) already (Equation 1.3 and 1.4), with their structures illus-

trated in Figure 1.3c.[55] Likewise, the double nitrides BeSiN2 (κ = 1.0)[77] and Si3B3N7 (κ ≈ 0.86)[84,85]

can be interpreted, as shown in Equation 1.5 and 1.6.

1/3 Si3N4+ 1/3 P3N5 ≡ SiPN3 (1.3)

1/3 Be3N2+ 2/3 P3N5 ≡ BeP2N4 (1.4)

1/3 Be3N2+ 1/3 Si3N4 ≡ BeSiN2 (1.5)

Si3N4+3BN ≡ Si3B3N7 (1.6)

There are, however, only few known double nitrides within the Be/B/Si/P/N system (Figure 1.3b),

which is most likely owed to the fact that the formal reaction of two binary nitrides appears highly

unfavored, if not inoperable, considering the acid-base concept of oxides by Lux and Flood.[86,87] If this

concept is transferred to nitride materials, BN, Si3N4, and P3N5 are assigned an acid character, as they

likely act as nitride acceptors within a acid base reaction. Considering further the refractory character of

BN and Si3N4, as well as the thermal instability of P3N5, the preparation of double nitrides, in particular of

mixed phosphorus nitrides, has ever since been a challenging issue, as will be explained in the following

section.
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1. Introduction

1.3. The Synthesis of Phosphorus Nitrides

The synthesis of nitrides is generally complicated by the fact that the targeted compounds may be pro-

ne to decomposition and elimination of N2. This is owed to the positive electron affinity of nitrogen

(+0.07 eV)[7] and the large stability of the nitrogen triple bond in N2 (941 kJ·mol−1), as outlined above.[4]

Hence, preparative methods and reaction conditions have to be carefully considered in order to stabilize

the nitride ion N3– against oxidation. In the case of phosphorus nitrides, however, PV may readily act as

a redox partner, as it can be reduced to oxidation states +III, 0, or −III, usually forming amorphous PN,

elemental phosphorus, or phosphides. This central problem may be best illustrated by the incremental

thermal decomposition of P3N5 above 850 ◦C (Equation 1.7).[68,82]

P V
3 N –III

5 3 PIIIN–III + N 0
2 3 P0 + 5/2 N 0

2 (1.7)

Owing to small inter diffusion coefficients and high lattice energies, however, the (re)formation of

chemical bonds usually hardly proceeds at temperatures < 1000 ◦C in solid-state materials, which disclo-

ses the dilemma of preparative P/N chemistry: The crystallization temperature of phosphorus nitrides

usually exceeds their decomposition temperature. In the recent years, however, preparative techniques

have been developed that circumvent this issue by either decreasing the crystallization temperature or

increasing the decomposition temperature.

The crystallization temperature of phosphorus nitrides can be decreased by the employment of mi-

neralizers, such as ammonium halides (e. g. NH4I) or hydrogen halides (e. g. HCl), which were used

during the syntheses and crystallization of α-P3N5 and α-P4N6NH, for instance (Equation 1.2, 1.8, and

1.9).[52,68,69]

(PNCl2)3 + 2 NH4Cl 775 ◦C
α-P3N5 + 8 HCl (1.8)

4 P3N5 + NH4Cl 820 ◦C 3 P4N6NH + HCl (1.9)

It is assumed that mineralizers facilitate the reversible cleavage and (re)formation of the highly cova-

lent P–N bonds at moderate temperatures. This conception is based on findings from the molecular and

polymer chemistry of P/N compounds that are thoroughly summarized in literature.[59] Accordingly,

the P–N bond is easily cleaved under hydrous,[88,89] and anhydrous acidic conditions,[90,91] employing
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hydrogen halides, for instance. Moreover, HCl was found to be an excellent leaving group during the

condensation of (R)P–Cl and H–N(R’) species, as exemplarily illustrated by the formation of (PNCl2)3

(Equation 1.10).[56,57] Thus, a reversible cleavage and (re)formation of (R)P–N(R’) bonds may be ass-

umed in solid-state chemistry as well, with (R)P–Cl and H–N(R’) appearing as plausible intermediate

species during the polycondensation of phosphorus nitrides (Equation 1.11). Herein, the rests (R) and

(R’) may refer to H/N/Cl in the case of molecular species and to (macro)molecular P/N fragments in the

case of solid-state compounds.

3 NH4Cl + 3 PCl5 (PNCl2)3 + 12 HCl (1.10)

(R)P Cl + H N(R’) (R)P N(R’) + HCl (1.11)

Another approach to bypass high reaction temperatures is the condensation of reactive molecular pre-

cursors, as this enables a kinetically controlled reaction rather than the formation of thermodynamic pro-

ducts (e. g. N2) and the decomposition of the targeted products. For instance, this approach was employed

for the preparation of the mixed silicon phosphorus nitride SiPN3.[54] Here, the unfavored direct reaction

of the two Lux-Flood acids Si3N4 and P3N5 (Equation 1.12) was bypassed by the gentle ammonolysis of

molecular Cl3SiNPCl3 at −78 ◦C and a subsequent pyrolysis of the intermediate product at 800 ◦C in a

flow of dry NH3, which yielded a partially crystalline, but highly disordered product (Equation 1.13).[54]

The crystallization of SiPN3 was finally realized at 900 ◦C (24 h) in an evacuated sealed quartz tube,

using minor amounts of NH4Cl as a mineralizer. Amorphous Si3B3N7 was likewise prepared by ammo-

nolysis of molecular Cl2BNHSiCl3 and pyrolysis at 1400 ◦C in N2 atmosphere,[84,85] and the usage of

more versatile monomeric molecular precursors, such as OP(NH2)3, SP(NH2)3, and hydrogenphosphates

enabled the preparation of amorphous PON and numerous (oxo)nitridophosphates.[41,49,83,92–94]

”Si3N4 + P3N5 3 SiPN3” (1.12)

Cl3SiNPCl3
−78 ◦C
NH3(l)

“SiPN(NH)(NH2)4” 800 ◦C
NH3

SiPN3
900 ◦C
NH4Cl SiPN3(crystalline) (1.13)

Instead of decreasing the crystallization temperature of phosphorus nitrides by mineralizers or gentle

reaction pathways, their decomposition temperature is increased by the employment of high-pressure
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1. Introduction

high-temperature (HP/HT) techniques, which have been emerged to the most established synthetic ap-

proach in today’s preparative P/N chemistry. Following Le Chatelier’s principle, the heat-induced eli-

mination of N2 can be suppressed by applying external pressures in the gigapascal range (GPa) that

are achieved with large volume presses. Reaction temperatures of up to 2000 ◦C were reported, without

causing decomposition of P/N compounds or the release of N2.[42] Using this HP/HT approach, numerous

nitridophosphates (MxPyNz) have been prepared at high pressures, employing the belt and the multianvil

technique.[41,42,95] Metal azides, metal nitrides, and metal halides, as well as P3N5 and LiPN2 have been

established as the most common starting materials, and additional amounts of NH4Cl were shown to

facilitate single-crystal growth.[96–98] A detailed overview on the preparative access to nitridophosphates

is provided in literature.[41]

The HP/HT approach, however, was also used for the preparation of phosphorus nitrides, as illustra-

ted by the synthesis of the double nitride BeP2N4 at 5 GPa and 1500 ◦C, in which the binary nitrides

Be3N2 and P3N5 were used as starting materials (Equation 1.14).[55] Moreover, the unique nitridic cla-

thrate P4N4(NH)4(NH3) (Equation 1.15) and the first phosphorus imide oxide nitride P8O8N6(NH)3 were

prepared at 11 and 12 GPa, starting from P3N5 and NH4N3, and amorphous PON, respectively.[82,83]

Be3N2 + 2 P3N5
5 GPa

1500 ◦C 3 BeP2N4 (1.14)

16 P3N5 + 21 NH4N3
11 GPa
600 ◦C 12 P4N4(NH)4(NH3) + 28 N2 (1.15)

Besides for the synthesis of highly condensed mixed phosphorus nitrides, the HP/HT technique was

used for the structural investigations of the (pseudo) binary compounds P3N5, PNNH, P4N6NH, and

PON at high pressures. From that, numerous high-pressure polymorphs have been characterized, attesting

phosphorus nitrides a remarkable polymorphism, reminiscent of that of SiO2 and Si3N4. A brief overview

of experimental and theoretical studies on the high-pressure behavior of phosphorus nitrides is provided

below.

10



1.4. Phosphorus Nitrides at High Pressures

Phosphorus nitrides have been investigated at high-pressures for over 20 years, and various experimental

and theoretical studies show that their structural chemistry follows the generalized behavior of inorganic

solids at high pressures, as described by the high-pressure rules.[99,100] In contrast to the high-pressure

behavior of BN and Si3N4 that have been extensively investigated by experiments up to the megabar range

(> 100 GPa),[46,47,76,101–103] respective studies on phosphorus nitrides had been very rare in number, prior

to this thesis.[104,105]

Due to the distinct polymorphism of SiO2, isoelectronic PON has been investigated at high pressures,

early on.[105] At ambient pressure, PON crystallizes in the β-cristobalite-type structure (cri), which is

transformed at elevated temperatures into moganite- and α-quartz-type polymorphs at 2.5 and 4.5 GPa,

respectively.[49,106–108] Moreover, upon cold compression of cri-PON a displacive phase transition has

been observed at pressures > 13 GPa.[104,105] Heating PON at 12 GPa further yielded an unprecedented

PON polymorph (δ-PON) with a structure that had been suggested for a SiO2 polymorph from theoreti-

cal studies, before (Figure 1.4a).[109,110] Moreover, PON was shown to adopt a coesite-type structure at

15.5 GPa, in line with the polymorphism of SiO2.[111] All these previously reported forms of PON are

exclusively built up from P(O/N)4 tetrahedra (Figure 1.4a), but high-pressure polymorphs with an incre-

ased coordination number of P appear plausible, considering high-pressure phases of TiPO4, AlPO4, and

CaBe2P2O8 that feature five- or even sixfold O-coordinated P.[112–114] With regard to the close relation

between SiO2 and PON, a stishovite-analog rutile-type form of PON may therefore be conceivable at

sufficiently high pressures.[115] Prior to this thesis, high-pressure investigations on PON, however, have

mainly been limited to about 16 GPa, with only few exceptions of cold compression experiments.[104,105]

Besides examinations on PON, the structural chemistry of phosphorus nitrides was further investi-

gated by screening the phase diagrams of P3N5, PNNH, and P4N6NH for high-pressure polymorphs in

multianvil presses up to a maximum pressure of 14 GPa. The high-pressure polymorphs β-PNNH and β-

P4N6NH have been prepared at 6 GPa and are built up from all-side vertex-sharing PN4 tetrahedra.[96,116]

γ-P3N5, that was prepared from α-P3N5 at 11 GPa, in contrast, is the first phosphorus nitride, for which

the rare motif of fivefold N-coordinated P was observed.[117] Its unique structure can be expressed by

the Niggli formula 3
∞

[
P[4]P[5]

2N[2]N[3]
4
]

and features chains of edge-sharing square PN5 pyramids that

are interconnected by all-side vertex-sharing PN4 tetrahedra (Figure 1.4b). Likewise, a second high-
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1. Introduction

pressure form of P4N6NH was prepared at 14 GPa (γ-P4N6NH) that is built up from trigonal PN5 bi-

pyramids and all-side vertex-sharing PN4 tetrahedra in a 1 : 1 ratio, as described by the Niggli formula

3
∞

[
P[4]

2P[5]
2N[2]

3N[3]
4H
]

and illustrated in Figure 1.4c.[118]

Figure 1.4.: Crystal structures of δ-PON (a), γ-P3N5 (b), and γ-P4N6NH (c) with respective Niggli formulas and
synthesis pressures.[109,117,118] P(O,N)4 and PN4 tetrahedra are illustrated in gray and PN5 polyhedra are drawn in
blue. P: gray, O: red, N: blue.

Although phosphorus nitrides have been investigated in a rather limited pressure range previously, they

were shown to feature a highly diverse structural chemistry at elevated pressures that is based on inter-

connected PN4 and PN5 polyhedra. This posed the question, whether a PN6 coordination polyhedron, as

it is observed in hexaazidophosphates P(N3) –
6 ,[119] may also be energetically favored in phosphorus nitri-

des at sufficiently high pressures. Therefore, numerous theoretical studies on the high-pressure behavior

of various phosphorus nitrides were performed prior to this thesis.

At pressures exceeding 43 GPa, a kyanite-type form of P3N5 (δ-P3N5) that features four- and sixfold

N-coordinated P is proposed.[120] It is further predicted that pressure quenching leads to a structural

distortion at about 34 GPa, resulting in another polymorph, which is built up from PN4, PN5, and PN6

units and denoted as δ’-P3N5. Subsequent DFT calculations confirm that octahedrally N-coordinated P

is presumable in P3N5 at high pressures, but suggest a V3O5-type form as the thermodynamically stable

phase at pressures > 35.5 GPa.[64] Furthermore, theoretical studies on the high-pressure behavior of β-

P4N6NH suggest a regular contraction of the β-P4N6NH structure up to 110 GPa, at which the formation

of PN6 octahedra is stated.[121] With respect to γ-P4N6NH that was prepared at 14 GPa, this as-predicted

high-pressure polymorph is denoted δ-P4N6NH within this thesis.
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Investigating the high-pressure polymorphism of mixed phosphorus nitrides, the highly condensed

double nitride BeP2N4 has been discussed as a promising candidate for sixfold N-coordinated P all along.

BeP2N4 is isoelectronic with Si3N4 and crystallizes in the phenakite structure type that is homeotypic

with β-Si3N4.[55] It is known that the spinel-type form (γ-Si3N4) is the stable polymorph of Si3N4 at

pressures > 13 GPa.[46,122,123] Therefore, a spinel-type polymorph of BeP2N4 that features BeN4 and PN6

polyhedra was investigated by numerous DFT calculations, which suggest it as the stable polymorph at

pressures exceeding 14–24 GPa.[55,124–126] Moreover, the phase diagrams of LiPN2 and CuPN2 were re-

cently screened by theoretical studies that predict high-pressure polymorphs with sixfold N-coordinated

P.[127,128] Accordingly, two NaCl-related LiPN2 polymorphs (hR4 and cF64) are proposed to form at

44 and 136 GPa, respectively, and a NiAs-related structure (oP8) is predicted the stable LiPN2 phase

at pressures > 259 GPa.[127] CuPN2, in turn, is proposed to undergo phase transition at 34 GPa into a

hR4 or oC16 structure that features PN6 octahedra and linear N-coordinated Cu. At pressures > 120 GPa,

however, the NaCl-related hR4’ polymorph is predicted as the stable CuPN2 phase.[128] An overview

of phosphorus nitrides that have been investigated at high pressures by experimental and/or theoretical

studies is provided in Figure 1.5.

Figure 1.5.: Overview of experimentally and theoretically investigated polymorphs of various phosphorus nitrides.
In line with the pressure coordination rule,[99,100] the coordination number of P increases with pressure from
tetrahedrally coordinated P[4] to fivefold coordinated P[5], as reported for γ-P3N5 and γ-P4N6NH.[117,118] Sixfold
N-coordinated P[6] is suggested for high-pressure forms of P3N5,[64,120] P4N6NH,[121] PON,[115] BeP2N4,[55,124–126]

LiPN2,[127] and CuPN2,[128] but has not been observed experimentally, prior to this thesis.
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Beyond the high-pressure polymorphism of phosphorus nitrides, the presented theoretical investigati-

ons provide information on their elastic properties, such as their compressibility (bulk modulus K0) and

Vickers hardness (HV). Herein, α-P3N5 (K0 = 87–99 GPa), γ-P3N5 (K0 = 103–116 GPa) and β-P4N6NH

(K0 = 66 GPa) appear as rather compressible materials, while δ’-P3N5 (K0 = 240 GPa) is proposed to be

quite incompressible.[120,121] The calculated elastic properties of spinel-type BeP2N4 (K0 = 263–291 GPa,

HV = 45 GPa),[55,124–126] moreover, suggest it as an very incompressible and superhard material, which

appears plausible when compared to γ-Si3N4 (K0 = 290–317 GPa, HV = 30–43 GPa).[46,47,103,123,129,130]

Prior to this thesis, experimental investigations on the elastic properties of phosphorus nitrides, however,

have solely been limited to cri-PON and α-PNNH, whose bulk moduli were determined with K0(cri-

PON) = 80(5) GPa and K0(α-PNNH) = 102(2) GPa.[104,105]

Recapitulating, phosphorus nitrides were shown to feature a diverse high-pressure polymorphism from

experimental ex situ studies at pressures < 16 GPa. Moreover, numerous theoretical investigations on va-

rious phosphorus nitrides suggest an even enriched structural diversity at elevated pressures, as a PN6 mo-

tif may be likely observed in high-pressure polymorphs of P3N5, P4N6NH, BeP2N4, LiPN2, and CuPN2.

Hence, the high-pressure behavior phosphorus nitrides appears inadequately investigated, when compa-

red to other covalent nitrides, such as BN and Si3N4, for instance, that have extensively been examined

at high-pressure conditions by in situ and ex situ studies.[46,47,76,101–103]

1.5. Scope of this Thesis

Today’s state of research on phosphorus nitrides poses two central issues for fundamental progression. On

the one hand, the elemental diversity of phosphorus nitrides is constrained by the preparative chemistry,

as there is no systematic access to mixed covalent nitrides of Be, B, Si, and P, which restricts structural

investigations on highly condensed nitride networks. On the other hand, the high-pressure behavior of

phosphorus nitrides appears inadequately investigated in terms of their high-pressure polymorphism and

elastic properties, considering numerous theoretical studies that propose various phases with intriguing

materials properties. Therefore, this thesis is concerned with both, the development of an innovative

access to mixed phosphorus nitrides, as well as with the expansion of the experimental pressure range,

in which phosphorus nitrides are systematically investigated.
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The first part of this thesis strives to design a novel synthetic strategy for the preparation of mixed

phosphorus nitrides that combines various established synthetic approaches. The over-all challenge of

the preparative chemistry of phosphorus nitrides is to balance their decomposition and crystallization

temperature, as they are prone to the heat-induced elimination of N2. Thus, some phosphorus nitride

syntheses use reactive precursors, such as P4S10, [P(NH2)4]I, (PNCl2)3, NH3, and NH4N3, in order to cir-

cumvent high thermal activation barriers. It was further shown that hydrogen halides (e.g. HCl) facilitate

the reversible cleavage and (re)formation of the highly covalent P–N bonds, which is essential for the

formation of new compounds. As exemplified by the syntheses of BeP2N4 and P4N4(NH)4(NH3), moreo-

ver, high-pressure high-temperature (HP/HT) conditions can be used for the preparation of phosphorus

nitrides, at which the employment of mineralizers, such as NH4Cl or LiF, can facilitate the formation of

single-crystals.

Recapitulating, one can deduce four factors that may grant a successful synthesis of phosphorus nitri-

des, as there are (i) the employment of reactive precursors, (ii) the reversible cleavage and (re)formation

of P–N bonds, (iii) high pressures and temperatures, and (iv) the use of mineralizers. Considering these

factors of success, one now can draft an explorative strategy to screen for unprecedented preparative

approaches. Accordingly, (PNCl2)3 and NH4N3 may be reacted at HP/HT conditions to formally produce

P3N5, N2, and HCl (Equation 1.16).

”2 (PNCl2)3 + 3 NH4N3
HP/HT 2 P3N5 + 4 N2 + 12 HCl” (1.16)

Herein, in situ formed HCl likely facilitates the reversible cleavage and (re)formation of P–N bonds,

which enables an atomic rearrangement during synthesis. Adding a mineralizer such as NH4Cl may fur-

ther support the growth of single-crystals, without introducing any additional elements into the reaction.

Be, B, or Si may further be introduced into the system by adding precursors, such as BeCl2, (BNHCl)3, or

Si(NH)2, in order to obtain highly condensed mixed phosphorus nitrides within the Be/B/Si/P/N system.

However, it turns out that even refractory BN and Si3N4 can serve as starting materials, which thus is used

as a starting point for the further development of an innovative preparative access to mixed phosphorus

nitrides that grants the initial syntheses of α-BP3N6 and SiP2N4NH, as presented in Chapter 3 and 4.

The second part of this thesis is concerned with in situ and ex situ investigations on the high-pressure

behavior of phosphorus nitrides. As described earlier in this chapter, elevated pressures are commonly
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used in the preparative chemistry of P/N compounds. May be that is why the search for high-pressure

phases of phosphorus nitrides has been associated with their preparation early on. Prior to this thesis,

numerous high-pressure phases of PON, P3N5, PNNH, and P4N6NH were prepared in large volume

presses at pressures < 16 GPa, certifying phosphorus nitrides a divers high-pressure polymorphism. It

was further shown that the coordination number of phosphorus can be increased by high pressures, as

illustrated by PN5 polyhedra that have been reported for the γ-P3N5 and γ-P4N6NH structures. Moreover,

the phase diagrams of P3N5, P4N6NH, BeP2N4, LiPN2, and CuPN2 were investigated by DFT calculations

previously, some of them even within the megabar range (> 100 GPa). These theoretical studies provide

information on the elastic properties of phosphorus nitrides and propose the formation of numerous high-

pressure polymorphs that likely feature sixfold N-coordinated P as a structural motif within the pressure

range of approximately p = 25–50 GPa. Such a PN6 motif, however, has not been observed in any nitride

material before, and thus is considered the missing link in structural chemistry of phosphorus nitrides.

Pressures > 25 GPa are easily accessible with diamond anvil cells that have been established as the

gold standard method for in situ high-pressure investigations up to 150 GPa, with advanced setups even

reaching maximum pressures > 1000 GPa, as briefly outlined in Chapter 2.[131] Moreover, sample heating

and in situ microfocus single-crystal X-ray diffraction are possible, when diamond anvil cells are used in

combination with laser-heating setups and 3rd generation synchrotron facilities. To examine the pressure-

dependent behavior of phosphorus nitrides and to further accomplish the formation of the sought-after

PN6 motif, thus, laser-heated diamond anvil cells are used for in situ investigations up to a maximum

pressure of about 50 GPa within this thesis. Besides the binary nitride P3N5 itself, silica-analog PON,

unprecedented BP3N6 and Si3N4-related BeP2N4 appear as the most promising candidates, as outlined

below.

PON is isoelectronic with SiO2 and forms cristobalite-, moganite-, α-quartz- and coesite-analog phases

up to a maximum pressure of 15.5 GPa. Considering this close structural relation, a stishovite-type form

of PON that features P(O/N)6 octahedra may be the most plausible PON phase at pressures > 16 GPa.

Moreover, a stishovite-type PON may feature intriguing materials properties, as stishovite was consi-

dered the world’s hardest oxide for quite some time.[132,133] Therefore, the phase diagram of PON is

screened for a post-coesite polymorph at pressures up to 20 GPa in a large volume press, and the structu-

ral and elastic properties of this post-coesite PON are investigated in situ up to 40 GPa using a diamond

anvil cell and synchrotron radiation, as presented in Chapter 5.
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The development of an innovative preparative technique led to the preparation of the unpreceden-

ted α-BP3N6 (Chapter 3). The α-BP3N6 structure blends structural motifs of α-P3N5 and superhard c-

BN,[134,135] raising the question on its structural and physical properties at high-pressures. Moreover,

α-BP3N6 is considered to be a promising candidate to form a high-pressure polymorph that features six-

fold N-coordinated of P, as the PN6 motif is proposed at about 35–45 GPa in P3N5,[64,120] whereas an

increased coordination number of B in BN may not be realized at pressures < 850 GPa.[136–138] The ela-

stic properties of α-BP3N6 are therefore investigated in a diamond anvil cell up to a maximum pressure

of about 42 GPa, at which further the formation of the high-pressure polymorph β-BP3N6 is induced by

laser-heating. β-BP3N6 is the first phosphorus nitride that features sixfold N-coordinated P as a structural

motif, as is presented in Chapter 6.

BeP2N4 crystallizes in the phenakite structure and thus, is isoelectronic and homeotypic with β-Si3N4.

Similar to the spinel-type γ-Si3N4, phenakite-type BeP2N4 is considered to form a high-pressure phase

with the regular spinel structure by numerous DFT calculations. This spinel-type BeP2N4 has further

been predicted to show outstanding material properties that are comparable to those of γ-Si3N4. Chap-

ter 7 is therefore attended to the preparation of spinel-type BeP2N4 and its pressure-dependent in situ

investigation using laser-heated diamond anvil cells and synchrotron radiation.

In summary, the first part of this thesis addresses the development of a preparative high-pressure high-

temperature technique that enables the synthesis of the mixed phosphorus nitrides BP3N6 (Chapter 3)

and SiP2N4NH (Chapter 4). Subsequently, the high-pressure investigations of PON (Chapter 5), BP3N6

(Chapter 6), and BeP2N4 (Chapter 7) are presented, which provide unprecedented insights into the elastic

and structural behavior of phosphorus nitrides. Finally, the reported results are summarized in Chapter 8

and discussed within their scientific context in Chapter 9. As the employment of high-pressure condi-

tions is an essential approach of this thesis, however, a brief overview of state-of-the-art high-pressure

techniques is priorly provided within the next Chapter.
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2. High-Pressure Techniques: State of the Art

High-pressure is a potent approach for the synthesis and structural examination of phosphorus nitrides.

Although, the high-pressure methodology is not further developed or improved in this thesis, a brief

digression on high-pressure techniques is provided below, summarizing the current state of the art, as

well as briefly illustrating the specific setups that were used over the course of this PhD project.

The development of high-pressure techniques originates from the desire to understand processes in the

Earth’s interior, and thus, the methodology is the particular merit of scientists working in the fields of

earth and planetary sciences, mineralogy, and materials sciences.[1] High-pressure, however, is a versatile

tool in chemistry, as well. Considering simple thermodynamics, synthetic chemists are limited by three

variables when screening the energy hypersurface, namely temperature, mole fraction, and pressure. De-

spite being seldom used in explorative chemistry in the past, high-pressure techniques gain more traction

nowadays, because it allows control of the third thermodynamic parameter, pressure.[2–4] Within this

thesis, high-pressure conditions are used to facilitate unprecedented chemical reactions and to examine

the pressure-dependent structural behavior and polymorphism of phosphorus nitrides in situ.

By the basic physical principle, a pressure p is generated by a force F that is applied upon an area A

(Equation 2.1, Figure 2.1a). Therefore, the pressure increases for high forces and small areas, illustrating

the two fundamental ideas behind the generation of high pressures, namely the maximization of the force

F , and the minimization of the area A.

p = F/A (2.1)

In everyday life, pressures are usually quantified in bar. Taking the SI unit system as a basis, however,

the pressure is given in Newton (N) per square meter (m2) that equals one Pascal (Pa). Within high-

pressure sciences, gigapascal (GPa) has been established the most common unit of pressure, with 1 GPa

corresponding to 104 bar, as illustrated in Figure 2.1b.
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There are multiple methods that use elevated pressures for chemical reactions and phase transitions.∗

While pressure ampoules reach small gas pressures of several bar, autoclaves and hot isostatic presses are

used for the generation of moderate pressures, but are still limited to several tenths of 1 GPa. To generate

high static pressures (> 1 GPa) large volume presses and diamond anvil cells are the established techni-

ques in high-pressure sciences. Within the last decades, successive improvements and the development

of new setups have repeatedly pushed the boundary of the maximum pressure that can be realized by

large volume presses and diamond anvil cells.[5,6] Today’s high-end techniques, therefore, enable ma-

ximum pressures of > 100 GPa in large volume presses[7,8] and about 1000 GPa in diamond anvil cells

(Figure 2.1b).[9] Routine large volume presses, however, usually operate below 40 GPa, and diamond

anvil cells are commonly used up to 150 GPa in standard experiments. Both, large volume presses and

diamond anvil cells have been used over the course of this PhD project and thus, are separately outlined

in more detail below.

Figure 2.1.: A schematic illustration of the physical description of pressure p = F/A (a) and the logarithmic
pressure scale in bar and GPa with pressure ranges of ambient-, moderate-, and high-pressure techniques (b).

In the history of large volume presses many techniques for high-pressure generation have been de-

veloped, such as the Piston cylinder, the Belt apparatus, the Paris-Edinburgh press, and the multianvil

technique. The achievable force that a large volume press can provide scales with its hydraulic system,

which usually limits the maximum load to about 1000–3000 t, corresponding to a maximum force of

about 10–30 MN. Advanced setups, however, can also provide loads of 5000–8000 t (50–80 MN),[10,11]

and even a 50 000 t press had been used for high-pressure research.†[5] The maximum sample pressure,
∗Within this thesis, only static pressure techniques are discussed and employed. Dynamic pressures, however, may be consi-

dered, when a comprehensive overview is attended.
†Even higher loads are obtained by forging presses that, however, may not be discussed in the context of high-pressure

sciences.
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however, is strongly affected by the compression geometry and the sample size. State-of-the-art large

volume presses commonly employ the Kawai-type multianvil technique that uses an octahedron-within-

cubes payload for the generation of quasi-hydrostatic pressures (Figure 2.2c, d).[12] Here, the uniaxial

pressure of a downstroke hydraulic press is distributed to six first stage anvils by guiding steel com-

ponents, creating a cubic compression space, as exemplary shown for a modified Walker module in

Figure 2.2b.[13] Eight cubes with truncated edges further serve as second stage anvils that compress an

octahedron, which contains the sample and an internal resistance heating system. These assemblies are

characterized by the octahedron edge length (OEL) and the truncated edge length (TEL) of the second

stage anvils. Typical assemblies are 25/17, 18/11, 14/8, 10/5, and 8/3 (OEL/TEL in millimeter), but even

smaller assemblies can be used for maximum pressure generation.[14] While the octahedron is commonly

made out of Cr2O3-doped MgO, the second stage anvils may consist of sintered tungsten carbide (WC)

or sintered diamond (SD), affecting the pressure performance of the large volume press.

Using tapered second stage anvils of WC and a 5.7/1.5 assembly, the maximum pressure in a Kawai-

type multianvil press was recently expanded from 40–50 GPa[15,16] to about 65 GPa,[17] and pressures

> 100 GPa could be realized, using SD anvils and a 4.1/1.0 assembly.[7] It was further shown that even

pressures of about 125 GPa can be generated in large volume presses, when a set of third stage an-

vils (nano-polycrystalline diamond, NPD) is introduced into the octahedron.[8] These advanced setups,

though pushing the benchmark of maximum pressures, impaired the sample size to � 1 mm3, which

does not meet the demand of preparative chemistry. Suitable sample amounts, however, are accessible

employing routine Kawai-type multianvil setups that grant sample volumes of several 1 mm3 at maxi-

mum pressures of about 25 GPa.[18] These samples are commonly analyzed ex situ at ambient conditions

after pressure-quenching. Advanced large volume press setups that are compatible with in situ techni-

ques, however, are installed at the synchrotron facilities ESRF (ID6),[19] APS (GSECARS),[20] Soleil

(PSICHÉ),[21] and DESY (P61B, under construction),[22] for instance.

Within this thesis two identically constructed large volume presses (Voggenreiter, Mainleus, Germa-

ny) were used that had been installed in the Schnick group in 1999 and 2007.[18] Using one hydraulic

cylinder, each of these downstroke presses can generate a maximum load of 1000 t, corresponding to a

uniaxial force of almost 10 MN (Figure 2.2a). A modified Walker module was used to enable a Kawai-

type octahedron-within-cubes compression assembly, as illustrated in Figure 2.2b, c.[12,13] The maximum

pressure of this setup is about 25 GPa, 16 GPa, and 10 GPa for the 10/5, the 14/8, and the 18/11 assembly,
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2. High-Pressure Techniques: State of the Art

respectively, and the electronic resistance heating system uses graphite furnaces for the generation of a

maximum temperature of about 1500 ◦C.[18] Owing to a successive conversion into diamond, the employ-

ment of graphite is limited to about 10 GPa and 1500 ◦C, but LaCrO3 can serve as a furnace material for

more extreme conditions.[18] More detailed information on the assembly preparation and the execution

of high-pressure high-temperature syntheses is provided in literature,[2,18] as well as in the Supporting

Information within this thesis (Chapters A–E).

Figure 2.2.: Exemplary illustration of a 1000 t (10 MN) large volume press that is used for high-pressure high-
temperature reactions up to a maximum pressure of about 25 GPa (a). A modified Walker module with the Kawai-
type octahedron-within-cubes payload (b, c) grants the generation of quasi-hydrostatic pressures by an equal pres-
sure distribution along various spatial axes (d, red lines).

Today’s highest static pressures can be generated by diamond anvil cells, which have been developed

and improved for more than half a century.[6] A detailed overview of the design and the operation of

diamond anvil cells is provided in literature.[23,24] This section, therefore, focuses on recent developments

and improvements, and briefly describes the diamond anvil cell that was used for in situ studies over the

course of this PhD project.

Diamond anvil cells are commonly used for the generation of static pressures in the range of 0.1–

150 GPa, with advanced setups even reaching the terapascal boundary.[6,9] In contrast to the sophisticated
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octahedron-within-cubes payload of multianvil presses, the basic design of diamond anvil cells is rather

simple, but preparation and operation are complicated due to the small dimensions of the setup. The

simplest setups use two diamond anvils with flat 100–500 µm culets that are mounted on loadable seats,

typically made out of tungsten carbide (WC). The diamonds are separated by a drilled-thru metallic

gasket that forms the pressure chamber, which usually contains the sample, an internal pressure standard,

and a pressure transmitting medium. Here, ruby spheres commonly serve as the pressure standard,[25–27]

but also elements or simple compounds such as Ne, Au, Pt, or NaCl can be used.[28] To increase pressure,

the two opposed diamond anvils are driven towards each other by an external membrane- or screw-

induced force, compressing the sample chamber between the culets (Figure 2.3a).

Figure 2.3.: Schematic illustration of a diamond anvil cell with flat diamond anvils in light blue, seats in dark blue,
metallic gasket in gray, sample in green and ruby sphere in red (a, b). The development of advanced diamond anvil
designs (c) repeatedly pushed the boundary of the maximum pressure in diamond anvil cells (d). Partially adapted
with permission from Reference [29].
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Considering Equation 2.1, the pressure in a diamond anvil cell can be maximized by either decreasing

the culet area or increasing the external force. The maximum force, however, is restricted by the mecha-

nical strength of the seats and the diamond anvils, and may not exceed 10 kN.[23,30] Therefore, recent

developments focused on the design of the diamond anvils, accomplishing the balance between the mi-

niaturization of the culet and the stabilization of the sample.[29] Using diamond anvils with flat culets, the

maximum pressure is limited to about 150 GPa, while the employment of single- or double-beveled dia-

mond anvils grant pressures up to 400 GPa (Figure 2.3c, d).[30,31] The highest pressures, however, have

been generated using focused ion beam milled toroidal diamond anvils,[32,33] or double-stage diamond

anvil cells,[34] with the latter breaking the 1000 GPa benchmark for the first time.[9]

Figure 2.4.: A sketch of a BX90 diamond anvil cell with inner and outer steel components (1, 2), WC seats (3),
diamond anvils (4), metallic gasket (5), screws (6), conical spring washers (7), setscrews for diamond alignment
(8), safety screw (9), and optional resistive heater (10), as adapted with permission from Reference [35] (a) and
microphotographs taken through a BX90 cell that is loaded with a polycrystalline sample, ruby spheres and Ne (b).

Despite of the high static pressure range (0.1–1000 GPa),[6,9] an additional advantage of diamond anvil

cells is the transparency of diamond in a broad electromagnetic spectrum, which enables the in situ usage

of preparative and analytic techniques, as well as the optical visualization of the sample. Sample heating,

for instance, is a quite routine procedure, which can be performed using a resistive heating system[36]

or a laser heating setup,[37,38] but also internal-resistive heated diamond-anvil cells have recently been

developed.[39] Moreover, advanced analytic techniques, such as Raman spectroscopy,[40,41] synchrotron
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Mössbauer spectroscopy,[42–45] NMR spectroscopy,[46–48] and laser-ultrasonics,[49] as well as electrical

and magnetic measurements[50–52] have been adapted for the use in diamond anvil cells. The most power-

ful achievement, however, is the development of in situ single-crystal X-ray diffraction at high-pressure

conditions, which is usually performed at synchrotron facilities, as discussed below.[35,53–58]

The high-pressure experiments in diamond anvil cells and the in situ synchrotron XRD investigations

over the course of this PhD project were performed in collaboration with the working groups of Natalia

Dubrovinskaia and Leonid Dubrovinsky, involving particular contributions of Elena Bykova and Maxim

Bykov. BX90 diamond anvil cells and flat Boehler-Almax-type diamond anvils were employed, as illus-

trated in Figure 2.4a.[35,53] Herein, culets of 250 µm deemed sufficient for the generation of pressures up

to about 50 GPa, and a wide opening angle (2θ = 40°) granted a high resolution in synchrotron XRD

experiments.

Quite a lot routine in situ XRD experiments in diamond anvil cells investigate molecular crystals.

These studies are usually performed at moderate pressures and thus, provide sample amounts that can

be probed at in-house diffractometers, at which the cell is mounted on a standard goniometer.[59,60] It is,

however, apparent that the miniaturization of the pressure chamber at high pressures causes a miniatu-

rization of the sample, which necessitates X-ray radiation of small focus and high brilliance. Therefore,

in situ XRD studies at high- and ultra-high-pressure conditions are performed at 3rd generation synchro-

trons that are currently considered the world’s most brilliant photon sources. The synchrotron facilities

further provide specialized extreme conditions beamlines that support diamond anvil cell setups and spe-

cific sample environments, such as heating systems, magnetic fields, or cryostats. Respective beamlines

are, for instance, P02.2 at PETRA III, DESY (Hamburg, Germany),[61,62] ID27 at the ESRF (Grenoble,

France),[63] I15 at the Diamond Light Source (Didcot, UK),[64] 12.2.2 at the ALS (Berkeley, USA),[65,66]

13-ID-D at the APS (Argonne, USA),[67] and PSICHÉ at Soleil (Gif-sur-Yvette Cedex, France).[21] The

capabilities and the advantages of such extreme conditions beamlines are briefly outlined below. As most

of the in situ experiments of this thesis were performed at P02.2 (PETRA III, DESY), this setup will be

used as an example (Figure 2.5).[38,61,62]

PETRA III is a 3rd generation light source that operates at 6–8 GeV and the extreme conditions beam-

line P02.2 uses a high-energy undulator U23 for the generation of synchrotron radiation within an energy

range of 25.6–60.0 keV, corresponding to wavelengths between 0.484 and 0.207 Å, respectively.[61] The

beam can be focused by a Kirkpatrick–Baez mirror system to about 2×2 µm2 and even a submicron
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beam has been established at P02.2, recently.[62] The diamond anvil cell is mounted in front of a fast

2D detector (Perkin Elmer, XRD1621) and single-crystal datasets can be collected by omega step scans

(rotation around one axis). Moreover, P02.2 provides multiple-purpose optics that grant on-line laser

heating from both sides (200 W NIR laser), on-line ruby fluorescence measurements, and optical ima-

ging. The beamline further features a second hutch for general purpose experiments, in which additional

sample environments, such as a resistive heating, a cryostat and a Paris-Edinburgh cell are provided.[62]

Figure 2.5.: A schematic sketch of the on-line laser heating setup at the extreme conditions beamline P02.2 (PE-
TRA III, DESY) with laser beam paths in red and X-ray beam paths in green (a, adapted from Reference [68]),
and a photograph of a slightly modified setup that has been used at P02.2 for the investigations over the course of
this PhD project.

Extreme conditions beamlines, therefore, come up with customized setups for in situ high-pressure

investigations in laser-heated diamond anvil cells. Due to a highly brilliant and microfocused X-ray beam,

micron sized samples that consist of light-weight elements, such as P and N, can be probed by single-

crystal XRD. Through advancements in data processing, even crystalline grains that contain multiple

phases and domains can be analyzed, as has already been shown in literature,[69,70] and is discussed in this
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thesis. The variable and short wavelength of the provided X-rays, in turn, increases the resolution of the

XRD pattern, which is of particular importance considering the limited opening angle of diamond anvil

cells. The on-line laser heating system, finally, enables the in situ monitoring of heat-induced sample

transformations at high-pressure conditions.

Recapitulating, it is apparent that high-pressure techniques are well-developed and thus both, the syn-

thesis and the in situ investigations of phosphorus nitrides at high-pressure conditions can be performed

employing quite routine high-pressure setups, as is presented within the following chapters.

References

[1] Y. Syono, M. H. Manghnani, “High-pressure research: Application to earth and planetary

sciences”, Terra Scientific Pub. Co, Tokyo, Japan und Washington, D.C, 2010.

[2] H. Huppertz, “Multianvil high-pressure / high-temperature synthesis in solid state chemistry”,

Z. Kristallogr. 2004, 219, 330.

[3] H. Huppertz, “New synthetic discoveries via high-pressure solid-state chemistry”, Chem. Com-

mun. 2011, 47, 131.

[4] G. Demazeau, “High pressure in solid-state chemistry”, High Pressure Res. 2002, 14, 11031.

[5] R. C. Liebermann, “Multi-anvil, high pressure apparatus: a half-century of development and

progress”, High Pressure Res. 2011, 31, 493.

[6] W. A. Bassett, “Diamond anvil cell, 50th birthday”, High Pressure Res. 2009, 29, 163.

[7] D. Yamazaki, E. Ito, T. Yoshino, N. Tsujino, A. Yoneda, X. Guo, F. Xu, Y. Higo, K. Funakoshi,

“Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to com-

pression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite”, Phys. Earth Planet. Inter. 2014, 228,

262.

[8] T. Kunimoto, T. Irifune, “Pressure generation to 125 GPa using a 6-8-2 type multianvil appara-

tus with nano-polycrystalline diamond anvils”, J. Geophys. Res. 2010, 215, 12190.

39



2. High-Pressure Techniques: State of the Art

[9] N. Dubrovinskaia, L. Dubrovinsky, N. A. Solopova, A. Abakumov, S. Turner, M. Hanfland, E.

Bykova, M. Bykov, C. Prescher, V. B. Prakapenka, S. Petitgirard, I. Chuvashova, B. Gasharova,

Y.-L. Mathis, P. Ershov, I. Snigireva, A. Snigirev, “Terapascal static pressure generation with

ultrahigh yield strength nanodiamond”, Sci. Adv. 2016, 2, 1.

[10] D. Frost, B. Poe, R. Trønnes, C. Liebske, A. Duba, D. Rubie, “A new large-volume multianvil

system”, Phys. Earth Planet. Inter. 2004, 143-144, 507.

[11] M. A. Manthilake, N. Walte, D. J. Frost, “A new multi-anvil press employing six independently

acting 8 MN hydraulic rams”, High Pressure Res. 2012, 42, 1.

[12] N. Kawai, M. Togaya, A. Onodera, “A New Device for Pressure Vessels”, Proc. Jpn. Acad. 1973,

49, 623.

[13] D. Walker, “Lubrication, gasketing, and precision in multianvil experiments”, Am. Mineral.

1991, 76, 1092.

[14] K. D. Leinenweber, J. A. Tyburczy, T. G. Sharp, E. Soignard, T. Diedrich, W. B. Petuskey, Y.

Wang, J. L. Mosenfelder, “Cell assemblies for reproducible multi-anvil experiments (the COM-

PRES assemblies)”, Am. Mineral. 2012, 97, 353.

[15] T. Ishii, L. Shi, R. Huang, N. Tsujino, D. Druzhbin, R. Myhill, Y. Li, L. Wang, T. Yamamoto, N.

Miyajima, T. Kawazoe, N. Nishiyama, Y. Higo, Y. Tange, T. Katsura, “Generation of pressures

over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils”, Rev. Sci. Instrum.

2016, 87, 24501.

[16] T. Kunimoto, T. Irifune, Y. Tange, K. Wada, “Pressure generation to 50 GPa in Kawai-type

multianvil apparatus using newly developed tungsten carbide anvils”, High Pressure Res. 2016,

36, 97.

[17] T. Ishii, Z. Liu, T. Katsura, “A Breakthrough in Pressure Generation by a Kawai-Type Multi-

Anvil Apparatus with Tungsten Carbide Anvils”, Engineering 2019, 5, 434.

[18] H. Huppertz, “Präparative und strukturelle Erweiterungen der Oxoboratchemie mittels Hoch-

druck-/Hochtemperatur-Synthesen”, Habilitation Dissertation, Ludwig-Maximilians-Universität,

Munich, 2003.

40



[19] ESRF, “ID06 Large Volume Press”, http://www.esrf.eu/home/UsersAndScience/Experiments/

MEx/id06-large-volume-press.html (last visit: 10/17/2019).

[20] T. Yu, Y. Wang, M. L. Rivers, S. R. Sutton, “An upgraded and integrated large-volume high-

pressure facility at the GeoSoilEnviroCARS bending magnet beamline of the Advanced Photon

Source”, C. R. Geosci. 2019, 351, 269.

[21] Soleil, “PSICHÉ (Pression Structure Imagerie par Contraste à Haute Énergie)”, https://www.

synchrotron-soleil.fr/en/beamlines/psiche (last visit: 10/17/2019).

[22] DESY, “P61B Large Volume Press – Extreme Conditions (LVP-EC)”, https://petra3-extension.

desy.de/e84814/e85529/e260846/ (last visit: 10/05/2019).

[23] D. J. Dunstan, I. L. Spain, “Technology of diamond anvil high-pressure cells: I. Principles, design

and construction”, J. Phys. E: Sci. Instrum. 1989, 22, 913.

[24] I. L. Spain, D. J. Dunstan, “The technology of diamond anvil high-pressure cells: II. Operation

and use”, J. Phys. E: Sci. Instrum. 1989, 22, 923.

[25] R. A. Forman, G. J. Piermarini, J. D. Barnett, S. Block, “Pressure measurement made by the

utilization of ruby sharp-line luminescence”, Science 1972, 176, 284.

[26] I. Fujishiro, Y. Nakamura, “Pressure Measurement by Ruby Fluorescence Method”, Rev. High

Pressure Sci. Technol. 1994, 3, 87.

[27] H.-K. Mao, J. Xu, P. M. Bell, “Calibration of the ruby pressure gauge to 800 kbar under quasi-

hydrostatic conditions”, J. Geophys. Res. 1986, 91, 4673.

[28] Y. Fei, A. Ricolleau, M. Frank, K. Mibe, G. Shen, V. Prakapenka, “Toward an internally consis-

tent pressure scale”, Proc. Nat. Acad. Sci. U. S. A. 2007, 104, 9182.

[29] E. F. O’Bannon, Z. Jenei, H. Cynn, M. J. Lipp, J. R. Jeffries, “Contributed Review: Culet diame-

ter and the achievable pressure of a diamond anvil cell: Implications for the upper pressure limit

of a diamond anvil cell”, Rev. Sci. Instrum. 2018, 89, 111501.

[30] B. Li, C. Ji, W. Yang, J. Wang, K. Yang, R. Xu, W. Liu, Z. Cai, J. Chen, H.-k. Mao, “Diamond

anvil cell behavior up to 4 Mbar”, Proc. Nat. Acad. Sci. U. S. A. 2018, 115, 1713.

[31] W. C. Moss, K. A. Goettel, “Finite element design of diamond anvils”, Appl. Phys. Lett. 1987,

50, 25.

41

http://www.esrf.eu/home/UsersAndScience/Experiments/MEx/id06-large-volume-press.html
http://www.esrf.eu/home/UsersAndScience/Experiments/MEx/id06-large-volume-press.html
https://www.synchrotron-soleil.fr/en/beamlines/psiche
https://www.synchrotron-soleil.fr/en/beamlines/psiche
https://petra3-extension.desy.de/e84814/e85529/e260846/
https://petra3-extension.desy.de/e84814/e85529/e260846/


2. High-Pressure Techniques: State of the Art

[32] A. Dewaele, P. Loubeyre, F. Occelli, O. Marie, M. Mezouar, “Toroidal diamond anvil cell for

detailed measurements under extreme static pressures”, Nat. Commun. 2018, 9, 2913.

[33] Z. Jenei, E. F. O’Bannon, S. T. Weir, H. Cynn, M. J. Lipp, W. J. Evans, “Single crystal toroidal

diamond anvils for high pressure experiments beyond 5 megabar”, Nat. Commun. 2018, 9, 3563.

[34] L. Dubrovinsky, N. Dubrovinskaia, V. B. Prakapenka, A. M. Abakumov, “Implementation of

micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar”, Nat. Commun. 2012,

3, 1163.

[35] I. Kantor, V. Prakapenka, A. Kantor, P. Dera, A. Kurnosov, S. Sinogeikin, N. Dubrovinskaia, L.

Dubrovinsky, “BX90: a new diamond anvil cell design for X-ray diffraction and optical measu-

rements”, Rev. Sci. Instrum. 2012, 83, 125102.

[36] D. Fan, W. Zhou, S. Wei, Y. Liu, M. Ma, H. Xie, “A simple external resistance heating diamond

anvil cell and its application for synchrotron radiation x-ray diffraction”, Rev. Sci. Instrum. 2010,

81, 53903.

[37] T. Fedotenko, L. Dubrovinsky, G. Aprilis, E. Koemets, A. Snigirev, I. Snigireva, A. Barannikov,

P. Ershov, F. Cova, M. Hanfland, N. Dubrovinskaia, “Laser heating setup for diamond anvil cells

for in situ synchrotron and in house high and ultra-high pressure studies”, Rev. Sci. Instrum.

2019, 90, 104501.

[38] E. Bykova, G. Aprilis, M. Bykov, K. Glazyrin, M. Wendt, S. Wenz, H.-P. Liermann, J. T. Roeh, A.

Ehnes, N. Dubrovinskaia, L. Dubrovinsky, “Single-crystal diffractometer coupled with double-

sided laser heating system at the Extreme Conditions Beamline P02.2 at PETRA III”, Rev. Sci.

Instrum. 2019, 90, 073907.

[39] H. Ozawa, S. Tateno, L. Xie, Y. Nakajima, N. Sakamoto, S. I. Kawaguchi, A. Yoneda, N. Hirao,

“Boron-doped diamond as a new heating element for internal-resistive heated diamond-anvil

cell”, High Pressure Res. 2018, 38, 120.

[40] A. F. Goncharov, J. C. Crowhurst, “Pulsed laser Raman spectroscopy in the laser-heated dia-

mond anvil cell”, Rev. Sci. Instrum. 2005, 76, 63905.

42



[41] N. Holtgrewe, E. Greenberg, C. Prescher, V. B. Prakapenka, A. F. Goncharov, “Advanced inte-

grated optical spectroscopy system for diamond anvil cell studies at GSECARS”, High Pressure

Res. 2019, 39, 457.

[42] S. Nasu, “High pressure Mössbauer spectroscopy using a diamond anvil cell”, Hyperfine Inter-

act. 1994, 90, 59.

[43] V. Potapkin, A. I. Chumakov, G. V. Smirnov, J. P. Celse, R. Rüffer, C. McCammon, L. Dubro-

vinsky, “The 57Fe Synchrotron Mössbauer Source at the ESRF”, J. Synchrotron Radiat. 2012,

19, 559.

[44] Q. Wei, C. McCammon, S. A. Gilder, “High-Pressure Phase Transition of Iron: A Combined

Magnetic Remanence and Mössbauer Study”, Geochem. Geophys. Geosyst. 2017, 18, 4646.

[45] I. Kupenko, L. Dubrovinsky, N. Dubrovinskaia, C. McCammon, K. Glazyrin, E. Bykova, T.

Boffa Ballaran, R. Sinmyo, A. I. Chumakov, V. Potapkin, A. Kantor, R. Rüffer, M. Hanfland, W.

Crichton, M. Merlini, “Portable double-sided laser-heating system for Mössbauer spectroscopy

and X-ray diffraction experiments at synchrotron facilities with diamond anvil cells”, Rev. Sci.

Instrum. 2012, 83, 124501.

[46] T. Meier, T. Herzig, J. Haase, “Moissanite anvil cell design for Giga-Pascal nuclear magnetic

resonance”, Rev. Sci. Instrum. 2014, 85, 43903.

[47] T. Meier, J. Haase, “Anvil cell gasket design for high pressure nuclear magnetic resonance ex-

periments beyond 30 GPa”, Rev. Sci. Instrum. 2015, 86, 123906.

[48] T. Meier, S. Khandarkhaeva, S. Petitgirard, T. Körber, A. Lauerer, E. Rössler, L. Dubrovinsky,

“NMR at pressures up to 90 GPa”, J. Magn. Reson. 2018, 292, 44.

[49] P. V. Zinin, V. B. Prakapenka, K. Burgess, S. Odake, N. Chigarev, S. K. Sharma, “Combined

laser ultrasonics, laser heating, and Raman scattering in diamond anvil cell system”, Rev. Sci.

Instrum. 2016, 87, 123908.

[50] M. Lesik, T. Plisson, L. Toraille, J. Renaud, F. Occelli, M. Schmidt, O. Salord, A. Delobbe,

T. Debuisschert, L. Rondin, P. Loubeyre, J.-F. Roch, “Magnetic measurements on micron-size

samples under high pressure using designed NV centers”, 2018.

43



2. High-Pressure Techniques: State of the Art

[51] A. Palmer, D. M. Silevitch, Y. Feng, Y. Wang, R. Jaramillo, A. Banerjee, Y. Ren, T. F. Rosen-

baum, “Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ

tunability”, Rev. Sci. Instrum. 2015, 86, 93901.

[52] A. Marizy, B. Guigue, F. Occelli, B. Leridon, P. Loubeyre, “A symmetric miniature diamond anvil

cell for magnetic measurements on dense hydrides in a SQUID magnetometer”, High Pressure

Res. 2017, 37, 465.

[53] R. Boehler, “New diamond cell for single-crystal x-ray diffraction”, Rev. Sci. Instrum. 2006, 77,

115103.

[54] N. Dubrovinskaia, L. Dubrovinsky, “Crystallography taken to the extreme”, Phys. Scr. 2018, 93,

62501.

[55] G. Shen, H. K. Mao, “High-pressure studies with x-rays using diamond anvil cells”, Rep. Prog.

Phys. 2017, 80, 16101.

[56] E. Bykova, “Single-crystal X-ray diffraction at extreme conditions in mineral physics and mate-

rial sciences”, Dissertation, University Bayreuth, Bayreuth, 2015.

[57] M. Bykov, “Structural aspects of pressure- and temperature-induced phase transitions in low-

dimensional systems”, Dissertation, University Bayreuth, Bayreuth, 2015.

[58] L. Dubrovinsky, T. Boffa-Ballaran, K. Glazyrin, A. Kurnosov, D. Frost, M. Merlini, M. Han-

fland, V. B. Prakapenka, P. Schouwink, T. Pippinger, N. Dubrovinskaia, “Single-crystal X-ray

diffraction at megabar pressures and temperatures of thousands of degrees”, High Pressure Res.

2010, 30, 620.

[59] B. A. Zakharov, Z. Gal, D. Cruickshank, E. V. Boldyreva, “Studying weak inter-actions in cry-

stals at high pressures: when hardware matters”, Acta Crystallogr. Sect. E: Crystallogr. Com-

mun. 2018, 74, 613.

[60] H. Jin, C. H. Woodall, X. Wang, S. Parsons, K. V. Kamenev, “A novel diamond anvil cell for

x-ray diffraction at cryogenic temperatures manufactured by 3D printing”, Rev. Sci. Instrum.

2017, 88, 35103.

44



[61] H. P. Liermann, Z. Konôpková, W. Morgenroth, K. Glazyrin, J. Bednarčik, E. E. McBride, S.
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United in nitride: Unprecedented boron

phosphorus nitride BP3N6 with entire four-

fold coordination of B and P blends structu-

ral motifs of both, α-P3N5 and c-BN. It was

prepared from reactive precursors in a one-

step high-pressure high-temperature reacti-

on, demonstrating an innovative access to

mixed non-metal nitrides.
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3. United in Nitride: The Highly Condensed Boron Phosphorus Nitride BP3N6

Abstract Owing to intriguing materials proper-

ties non-metal nitrides are of special interest for

both, solid-state chemistry and materials science. Mi-

xed ternary non-metal nitrides, however, have on-

ly been sparsely investigated, as preparative che-

mistry lacks a systematic access, yet. Herein, we

report on the highly condensed boron phospho-

rus nitride BP3N6, which was synthesized from

(PNCl2)3, NH4N3 and h-BN in a high-pressure high-

temperature reaction. By increasing partial pressure of HCl during synthesis using NH4Cl, single-crystals

of BP3N6 up to 80 µm in length were obtained. The unprecedented framework-type structure determined

by single-crystal XRD blends structural motifs of both, α-P3N5 and c-BN, rendering BP3N6 a double

nitride. The compound was further investigated by Rietveld refinement, EDX, temperature-dependent

PXRD, FTIR and solid-state NMR spectroscopy. The formation of BP3N6 through use of reactive pre-

cursors exemplifies an innovative access to mixed non-metal nitrides.

Non-metal nitrides are of fundamental interest in solid-state chemistry and materials sciences, as they

show intriguing properties such as high thermal/mechanical stability, photocatalytic activity or chemical

inertness.[1–5] Binary nitrides with condensed covalent structures, namely BN,[6] Si3N4
[7,8] and P3N5,[9,10]

as well as numerous triazine- and heptazine-based compounds summarized in the blanket term “carbon

nitride” (C3N4)[11,12] have been investigated extensively in terms of structural and materials characteri-

stics. In non-metal nitrides, B and C are usually found in threefold N coordination, while Si and P form

tetrahedra-based structures. Coordination numbers, however, can be increased applying high pressures,

as reported for c-BN,[13,14] γ-P3N5
[15] and γ-Si3N4,[16] featuring BN4, PN5 and SiN6 polyhedra, respec-

tively, and an ultrahard sp3 hybridized C3N4 polymorph has been discussed on the basis of ab initio

calculations.[17]

In contrast to numerous binary non-metal nitride phases, mixed ternary representatives have not been

accessible for quite some time. This may be due to small interdiffusion coefficients of the constituting bi-

nary refractory nitrides, which prevents a straight forward synthesis by direct solid-state reaction. Silicon
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phosphorus nitride SiPN3, which may be understood as the formal reaction product of Si3N4 and P3N5,

has been prepared by ammonolysis of Cl3SiNPCl3 at −78 ◦C and subsequent condensation at 800 ◦C.[18]

Thus, the unfavorable reaction of binary nitrides was bypassed and thermodynamic sinks have been

avoided by using a preorganized molecular precursor that contains the targeted motif of N-linked and

tetrahedrally coordinated Si and P atoms within itself, following a gentle reaction pathway. Predetermi-

ning the motif of N-linked B and Si atoms, Cl2BNHSiCl3 has been successfully employed as a molecular

precursor for amorphous Si3B3N7.[19,20] Within the B/C/N system, BC2N has been proposed as a super-

hard ternary nitride with mechanical properties ousting c-BN as the second hardest material.[21–25] Thus,

mixed non-metal nitrides have only been accessible by multi-step syntheses starting from molecular

precursor compounds.

In this contribution, we report on the serendipitous discovery of the double nitride BP3N6, which was

obtained during explorative investigation of phosphorus nitrides employing reactive P/N precursors. At

high-pressure (HP) and high-temperature (HT) conditions (PNCl2)3, NH4N3, and NH4Cl were reacted in

a h-BN crucible. At elevated temperatures NH4N3 dissociates into N2 and NH3, generating high parti-

al pressure of N2, which prevents decomposition of targeted P/N compounds, following Le Chatelier’s

principle.[26] Molecular (PNCl2)3 and NH4Cl, in turn, have been used as starting materials for P3N5

synthesis in pressure ampoules.[27] Furthermore, NH4Cl has been employed as a mineralizer in HP/HT

reactions, facilitating single-crystal growth of P/N compounds, which may be due to reversible bond clea-

vage and reformation of the P–N bonds catalyzed by in situ formed HCl.[28,29] Following Equation 3.1,

the reaction of (PNCl2)3 and NH4N3 most likely generates sufficiently high partial pressure of HCl to

attack the crucible material h-BN, providing intermediate reactive boron species for BP3N6 formation.

Conceivable intermediate species could be BCl3, (BNCl2)3 or (BClNH)3, with the latter being probably

formed in situ from BCl3 and NH4Cl.[30]

2 (PNCl2)3 + 3 NH4N3 + 2 h-BN 2 BP3N6 + 12 HCl + 4 N2 (3.1)

According to Equation 3.1, powdered samples of BP3N6 were subsequently obtained starting from

(PNCl2)3, NH4N3, and stoichiometric amounts of h-BN. The starting materials were finely ground, com-

pressed to 8 GPa and heated to 1100 ◦C in a multianvil apparatus.[31] The as-synthesized sample was

washed with de-ionized water to yield colorless crystals of BP3N6 with h-BN as a minor side phase
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from crucible residues (< 5 wt-%). Formation of single crystals up to 80 µm in length, as illustrated in

Figure 3.1, however, was achieved by adding 25–30 wt-% of NH4Cl to the mixture of starting materials,

suggesting that a high partial pressure of HCl is essential for crystal growth. More detailed information

on the HP/HT synthesis of BP3N6 is provided in Chapter A.

Figure 3.1.: Representative SEM image of single-crystals of BP3N6. See also Figure A.1.

The structure of BP3N6 was solved and refined from single-crystal X-ray diffraction data (P21/c (no.

14), a = 5.0272(11), b = 4.5306(12), c = 17.332(3)Å, β = 106.387(9)°, Z = 4, R1 = 0.037; more de-

tails in Chapter A) and elemental composition was confirmed by EDX measurements (Table A.5).[32]

Furthermore, the structure model was verified by Rietveld refinement (Figure A.3, Table A.6). Figu-

re 3.2 illustrates the highly condensed framework of BP3N6, blending structural motifs of both, α-P3N5

and c-BN.[9,13,14] Pairs of edge-sharing PN4 tetrahedra (blue) and allside vertex-sharing BN4 tetrahe-

dra (green) form chain-like substructures of vierer rings∗ running along a, which are interconnected

by all-side vertex-sharing PN4 tetrahedra (gray) to form a highly condensed B/P/N network. With re-

spect to the entire fourfold coordination of B and P, BP3N6 can be classified as a double nitride rather

than a boron nitridophosphate. According to the Niggli formula 3
∞

[
B[4]P[4]

3N[2]
2N[3]

4
]
, N is found in

two- and threefold coordination in a 2 : 4 ratio. The topology of this four nodal B/P/N network is re-

presented by the point symbol (37.49.511.6)(36.48.56.6)(34.45.54.62)(34.45.56) determined by TOPOS
∗The term “vierer ring” has been defined by Liebau and is derived from the German word vier (engl. four) describing a ring consisting of

four tetrahedra.[33]
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software.[34,35] To the best of our knowledge, this topology has not been observed for any compound so

far, thus BP3N6 represents a new structure type. BP3N6 remains stable up to at least 1000 ◦C under Ar

atmosphere, as indicated by temperature-dependent PXRD (Figure A.4). P–N (1.545(2)–1.583(2) Å for

N[2] and 1.656(2)–1.675(2) Å for N[3]) and B–N bond lengths (1.547(3)–1.574(3) Å) are consistent with

values reported for related compounds.[9,13,14,36] Moreover, the Madelung part of the lattice energy of

BP3N6 was determined to 90 556 kJ·mol−1, which is in good agreement to the sum of the Madelung part

of lattice energy of formally constituting BN and P3N5 (91 732 kJ·mol−1, 1.3 % difference).[37] CHARDI

analysis revealed effective coordination numbers of 3.80–3.99 for B and P and mean total charges of

+3.07, +4.98 and −2.98 for B, P and N, respectively, in line with the refined structure model.[38] To quan-

tify polyhedra distortions in BP3N6, minimum bonding ellipsoids (MBEs) of the BN4 and PN4 tetrahedra

were fitted, using the PIEFACE software.[39] More detailed information on MAPLE, CHARDI and MBE

analyses is provided in Chapter A (A.7–A.9).

Figure 3.2.: The crystal structure of BP3N6 is built up from edge-sharing PN4 tetrahedra (blue) that form chain-like
substructures with all-side vertex-sharing BN4 tetrahedra (green), which are interconnected to a highly condensed
framework by all-side vertex-sharing PN4 tetrahedra (gray). Ellipsoids of P (gray) and B (green) are displayed at
99 % probability level.

To rule out incomplete condensation of intermediate species or NHx functionality caused by harsh

acidic reaction conditions, BP3N6 was further investigated by FTIR and NMR spectroscopy. The FTIR

spectrum of BP3N6 (Figure A.6) shows broad absorption bands below 1700 cm−1, which have been si-

milarly observerd for related P/N and B/N compounds as well and can be assigned to various combina-

tions of vibrational (B/P)N4 modes of the B/P/N framework.[40–43] Additional weak absorption between
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2900–3400 cm−1 may be attributable to minor NHx functionality in BP3N6 or amorphous side phases. To

confirm the absence of any hydrogen in the title compound’s structure and to verify the refined structure

model, 11B, 31P, 31P{1H} and 1H solid-state MAS NMR spectra were recorded. The 11B NMR spectrum

(Figure 3.3, I(11B) = 3/2) shows one narrow major signal at 2.8 ppm, which can be assigned to the one

crystallographic B site in the BP3N6 structure. The chemical shift (2.8 ppm) is in the typical range of

tetrahedrally coordinated B and quadrupolar interaction is small but not zero, as indicated by a wide

spinning sideband pattern (Figure A.7).[44,45] The minor 11B signal at 18.4–26.7 ppm corresponds to the

minor side phase h-BN observed in PXRD analysis as well and a broad shoulder at the major 11B signal

is most likely related to additional amorphous side phases.[45,46]

Figure 3.3.: 11B NMR spectrum, showing one narrow major signal at 2.8 ppm, which corresponds to one crystal-
lographic B site in the BP3N6 structure. The broad minor signal (18.4–26.7 ppm) can be assigned to the minor side
phase of h-BN.[45,46] Spinning sidebands are marked with asterisks.

The 31P NMR spectrum (Figure 3.4, black) shows three signals at 0.68,−3.85 and−10.8ppm with an

integral ratio of 1.1 : 0.9 : 1.0, which correspond to the three crystallographic P sites of equal multiplicity

(Wyckoff sites 4e) in the BP3N6 structure model. Chemical shifts are in the same region as observed

for related compounds.[27,28,47,48] As the 31P signals are absent in the 31P{1H} cross polarization NMR

spectrum (Figure 3.4, gray), there is no final evidence on hydrogen being present in the BP3N6 structure.

Thus, the broad 31P signal in the 31P{1H} NMR spectrum (25–50 ppm) corresponds to minor amorphous

side phases containing P and H, which may have formed upon temperature quenching. Thus, minor NHx
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functionality observed in the FTIR spectrum most likely corresponds to these amorphous side phases

rather than to BP3N6. Entire NMR spectra are provided in Chapter A (Figures A.7, A.8).

Figure 3.4.: 31P spectrum (black) of BP3N6 showing three signals with a 1.1 : 0.9 : 1.0 integral ratio, which can
be assigned to the three crystallographic P sites of equal multiplicity in the BP3N6 structure. As these signals are
absent in the 31P{1H} NMR spectrum (gray), there is no evidence of hydrogen being present in bulk BP3N6.

Recently, we have reported on the first nitridoborophosphate anion in Li47B3P14N42, raising the questi-

on of a ternary boron phosphorus nitride.[46] Starting from simple reactive P/N precursors, this contribu-

tion reports on unprecedented BP3N6, of which single-crystals were obtained in an explorative one-step

HP/HT synthesis. High partial pressure of HCl, which was formed in situ from (PNCl2)3, NH4N3 and

NH4Cl, is suggested to be essential for both, providing reactive intermediate boron species from h-BN

and facilitating crystal growth by acid catalyzed reversible cleavage and reformation of P–N and B–N

bonds. Consequently, the preparation of BP3N6 exemplifies an innovative access to mixed non-metal ni-

trides, which may even be simplified when h-BN is replaced by more reactive boron species. By analogy

with P3N5, high-pressure polymorphs of BP3N6 with increased coordination numbers for P or even B

may be not far to seek and considering high thermal and mechanical stability of BN, BP3N6 will be

examined on its elastic properties in future investigations. Vickers hardness may be determined by na-

noindentation measurements and isothermal bulk modulus may be revealed from pressure-dependent in

situ XRD measurements in diamond anvil cells using synchrotron radiation.
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Under pressure: The silicon phosphorus nitride imide SiP2N4NH was synthesized in a high-

pressure high-temperature reaction, using HCl as a mineralizer. Its highly condensed structure

is built up from SiN6 octahedra and PN4 tetrahedra and can be derived from a significantly

distorted hexagonal close-packing of nitride anions.
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Abstract Non-metal ni-

trides such as BN, Si3N4,

and P3N5 meet numerous

demands on high-perfor-

mance materials, and their high-pressure polymorphs exhibit outstanding mechanical properties. Herein,

we present the silicon phosphorus nitride imide SiP2N4NH featuring sixfold coordinated Si. Using the

multianvil technique, SiP2N4NH was obtained by high-pressure high-temperature synthesis at 8 GPa and

1100 °C with in situ formed HCl acting as a mineralizer. Its structure was elucidated by a combination of

single-crystal X-ray diffraction and solid-state NMR measurements. Moreover, SiP2N4NH was charac-

terized by energy-dispersive X-ray spectroscopy and (temperature-dependent) powder X-ray diffraction.

The highly condensed Si/P/N framework features PN4 tetrahedra as well as the rare motif of SiN6 octahe-

dra, and is discussed in the context of ambient-pressure motifs competing with close-packing of nitride

anions, representing a missing link in the high-pressure chemistry of non-metal nitrides.

A broad range of applications makes refractory non-metal nitrides a special field of interest for ma-

terials sciences and inorganic chemistry.[1–4] Especially, high-pressure polymorphs with increased coor-

dination numbers, for example, spinel-type γ-Si3N4, show outstanding mechanical hardness and high

thermal stability.[5,6] Such high-pressure polymorphs of non-metal nitrides, however, are still very rare

in number.

Binary nitrides such as h-BN and β-Si3N4 feature high thermal and mechanical stability, and thus find

applications as hot-zone components, bearings, or grinding devices.[3,4,7,8] P3N5 is used as gate-insulator

material and flame retardant, and has recently been proposed for pyrotechnical applications.[9–12] The

discovery of mixed non-metal nitrides such as SiPN3 and Si3B3N7 opened systematic access towards

sintering additives and highly resilient fibers and cords, respectively, attesting non-metal nitrides a broad

range of applications.[2,13–15] Moreover, ternary compounds of B, C, and N have been investigated exten-

sively as several B/C/N phases have been proposed with mechanical properties almost reaching those of

diamond.[16,17] The outstanding materials properties of non-metal nitrides are even surpassed by those of

their respective high-pressure polymorphs such as c-BN, γ-P3N5, and γ-Si3N4, which feature improved

mechanical properties such as increased hardness and bulk moduli.[5,6,18–20] Further high-pressure poly-
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morphs, such as superhard spinel-type BeP2N4 with P in sixfold coordination of N, have been predicted

from theoretical calculations.[21,22] Thus, transitions from ambient-pressure to high-pressure polymor-

phs involve fundamental changes in both, the structural and materials properties and are of fundamental

interest for high-pressure and materials sciences as well as inorganic chemistry.

In principle, the total energy of a solid material can be minimized either by increasing the packing

density and the number of interatomic contacts (= coordination number) or through the formation of

strong directed bonds. The former is the predominant effect in ionic compounds with omnidirectional

electrostatic bonds such as alkali metal halides or oxides. The latter is the prevalent situation for covalent

compounds such as non-metal nitrides, which results in trigonal planar coordination of B and tetrahedra-

based networks for Si and P at ambient pressure.[7–9,23] High-pressure polymorphs of non-metal nitrides

such as c-BN, γ-P3N5, and γ-Si3N4, in contrast, form structures that are dominated by close-packing of

nitride anions and feature four-, five-, and sixfold coordinated B[4], P[5], and Si[6] (coordination numbers

given in superscripted square brackets).[5,6,18–20] Entire sixfold N coordination of P and Si has been

proposed by DFT calculations at 35.5 GPa in V3O5-type P3N5 and 160 GPa in CaTi2O4-related Si3N4,

which can both be derived from a close-packing of nitride anions.∗[24,25] Thus, the structural chemistry

of non-metal nitrides may be best described by the increasing influence of a close-packing of nitride

anions with pressure. Recently, we reported on the covalent double nitride BP3N6.[26] Its structure blends

motifs of α-P3N5 and c-BN, but cannot be derived from any close-packing. γ-Si3N4 and HP-MgSiN2,

in contrast, are prominent examples of high-pressure phases with the rare motif of sixfold coordinated

Si embedded in a close-packing of nitride anions.[5,6,27] An intermediate nitride material, illustrating the

qualitative change in structural behavior of non-metal nitrides, however, has not been reported yet and is

considered to be the missing link in structural research of non-metal nitrides.

Herein, we report on the highly condensed silicon phosphorus nitride imide

SiP2N4NH (κ = n(T )/n(N) = 3/5 = 0.6, T = Si, P),† which features SiN6 octahedra and PN4 tetra-

hedra, blending ambient- and high-pressure motifs. Employing the multianvil technique, SiP2N4NH was

obtained from a one-step high-pressure (HP) high-temperature (HT) reaction, in which in situ generated

HCl acted as a mineralizer.

∗The presence of a close-packing does not necessarily imply a more ionic type of covalent bonding in non-metal nitrides
as the covalency and ionicity of T–N bonds (T = B, P, Si) should not (only) be discussed on the basis of the respective
coordination spheres.

† The degree of condensation κ gives the ratio of central atoms (T) and connecting vertices (X) in polyhedra-based structures
κ = n(T )/n(X).
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Amorphous Si3N4, (PNCl2)3, and NH4N3 were reacted at 8 GPa and 1100 ◦C following the nominal

molar ratios given in Equation 4.1. The highest yield, however, was achieved with an excess of (PNCl2)3

(×2) and NH4N3 (×2.5). Single crystals of SiP2N4NH that were up to 25 µm in length were obtained by

adding 25 wt-% of NH4Cl to the mixture of starting materials, which increased the HCl partial pressure

during synthesis, facilitating reversible T–N (T = Si, P) bond cleavage and reformation (see Chapter B,

Figure B.1).[26,28,29]

4 Si3N4 + 8 (PNCl2)3 + 15 NH4N3 12 SiP2N4NH + 48 HCl + 20 N2 (4.1)

SiP2N4NH can be understood as the formal reaction product of SiPN3 and PNNH in a 1 : 1 ratio. Under

high-pressure conditions, however, the formation of the title compound may be favored as it appears to

be 12 % denser than a mixture of SiPN3 and PNNH (Table B.8).[13,28,30] Preparation of mixed non-metal

nitrides has been a challenging and sophisticated issue for quite some time. SiPN3, for instance, has been

synthesized following a multi-step procedure by condensation of preorganized molecular precursors.[13]

Thus, the synthesis of SiP2N4NH in a one-step HP/HT reaction starting from reactive precursors and

using a high partial pressure of in situ generated HCl represents an innovative process to access tailored

mixed non-metal nitrides.

Figure 4.1.: Crystal structure of SiP2N4NH. Si (black) is in sixfold coordination of N (white) forming linear chains
along b, which are interconnected to a highly condensed 3

∞

[
Si[6]P[4]

2N[3]
4N[2]H

]
framework by PN4 tetrahedra

(gray). H (black) is selectively bound to N1 as suggested by NMR experiments. Projections in (101) illustrate the
Si/P/N network as a hierarchical variant of hypothetical CaCl2-type “SiN2” with inserted PN4 tetrahedra. Ellipsoids
are displayed at 99 % probability.
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The crystal structure of SiP2N4NH was elucidated from single-crystal X-ray diffraction data (Pnma

(no. 62), a = 8.3111(18), b = 5.3963(11), c = 7.2392(14)Å, Z = 4, R1 = 0.028) and confirmed by

Rietveld refinement (Figure B.4).[31] Further information on the structure determination is provided in

Chapter B. The elemental composition of SiP2N4NH was confirmed by EDX measurements (Table B.1),

and the H atom was localized by a combination of solid-state NMR measurements and difference Fourier

synthesis (Figure B.3). The title compound is stable towards decomposition and phase transition up to

at least 1000 ◦C under Ar atmosphere, as indicated by temperature-dependent PXRD (Figures B.5 and

B.6). The highly condensed structure of SiP2N4NH is built up from edge-sharing SiN6 octahedra forming

linear chains along b, which are interconnected by all-side vertex-sharing PN4 tetrahedra forming layers

parallel to the bc plane (Figure 4.1). P1 and P2 are linked by N1, which was found to bind one equivalent

of H. The remaining N sites interconnect three central vertices (P, Si), and thus the Si/P/N network is

represented by the Niggli formula 3
∞

[
Si[6]P[4]

2N[3]
4N[2]H

]
.[32,33] The SiP2N4NH structure appears related

to sillimanite-type Al2SiO5, and its network may be interpreted as a hierarchical variant of hypothetical

CaCl2-type “SiN2” with inserted PN4 tetrahedra (Figures 4.1 and B.7).[34,35]

Figure 4.2.: The anionic substructure of SiP2N4NH can be derived from a hexagonal close-packing of nitride
anions (a, b) with corrugated A (white) and B layers (gray). The substructure is completed by imide groups (black,
c), providing distorted octahedral and tetrahedral voids for Si and P, respectively (d).

An anionic substructure of SiP2N4NH may be derived from a hexagonal close-packing (ABAB) of

nitride anions (N2, N3, N4) with significantly corrugated A and B layers parallel to the ab plane (Fi-

gure 4.2a, b). The widened anionic substructure is completed by imide groups (N1H1, Figure 4.2c),

providing distorted octahedral and tetrahedral voids for Si and P, respectively (Figure 4.2d). Thus, the

SiP2N4NH structure may be best described by the coexistence of ambient-pressure motifs and distor-
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ted close-packing, which represents an intermediate state of ambient- and high-pressure polymorphs

in the structural chemistry of non-metal nitrides. Interatomic P–N distances (1.5848(14)–1.6513(11) Å)

are in the typical range of tetrahedra-based P/N networks, and the elongated P1,2–N1H1 distances of

1.6805(15)/1.6844(15) Å are attributable to selective N1–H1 bonding, as observed in similar compounds

as well.[28,36] The interatomic Si–N distances are 1.8031(9)/1.8037(9) Å for equatorial and 2.0146(10) Å

for axial N positions, corresponding to elongated SiN6 octahedra. The average interatomic Si–N distan-

ce of 1.874 Å, however, is in line with the value reported for γ-Si3N4 (1.8627(1) Å).[5,6] More detailed

information on the crystal structure is provided in Chapter B.

To confirm the Si/P/N framework structure obtained from XRD analysis and to localize the H atoms

in bulk SiP2N4NH, 1H, 31P, 31P{1H}, and 29Si{1H} MAS NMR measurements were performed. The

31P spectrum shows two signals at δ = 4.4 and 10.3 ppm, which appear slightly shifted downfield when

compared to fourfold N-coordinated P, for which values of δ = −65 to 0.7 ppm have been reported

thus far (Figure 4.3a).[26,37] The signals, however, can be assigned to the two crystallographic P sites

in SiP2N4NH, and the integral ratio of 1.0 : 1.1 is in good agreement with equal site multiplicity of P1

and P2 (both Wyckoff 4c). The presence of both signals in the 31P{1H} spectrum and the absence of

a significant change in the integral ratio confirmed the presence of H in bulk SiP2N4NH and proved

both P positions to be in almost equidistant spacing from H. The 29Si{1H} spectrum shows one major

resonance at δ = −205ppm (Figure 4.3b), in line with one crystallographic Si site in SiP2N4NH and in

good agreement with the 29Si resonance reported for Si[6] in γ-Si3N4 (δ =−225ppm).[38] An additional

minor 29Si signal at δ = −101ppm may be assigned to Si/O/H species, resulting from partial surface

hydrolysis during water treatment as reported in prior NMR studies on amorphous Si3N4.[39] In the 1H

NMR spectrum, one resonance at 6.6 ppm was observed, exhibiting a weak shoulder (Figure 4.3c), which

most likely originates from the Si/O/H species mentioned above. Thus, one crystallographic H position is

suggested for SiP2N4NH, as presented by selective N1–H1 bonding above. To confirm the experimental

findings and conclusions from XRD and NMR investigations, SiP2N4NH was analyzed by the CHARDI

method (see Chapter B, Figure B.12, Tables B.10 and B.11).[40] The effective coordination numbers of

Si1, P1, and P2 were determined to 5.41, 3.97, and 3.92, in line with elongated octahedral and tetrahedral

and coordination of Si and P. The total charges of Si1, P1, and P2 (+3.94, +5.09, +5.01) as well as the

mean total charge of N (−3.04) are in very good agreement with formal oxidation states of +IV, +V, and

−III.
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Figure 4.3.: NMR spectra of SiP2N4NH. Observation of two resonances in the 31P (a, black) and 31P{1H} (a,
gray) spectra and one major resonance in the 29Si{1H} spectrum (b) is in line with findings from XRD refinement.
One 1H signal (c) suggests one H position, represented by one imide group in SiP2N4NH. Spinning sidebands are
marked with asterisks, and the entire NMR spectra are provided in Figure B.9.

Adapting the synthetic approach, which we have recently reported for the double nitride BP3N6,

SiP2N4NH was prepared from amorphous Si3N4, (PNCl2)3, and NH4N3 in a HP/HT reaction, establis-

hing a systematic access towards mixed non-metal nitride materials. With interconnecting PN4 tetrahedra

and SiN6 octahedra, the title compound’s structure illustrates the competition of ambient-pressure motifs

and close-packing of nitride anions. Thus, the structure of SiP2N4NH represents an intermediate state of

ambient- and high-pressure polymorphs and provides insight into the structural behavior of non-metal

nitrides at high pressures. Resuming the discussion, the attempt of close-packing may increase with pres-

sure, suggesting mixed non-metal nitrides such as BP3N6 and SiP2N4NH to adopt structures with simple

close-packed anionic substructures and regular sixfold coordination of P and Si or even B. Thus, future

investigations may focus on in situ high-pressure investigations of mixed non-metal nitrides to examine

structural behavior under high-pressure conditions.
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Phosphorus gives high five: The phase diagram

of phosphorus oxonitride (PON) was extended by

a post-coesite form of PON, in which P is fivefold

coordinated by O and N, which has not been reported

for any PON form before. Post-coesite PON adopts

a stishovite-related structure and suggests an unex-

hausted polymorphism including sixfold coordinated

P in PON structures.
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Abstract Phosphorus oxonitride (PON) is isoelec-

tronic with SiO2 and may exhibit a similar broad

spectrum of intriguing properties as silica. However,

PON has only been sparsely investigated under high-

pressure conditions and there has been no evidence

on a PON polymorph with a coordination number of

P greater than 4. Herein, we report a post-coesite (pc)

PON polymorph exhibiting a stishovite-related struc-

ture with P in a (5+1) coordination. The pc-PON was

synthesized using the multianvil technique and characterized by powder X-ray diffraction, solid-state

NMR spectroscopy, TEM measurements and in situ synchrotron X-ray diffraction in diamond anvil cells.

The structure model was verified by single-crystal X-ray diffraction at 1.8 GPa and the isothermal bulk

modulus of pc-PON was determined to K0 = 163(2) GPa. Moreover, an orthorhombic PON polymorph

(o-PON) was observed under high-pressure conditions and corroborated as the stable modification at

pressures above 17 GPa by DFT calculations.

The pressure-coordination rule, stating that the coordination number increases with an increase of

pressure,[1] has already been verified for fundamental inorganic nitrides and oxides, such as BN,[2]

Si3N4,[3] P3N5,[4] CO2,[5–8] and SiO2.[9–15] Respective high-pressure polymorphs show intriguing pro-

perties, such as increased incompressibility, high density, or changes in types of chemical bonding. For

instance, rutile-type SiO2 (stishovite), with Si situated in an octahedral sixfold coordination by O, is

one of the hardest oxides known.[9,16,17] Extensive in situ investigations in diamond anvil cells revealed

post-stishovite SiO2 polymorphs with CaCl2-, α-PbO2-, and high-pressure PdF2-type structures, which

all have the motif of SiO6 octahedra in common.[10–15]

Phosphorus oxonitride PON is isoelectronic with silica and adopts cristobalite-, moganite- and quartz-

type structures, which are isotypic with the eponymous SiO2 forms.[18–20] Furthermore, an additional

δ-PON modification with a unique structure related to a theoretically predicted SiO2 polymorph has

been synthesized at 12 GPa while at 15.5 GPa a coesite-type (coe) PON form has been prepared, which

hitherto represents the top end of the PON phase diagram.[21,22] PON polymorphs with an increased
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coordination number of P, however, seem to be feasible, considering findings from fundamental structural

research on solid-state P/N and P/O compounds. Square pyramidal and trigonal bipyramidal PN5 units

have been reported in the high-pressure phases γ-P3N5 and γ-HP4N7 and sixfold coordinated P has

been predicted for the high-pressure phases δ-P3N5 and spinel-type BeP2N4.[4,23–26] Recently, five- and

sixfold O-coordinated P has been reported for TiPO4-V and a distorted CaCl2-related form of AlPO4,

respectively.[27,28] In contrast, high-pressure polymorphs of PON with an increased coordination number

of P (CN > 4), are still unknown. Considering the kinship of PON and SiO2, a stishovite-type PON

polymorph with a sixfold coordination of P may be plausible and is considered the missing link in

fundamental structural research on phosphorus (oxo)nitrides.

Herein, we report on a stishovite-related post-coesite (pc) form of PON with a (5+1) coordination of

P, which was prepared from cristobalite-type (cri) PON at 20 GPa using a 1000 t hydraulic press and

the multianvil technique based on a modified Walker-type setup.[29,30] Energy dispersive X-ray (EDX)

spectroscopy showed no other elements than P, O, and N in the sample and any presence of N–H or O–H

functionality was ruled out by FTIR spectroscopy.

Figure 5.1.: The crystal structure of pc-PON (a) shows a split position for P located in octahedral coordination
environment by O and N (b). An occupation of 0.5 of the P position leads to a (5+1) coordination with distorted
square pyramidal geometry (c). P black, N/O gray.

The pc-PON structure was solved and refined from powder X-ray diffraction (PXRD) pattern

(P42/mnm (no. 136), a = 4.62782(10), c = 2.46042(4)Å, Z = 2, RBragg = 0.021) and cell metrics were
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confirmed by selected area electron diffraction (SAED) tilting series.[31] pc-PON adopts a stishovite-

related structure with one P site located in an octahedral coordination sphere of O and N (Figure 5.1a).

The refined coordinates of P are close to Wyckoff position 2a (m.mm), but refinement indicated a signi-

ficant displacement. Thus, P was refined at Wyckoff position 4 f (m.2m), which results in a split position

of P (site occupation factor s.o. f . = 0.5) with a 0.874(1) Å distance between the two electron density

maxima (Figure 5.1b). There is, however, no evidence for any superstructure caused by a systematically

ordering of P in pc-PON, as there were no additional reflections observed during PXRD, TEM measure-

ments or single-crystal XRD presented below.

Figure 5.2.: Selected PXRD patterns from synchrotron measurements at high-pressure conditions (λ = 0.28874Å)
with expanded regions of interest and a schematic illustration of the tetragonal→ orthorhombic phase transition
assumed for PON.

Considering the split position, P is in a (5+1) coordination by O and N with distorted square pyra-

midal geometry for the first coordination sphere (Figure 5.1c). The P(N,O)5 pyramids share common

edges along c and common vertices along 〈110〉. The interatomic distances between P and (N,O) are

1.696(1) Å for equatorial and 1.752(1) Å for axial position, which is in good agreement with the fivefold
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coordinated P positions in γ-HP4N7 and γ-P3N5.[4,23] The P–(N,O) distance of the second axial (N,O)

position in pc-PON is 2.626(1) Å corresponding to minor interactions only and thus, this (N,O) position

is assigned to the second coordination sphere. The 31P solid-state MAS NMR spectrum of pc-PON shows

one broadened signal at δ =−86.9ppm (FWHM = 20ppm), in line with one crystallographic position of

P in the pc-PON structure. Peak broadening may be caused by varying local N/O coordination of P and

has been observed in other PON modifications before.[21,22] Moreover, statistic occupation of the split

position of P can enhance peak broadening in this case. A simplified description of the pc-PON structure

may be revealed by reducing the split position of P to its center of gravity, resulting in an octahedral

coordination of P by N and O atoms. This simplified structure model would be isotypic with stishovite

(rutile-type SiO2) as the P(4 f , m.2m) site (s.o. f . = 0.5) would be transformed into a P(2a, m.mm) site

(s.o. f .= 1). Thus, pc-PON may be understood as the analog of stishovite in the phase diagram of PON

and represents the first phosphorus oxonitride with exclusively fivefold coordination of P. More detailed

information on the synthesis of pc-PON and its characterization by PXRD, TEM, EDX, NMR and FTIR

is provided in Chapter C.

To investigate pc-PON on its elastic properties, in situ XRD measurements with synchrotron radiation

in diamond anvil cells (DAC) were performed. At an initial pressure of 1.8 GPa a single-crystal data set

was collected, which verifies the structure model presented above.[32] Owing to the measuring geometry

of DACs the single-crystal (SC) XRD data set is incomplete (77 %). A comparison of the electron densi-

ty maps and respective standard deviations, however, indicate that PXRD and SC-XRD refinements are

tantamount in quality and accuracy, as presented in Chapter C. Subsequently, 16 PXRD patterns up to a

maximum pressure of almost 40 GPa were collected, in which the PXRD pattern of pc-PON is preserved

up to a pressure of approximately 20 GPa. At pressures exceeding 20 GPa, however, a new phase is obser-

ved, as reflections in the region 10.0° < 2θ < 11.5° change significantly (Figure 5.2). The coexistence of

both phases at 19.6 GPa is a strong indication for a second order phase transition, which was described by

a translationengleiche symmetry reduction (t2) to the orthorhombic crystal system (P42/mnm (no. 136)

→ Pnnm (no. 58)). In order to gain further information on the nature of the tetragonal→ orthorhombic

phase transition, the recovered sample was re-measured at ambient conditions, showing tetragonal sym-

metry again. Thus, the orthorhombic (o) PON phase is solely stabilized at high pressures and may be

the initial product of the multianvil synthesis at 20 GPa, while the tetragonal pc-PON phase might form
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upon pressure quenching. In turn, pc-PON is unstable at ambient conditions as well, but kinetically inert

towards transformation to cri-PON, as indicated by temperature-dependent PXRD.

This reversible tetragonal→ orthorhombic phase transition of PON is of remarkable similarity to the

stishovite (P42/mnm) → CaCl2-type SiO2 (Pnnm) phase transition of silica, which is characterized by

an alternating tilting of the SiO6 octahedra in the a-b plane with increasing pressure.[10,33] Considering a

spontaneous strain analysis of pc- and o-PON, the phase transition in PON appears to proceed in a simi-

lar way, suggesting an alternating tilting of the P coordination polyhedra and a CaCl2-related structure

for o-PON (Figure 5.2).[33] More detailed information on the experimental setup and the synchrotron

measurements as well as on the spontaneous strain formalism is provided in Chapter C.

Figure 5.3.: Refined lattice parameters of pc-PON (black) and o-PON (white) as a function of pressure.

Lattice parameters of pc- and o-PON were refined from PXRD data with the method of Le Bail

using tetragonal (P42/mnm, p < 20 GPa) and orthorhombic (Pnnm, p > 20 GPa) metrics, respectively (Fi-

gure 5.3). Subsequently, the isothermal bulk modulus K0 of pc-PON was determined to 163(2) GPa

from the equation of state and with that, pc-PON exhibits a twice as high bulk modulus than cri-

PON (K0 = 80GPa).[34] However, pc-PON seems to be significantly more compressible than stishovite

(K0 = 310GPa), which may be due to the (5+1) coordination polyhedra of P being less rigid than the

SiO6 octahedra.[33] Furthermore, the lattice parameter a was found to be notably more compressible

than c (K0(a3) = 109(2)GPa, K0(c3) = 927(35)GPa), which may be an effect of the P(N,O)5 pyramids
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sharing common vertices along 〈110〉, but common edges along c. Thus, a decrease in volume upon com-

pression in pc-PON is mostly effected by a contraction of the cell along a, which in turn corresponds to

an axial compression of the P(N,O)5+1 polyhedra and a decrease of the axial P–(O,N) interatomic distan-

ces. Consequently, a hitherto unreported regular sixfold coordination of P in phosphorus (oxo)nitrides

might be plausible for PON at sufficiently high pressure and may lead to a significant increase of its

incompressibility and bulk modulus. More detailed information on the elastic properties of pc-PON is

provided in Chapter C.

Figure 5.4.: Approximated structure model of pc-PON from structure relaxation with N/O-order used for DFT
calculations (a). P black, O gray, N white. Relative enthalpy plot with transition pressure of 17 GPa derived from
calculated E-V data of pc- and o-PON (b).

To confirm the experimental findings and to corroborate o-PON as the high-pressure polymorph, DFT

calculations within the generalized gradient approximation (GGA) were performed. Accounting for the

split position of P a 2× 2× 2 supercell was constructed with P at the center of the N/O octahedra and

different charge neutral N/O-ordering models were constructed to approximate statistical N/O-disorder.

Disregarding unreasonable or computationally collapsing structures, relaxation of the supercell resulted

in an alternating displacement of P atoms from the center of the P(N/O)6 octahedra, in line with the

experimental findings of the split position of P (Figure 5.4a). This systematic ordering of P appears as

a coupled feature of the introduced N/O-ordering, as the displacement of each P site is systematically
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directed towards an axial N position. As a result N and O are found exclusively in three- and twofold

coordination, respectively, as expressed by the Niggli formula 3
∞

[
P[5]O[2]N[3]

]
.[35] Thus, the axial P–N

interaction seems to be more favorable than the axial P–O interaction. Concerning the experimental data

presented above, there are, however, no indications of a superstructure caused by a systematic ordering

of P. Considering the favored axial P–N interaction this random distribution of P may be correlated with

a N/O-disorder in pc-PON.

The tetragonal structure model was used for construction of an orthorhombic model and subsequent

energy-volume calculations of both cells. The respective total energies of both phases corroborate o-PON

the stable modification above 17 GPa. The transition pressure was determined from the relative enthalpy

plot (Figure 5.4b) and is in accordance with the experimental findings, considering the approximated

structure model used for the DFT calculations. More detailed information on the theoretical study of

both PON polymorphs is provided in Chapter C.

Recapitulating, the phase diagram of PON is extended by two high-pressure polymorphs. pc-PON

adopts a stishovite-related structure with a split position of P in a (5+1) coordination and has been con-

sidered the missing link in fundamental structural research on phosphorus (oxo)nitrides, previously. In

addition, o-PON is found to be the stable polymorph at pressures over 20 GPa, which has been proven

by ab initio calculations, as well. In turn, P is just on the brink of a regular sixfold coordination in PON

polymorphs and its experimental evidence will be the great goal of future high-pressure investigations.
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Extreme conditions: α-BP3N6 was investiga-

ted in situ upon cold compression to a maximum

pressure of 42 GPa, at which laser heating indu-

ced a phase transition into its high-pressure po-

lymorph β-BP3N6. β-BP3N6 is the first nitride

to contain PN6 octahedra, representing a much

sought-after structural motif in fundamental re-

search on non-metal nitrides.
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Abstract The high-pressure behavior of non-metal ni-

trides is of special interest for inorganic and theoretical

chemistry as well as materials science, as these com-

pounds feature intriguing elastic properties. The double

nitride α-BP3N6 was investigated by in situ single-crystal

X-ray diffraction (XRD) upon cold compression to a ma-

ximum pressure of about 42 GPa, and its isothermal bulk

modulus at ambient conditions was determined to be

146(6) GPa. At maximum pressure the sample was laser-heated, which resulted in the formation of an

unprecedented high-pressure polymorph, β -BP3N6. Its structure was elucidated by single-crystal XRD,

and can be described as a decoration of a distorted hexagonal close-packing of N with B in tetrahedral

and P in octahedral voids. Hence, β -BP3N6 is the first nitride to contain PN6 octahedra, representing the

much sought-after proof of principle for sixfold N-coordinated P that has been predicted for numerous

high-pressure phases of nitrides.

The polymorphism of non-metal oxides and nitrides is considered to be one of the most diverse field

of structural chemistry. Investigations on high-pressure polymorphs of non-metal nitrides are an extensive

field of research, as these phases can show outstanding mechanical properties such as low compressibility

and high mechanical hardness.[1–7] Moreover, numerous intriguing high-pressure polymorphs have been

proposed from theoretical investigations, but experimental evidence is still lacking.

Under ambient conditions, the structural chemistry of non-metal nitrides, namely those of boron, car-

bon, silicon, or phosphorus, are dominated by an sp2/sp3 hybridization of the non-metal atoms, leading to

three- and fourfold N coordination. Coordination numbers, however, typically increase with pressure.[8]

h-BN, for instance, consists of graphene-like layers, featuring B in threefold coordination of N (= B[3],

coordination numbers given in superscripted square brackets).[9–11] Its high-pressure polymorph c-BN

(sphalerite structure type) is built up from all-side vertex-sharing BN4 tetrahedra and is classified as a

superhard material.[1,2,5] Moreover, DFT calculations have predicted that a rock-salt-type BN polymorph

featuring B[6] is supposed to be stable under very high loads of 850–1200 GPa.[12–14] Numerous triazine-

and heptazine-based sp2-C/N compounds, summarized in the blanket term carbon nitrides, have been
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investigated intensively as they show intriguing photocatalytic properties.[15–18] In contrast, there have

only been few experimental hints on sp3-C/N compounds, which, however, have been suspected to be

superhard materials from theoretical studies.[19–22] The tetrahedra-based Si/N network of phenakite-type

β-Si3N4 exhibits outstanding thermal and mechanical properties, which makes it an indispensable re-

fractive material for high-performance applications.[23–25] At pressures exceeding 13 GPa, spinel-type γ-

Si3N4 has been reported as the stable polymorph, featuring both, SiN4 tetrahedra and SiN6 octahedra.[3,4]

Entire sixfold N coordination of Si, however, has thus far only been assumed in pyrite-type SiN2 and sug-

gested from DFT calculations at p > 160 GPa for Si3N4 in a predicted CaTi2O4-type polymorph.[21,26,27]

By analogy with Si3N4, phosphorus nitride P3N5 forms a tetrahedra-based structure at ambient condi-

tions.[28] At 11 GPa, α-P3N5 is transformed into the high-pressure polymorph γ-P3N5, which features the

unique motif of PN5 square pyramids.[29] Hitherto, PN6 octahedra have only been reported for molecular

hexaazidophosphates,[30,31] but have been predicted from theoretical studies for hypothetical kyanite-

type and V3O5-type P3N5 as well as for spinel-type BeP2N4 and hR4-LiPN2.[32–38] In contrast, five-

and sixfold O-coordinated P has been reported in TiPO4-V and CaCl2-related AlPO4, respectively, and

a (5+1) mixed O/N coordination of P was observed in a stishovite-related modification of the silica

analogue PON.[39–41] However, neither mixed non-metal nitrides, such as SiPN3, Si3B3N7, BP3N6, or

SiP2N4NH, nor the binary nitride P3N5 itself have been investigated at pressures > 11 GPa, and there has

been no experimental evidence for any PN6 units in nitride materials as yet.[42–45]

Herein, we report on the high-pressure polymorph β-BP3N6, which features octahedrally coordinated

P in a distorted hexagonal close-packing of nitride anions. Targeting sixfold N-coordinated P, α-BP3N6

appeared as a promising candidate (α-BP3N6 denotes the phase previously reported by our group).[42]

The monoclinic, tetrahedra-based double nitride crystallizes as block-like single-crystals (see Chapter D,

Figure D.1), suitable for in situ single-crystal X-ray diffraction (XRD) at high pressures using diamond

anvil cells (DACs) and synchrotron radiation. Moreover, a pressure-induced increase in the coordination

number of P appeared more likely than a higher coordination number of B, considering the high-pressure

behavior of the binary nitrides BN and P3N5 discussed above.[1,2,29]

For in situ experiments, a DAC was loaded with two single-crystals of α-BP3N6, and Ne was used

as the pressure-transmitting medium (details provided in Chapter D). The elastic properties of α-BP3N6

were investigated by stepwise cold compression to a maximum pressure of 42.4(1) GPa (Figure 6.1a).

At each step, a single-crystal data set was collected, providing information on the evolution of the lattice
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parameters and structure with pressure. The unit cell of α-BP3N6 contracts isotropically (Figure D.2),

and its isothermal bulk modulus K0 is 146(6) GPa, as determined by fitting pressure–volume data using

the second-order Birch-Murnaghan equation of state (Figure 6.1a).[46,47] The results of the pressure-

dependent single-crystal XRD refinements of α-BP3N6 are summarized in Table D.2.[48] A detailed

discussion of the α-BP3N6 structure is provided in literature.[42] The pressure-induced distortions of

α-BP3N6 are predominated by an alignment of the nitride anions, which is achieved through tilting and

regular contraction of the TN4 tetrahedra (T = B, P; Figure 6.1b), as pointed out by a pressure-dependent

geometrical analysis following the minimal bonding ellipsoid (MBE) formalism (Figure D.3 and Table

D.4).[49] Surprisingly, the mean interatomic B–N distances appeared to be significantly more compres-

sible (∆d = 0.081Å, > 5 %) than the interatomic P–N distances (∆d = 0.044Å, < 3 %; Table D.3 and

Figure D.2).

Figure 6.1.: a) The structure of α-BP3N6 contracts uniformly upon pressure load, and its isothermal bulk modulus
is 146(6) GPa, as determined from equation of state. b) The structural distortions are predominated by an alignment
of the nitride anions. B: green, N: blue, P: gray.

Upon cold compression of α-BP3N6, no evidence for any phase transition was observed, and the

single-crystals remained intact. To facilitate a pressure-induced phase transition, a single-crystal was

laser-heated on-line from one side at about 42 GPa (λ = 1070nm; details provided in Chapter D). After

a 3 s flash, a significant change of the XRD pattern was observed (Figure D.5). Subsequent XRD inves-
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tigations of the temperature-quenched sample suggested the formation of crystalline multi-phase grains

(Figure D.6). A data set of a previously unknown orthorhombic phase (a = 8.667(1), b = 7.411(4),

c = 4.0115(4)Å; V = 257.7(2) Å3 at 42.4(1) GPa) was integrated, from which the β-BP3N6 structure

was solved and refined in space group Pna21 (No. 33).[50] More detailed information on the data analysis

of the multi-phase grains and the refinement of the single-crystal XRD data is provided in Chapter D.

Figure 6.2.: a) The structure of β-BP3N6 can be described as a decoration of a distorted hexagonal close-packing
(hcp) of N. The A and B layers are displayed in blue and red, and a theoretical primitive hcp unit cell is illustrated
in orange. b) B and P occupy tetrahedral (green) and octahedral voids (gray), respectively.

The β-BP3N6 structure can be described as a decoration of a distorted hexagonal close-packing of N,

in which B and P occupy 1/12 of the tetrahedral and 1/2 of the octahedral voids, respectively (Figure 6.2).

Thus the B/P/N network is built up from BN4 tetrahedra and PN6 octahedra as expressed by the Niggli

formula 3
∞

[
B[4]P[6]

3N[4]
4N[3]

2
]

(Figure D.8).[10,11] Herein, both, P[6] and N[4] are unprecedented struc-

tural motifs within the compound class of phosphorus nitrides. The β-BP3N6 structure can be broken

down into
[
BP3N8/2N6/3

]
building units consisting of three edge-sharing PN6 octahedra and one BN4 te-

trahedron. Interconnected building units form chain-like substructures along a (Figure 6.3a), which are

connected along c to form the highly condensed framework (Figure 6.3b). As a consequence, all BN4

tetrahedra are oriented in the same direction, resulting in a polar network (space group Pna21). To the
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best of our knowledge, there is no experimental evidence for such a network in the literature, and thus

the β-BP3N6 structure can be considered as a new network type.

Figure 6.3.: a) Interconnected
[
BP3N8/2N6/3

]
building units consisting of three edge-sharing PN6 octahedra and one

BN4 tetrahedron form chain-like substructures along a. b) The highly condensed polar B/P/N network is created
by the 21 screw axes running along c. B: green/red, P: gray/blue.

The α-BP3N6−→ β-BP3N6 phase transition is characterized by a significant change in volume and

density (23 %; Figure D.7), and thus can be described as a reconstructive phase transition. This finding

is in line with the observed fragmentation of a single-crystal of α-BP3N6 into multi-domain grains upon

laser heating (Figures D.4–D.6). After in situ characterization at 42 GPa, a pressure-quenched sample

of β-BP3N6 was re-investigated at ambient conditions. The corresponding single-crystal data refinement

shows no transformation of the β-BP3N6 structure, suggesting β-BP3N6 to be metastable at ambient

conditions (Tables D.5–D.7). The lattice parameters a, b, and c expanded by 3.7, 3.7, and 4.2 %, which

corresponds to a total increase of 12 % in the unit cell volume (Figure D.7).

At 42.4(1) GPa, the mean interatomic P–N (1.74(1) Å) and B–N distances (1.50(1) Å) in β-BP3N6 are

in good agreement with the values suggested for PN6 octahedra in hypothetical kyanite-type P3N5 (1.69 Å

at 43 GPa) and reported for c-BN (1.51 Å at 42.7 GPa).[32,51] At ambient pressure, the atomic positions

(Table D.7) could only be refined with high uncertainties owing to the lack of high-quality XRD data
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(see Chapter D). Hence, we desist from a detailed quantitative discussion of the interatomic distances at

ambient pressure within this manuscript (Table D.8). The averaged interatomic P–N and B–N distances,

however, increased significantly upon pressure quenching to 1.81(4) and 1.59(6) Å, respectively.

At about 42 GPa, the PN6 and BN4 coordination polyhedra appeared to be significantly distorted, as in-

dicated by the interatomic T –N distances and N–T –N angles (T = B, P; Tables D.8 and D.9). To quantify

the distortions of the coordination polyhedra at 42.4(1) GPa, they were described by MBEs (Figure D.10

and Table D.11).[49] The PN6 octahedra as well as the BN4 tetrahedra show medium distortions, as indica-

ted by moderate shape parameters and center displacements. An overlay of the normalized coordination

polyhedra at 42.4(1) GPa and ambient pressure is provided in Chapter D (Figure D.9) and suggests no

fundamental changes in the structure upon pressure quenching.

To evaluate the β-BP3N6 structure from an electrostatic point of view, CHARDI and MAPLE calcu-

lations were performed.[52,53] CHARDI analysis of the β-BP3N6 structure at 42.4(1) GPa revealed mean

total charges of +3.07, +4.98, and −3.00 for B, P, and N, which is in very good agreement with the re-

spective formal oxidation states (+III, +V,−III). The effective coordination numbers of B and P are 3.94

and 5.68, in line with four- and sixfold coordination. The Madelung part of the lattice energy (MAPLE)

of β-BP3N6 is 92 631 kJ·mol−1 at 42.4(1) GPa, which is in fair agreement with the values of α-BP3N6

(90 556 kJ·mol−1)[42] and the sum of the binary nitrides (90049–91 877 kJ·mol−1).[1,2,9,28,29] More detai-

led information on the CHARDI and MAPLE analyses is provided in Chapter D (Tables D.12 and D.13).

In conclusion, α-BP3N6 was investigated by pressure-dependent single-crystal XRD measurements to

a maximum pressure of about 42 GPa, at which laser heating induced a phase transition into its high-

pressure polymorph β-BP3N6. Upon pressure load the structure of α-BP3N6 contracted isotropically, and

its isothermal bulk modulus is 146(6) GPa, as determined from pressure–volume data. The structure of

β-BP3N6 was elucidated from single-crystal XRD at about 42 GPa and ambient pressure, and can be

described as an unprecedented decoration of a hexagonal close-packing. The highly condensed structure

is assigned a new polar network type that is built up from BN4 tetrahedra and PN6 octahedra. The latter

motif has been proposed for various phosphorus nitrides in multiple theoretical studies, but had pre-

viously not been confirmed experimentally. Thus, β-BP3N6 provides fundamental new insights into the

high-pressure behavior of non-metal nitrides and paths the way for the future exploration of numerous

predicted high-pressure polymorphs of, for example, P3N5, BeP2N4, or LiPN2.
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Nitride spinel: At 47 GPa and 1800 K

phenakite-type BeP2N4 was transformed into the

spinel-type form of BeP2N4 using a laser-heated

diamond anvil cell. Its crystal structure was in-

vestigated using pressure-dependent in situ syn-

chrotron XRD measurements and its isother-

mal bulk modulus was determined to > 300 GPa,

which renders spinel-type BeP2N4 an ultrain-

compressible material.
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Abstract Owing to its outstanding elastic properties,

the nitride spinel γ-Si3N4 is of considered interest for ma-

terials scientists and chemists. DFT calculations suggest

that Si3N4-analog beryllium phosphorus nitride BeP2N4

adopts the spinel structure at elevated pressures as well

and shows outstanding elastic properties. Herein, we in-

vestigate phenakite-type BeP2N4 by single-crystal syn-

chrotron X-ray diffraction and report the phase transition

into the spinel-type phase at 47 GPa and 1800 K in a laser-

heated diamond anvil cell. The structure of spinel-type BeP2N4 was refined from pressure-dependent

in situ synchrotron powder X-ray diffraction measurements down to ambient pressure, which proves

spinel-type BeP2N4 a quenchable and metastable phase at ambient conditions. Its isothermal bulk modu-

lus was determined to 325(8) GPa from equation of state, which indicates that spinel-type BeP2N4 is an

ultraincompressible material.

Due to a broad range of materials properties and applications, oxide spinels with the general formula

AB2O4 (A, B = metal ions) are an extensively investigated field of research and numerous compounds

have been reported.[1] In contrast, only few representatives of nitride spinels (AB2N4) have been prepa-

red, as yet.[2] However, they have already been proven to compete with oxide materials for outstanding

materials properties, especially with regard to mechanical resilience.[3]

The synthesis of the group 14 nitrides γ-Si3N4,[3,4] γ-Ge3N4,[5,6] and Sn3N4
[7] heralded a new era of

nitride chemistry, as these compounds represent the first nitride spinels.[2] γ-Si3N4 has been prepared in

diamond anvil cells (DAC),[3] multianvil presses,[4] as well as in shockwave experiments,[8] and recently

even the preparation of macroscopic transparent polycrystalline γ-Si3N4 windows has been achieved.[9]

The isothermal bulk modulus K0 and the Vickers hardness HV of γ-Si3N4 have been determined to K0 =

290–317 GPa[3,9–11] and HV = 30–43 GPa,[9,10,12,13] which makes it one of the most incompressible and

hardest low-density materials.

Due to the topological rigidity of spinels, they are considered to intrinsically feature outstanding ela-

stic properties, which might be further enhanced by strong covalent A–N and B–N bonds in the case
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of nitride spinels.[14–17] The elemental diversity of nitride spinels, however, is comparatively small, as

experimental and theoretical research on nitride spinels has most widely been limited to the binary and

ternary nitrides of C, Si, Ge, Sn, Pb, Ti, and Zr,[17–20] and only nitride spinels of tetravalent cations (AIV,

BIV = Si, Ge, Sn)[3,5–7,21] have been prepared, as yet. Besides tetravalent cations, a nitride spinel with

the general formula AB2N4 may also be composed of AVI and BIII (AVIBIII
2 N4) or AII and BV cations

(AIIBV
2 N4), when electrostatic neutrality is stipulated. The II-V combination has been reported for se-

veral phosphorus(V) nitride materials with the general formula MIIP2N4 (MII = Be, Ca, Sr, Ba, Mn, Cd),

which form PN4 tetrahedra based networks.[22–26] To the best of our knowledge, a spinel-type phase,

however, has not been reported for any AVIBIII
2 N4 or AIIBV

2 N4, as yet.

Theoretical investigations have predicted spinel-type (sp) BeP2N4 as a stable polymorph at eleva-

ted pressures, which makes it a promising candidate for the first AIIBV
2 N4-type nitride spinel.[22,27–29]

Hitherto, only phenakite-type (phe) BeP2N4 has been reported, which is isoelectronic and homeotypic

with β-Si3N4 and features BeN4 and PN4 tetrahedra.[22,30,31] By analogy with the Si3N4 polymorphism,

phe-BeP2N4 is considered to undergo a phase transition into the regular spinel structure with Be and P

occupying tetrahedral and octahedral voids of the cubic close-packing of N, respectively.[22] BeN4 tetra-

hedra are a common motif in crystal chemistry of beryllium nitrides,[32,33] whereas PN6 octahedra have

only been reported in the high-pressure polymorph β-BP3N6, recently.[34]

The phenakite- to spinel-type transition pressure of BeP2N4 has been predicted to 14–24 GPa from

DFT calculations and due to its covalent character, sp-BeP2N4
∗ is suggested to be quenchable to ambient

pressure as a metastable phase.[22,27,28] Its isothermal bulk modulus has been calculated to be in the range

of 263–291 GPa, which emphasizes the kinship with γ-Si3N4.[22,27–29] Moreover, the Vickers hardness

HV of sp-BeP2N4 has been estimated to approximately HV = 45GPa using (semi)empirical approaches,

which would make it a promising candidate for a superhard low-density material.[28,35,36]

Herein, we report on the phe-BeP2N4 −→ sp-BeP2N4 phase transition at 47 GPa, which was inves-

tigated in a laser-heated DAC employing in situ synchrotron X-ray diffraction (XRD) measurements.

The structure of sp-BeP2N4 was refined using the Rietveld method and its elastic properties have been

investigated upon cold decompression to ambient pressure.

∗Within this contribution the spinel-type phase of BeP2N4 is denoted as sp-BeP2N4 rather than γ-BeP2N4, which has been
used in some previous references to emphasize the structural relation to γ-Si3N4. A β-BeP2N4, however, has not been
reported, as yet.
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phe-BeP2N4 was initially synthesized from Be3N2 and P3N5 in a large volume press at 7 GPa and

1500 ◦C, employing the multianvil technique (Equation 7.1, more details are provided in Chapter E).[22]

Be3N2 + 2 P3N5 3 phe-BeP2N4 (7.1)

To select a suitable particle for in situ high-pressure investigations and to verify the phenakite-type

structure of BeP2N4, several polycrystalline grains were screened by synchrotron XRD measurements at

ambient conditions (Figure E.2). Integration of the most intense domain of a multi-domain crystalline

grain yielded a suitable single-crystal data set (Figure E.3), from which the structure of phe-BeP2N4 was

elucidated (R3̄ (no. 148), a= 12.6979(15), c= 8.3595(10)Å, V = 1167.3(5) Å3, Z = 18). All atoms were

refined with anisotropic displacement parameters and the mean interatomic Be–N and P–N distances are

1.734(15) and 1.636(8) Å, respectively, which is in line with values that have been reported for the binary

nitrides.[32,33,37] The here obtained structural model verifies the model previously reported by Pucher et

al. that has been solved and refined from powder XRD data (Table E.1, E.4).[22,38] Figure 7.1 illustrates

the single-crystal structure of phe-BeP2N4 as well as the constituting BeN4 and PN4 tetrahedra. More

detailed information on the synchrotron XRD measurement and the structure refinement of phe-BeP2N4

is provided in Chapter E (Table E.1–E.4).

Figure 7.1.: Crystal structure of phe-BeP2N4 as obtained from single-crystal synchrotron XRD. Be (gray) and P
(black) are in fourfold N coordination and ellipsoids are displayed at 99 % probability level.
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To investigate the predicted phe-BeP2N4 −→ sp-BeP2N4 phase transition, the pre-selected particle of

phe-BeP2N4 was loaded in a DAC with Ne serving as a pressure transmitting medium and ruby as an

internal pressure standard. The sample was cold-compressed in two steps to a maximum pressure of

47.3(9) GPa. At both steps a XRD step scan was collected that could be indexed with the metrics of

phe-BeP2N4 (Figure E.4, Table E.5). Owing to very low intensities, a refinement of the integrated data,

however, was not feasible at those pressures. At 47.3(9) GPa the unit cell of phe-BeP2N4 has contracted

by approximately 16 vol-% in comparison to the ambient pressure model (Figure E.6).

Figure 7.2.: (a) XRD scans of the BeP2N4 sample before (top) and after laser heating at 47.3(9) GPa (bottom),
corresponding to phe- and sp-BeP2N4, respectively. (b) Rietveld refinement of sp-BeP2N4 and Ne at 47.3(9) GPa
from in situ X-ray measurements using synchrotron radiation (λ = 0.2894Å). Observed and calculated XRD
intensities: black circles, gray line; difference plot: dotted gray line; positions of Bragg reflections of sp-BeP2N4

and Ne: black and gray vertical bars. Reflections of minor residues of phe-BeP2N4 are marked by asterisks and
weak scattering of the Re gasket is labelled.[22]

To induce the phase transition into the spinel-type structure, the phe-BeP2N4 particle was laser-heated

from both sides to an average temperature of 1800(200) K at 47.3(9) GPa (NIR fiber laser, λ = 1070nm).

This pressure was deemed sufficient for the formation of PN6 octahedra, as this motif was recently pro-

ven at 42 GPa in β-BP3N6.[34] The sample was monitored with in situ synchrotron XRD scans for the
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course of the heating period. After a few seconds, unidentified Bragg reflections appeared and heating for

another minute led to an almost full conversion of phe-BeP2N4 (Figure 7.2 and E.5). Subsequently, the

sample was allowed to cool down to ambient temperature after which a XRD wide scan was collected.

The powder XRD pattern of the new phase matched the Bragg reflections of the predicted spinel-type

phase (Figure 7.2 and E.5).[25] Therefore, the experimental pressure of about 47 GPa is proven suffi-

ciently high for the phe-BeP2N4 −→ sp-BeP2N4 phase transition, but the minimum transition pressure

may be most likely significantly lower, considering theoretical investigations on sp-BeP2N4 (ptrans =

14–24 GPa)[22,28] and experimental examinations of isoelectronic γ-Si3N4 (ptrans ≈ 13 GPa).[3,4,11]

Figure 7.3.: The crystal structure of sp-BeP2N4 as refined from PXRD data collected at 47.3(9) GPa. Be (gray)
occupies tetrahedral and P (black) octahedral voids in a cubic close-packing of N (white), corresponding to the
regular spinel structure.

Single-crystal XRD measurements of sp-BeP2N4, however, were not feasible, as the title compound did

not form any adequate domains (Figure 7.2a). Thus, the sp-BeP2N4 structure was refined on PXRD data

obtained at 47.3(9) GPa employing the Rietveld method (Table E.6).[39] The DFT-based model was used

as a starting point for the refinement and was subsequently corroborated by the experimental data.[25] sp-

BeP2N4 crystallizes in the regular spinel structure (Fd3̄m, no. 227, a = 7.1948(2)Å, V = 372.44(3) Å3,

Z = 8) with site symmetries Be(8b, 4̄3m), P(16c, .3̄m), and N(32e, .3m).[25,40] More detailed informati-

on on the structure refinement is provided in Chapter E (Tables E.6–E.9, Figure E.7). No experimental

evidence for Be/P disorder or an inverse spinel structure was observed. This is in agreement with the

calculations presented by Pucher et al. that characterized the inverse spinel-type BeP2N4 to be unfavored

towards phe- and sp-BeP2N4.[22] The refined crystal structure of sp-BeP2N4 and the respective coordi-
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nation polyhedra of Be and P are illustrated in Figure 7.3. The interatomic Be–N and P–N distances

at 47.3(9) GPa are 1.635(2) and 1.755(2) Å, respectively, corresponding to fourfold coordinated Be and

sixfold coordinated P.

To verify the sp-BeP2N4 structure in terms of electrostatics, the Madelung part of lattice energy

(MAPLE) was analyzed.[41] The calculated MAPLE value of sp-BeP2N4 is 58 140 kJ·mol−1, which is

in very good agreement with the values calculated for phe-BeP2N4 (58 542 kJ·mol−1, ∆E = 0.7%) and

the weighted sum of the binary nitrides P3N5 and Be3N2 (58 992 kJ·mol−1, ∆E = 1.4%). More detailed

information on MAPLE calculations are provided in Table E.10.

Figure 7.4.: The pressure-volume data from pressure-dependent Rietveld refinements were fitted with a 2nd and
3rd order Birch-Murnaghan equation of state (BM EoS,), with fitting parameters provided in the main text. The
isothermal bulk modulus of > 300 GPa renders sp-BeP2N4 an ultraincompressible material.[14]

Incremental cold decompression of sp-BeP2N4 to ambient pressure was monitored by in situ PXRD

measurements at 17 pressure points (Figure E.6, Table E.9). The pressure-dependent Rietveld refine-

ments show that sp-BeP2N4 is quenchable to ambient conditions. The expansion of the unit cell upon

decompression from 47.3(9) GPa to ambient pressure was 14 vol-%, while the interatomic Be–N and
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P–N distances at ambient pressure expanded to 1.752(2) and 1.808(2) Å, respectively (Table E.9, Figu-

re E.8). These values are in good agreement with values from the DFT model and with those reported for

BeN4 and PN6 polyhedra in Be3N2 and β-BP3N6.[22,32,33]

According to DFT calculations, sp-BeP2N4 is considered to show a very low compressibility (263 <

K0 < 291 GPa).[22,27–29] Thus, the pressure-volume data from pressure-dependent Rietveld refinements

were fitted with both, a 2nd and a 3rd order Birch-Murnaghan (BM) equation of state (EoS), yielding

the fitting parameters V0 = 423.76(7) Å3, K0 = 305(5) GPa, K′0 = 4 (fixed) and V0 = 423.68(6) Å3, K0

= 325(8) GPa, K′0 = 2.4(5), respectively (Figure 7.4 and E.9).[42,43] These findings render sp-BeP2N4

an ultraincompressible material,[14]† exceeding the bulk modulus of γ-Si3N4 as well as the predicted

values from DFT calculations. Its hardness and thermal stability, however, have not been investigated

experimentally, as yet. As the title compound is quenchable to ambient conditions and may form at

significantly lower pressures, its synthesis may be reproduced in large volume presses, providing sample

amounts suitable for future investigations in terms of its elastic, physical and optical properties. More

detailed information on the BM EoS fits and the elastic properties of sp-BeP2N4 is provided in Chapter E.

Recapitulating, phe-BeP2N4 was synthesized in a high-pressure high-temperature reaction and the

literature-known structure model was confirmed by single-crystal synchrotron XRD measurements. As

predicted from theoretical studies, phe-BeP2N4 was transformed into the spinel-type phase at 47 GPa and

1800 K using a laser-heated DAC. sp-BeP2N4 was proven to be quenchable to ambient pressure and it

is rendered an ultraincompressible material from equation of states. Therefore, the title compound is the

first AIIBV
2 N4-type nitride spinel and a pioneer compound that extends the still narrow field of nitride

spinels by introducing ions with oxidation states +II and +V. This should encourage further experimental

investigations on mixed nitride spinels, as they appear as promising compounds for next-generation ma-

terials. Thus, future investigations may deal with the incorporation of divalent (e.g. Mg, Zn, Cu, Ni) and

pentavalent cations (e.g. V, Nb or Ta) into II-V nitride spinels, which might introduce intriguing optical

and magnetic properties to this emerging field of research.

†The ultraincompressible character, however, does not imply an intrinsic superhard behavior of sp-BeP2N4, as the hardness of
a certain material correlates with its shear modulus rather than with its compressibility (bulk modulus).[14,16,17,29]
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8. Summary

The research objective of this thesis was a fundamental investigation of phosphorus nitrides in terms

of their preparation and high-pressure behavior. Therefore, the presented publications cover both, the

development of an unprecedented synthetic approach for phosphorus nitrides, and their structural inves-

tigation at ambient- and high-pressure conditions. This thesis may thus formally be divided into two

major parts.

Within the first part that is covered by Chapter 3 and 4, an innovative preparative strategy for mixed

phosphorus nitrides is developed. Herein, high-pressure high-temperature conditions are used to prevent

the thermal decompositon of the targeted compounds, following Le Chatelier’s principle. The reaction of

(PNCl2)3 and NH4N3 grants the in situ formation of HCl, which appears essential for mobilization of the

refractory nitrides BN and Si3N4 that are used as starting materials. This synthetic approach facilitates

the initial syntheses of boron phosphorus nitride BP3N6 and silicon phosphorus nitride imide SiP2N4NH,

as presented in Chapter 3 and 4, respectively. Their unprecedented structures, as elucidated from single-

crystal XRD analyses and solid-state NMR measurements, moreover, provide intriguing insights into the

structural chemistry of phosphorus nitrides.

The second part of this thesis covers the structural investigation of phosphorus nitrides at high pres-

sures. Prior to this thesis, phosphorus nitrides were sparsely investigated at pressures > 16 GPa and their

structural investigations were mostly restricted to ex situ XRD measurements using in-house diffracto-

meters. Within the Chapters 5, 6, and 7, therefore, various polymorphs of PON, BP3N6, and BeP2N4 were

investigated in situ at maximum pressures of about 50 GPa, employing laser-heated diamond anvil cells

and 3rd generation synchrotron radiation.

The stishovite-related post-coesite polymorph of PON is presented in Chapter 5, in which experi-

mental results from in situ and ex situ examinations, as well as supporting DFT calculations are reported.

Chapter 6, in turn, concerns the pressure-dependent structural investigations of BP3N6. Herein, the elastic
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properties of α-BP3N6 are examined and the formation of its high-pressure polymorph β-BP3N6 is repor-

ted. The structure elucidation of β-BP3N6 provides the first experimental proof of sixfold N-coordinated

P in a nitride material, which was predicted for numerous high-pressure phases of phosphorus nitrides,

previously. Likewise, the preparation and examination of a spinel-type form of Si3N4-analog BeP2N4 is

presented in Chapter 7. Spinel-type BeP2N4 features remarkable elastic properties and is therefore dis-

cussed in the context of superhard and ultraincompressible nitride materials. More detailed information

on the certain publications of this thesis is provided below in individual summaries of the Chapters

3: United in Nitride: The Highly Condensed Boron Phosphorus Nitride BP3N6,

4: Rivalry under Pressure: The Coexistence of Ambient-Pressure Motifs and

Close-Packing in Silicon Phosphorus Nitride Imide SiP2N4NH,

5: Stishovite’s Relative: A Post-Coesite Form of Phosphorus Oxonitride,

6: Boron Phosphorus Nitride at Extremes: PN6 Octahedra in the High-Pressure

Polymorph β-BP3N6, and

7: Nitride Spinel: An Ultraincompressible High-Pressure Form of BeP2N4.
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8.1. United in Nitride: The Highly Condensed Boron Phosphorus Nitride

BP3N6

Published in: S. Vogel et al., Angew. Chem. Int. Ed. 2018, 57, 13202;

Angew. Chem. 2018, 130, 13386.

Access via: DOI: 10.1002/anie.201808111

Reprinted at: Chapter 3, Supporting Information in Chapter A

Figure 8.1.: A single-crystal of BP3N6 and its atomic structure
featuring PN4 (blue, gray) and BN4 tetrahedra (green).

The first boron phosphorus nitride, BP3N6,

was prepared in a high-pressure high-

temperature reaction at 8 GPa and 1100 ◦C,

using the multianvil technique. (PNCl2)3,

NH4N3, and h-BN were used as starting

materials following Equation 8.1. The in

situ formed HCl is considered to act as

a mineralizing agent during the synthe-

sis, providing reactive intermediate boron

species and facilitating phase formation.

Single-crystals of BP3N6 up to 80 µm in length were obtained by adding up to 25 wt-% NH4Cl to the

mixture of starting materials. The structure of BP3N6 was elucidated from single-crystal XRD (P21/c

(no. 14), a = 5.027(1), b = 4.531(1), c = 7.332(3)Å, β = 106.387(9)°, Z = 4) and verified by Rietveld

refinement. BP3N6 is built up from edge-sharing PN4 tetrahedra and all-side vertex-sharing PN4 and BN4

tetrahedra, formally blending structural motifs of the binary nitrides α-P3N5 and c-BN, which renders

BP3N6 a double nitride.

2 (PNCl2)3 + 3 NH4N3 + 2 h-BN 8 GPa
1100 ◦C 2 BP3N6 + 12 HCl + 4 N2 (8.1)

The elemental composition of the title compound was confirmed by EDX spectroscopy, and 11B, 31P,

31P{1H}, and 1H solid-state MAS NMR measurements verified the as-refined structure model from XRD.

The topology of the highly condensed B/P/N network (κ = 4/6 ≈ 0.67) was determined by TOPOS and

its electrostatic plausibility was examined by supplemental MAPLE and CHARDI calculations.
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8.2. Rivalry under Pressure: The Coexistence of Ambient-Pressure Motifs

and Close-Packing in Silicon Phosphorus Nitride Imide SiP2N4NH

Published in: S. Vogel et al., Angew. Chem. Int. Ed. 2019, 58, 3398;

Angew. Chem. 2019, 131, 3436.

Access via: DOI: 10.1002/anie.201813789

Reprinted at: Chapter 4, Supporting Information in Chapter B

Figure 8.2.: Crystal structure of SiP2N4NH and corresponding
solid-state NMR spectra. Si: red, P: gray.

The preparation and structure elucidati-

on of silicon phosphorus nitride imide

SiP2N4NH is presented. Employing the

multianvil technique, the title compound

was synthesized in a high-pressure high-

temperature reaction (8 GPa, 1100 ◦C)

starting from amorphous Si3N4, (PNCl2)3,

and NH4N3 (Equation 8.2). It is assumed

that the in situ formed HCl facilitates the

reversible cleavage and (re)formation of

the T –N bonds (T = Si, P). The structure of SiP2N4NH was elucidated by a synergy of single-crystal XRD

(Pnma (no. 62), a = 8.311(2), b = 5.396(1), c = 7.239(2)Å, Z = 4) and solid-state MAS NMR mea-

surements (29Si{1H}, 31P, 31P{1H}, 1H). The highly condensed structure of SiP2N4NH (κ = 3/5 = 0.6)

features PN4 tetrahedra, as well as the rare motif of SiN6 octahedra and can be derived from a distorted

hexagonal close-packing of N. The title compound is therefore discussed as an intermediate phase that

blends ambient- and high-pressure motifs.

4 Si3N4 + 8 (PNCl2)3 + 15 NH4N3
8 GPa

1100 ◦C 12 SiP2N4NH + 48 HCl + 20 N2 (8.2)

An additional Rietveld refinement verifies the presented structure model, and its electrostatic plausibility

was examined by CHARDI analysis. The elemental composition of SiP2N4NH was confirmed by EDX

spectroscopy, and its thermal stability was investigated by temperature-dependent PXRD measurements.
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8.3. Stishovite’s Relative: A Post-Coesite Form of Phosphorus Oxonitride

Published in: S. Vogel et al., Angew. Chem. Int. Ed. 2018, 57, 6691;

Angew. Chem. 2018, 130, 6801.

Access via: DOI: 10.1002/anie.201803610

Reprinted at: Chapter 5, Supporting Information in Chapter C

Figure 8.3.: Crystal structure of pc-PON featuring a split posi-
tion of P (black, s.o. f .= 0.5) within a (5+1) coordination of O
and N (blue).

A stishovite-related post-coesite (pc) po-

lymorph of phosphorus oxonitride PON is

reported, which was prepared at 20 GPa in

a multianvil apparatus. Its structure was

elucidated from powder X-ray diffraction

data using the charge-flipping algorithm

and the Rietveld method (P42/mnm (no.

136), a = 4.6278(1), c = 2.46042(4)Å,

Z = 2), and the cell metrics were further

confirmed by selected area electron dif-

fraction (SAED) tilting series. The title

compound adopts a stishovite-related structure, but features a (5+1) coordination of P rather than a regu-

lar sixfold coordination that is observed in rutile-type SiO2 (stishovite). This is owed to a split position

of P that is located in the octahedral coordination sphere of O and N. pc-PON was investigated by 31P

solid-state MAS NMR, TEM-EDX, as well as FTIR spectroscopy, and temperature-dependent PXRD

measurements proved pc-PON as a metastable polymorph at ambient pressure. The title compound’s

structure was further verified by a single-crystal XRD measurement at 1.8 GPa using a diamond anvil

cell and synchrotron radiation, and its isothermal bulk modulus was calculated with K0 = 163(2)GPa

from pressure-dependent PXRD investigations. Moreover, an additional phase transition into an orthor-

hombic PON form is reported at 20 GPa, for which a CaCl2-related structure is suggested. The presented

experimental results are supplemented and confirmed by GGA-based DFT calculations.
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8.4. Boron Phosphorus Nitride at Extremes: PN6 Octahedra in the

High-Pressure Polymorph β-BP3N6

Published in: S. Vogel et al., Angew. Chem. Int. Ed. 2019, 58, 9060;

Angew. Chem. 2019, 131, 9158.

Access via: DOI: 10.1002/anie.201902845

Reprinted at: Chapter 6, Supporting Information in Chapter D

Figure 8.4.: B and P occupy tetrahedral and octahedral voids
of a hexagonal close-packing of N atoms leading to BN4 tetra-
hedra (green) and PN6 octahedra (gray).

The double nitride BP3N6 was investiga-

ted in a laser-heated diamond anvil cell

by pressure-dependent synchrotron X-ray

diffraction. α-BP3N6 contracts uniform-

ly upon cold compression, showing on-

ly slight structural distortions and its iso-

thermal bulk modulus was calculated with

K0 = 146(6)GPa from pressure-volume

data. At 42 GPa laser heating of α-BP3N6

induced a phase transition into its high-

pressure polymorph β-BP3N6. The unique

structure of β-BP3N6 was elucidated from single-crystal synchrotron X-ray diffraction at 42 GPa (Pna21

(no. 33), a = 8.667(1), b = 7.411(4), c = 4.0115(4)Å, Z = 4) and is described as an unprecedented

decoration of a hexagonal close-packing of N with B occupying 1/12 of the tetrahedral and P occupying

1/2 of the octahedral voids. This structural model was further verified by MAPLE and CHARDI calcu-

lations. β-BP3N6 is quenchable to ambient conditions and its structure shows only marginal structural

distortions upon pressure quenching. The title compound is discussed in the context of fundamental

structural chemistry of non-metal nitrides, as sixfold N-coordinated P had been an unprecedented, but

much sought-after structural motif, previously.
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8.5. Nitride Spinel: An Ultraincompressible High-Pressure Form of

BeP2N4

Published in: S. Vogel et al., Angew. Chem. Int. Ed. 2019 (accepted);

Angew. Chem. 2019 (accepted).

Access via: DOI: 10.1002/anie.201910998

Reprinted at: Chapter 7, Supporting Information in Chapter E

Figure 8.5.: Crystal structure of phenakite-type (left) and
spinel-type BeP2N4 (right) with respective coordination poly-
hedra of Be (blue) and P (gray, red).

Phenakite-type BeP2N4 was synthesized in

a high-pressure high-temperature reaction

at 7 GPa and 1500 ◦C, starting from Be3N2

and P3N5. Its structure was verified by

single-crystal synchrotron X-ray diffracti-

on at ambient pressure (R3̄ (no. 148), a =

12.698(2), c = 8.360(1)Å, Z = 18) before

a suitable particle of phe-BeP2N4 was cold

compressed in a diamond anvil cell. At a

maximum pressure of about 47 GPa laser-

heating the sample to 1800 K induced the

phase transition into the spinel-type phase (sp) that had been predicted from DFT calculations, before.

The sp-BeP2N4 structure was refined from powder synchrotron X-ray diffraction measurements using

the Rietveld method (p = 47.3(9)GPa, Fd3̄m (no. 227), a = 7.1948(2)Å, Z = 8). Corresponding to the

regular spinel structure, Be and P occupy 1/8 of the tetrahedral and 1/2 of the octahedral voids in a cu-

bic close-packing of N, respectively. Additional MAPLE calculations were performed that confirm the

as-refined structure. Furthermore, sp-BeP2N4 was investigated upon cold decompression to ambient pres-

sure, of which pressure-dependent structural data were obtained. The title compound is quenchable to

ambient conditions and its isothermal bulk modulus was calculated with K0 = 325(8)GPa from equation

of states, which renders sp-BeP2N4 an ultraincompressible material. The presented results are discussed

in the context of previous DFT calculations as well as other incompressible nitride spinels (e. g. γ-Si3N4)

and prospects for future investigations are outlined.
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9. Discussion and Outlook

This thesis presents new fundamental investigations on the preparation and high-pressure behavior of

phosphorus nitrides. Within the first part, the high-pressure high-temperature synthesis of mixed phos-

phorus nitrides is advanced through the development of an innovative preparative approach. As presented

in Chapter 3 and 4, this enabled the synthesis of boron phosphorus nitride α-BP3N6 and silicon phospho-

rus nitride imide SiP2N4NH, enhancing both, the elemental and the structural diversity of phosphorus

nitrides. Employing diamond anvil cells and microfocused synchrotron X-ray diffraction, the work pre-

sented in Chapter 5, 6, and 7 further greatly expands the pressure range, in which phosphorus nitrides

are experimentally investigated. These studies provide unprecedented examinations of the elastic pro-

perties of phosphorus nitrides and gave rise to the first nitride phases, β-BP3N6 and spinel-type BeP2N4,

that feature sixfold N-coordinated P, which can be regarded as a milestone in the structural research of

phosphorus nitrides.

In the following sections, key results are discussed in the context of previous investigations and esta-

blished scientific concepts, in order to deduce the most important achievements made in this thesis.

Moreover, prospects for additional investigations are outlined to gain future progress within the field of

P/N compounds and nitride materials in general.

9.1. Progress in Nitride Synthesis

Prior to this thesis, phosphorus nitrides have mainly been synthesized using three major preparative ap-

proaches, namely the mineralizer-assisted (e. g. α-P3N5),[1,2] the molecular precursor (e. g. SiPN3),[3]

and the high-pressure high-temperature (HP/HT) approach (e. g. BeP2N4),[4] as briefly outlined in Chap-

ter 1.3. The preparative method that is devised in this thesis and denoted as the acid-assisted HP/HT

technique below, in contrast, can be described as the formal combination of these three established ap-
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9. Discussion and Outlook

proaches, granting access to previously inaccessible compounds. Herein, molecular (PNCl2)3 and NH4N3

are reacted with a refractory binary nitride (e. g. h-BN) at high pressures and high temperatures to form

a crystalline mixed phosphorus nitride, as exemplarily shown for α-BP3N6 in Equation 9.1.

2 (PNCl2)3 + 3 NH4N3 + 2 h-BN 8 GPa
1100 ◦C 2α-BP3N6 + 12 HCl + 4 N2 (9.1)

Although the mechanism of the acid-assisted HP/HT technique was not investigated in situ over the

course of this PhD project, a reasonable scientific theory that describes its mode of action in simplified

terms may be deduced from ex situ observations and preexisting simple scientific concepts that origi-

nate from molecular and nano chemistry. For this purpose, the single-crystal formation of α-BP3N6 and

SiP2N4NH, as presented in Chapter 3 and 4, is divided into three major regimes, namely (i) the decompo-

sition of the solid-state precursors, (ii) the nucleation, and (iii) the crystal growth. The over-all reaction

may thus be described as a non-topotactic rearrangement of T and N atoms or small T –N species (T =

B, Si, P), as is discussed below and schematically illustrated in Figure 9.1.

In an initial step the heat-induced decomposition of (PNCl2)3 and NH4N3 likely results in the for-

mation of molecular [PaNbClcHd]m species as well as N2 and HCl (Equation 9.2). Herein, the stated

[PaNbClcHd]m species may correspond to mono- or oligomers of derivates of phosphorus amides, imi-

des, or chlorides,[5,6] with a, b, c, and d serving as variables for non-negative integers and m accounting

for possible charges. One therefore may think about PCl5, P(NH2) +
4 , Cl2P(NH2)+, or Cl3PNPCl +

3 as in-

termediate species, for instance.

(PNCl2)3 + NH4N3
HP/HT

[PaNbClcHd ]
m + HCl + N2 (9.2)

At the applied HT/HP conditions, the in situ formed HCl most likely exists in the supercritical state,

considering its critical point at pcrit = 82.56 bar and Tcrit = 51.53 ◦C.[7] It was shown that even refractory

BN and Si3N4 can be used as starting materials, which suggests that strong acids (e. g. HCl) facilitate

their mobilization by the cleavage of B–N and Si–N bonds, as has previously been assumed for P–N

bonds,[8–10] and discussed for the Si3N4/HF system as well.[11] Thus, intermediate [TaNbClcHd]m spe-

cies (T = B, Si) are likely also provided in situ by the HCl-assisted dissolution of refractory BN and

Si3N4 (Equation 9.3). Here, monomeric Cl2BNH2, Cl3SiNH2, or Cl2Si(NH2)2, dimeric Cl3SiNHBCl2,
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or Cl3SiNHB(NH)2, as well as ionic ClBNH +
2 , B(NH2) –

4 , or Cl2SiNH +
2 may be considered as plausible

intermediate species, for instance.

TxNy,bulk + HCl HP/HT
(TxNy,bulk) + [TaNbClcHd ]

m (9.3)

Figure 9.1.: The acid-assisted HP/HT technique may be formally divided into three major steps. The initial de-
composition of the solid-state precursors is facilitated by HP/HT conditions as well as in situ formed HCl, and
likely results in the formation of [TaNbClcHd]m species (T = B, Si, P; Equations 9.2 and 9.3). These intermediate
species may randomly condense during the reversible process of nucleation to form crystallites of the thermodyna-
mically stable phase (Equation 9.4). The formation of single-crystals (crystal growth), finally, is greatly enhanced
by NH4Cl, which is considered to act as a mineralizer that grants the migration of all involved intermediate species
(Equation 9.5).

In a subsequent stochastic process all intermediate species may migrate, intermix, and condense ran-

domly into macromolecular nuclei by the reversible formation of T –N bonds (T = B, Si, P; Equation 9.4),

entering the regime of nucleation. The surfaces of the as-formed nuclei are likely saturated with Cl and

H, providing reactive sites for further polycondensation or re-dissolution, depending on the stability of

the nuclei. Since this equilibrium equation is highly reversible, the formation of defects is prevented,

yielding highly ordered crystallites that subsequently can grow within the regime of crystal growth.

[T1NbClcHd ]
m + [T2Nb′Clc′Hd′ ]

m′ [Hd−1ClcNbT1−N−T2Nb′−1Clc′−1Hd′ ]
n + HCl (9.4)
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It was shown that α-BP3N6 and SiP2N4NH are obtained as crystalline powders, when no mineralizer

is used. Their single-crystal growth, however, is greatly enhanced by adding about 25 wt-% of NH4Cl to

the mixture of starting materials, which suggests NH4Cl to act as a mineralizer for phosphorus nitrides.

This is in line with findings from previous studies, in which single-crystals of β-PNNH and various

(imide)nitridophosphates were obtained by adding minor amounts of NH4Cl to the respective mixture of

starting materials.[12–14] Whereas NH4Cl completely dissociates into gaseous NH3 and HCl at ambient

pressure and 350 ◦C,[15] it is considered to form a liquid phase at elevated pressures and temperatures

that can be described as a chemical equilibrium of an ionic and a molecular melt (Equation 9.5).[16,17]

NH4Cl(s)
∆T , ∆p

(NH +
4 + Cl–)(l) (NH3 + HCl)(l) (9.5)

Therefore, it appears plausible that NH4Cl acts as a flux medium during the whole equilibrium re-

action, which facilitates the migration of all intermediate species. This greatly enhances the growth of

single-crystals, which finally proceeds until all intermediate species are converted into bulk material and

the system enters its global thermodynamic minimum, corresponding to α-BP3N6 and SiP2N4NH, re-

spectively. Moreover, it is plausible that an Ostwald ripening mechanism further assists the formation of

large single-crystals.[18]

One should finally emphasize that the above conclusions are solely drawn from ex situ observations

and thus, should be considered a scientific hypothesis with any experimental evidences being subject of

future investigations. In situ experiments in diamond anvil cells, however, appear doubtful, as both, the

diamond anvils and the gasket materials may likely suffer from the harsh synthetic conditions. Future

examinations may thus focus on large volume press setups that are designed for in situ studies, such as

ID6 (ESRF),[19] GSECARS (APS),[20] PSICHÉ (Soleil),[21] or soon P61B (DESY),[22] as presented in

Chapter 2. Nevertheless, the presented theory appears plausible, when compared to previous suggestions

on the modes of action of related preparative techniques that employ mineralizers or flux media for

nitride synthesis.

The high-pressure metathesis, for instance, was developed for the preparation of rare-earth and tran-

sition metal nitridophosphates and facilitates the growth of single-crystals through in situ formed LiF

acting as a flux during the process of crystallization at HP/HT conditions, as lithium halides were shown

to serve as a solvent for nitride anions.[23–25] The ammonothermal method, in turn, uses supercritical NH3
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as a solvent for the synthesis and crystallization of nitrides.[26,27] Herein, either ammonoacid, ammono-

neutral, or ammonobasic conditions are adjusted by adding catalytic amounts of a respective mineralizer

(e. g. NH4Cl, NaNH2). Thus, one may imagine a base-assisted HP/HT method as well, in which amides

or imides could be used to facilitate the synthesis and crystallization of unprecedented nitride materi-

als. Finally, the employment of NH4Cl as a nitrogen source in the HP/HT syntheses of BN[17] and the

transition metal nitrides MN (M = Ti, V, Cr, Mo, W)[28–30] raises the question whether the acid-assisted

HP/HT technique is limited to nitrides of B, Si, and P or may be expanded to the preparation of nitrides

in a more global context.

The straightforward syntheses of α-BP3N6 and SiP2N4NH render the acid-assisted HP/HT technique

a powerful tool for the synthesis of nitrides that are dominated by covalent bonds. With an increasing

ionicity of the targeted nitrides, however, the formation of chlorides may be likely preferred to nitride

synthesis, especially for metals with low electronegativities (e. g. alkali/earth alkaline metals). To fa-

thom the possibilities and limits of the acid-assisted HP/HT technique, therefore, future investigations

will be necessary, covering both, systematic investigations and explorative screenings. The variation of

thermodynamic parameters, namely the temperature, the pressure, and the mole fraction of the starting

materials, may be used to alter the elemental composition within a compound class, varying their struc-

tures and materials properties. One could, for example, increase the boron content in B/P/N networks to

increase their degree of condensation κ , which may enhance their mechanical properties, as is discussed

later in this chapter.

Within the scope of explorative investigations, the acid-assisted HP/HT technique may further be trans-

ferred to other systems for which very few, if any, representatives have been reported as yet. Herein, the

substitution of either (PNCl2)3 or the binary nitride BN/Si3N4 may initially be considered, as briefly out-

lined below and illustrated in Figure 9.2. Hence, substituting (PNCl2)3 with (BNHCl)3 may likely yield

crystalline compounds within the Si/B/N system, in which only amorphous Si3B3N7 was reported thus

far.[31,32] Double nitrides of B and Si, however, are of special interest for materials scientists, considering

numerous high-performance applications of BN and Si3N4, as well as SiBN3C.[31–35] (PNCl2)3 may be

further replaced by (CNCl)3 (cyanuric chloride) to formally introduce C into covalent nitride materials.

This preparative strategy could provide access to compounds within the B/C/N system, for instance, that

has repeatedly been discussed in the context of superhard materials.[36–38]
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The acid-assisted HP/HT technique may further be used for the preparation and crystallization of bi-

nary nitrides, such as BN, P3N5, or even C3N4. In a preliminary test, microcrystalline c-BN was prepared

starting from (BNHCl)3 and NH4N3. The preparation of single-crystalline P3N5, hence, appears plausible

by the reaction of (PNCl2)3 and NH4N3 in the absence of BN and Si3N4. This, however, requires a sui-

table substitute for the well-established h-BN crucibles. Initial attempts, in which the mixture of starting

materials was surrounded by a capsule consisting of noble metals such as Cu or Ag did not succeed,

but metal halides and CuPN2, as well as additional unknown phases were formed.[39] Targeting the long

sought-after binary nitride C3N4, in turn, (CNCl)3 may be reacted with NH4N3 in a NH4Cl flux at HP/HT

conditions. The crystallization of carbon nitrides is likely facilitated by NH4Cl, as single-crystalline me-

lamium halides have been prepared in the presence of ammonium halides, recently.[40] Accounting for

the low thermal stability of carbon nitrides, however, the reaction temperature should be significantly

decreased, which may require the substitution of NH4Cl with NH4F that features a significant lower mel-

ting curve at high-pressure conditions.[16,41] However, if all experimental challenges are met, one may

be amply rewarded with the preparation of crystalline C3N4 phases, which are considered one of today’s

major goals of nitride chemistry.

An even larger field of unprecedented compounds may become accessible by the substitution of the

binary nitrides BN and Si3N4. The employment of oxide compounds such as B2O3, SiO2, P2O5, or BPO4,

for instance, formally opens the compound class of oxide nitrides, which would greatly expand the struc-

tural diversity by varying the degree of condensation of the resulting networks, as outlined in Chapter 1.2.

Moreover, such oxide nitride materials, commonly denoted as oxynitrides, often feature intriguing se-

miconducting properties and are therefore frequently discussed in the context of photocatalysis.[42,43]

Considering further the literature-known double nitrides BeSiN2, Mg2PN3, Zn2PN3, CuPN2, ZnSiN2,

and Mg3GaN3,[39,44–48] as well as solid solutions within the γ-(GexSi1–x)3N4 and AlGaN system,[49,50]

precursors such as Be3N2, Mg3N2, Zn3N2, Cu3N, AlN, GaN, or Ge3N4 may be employed to access unpre-

cedented ternary nitrides such as Be3BN3, AlP3N6, GePN3, or Ga3Si3N7, for instance. These materials

likely feature intriguing optical and electronic properties, considering recent examinations of Grimm-

Sommerfeld analogous semiconducting II-IV-N2, II2-V-N3, and I-IV2-N3 nitrides.[51–56] If finally any

form of cross substitution as well as the combination of multiple substitutes are considered, future ex-

plorative investigations may likely open dozens of multinary T /T ′/(N/NH/O) systems, each of them

counting numerous plausible TxT ′y (N/NH/O)z compounds with altered T : T ′ ratios, as illustrated in Fi-
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gure 9.2. To further amplify the prospects of success the stability of any conceivable multinary compound

towards its binary and elemental constituents may be previously evaluated by theoretical investigations

employing data mining algorithms, as was recently exemplified by the prediction of over 200 new ternary

nitrides.[57,58]

Figure 9.2.: By substituting (PNCl2)3 and/or the binary nitrides BN/Si3N4 with suitable compounds (a), the acid-
assisted HP/HT technique may be modified to grant access to numerous novel multinary (oxide/imide) nitrides
within dozens of possible T /T ′/(N/NH/O) systems (b). Possible substitutes are listed under the chemical equation.
Replacing NH4N3 and/or NH4Cl may alter the in situ conditions and further expand the field of application.

The employment of the acid-assisted HP/HT technique, however, depends on the availability of sui-

table reactive precursors (e. g. (PNCl2)3, (BNHCl)3, (CNCl)3) as yet, which likely limits the elemental

diversity of accessible compounds in the long term. It would be, therefore, highly desirable to modify

this technique in a way that enables the direct reaction of two binary nitrides or oxides. Considering the

above discussed HCl-assisted mobilization of the refractory nitrides BN and Si3N4, one can fortunately

assumed that numerous nitrides or oxides can be used as starting materials, if the in situ supply of a

strong acid (e. g. HCl) is granted. For this purpose, catalytic amounts of hydrogen halides, as provided

by the partial dissociation of ammonium halides at HP/HT conditions (Equation 9.5) may be sufficient,

which thus would make the employment of reactive precursors obsolete. Respective tests and develop-

ments, however conjecture yet, may therefore also form a part of future explorative investigations on

nitride synthesis.

Recapitulating, a possible mode of action of the acid-assisted HP/HT technique was proposed from ex

situ observations, and various modifications were discussed to prospectively expand its field of applicati-
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on. Within the scope of future explorative investigations the acid-assisted HP/HT technique may, hence,

evolve into a powerful tool, not only for the synthesis of phosphorus nitrides, but for the preparation of a

broad collective of multinary nitride materials.

9.2. Phosphorus Nitrides at High Pressures

Prior to this thesis, the structural behavior of phosphorus nitrides was rarely investigated at pressures

exceeding 16 GPa and examinations on their elastic properties were mostly limited to theoretical studies.

Therefore, three compounds characteristic for this class, namely PON, BP3N6, and BeP2N4 were syste-

matically investigated up to maximum pressures of about 50 GPa. Employing in situ synchrotron X-ray

diffraction and diamond anvil cells, their elastic properties were probed and unprecedented high-pressure

polymorphs were discovered, as is discussed for the respective compounds below.

Initially aiming for a stishovite-type PON polymorph, cristobalite-type (cri) PON was transformed in-

to a post-coesite (pc) PON form at HP/HT conditions using a large volume press. The pressure-quenched

pc-PON is structurally related to stishovite, but features a (5+1) coordination of P rather than a regu-

lar sixfold coordination, which originates from a split position of P. Its compressibility was investiga-

ted by in situ cold-compression experiments, yielding an isothermal bulk modulus of K0(pc-PON) =

163(2) GPa. According to this, pc-PON is approximately twice as incompressible as cri-PON (K0(cri-

PON) = 80(5) GPa), in line with its significantly denser P/O/N framework (ρ(cri-PON) = 2.720 g·cm−3,

ρ(pc-PON) = 3.843 g·cm−3, +41 %).[59] Stishovite, however, is even less compressible (K0(sti-SiO2) ≈

310 GPa),[60] which is most likely an effect of the different elemental composition. It is, however, reaso-

nable to assume that the P(O/N)5+1 polyhedron is intrinsically less rigid than the SiO6 octahedron, as it

features an additional degree of freedom, accounting for the split position of P.

Additional in situ investigations up to a maximum pressure of about 40 GPa showed that pc-PON

undergoes a reversible phase transition into a metastable orthorhombic PON phase at about 20 GPa. It

was deduced that this orthorhombic PON phase most probably adopts a CaCl2-related structure, which

stishovite forms at p > 55 GPa, as well.[61,62] Thus, this plausible CaCl2-type PON may also feature re-

gular P(N/O)6 octahedra and can be considered the initial product from the large volume press synthesis

at 20 GPa. Upon pressure-quenching, however, it may transform into the as-presented pc-PON, which

is kinetically stabilized even at ambient pressure. These results greatly emphasize the close structural
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relation of PON and SiO2, and suggest that PON features a diverse and yet undiscovered high-pressure

polymorphism at pressures exceeding 20 GPa, as has already been shown for SiO2.[62] Accordingly, fur-

ther silica-analog high-pressure PON polymorphs with α-PbO2-,[63–65] pyrite- (FeS2, HP-PdF2),[66] or

Fe2N-related structures are fathomable at sufficiently high pressures.[67] Thus, a regular sixfold coordi-

nation of P becomes even more probable, which may also enhance the incompressibility of the certain

phases.

The structure of unprecedented α-BP3N6 blends structural motifs of α-P3N5 and c-BN, the latter re-

presenting the world’s most incompressible nitride (K0(c-BN) = 396(2) GPa).[68,69] Therefore, the elastic

properties of α-BP3N6 were investigated by pressure-dependent single-crystal XRD up to a maximum

pressure of 42 GPa. It was shown that the tetrahedra-based B/P/N network of α-BP3N6 contracts uni-

formly upon cold compression, showing only slight structural distortions. Its calculated isothermal bulk

modulus is 146(6) GPa, which is significantly larger than bulk moduli that have been discussed for related

tetrahedra-based P/N structures, such as cri-PON (K0 = 80(5) GPa), α-PNNH (K0 = 102(2) GPa), α-P3N5

(K0 = 87–99 GPa), or β-P4N6NH (K0 = 66 GPa).[59,70–72] This is likely owed to the interconnection of

PN4 and BN4 tetrahedra, the latter being a very rigid motif within the structure of ultraincompressible

c-BN. It is further conspicuous that the bulk modulus of α-BP3N6 can be interpreted as the approxima-

te arithmetical mean of the bulk moduli of c-BN and α-P3N5 considering a 1 : 3 ratio of B : P in the

α-BP3N6 structure (Equation 9.6).

146GPa = K0(α-BP3N6)≈ 1/4 ·K0(c-BN)+ 3/4 ·K0(α-P3N5)≈ 170GPa (9.6)

Thus, the formal blending of the α-P3N5 and the c-BN structure causes a combination of their elastic

properties, which is in line with empirical models that have previously been deduced from the bonding

situations and elastic properties of numerous pnictides, chalcogenides, and halides.[73,74] Within the sco-

pe of future investigations, the elastic properties of B/P/N compounds may thus be tuned by varying the

B : P ratio, providing access to unprecedented incompressible nitride materials.

To investigate its high-pressure polymorphism, α-BP3N6 was laser-heated at 42 GPa, which induced

a phase transition into β-BP3N6 that was characterized by single-crystal synchrotron XRD. β-BP3N6 is

quenchable to ambient conditions and features a 31 % higher ambient pressure density than α-BP3N6

(ρ(α-BP3N6) = 3.293 g·cm−3, ρ(β-BP3N6) = 4.319 g·cm−3), which likely renders β-BP3N6 significantly
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less compressible than α-BP3N6. The unique structure of β-BP3N6 can be derived from a hexagonal

close-packing of N, in which B occupies 1/12 of the tetrahedra voids and P occupies 1/2 of the octahedra

voids (Figure 9.3b). Therefore, β-BP3N6 is the first phosphorus nitride that contains the long sought-after

structural motif of PN6 octahedra, providing fundamental new insights into the structural chemistry of

phosphorus nitrides, which now can be discussed in the context of the high-pressure polymorphism of

covalent nitrides in general:

At ambient and moderate pressures, the covalent binary nitrides of Be, B, Si, and P tend to form

tetrahedra-based networks as illustrated by α-/β-Be3N2,[75,76] c-BN,[77] α-/β-Si3N4,[78] and α-P3N5,[1]

with an exception for B, which enters a threefold N coordination in h-BN at ambient pressure.[79] The

double nitrides Si3B3N7,[31,32] phe-BeP2N4,[4] SiPN3,[3] and BeSiN2
[44] may thus be understood as the

formal structural combination of the constituting binary nitrides, which further applies to α-BP3N6, as

presentend in Chapter 3. At elevated pressures, however, the coordination number of P can increase

to five, as is observed in γ-P3N5 and γ-P4N6NH at 11 and 14 GPa, respectively.[80,81] The coordination

number of Si, however, likely increases to six as reported for γ-Si3N4 at about 13 GPa.[82–84] Considering

the SiP2N4NH structure that features SiN6 but PN4 polyhedra, it was further shown that Si can readily

enter the sixfold N coordination at pressures < 10 GPa, which appears favored to an increase of the

coordination number of P. The preparation of β-BP3N6 now revealed that P can likewise enter a sixfold

N coordination at pressures > 40 GPa, which was also confirmed by the synthesis of spinel-type BeP2N6

at 47 GPa, as discussed below. Thus, the formation of PN6 octahedra, in turn, is more favorable than

increasing the coordination number of B and Be, respectively. This seems reasonable, considering that

the BeN6 motif was proposed to occur in the high-pressure forms of Be3N2,[85–87] and BeSiN2
[85] at

pressures in the order of 75–140 GPa, while sixfold N-coordinated B may only be observed upon very

high loads of 850–1250 GPa, as was predicted for a rocksalt-type BN.[88–90]

Based on the lessons learned from the preparation of β-BP3N6, phenakite-type (phe) BeP2N4 was

investigated at high-pressure conditions as well, yielding a spinel-type (sp) BeP2N4 polymorph, homeo-

typic with γ-Si3N4. The preparation of sp-BeP2N4 was performed at about 47 GPa to subsequently inves-

tigate its elastic properties upon decompression in a sufficient pressure range. Theoretical investigations

have predicted sp-BeP2N4 with remarkable elastic properties (K0 = 263–291 GPa, HV = 45 GPa), pri-

or to this thesis.[4,91–93] The experimental isothermal bulk modulus was now even determined with K0

= 325(8) GPa, which renders sp-BeP2N4 an ultraincompressible material that competes with γ-Si3N4
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for outstanding elastic properties. The elastic properties of γ-Si3N4 have extensively been investigated

all along, yielding an isothermal bulk modulus of K0 = 290–317 GPa and a Vickers hardness of HV =

30–43 GPa.[82,84,94–97] Whereas the incompressibility of a certain compound can be correlated with its

valence electron density (VEC), its hardness is related to the shear modulus and thus to the strength

of the interatomic bonds.[69] sp-BeP2N4 and γ-Si3N4 are isoelectronic, both featuring 32 valence elec-

trons. The unit cell volume of sp-BeP2N4 at ambient pressure, however, is about 10 % smaller than the

unit cell volume of γ-Si3N4.[82,83,94] Thus sp-BeP2N4 features a higher VEC than γ-Si3N4, which is in

line with a slightly higher bulk modulus of sp-BeP2N4. Accounting further for the highly covalent cha-

racter of the Be–N and P–N bonds,[91,98] sp-BeP2N4 may feature a remarkable Vickers hardness as well,

which strongly encourages comprehensive future investigations on its elastic properties. For this purpose,

pressure-quenched sp-BeP2N4 particles as obtained from laser-heated diamond anvil cells, however, may

hardly serve as sufficient samples, which raises the question of an upscaled preparative access. It can be

assumed that the phe-BeP2N4 −→ sp-BeP2N4 transition pressure, however not screened experimentally

yet, may be likely lower than the applied 47 GPa, as pointed out by previous theoretical investigations

(ptrans = 14–24 GPa).[4,92] Therefore, sample amounts of sp-BeP2N4, large enough for the most desired

measurements, may prospectively be obtained employing suitable large volume presses setups that are

briefly described in Chapter 2.

Recapitulating, the presented in situ investigations, as summarized in Figure 9.3a, shine a light on

the high-pressure behavior of phosphorus nitrides and provide the first experimental instances of six-

fold N-coordinated P in nitride materials. Moreover, highly condensed phosphorus nitrides were shown

to compete with established incompressible and hard materials for their remarkable elastic properties.

These pioneering investigations, therefore, may encourage prospective explorations of P/N compounds,

as has already been initiated by additional experiments that were performed over the course of this PhD

project. Therein, P3N5 and LiPN2 were examined in laser-heated diamond anvil cells up to a maximum

pressure of about 55 GPa (Figure 9.3a). Preliminary results indicate the formation of several unpreceden-

ted P3N5 and LiPN2 polymorphs, but final structure elucidations have been hampered by low-symmetry

and insufficient data completeness. These projects, however, appear very promising when complemen-

ted with theoretical studies and advanced XRD techniques. Theoretical examinations may therefore deal

with the screening of stable high-pressure phases by ab initio evolutionary simulations, as was recently

reported for lithium and magnesium nitrides, for instance.[99,100] Sufficient data completeness may be
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obtained by merging multiple XRD datasets of randomly oriented domains, referring to advanced data

processing techniques.[101–103] To experimentally increase the data completeness, moreover, advanced

synchrotron setups may be used, in which the diamond anvil cell is mounted on a flexible goniometer, as

supplied by the beamlines BM01 (SNBL, ESRF) and P24 (PETRA III, DESY), for instance.[104,105]

Figure 9.3.: Within this thesis, the elastic properties and high-pressure polymorphism of PON, BP3N6, BeP2N4,
P3N5, and LiPN2 were investigated at pressures of up to 50 GPa using laser-heated diamond anvil cells and syn-
chrotron radiation (a). Colored circles mark the synthesis pressure of a certain compound and colored bars illustrate
the pressure ranges, in which this compound was investigated. These studies provide intriguing insights into the
high-pressure behavior of phosphorus nitrides and gave rise to the first nitrides, β-BP3N6 and sp-BeP2N4, that con-
tain sixfold N-coordinated P (b, PN6 octahedra: orange, BN4 tetrahedra: green, BeN4 tetrahedra: blue). There has
been, however, no experimental evidence for any of the predicted high-pressure polymorphs of P3N5 and LiPN2

(hollow circles) as yet.[71,106,107]

Within a broader context, laser-heated diamond anvil cells may further be used to advance the prepara-

tive P/N chemistry by granting access to PIII/PV (nitride) pernitrides, as has been proposed from theore-

tical studies, previously.[106,108] Therefore, a skutterudite-like PN3, a rutile-related PN2, or a corundum-

structured P2N3 may be prepared at elevated pressures and investigated on their materials properties, as

some of them are suspected to feature metallicity or superconductivity.[106,108] Considering recent advan-

cements in the high-pressure synthesis of related compounds, such as CaCl2-type SN2,[109] or the group

14 pernitrides SiN2, GeN2, and SnN2,[110] unprecedented P/N compounds may be obtained from elemen-

tal Pred/black and N2 upon laser heating at high-pressure conditions. Moreover, NH3, NH4Cl, and NH4N3

appear as possible nitrogen sources that may likely react with elemental P at elevated temperatures. One
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may further consider a top-down approach, in which a gentle thermal annealing of P3N5 at elevated

pressures induces its partial thermal decomposition, which may result in the formation of unprecedented

phosphorus(III) nitrides.

9.3. Concluding Synopsis

An innovative high-pressure high-temperature synthesis strategy was developed that granted access to

unprecedented mixed phosphorus nitrides, and fundamental new insight on their structural chemistry was

gained by in situ high-pressure investigations. Hence, the results presented within this thesis show that

pressure is a versatile thermodynamic parameter for both, the preparation and the structural investigation

of phosphorus nitrides, which thus may be generalized in a global prospect for predominantly covalent

nitride materials.

There is no doubt that covalent nitrides feature an immense structural diversity as well as intriguing

materials properties. Despite of extensive experimental and theoretical studies, this basic field of research

is still unexhausted, as revealed in this thesis. The fundamental examinations herein may thus serve as

an expedient model that paths the way for future explorations of nitride materials. Various unpreceden-

ted (oxide/imide) nitrides may be obtained by the formal combination of binary nitrides (and oxides),

employing a modified acid-assisted HP/HT approach. Besides Be, B, Si, and P, additional elements such

as Mg, Zn, Cu, Al, Ga, or Ge may be incorporated into predominantly covalent nitride networks, ope-

ning dozens of multinary T /T ′/(N/NH/O) systems. In turn, each of these systems, most of them totally

unexplored yet, counts numerous plausible TxT ′y (N/NH/O)z compounds. As nitrides were shown to fea-

ture a divers polymorphism, the phase diagrams of novel compounds may be further screened for high-

pressure and/or high-temperature polymorphs, using in situ techniques, such as diamond anvil cells or

temperature-dependent X-ray diffraction. Finally, one could end up with an immense pool of unprece-

dented phases that feature intriguing structural, elastic, optical, and/or electronic properties, which would

greatly expand the fundamental knowledge of nitride materials.

Thus, the global prospect of this thesis strives to deepen the understanding of nitride materials as a

long-term goal, promoting fundamental research as the indispensable foundation for future technological

progress and development.
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Abstract Owing to intriguing materials properties non-

metal nitrides are of special interest for both, solid-state

chemistry and materials science. Mixed ternary non-metal

nitrides, however, have only been sparsely investigated, as

preparative chemistry lacks a systematic access, yet. Her-

ein, we report on the highly condensed boron phospho-

rus nitride BP3N6, which was synthesized from (PNCl2)3,

NH4N3 and h-BN in a high-pressure high-temperature re-

action. By increasing partial pressure of HCl during syn-

thesis using NH4Cl, single-crystals of BP3N6 up to 80 µm in length were obtained. The unprecedented

framework-type structure determined by single-crystal XRD blends structural motifs of both, α-P3N5 and

c-BN, rendering BP3N6 a double nitride. The compound was further investigated by Rietveld refinement,

EDX, temperature-dependent PXRD, FTIR and solid-state NMR spectroscopy. The formation of BP3N6

through use of reactive precursors exemplifies an innovative access to mixed non-metal nitrides.
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A.1. Experimental Procedures

Preparation of starting materials

NH4N3 was prepared according to Frierson by sublimation.[1] Stoichiometric amounts of dry NH4NO3

(Grüssing, 99 %) and NaN3 (Acros Organics, 99 %) were ground and filled into a Schlenk tube. The

lower end of the Schlenk tube was placed in a furnace and its valve was opened before heating the

reaction mixture for 12 h at 200 ◦C. Colorless crystals of NH4N3 were obtained in the top of the Schlenk

tube. Phase purity was confirmed by PXRD and FTIR measurements.

Commercial (PNCl2)3 (abcr GmbH, 98.5 %) was purified by sublimation in static vacuum at 120 ◦C in a

dry Schlenk tube using a water-cooled cooling finger.

h-BN (abcr GmbH, 99 %) was used without any further purification.

High-pressure high-temperature synthesis

BP3N6 was synthesized in a high-pressure high-temperature procedure in a hydraulic 1000 t press by

the multianvil technique utilizing a modified Walker module.[2,3] Under argon atmosphere (glovebox,

MBraun, < 1ppm O2, H2O) stoichiometric amounts of (PNCl2)3, NH4N3 and h-BN (abcr GmbH, 99 %)

were ground in an agate mortar and packed tightly in a crucible of h-BN (Henze, Kempten). Sealed with

a cap of h-BN the crucible was placed in the center of two graphite furnaces and underpinned with two

MgO spacers. The furnaces were thermally isolated to the outside by a ZrO2 sleeve and contacted by

two Mo plates. The as-prepared assembly was placed in the center of a pierced octahedron (5 % Cr2O3

doped MgO, 18 mm edge length, Ceramic Substrates & Components Ltd, Isle of Wight). The octahe-

dron was surrounded by eight Co-doped WC cubes with truncated edges (7 % Co, 11 mm edge length,

Hawedia, Marklkofen), which were separated by pyrophyllite gaskets. More detailed information on the

octahedron-within-cubes payload can be found in literature.[2] The assembly was compressed to 8 GPa

within 220 min before the sample was isobarically heated to 1100 ◦C within 60 min. The temperature

was maintained for 300 min before the sample was allowed to cool down to ambient temperature within

60 min. The assembly was decompressed within 570 min and the sample was recovered from the cru-

cible. Residual chlorides were removed by washing with de-ionized water, yielding a colorless air- and
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moisture-stable crystalline solid. In order to grow single-crystals up to 80 µm in length 25–30 wt-% of

NH4Cl were added to the mixture of starting materials.

Single-crystal X-ray diffraction (XRD)

Single-crystal X-ray diffraction data of BP3N6 were collected on a Bruker D8 Venture TXS diffractome-

ter (rotating anode, Mo-Kα1 radiation, λ = 0.71073Å, multilayer monochromator) by combined ϕ- and

ω-scans. Indexing, integration, semi-empiric absorption correction (multi-scan) as well as determination

of the space group was performed by the APEX3 software package.[4–6] Employing SHELX-97 and the

WinGX software package, the structure was solved by Direct Methods and refined against F2 by the

full-matrix least-square method.[7–9] For structure visualization the VESTA software was used.[10]

Powder X-ray diffraction (PXRD)

Powder X-ray diffraction data were collected on a STOE Stadi P diffractometer (STOE & Cie GmbH,

Darmstadt, Cu-Kα1 radiation, λ = 1.5406Å, Ge(111) monochromator) equipped with a MYTHEN 1K

Si strip detector in modified Debye-Scherrer geometry. For measurements the sample was ground and

sealed in glass capillaries with an outer diameter of 0.3 mm (Hilgenberg, Malsfeld). Rietveld refinement

was performed utilizing the TOPAS Academic software.[11,12] The background was described by a shif-

ted Chebyshev polynomial and the peak profiles were modeled according to the fundamental parameters

approach.[13,14] Any possible preferred orientation of crystals was accounted for with a spherical harmo-

nics function of fourth order. Temperature-dependent PXRD measurements were performed on a STOE

Stadi P diffractometer (STOE & Cie GmbH, Darmstadt, Mo-Kα1 radiation, λ = 0.71073Å, Ge(111)

monochromator) equipped with a STOE resistance graphite furnace and an IP-PSD detector. The sam-

ple was loaded in a fused silica capillary (Hilgenberg, Malsfeld) with an outer diameter of 0.5 mm and

heated from 25 to 1000 ◦C in steps of 25 ◦C with a rate of 10 ◦C·min−1 under Ar atmosphere. At each

temperature step data collection was performed within 20 min, while the temperature was held constant.

Solid-state MAS NMR spectroscopy

Solid-state NMR measurements were performed on an Avance III 500 spectrometer (Bruker, Karlsru-

he) equipped with a 11.7 T magnet operating at 500.25 MHz 1H frequency and a commercial double-
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resonance MAS probe. For measurements the sample was ground and loaded in a ZrO2 rotor with an

outer diameter of 2.5 mm. NMR spectra were collected at 20 kHz spinning frequency.

Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy

For SEM imaging and EDX measurements a Dualbeam Helios Nanolab G3 UC (FEI, Hillsboro) equip-

ped with a X-Max 80 SDD detector (Oxford Instruments, Abingdon) was used and data processing was

performed with the Aztec software.[15] Before measuring, the sample was coated with carbon using an

electron beam evaporator (BAL-TEC MED 020, Bal Tec AG) to ensure electrical conductivity. Accele-

rating voltage for both, SEM imaging and EDX spectroscopy was 5.0 kV.

Fourier transform infrared spectroscopy (FTIR)

The FTIR spectrum was collected on a Spectrum BX II spectrometer with DuraSampler ATR-device

(Perkin Elmer) at ambient conditions.

A.2. Results and Discussion

SEM imaging

Figure A.1.: Selected SEM images of single-crystals of BP3N6, yielded by NH4Cl-assisted high-pressure high-
temperature synthesis.
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Structure determination

Table A.1.: Crystallographic data of the single-crystal structure refinement of BP3N6. Standard deviations are
given in brackets.

Formula BP3N6

Crystal system monoclinic

Space group P21/c (no. 14)

Molecular weight / g·mol−1 187.78

Lattice parameters / Å a = 5.0272(11)

b = 4.5306(12)

c = 17.332(3)

Angle / ° β = 106.387(9)

Cell volume / Å3 378.72(15)

Formula units per cell 4

Calculated X-ray density / g·cm−3 3.293

Linear absorption coefficient / cm−1 1.43

Tmin/Tmax 0.879

Radiation Mo-Kα (λ = 0.71073Å)

Diffractometer Bruker D8 Venture

θ -range / ° 4.22 < θ < 35.00

Temperature / K 293(2)

F(000) 368

Observed reflections 7378

Independent reflections (> 2σ ) 1662 (1377)

Number of parameters 91

Rint; Rσ 0.0482; 0.0454

Final R indices [I > 2σ(I)] R1 = 0.0369; wR2 = 0.0966

Final R indices (all data) R1 = 0.0483; wR2 = 0.1001

Goodness of fit 1.111

Residual electron density / e·Å−3 0.737; −0.578
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Table A.2.: Refined atom coordinates and equivalent atomic displacement parameters from single-crystal structure
refinement. All atoms occupy the general position with Wyckoff no. 4e. Standard deviations are given in brackets.

Atom x y z Ueq / Å2

P1 0.45670(11) 0.09524(12) 0.29430(3) 0.0051(1)

P2 0.03961(11) 0.09021(12) 0.38197(3) 0.0059(1)

P3 0.71517(11) 0.11385(12) 0.03603(3) 0.0056(1)

B1 0.2850(5) 0.0921(5) 0.12344(14) 0.0057(5)

N1 0.2747(4) 0.4340(4) 0.14165(11) 0.0050(4)

N2 0.0098(4) 0.4444(4) 0.40530(11) 0.0052(4)

N3 0.5540(4) 0.4465(4) 0.29442(11) 0.0052(4)

N4 0.4252(3) 0.0145(4) 0.05722(11) 0.0049(4)

N5 0.7866(4) 0.4458(4) 0.03735(11) 0.0062(4)

N6 0.1692(4) 0.0482(4) 0.30938(12) 0.0074(4)

Table A.3.: Refined anisotropic atomic displacement parameters (Å2) from single-crystal structure refinement.
Standard deviations are given in brackets.

Atom U11 U22 U33 U23 U13 U12

P1 0.0047(2) 0.0050(2) 0.0057(2) 0.0001(2) 0.0015(2) −0.0002(2)

P2 0.0049(2) 0.0055(2) 0.0072(2) 0.0000(2) 0.0016(2) 0.0001(2)

P3 0.0044(2) 0.0064(2) 0.0061(2) −0.0002(2) 0.0016(2) 0.0002(2)

B1 0.0058(9) 0.0054(8) 0.0065(9) −0.0001(7) 0.0025(7) 0.0005(7)

N1 0.0044(7) 0.0030(6) 0.0073(7) −0.0005(6) 0.0012(5) 0.0006(5)

N2 0.0031(6) 0.0042(7) 0.0075(7) −0.0007(6) 0.0001(5) 0.0003(5)

N3 0.0062(7) 0.0051(7) 0.0043(7) −0.0001(5) 0.0013(6) −0.0010(5)

N4 0.0033(7) 0.0071(7) 0.0047(7) −0.0012(6) 0.0018(5) −0.0017(5)

N5 0.0062(7) 0.0046(7) 0.0071(8) 0.0000(6) 0.0008(6) −0.0015(5)

N6 0.0047(7) 0.0096(7) 0.0090(8) −0.0008(6) 0.0037(6) −0.0016(6)
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Table A.4.: Interatomic distances (Å) of BP3N6. Standard deviations are given in brackets.

P1–N6 1.5543(23) P3–N5 1.5449(19) P1–P1 2.8384(9)

P1–N1 1.6564(18) P3–N2 1.6558(18) P1–P2 2.8956(9)

P1–N3 1.6647(20) P3–N4 1.6627(19) P2–P3 2.6849(9)

P1–N3 1.6658(20) P3–N4 1.6747(18) P2–P3 2.8599(9)

P2–N5 1.5676(18) B1–N4 1.5473(34) P2–P1 2.8956(9)

P2–N6 1.5830(24) B1–N3 1.5706(28) P3–P3 2.4041(8)

P2–N2 1.6719(20) B1–N2 1.5735(30) P3–P2 2.6849(9)

P2–N1 1.6734(20) B1–N1 1.5846(29)

Figure A.2.: Coordination polyhedra of the BP3N6 structure from XRD analysis. Ellipsoids are displayed at 99 %
probability level.
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EDX measurements

EDX measurements (5.0 kV) of selected single-crystals detected no other elements than B, P, N and

O. The normalized atomic ratio B : P : N = 1.1 : 3.0 : 5.5 is in good agreement with the nominal ratio in

BP3N6 within the standard deviations and the precision of the method for light elements. Minor amounts

of O may be attributable to surface hydrolysis of the sample, caused by water treatment.

Table A.5.: Listed EDX measurements (5.0 kV) of BP3N6 (atom-%). Standard deviations are given in brackets.

1 2 3 4 5 Average Normalized

B 11 11 12 11 11 11(1) 1.1(1)

P 31 30 30 31 32 31(1) 3.0(1)

N 57 57 56 56 57 57(1) 5.5(1)

O 1 2 2 2 1 2(1) 0.1(1)

Rietveld refinement

Figure A.3.: Observed (black circles) and calculated (red line) PXRD pattern (Cu-Kα1 radiation, λ = 1.5406Å)
and difference profile (gray) from Rietveld refinement of BP3N6. Bragg reflections are marked by vertical green
lines. Tagged reflections (*) can be assigned to h-BN as a minor side phase.[16]
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Table A.6.: Crystallographic data of the Rietveld refinement of BP3N6.

Formula BP3N6

Crystal system monoclinic

Space group P21/c (no. 14)

Molecular weight / g·mol−1 187.78

Lattice parameters / Å a = 5.03238(6)

b = 4.53466(6)

c = 17.3535(2)

Angle / ° β = 106.3652(6)

Cell volume / Å3 379.965(9)

Formula units per cell 4

Calculated X-ray density / g·cm−3 3.28247(7)

Linear absorption coefficient / cm−1 134.4

Radiation Cu-Kα1 (λ = 1.540596Å)

Monochromator Ge(111)

Diffractometer STOE Stadi P

Detector MYTHEN 1K

2θ -range 5° < 2θ < 100°

Temperature / K 293

Data points 6334

Number of observed reflections 388

Number of parameters (thereof background) 76 (23)

Profile function fundamental parameter approach[14]

Background function Shifted Chebyshev

R indices RBragg = 0.0198

Rp = 0.04162

Rwp = 0.07738

Rexp = 0.02100

Goodness of fit 3.685
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Temperature-dependent PXRD measurements

Figure A.4.: Temperature-dependent powder X-ray diffraction patterns (Mo-Kα1 radiation, λ = 0.71073Å) mea-
sured under Ar atmosphere showing a slight expansion of lattice parameters with increasing temperature, but
neither decomposition nor any phase transition of BP3N6 up to 1000 ◦C.

MAPLE, CHARDI and MBE analysis

Table A.7.: MAPLE analysis shows a 1.3 % difference in the Madelung part of lattice energy of BP3N6 and the
sum of the respective binary nitrides P3N5 and BN.[17]

P3N5 + BN BP3N6

α-P3N5: 78 531 kJ·mol−1 BP3N6: 90 556 kJ·mol−1

c-BN: 13 201 kJ·mol−1

91 732 kJ·mol−1 1.3 % difference
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Table A.8.: CHARDI analysis revealed effective coordination numbers of 3.80–3.99 for B and P and mean total
charges of 3.07, 4.98 and −2.98 for B, P and N, respectively.[18]

Polyhedron P1N1N3N3N6 P2N5N2N6N1 P3N4N4N2N5 B1N2N1N3N4

Average bond length / Å 1.6348 1.6242 1.6353 1.5685

Polyhedral volume / Å3 2.2223 2.1882 2.1313 1.9678

Distortion index 0.0249 0.0295 0.0275 0.0063

Quadratic elongation 1.0069 1.0042 1.0361 1.0044

Bond angle variance / °2 28.3741 12.8966 131.3675 17.0184

Eff. coordination number 3.8410 3.8563 3.7966 3.9906

Total charge:

P/B 5.0430 4.9420 4.9420 3.0720

N −2.8730 −3.2100 −2.9780 −2.9060

N −2.9550 −2.9060 −2.9780 −2.8730

N −2.9550 −3.0780 −2.9060 −2.9550

N −3.0780 −2.8730 −3.2100 −2.9780

Figure A.5.: Minimum bonding ellipsoids (MBE) of BN4 and PN4 tetrahedra fitted by PIEFACE software.[19] B/P:
blue, N: red.
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Table A.9.: Ellipsoidal parameters of MBEs of BN4 and PN4 tetrahedra in the BP3N6 structure.[19] B1, P1 and P2
polyhedra show only slight distortion as indicated by small σ(R). A significant distortion of the P3 polyhedra, in
contrast, may be attributable to electrostatic repulsion of the edge-sharing P3N4 tetrahedra.

R1 R2 R3 〈R〉 σ (R) S Center Disp. CN

B1 1.661466 1.530681 1.508961 1.567036 0.0674 0.0645 0.0414 4

P1 1.705157 1.629561 1.559843 1.631520 0.0593 0.0016 0.1046 4

P2 1.688115 1.627140 1.551409 1.622221 0.0559 −0.0104 0.0701 4

P3 0.187131 1.593247 1.390783 1.618446 0.1970 0.0215 0.1273 4

FTIR and solid-state NMR measurements

Figure A.6.: FTIR (ATR) spectrum of a representative BP3N6 sample showing broad absorption bands below
1700 cm−1, which can be assigned to vibrational (B/P)N4 modes of the B/P/N framework and have been observerd
for related P/N and B/N compounds, as well.[20–23] Weak absorption in the region of 2900–3400 cm−1 may be
attributable to NHx functionality in minor amounts of amorphous side phases.
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Figure A.7.: 11B, 31P, 1H and 31P{1H} NMR spectra of a representative BP3N6 sample. The broad 1H signal
(FWHM= 5ppm) as well as the broad 31P signal in the 31P{1H} NMR spectrum can be assinged to minor amounts
of amorphous side phases. Spinning sidebands are marked with asterisks.

151



A. Supporting Information for Chapter 3 (α-BP3N6)

Figure A.8.: Observed (black) and calculated (red) 31P NMR spectrum of BP3N6 and difference profile (gray) with
the three 31P signals deconvoled by three Voigt functions (blue). The ratio of the integrals of the three devolved
signals is A : B : C = 1.1 : 0.9 : 1.0, which is in good agreement of three P sites of equal multiplicity in the BP3N6

structure model, within the precision of quantitative solid-state NMR spectroscopy. Deconvolution was performed
by Igor Pro software.[24]
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Abstract Non-metal

nitrides such as BN,

Si3N4, and P3N5 meet

numerous demands on

high-performance mate-

rials, and their high-pressure polymorphs exhibit outstanding mechanical properties. Herein, we present

the silicon phosphorus nitride imide SiP2N4NH featuring sixfold coordinated Si. Using the multianvil

technique, SiP2N4NH was obtained by highpressure high-temperature synthesis at 8 GPa and 1100 ◦C

with in situ formed HCl acting as a mineralizer. Its structure was elucidated by a combination of single-

crystal X-ray diffraction and solid-state NMR measurements. Moreover, SiP2N4NH was characterized by

energy-dispersive X-ray spectroscopy and (temperature-dependent) powder X-ray diffraction. The high-

ly condensed Si/P/N framework features PN4 tetrahedra as well as the rare motif of SiN6 octahedra, and

is discussed in the context of ambient-pressure motifs competing with close-packing of nitride anions,

representing a missing link in the high-pressure chemistry of non-metal nitrides.
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B.1. Experimental Procedures

Preparation of starting materials

NH4N3 was prepared from stoichiometric amounts of dry NH4NO3 (Grüssing, 99 %) and NaN3 (Acros

Organics, 99 %) by sublimation according to Frierson.[1] The starting materials were ground and filled

into a dry Schlenk tube with its lower end placed in a furnace. The mixture was heated for 12 h at 200 ◦C

with open valve. NH4N3 was yield as colorless crystals at the upper end of the Schlenk tube. Phase purity

was confirmed by PXRD and FTIR measurements.

Commercial (PNCl2)3 (abcr GmbH, 98.5 %) was purified by sublimation in static vacuum at 120 ◦C in a

dry Schlenk tube using a water-cooled cooling finger.

Amorphous Si3N4 (UBE, SNA-00) was used without any further purification.

High-pressure high-temperature synthesis

High-pressure high-temperature reactions were performed in a hydraulic 1000 t press utilizing the mul-

tianvil technique and a modified Walker module.[2,3] In a typical batch, (PNCl2)3, NH4N3, and amorphous

Si3N4 (UBE, SNA-00) were ground in a glovebox (MBraun, < 1ppm O2, H2O) to ensure absence of wa-

ter and oxygen during synthesis. The mixture of starting materials was tightly packed into a crucible

and sealed with a cap, both made of h-BN (Henze, Kempten). The sample was placed in the center of

two graphite furnaces by a lower and an upper MgO spacer and subsequently set into a sleeve of ZrO2

and sealed with Mo plates on both sides to ensure electrical contact with graphite furnaces. The as-

described assembly was pasted into the center of a pierced octahedron (5 % Cr2O3 doped MgO, 18 mm

edge length, Ceramic Substrates & Components Ltd, Isle of Wight). The octahedron was compressed in

a steady manner between eight Co-doped WC cubes with truncated edges (7 % Co, 11 mm edge length,

Hawedia, Marklkofen), separated by pyrophyllite gaskets. More detailed information on the octahedron-

within-cubes payload can be found in literature.[2] The sample was compressed to 8 GPa before it was

heated to 1100 ◦C within 1 h. Pressure and temperature were kept for 8 h before the sample was allowed

to cool down within another hour. The sample pellet was obtained after slow decompression and washed

with de-ionized water to remove residual chlorides such as NH4Mg(H2O)6Cl2, which is formed during
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synthesis in supercritical HCl from stating materials and MgO spacers.[4] In order to grow single-crystals

up to 25 µm in length 25 wt-% of NH4Cl were added to the mixture of starting materials.

Single-crystal X-ray diffraction (XRD)

Single-crystal XRD data sets were conducted on a Bruker D8 Venture TXS diffractometer (rotating

anode, Mo-Kα radiation, λ = 0.71073Å, multilayer monochromator) by combined ϕ- and ω-scans.

Indexing, integration, semi-empiric absorption correction (multi-scan) and determination of the space

group was performed by the APEX3 software package.[5–7] The structure was solved using the SHELXT

algorithm and refined against F2 by the full-matrix least-square method, employing SHELX-97 and the

WinGX software package.[8–11] For structure visualization the VESTA software was used.[12]

Powder X-ray diffraction (PXRD)

Powder X-ray diffraction patterns were recorded on a STOE Stadi P diffractometer (STOE & Cie GmbH,

Darmstadt, Cu-Kα1 radiation, λ = 1.5406Å, Ge(111) monochromator) by a MYTHEN 1K Si strip detec-

tor in modified Debye-Scherrer geometry. The sample was tightly filled into glass capillaries with an ou-

ter diameter of 0.3 mm (Hilgenberg, Malsfeld) and rotated during measurement. Rietveld refinement was

performed employing the TOPAS Academic software.[13,14] Peak profiles were modeled using the funda-

mental parameters approach and the background was described by shifted Chebyshev polynomial.[15,16]

Any preferred orientation of crystals was considered by spherical harmonics function of fourth order.

Temperature-dependent PXRD measurements were performed on a STOE Stadi P diffractometer

(STOE & Cie GmbH, Darmstadt, Mo-Kα1 radiation, λ = 0.71073Å, Ge(111) monochromator), equip-

ped with a STOE resistance graphite furnace and an IP-PSD detector. The sample was tightly filled into

a fused silica capillary (Hilgenberg, Malsfeld) with an outer diameter of 0.5 mm and heated under Ar

atmosphere from 25 to 1000 ◦C in steps of 25 ◦C with a rate of 10 ◦C·min−1. At each temperature step

data collection was performed within 20 min, while the temperature was held constant.

Solid-state MAS NMR spectroscopy

1H, 31P, 31P{1H} and 29Si{1H} MAS NMR spectra were conducted on a Avance III 500 spectrometer

(Bruker, Karlsruhe) using an 11.7 T magnet operating at 500.25 MHz 1H frequency, equipped with a
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commercial double-resonance MAS probe. The sample was ground and packed into a ZrO2 rotor with

an outer diameter of 2.5 mm and NMR spectra were collected at 20 kHz spinning frequency.

Fourier-Transform infrared (FTIR) spectroscopy

FTIR spectra were collected at ambient conditions using a Spectrum BX II spectrometer with DuraSamp-

ler ATR-device (Perkin Elmer).

Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy

A Dualbeam Helios Nanolab G3 UC (FEI, Hillsboro) equipped with a X-Max 80 SDD detector (Oxford

Instruments, Abingdon) was used for scanning electron microscopy and energy-dispersive X-ray spec-

troscopy. The sample was coated with carbon using an electron beam evaporator (BAL-TEC MED 020,

Bal Tec AG) and data were analyzed using the Aztec software.[17]
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B.2. Results and Discussion

Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy

Figure B.1.: SEM images of generic sample of SiP2N4NH with single-crystals up to 25 µm in length.

Table B.1.: EDX measurements (atom-%) of six generic crystals (C1–C6) of SiP2N4NH. Minor amounts of oxygen
may be attributable to partial surface hydrolysis and some trace amounts of chlorine may be due to residuals from
side phases, which have been removed by washing with de-ionized water.

C1 C2 C3 C4 C5 C6 measured ratio ideal

Si 14.6 10.5 10.1 10.9 11.9 13.1 12(2) 1.0 1

P 31.6 24.6 21.8 22.6 25.5 27.5 26(4) 2.2 2

N 50.5 60.3 67.0 62.6 58.8 53.3 59(6) 5.0 5

O 2.6 4.3 0.0 3.5 3.5 5.5 3(2) 0.3 0

Cl 0.8 0.3 1.1 0.4 0.3 0.5 1(1) 0.0 0
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Structure determination

Table B.2.: Crystallographic data on SiP2N4NH from single-crystal refinement.

Formula SiP2N4NH

Crystal system orthorhombic

Molecular weight / g·mol−1 161.09

Space group Pnma (no. 62)

Lattice parameters / Å a = 8.3111(18)

b = 5.3963(11)

c = 7.2392(14)

Cell volume / Å3 324.67(12)

Formula units per cell 4

Calculated X-ray density / g·cm−3 3.296

Linear absorption coefficient / cm−1 1.514

Tmin/Tmax 0.9313

Radiation Mo-Kα (λ = 0.71073Å)

Diffractometer Bruker D8 Venture

θ -range / ° 3.73 < θ < 37.03

Temperature / K 293(2)

F(000) 316

Observed reflections 4513

Independent reflections (> 2σ ) 878 (752)

Number of parameters 49

Restraints 1

Rint; Rσ 0.0345; 0.0273

Final R indices [I > 2σ(I)] R1 = 0.0284; wR2 = 0.0736

Final R indices (all data) R1 = 0.0349; wR2 = 0.0762

Goodness of fit 1.120

Residual electron density / e·Å−3 0.662; −0.700

160



Table B.3.: Wyckoff position, fractional coordinates and thermal displacement parameters of SiP2N4NH from
single-crystal refinement.

Atom Wyck. x y z Ueq/Uiso / Å2

P1 4c 0.21395(5) 1/4 0.68550(6) 0.0031(1)

P2 4c 0.21466(5) 1/4 0.29344(6) 0.0035(1)

Si1 4a 0 0 0 0.0051(1)

N1 4c 0.10557(18) 1/4 0.48953(19) 0.0058(3)

N2 4c 0.10186(16) 1/4 0.11694(19) 0.0030(3)

N3 4c 0.39864(16) 1/4 0.61733(19) 0.0034(3)

N4 8d 0.32844(12) 0.5005(2) 0.30340(14) 0.0048(2)

H1 4c 0.001(4) 1/4 0.463(16) 0.37(11)

Table B.4.: Anisotropic displacement parameters (Å2) of SiP2N4NH from single-crystal refinement.

Atom U11 U22 U33 U23 U13 U12

P1 0.0038(2) 0.0024(2) 0.0032(2) 0 0.0006(1) 0

P2 0.0039(2) 0.0028(2) 0.0038(2) 0 −0.0005(1) 0

Si1 0.0060(2) 0.0021(2) 0.0073(2) 0.0001(1) −0.0033(1) 0.0004(1)

N1 0.0052(5) 0.0085(6) 0.0036(5) 0 −0.0007(4) 0

N2 0.0035(5) 0.0019(5) 0.0036(5) 0 −0.0015(4) 0

N3 0.0027(5) 0.0026(5) 0.0049(5) 0 0.0014(4) 0

N4 0.0050(4) 0.0030(3) 0.0065(4) 0.0008(3) −0.0019(3) −0.0011(3)
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Figure B.2.: Coordination polyhedra of Si1, P1 and P2 with ellipsoids displayed at 99 % probability level.

Table B.5.: Interatomic distances (Å) of SiP2N4NH from single-crystal refinement.

Si1–N3 1.8031(9) P1–N3 1.6124(14) P2–N2 1.5848(14)

Si1–N3 1.8031(9) P1–N4 1.6326(11) P2–N4 1.6513(11)

Si1–N2 1.8037(9) P1–N4 1.6326(11) P2–N4 1.6513(11)

Si1–N2 1.8037(9) P1–N1 1.6805(15) P2–N1 1.6844(15)

Si1–N4 2.0146(10)

Si1–N4 2.0146(10)

Figure B.3.: Difference Fourier map (Fobs−Fcalc) from single-crystal refinement of ‘SiP2N5’ (a) and SiP2N4NH
(b). Isosurface levels are 0.7, 0.74 and 0.78 electron·a−3

0 , respectively (a0 = Bohr radius).
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Table B.6.: Interatomic angles (°) of SiP2N4NH from single-crystal refinement.

N3–P1–N4 111.445(36) N3–Si1–N3 180

N3–P1–N4 111.445(36) N3–Si1–N2 83.151(4)

N3–P1–N1 104.591(75) N3–Si1–N2 96.849(3)

N4–P1–N4 111.107(53) N3–Si1–N4 89.829(53)

N4–P1–N1 109.000(36) N3–Si1–N4 90.171(53)

N4–P1–N1 109.000(36) N3–Si1–N2 96.849(3)

N2–P2–N4 111.964(36) N3–Si1–N2 83.151(4)

N2–P2–N4 111.964(36) N3–Si1–N4 90.171(53)

N2–P2–N1 111.138(73) N3–Si1–N4 89.829(53)

N4–P2–N4 109.890(53) N2–Si1–N2 180

N4–P2–N1 105.764(36) N2–Si1–N4 89.912(52)

N4–P2–N1 105.764(36) N2–Si1–N4 90.088(52)

N2–Si1–N4 90.088(52)

N2–Si1–N4 89.912(52)

N4–Si1–N4 180.000(41)
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Rietveld refinement

Table B.7.: Crystallographic data of SiP2N4NH from Rietveld refinement.

Formula SiP2N4NH

Crystal system orthorhombic

Space group Pnma (no. 62)

Molecular weight / g·mol−1 187.78

Lattice parameters / Å a = 8.33606(14)

b = 5.38714(7)

c = 7.23899(11)

Cell volume / Å3 325.085(8)

Formula units per cell 4

Calculated X-ray density / g·cm−3 3.27049(8)

Linear absorption coefficient / cm−1 143.2

Radiation Cu-Kα1 (λ = 1.540596Å)

Monochromator Ge(111)

Diffractometer STOE Stadi P

Detector MYTHEN 1K

2θ -range 10° < 2θ < 100°

Temperature / K 293

Data points 6000

Number of observed reflections 190

Number of parameters (thereof background) 51 (18)

Profile function fundamental parameter approach[16]

Background function Shifted Chebyshev

R indices RBragg = 0.0253

Rp = 0.0569

Rwp = 0.0803

Rexp = 0.0500

Goodness of fit 1.605
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Figure B.4.: Observed (black) and calculated (red) powder X-ray diffraction pattern with difference plot (gray).
Positions of Bragg reflections of SiP2N4NH are displayed by vertical blue lines. Minor amounts of unknown side
phases are marked with asterisks.
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Temperature-dependent PXRD

Temperature-dependent PXRD proves SiP2N4NH to be stable up to 1000 ◦C at ambient pressure under

Ar atmosphere (Figure B.5). Within this temperature range, high-pressure phases tend to transform into

ambient-pressure polymorphs. Herein, no phase transition is observed, suggesting SiP2N4NH to be stable

at ambient pressure. The structural motif of SiN6 octahedra, however, suggests SiP2N4NH to be a high-

pressure phase, as Si favors fourfold coordination in highly condensed compounds at ambient conditions.

A conceivable phase transition of SiP2N4NH, however, may be kinetically unfavored and even higher

temperatures may be needed to induce the formation of a possible ambient-pressure polymorph.

Figure B.5.: Temperature-dependent powder X-ray diffraction patterns (Mo-Kα1 radiation, λ = 0.71073Å) mea-
sured under Ar atmosphere. A slight shift to lower angles with increasing temperature correspond to thermal
expansion of the cell (4.3 % in volume). Neither phase transition nor decomposition is observed.
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Moreover, Rietveld refinements of temperature-dependent PXRD patterns were performed and evolu-

tion of lattice parameters are illustrated in Figure B.6.[13] At 1000 ◦C the thermal expansion of the unit

cell is 4.3 % in volume with respect to ambient temperature (25 ◦C). This increase is predominated by

expansion of lattice parameters a and c (2.8 %, 1.6 %). The lattice parameter b, in contrast, shows only

marginal changes with temperature (−0.1 %), which may be due to the SiN6 octahedra sharing common

edges along [010] and thus, the SiP2N4NH structure being more rigid along b.

Figure B.6.: Temperature-dependent evolution of lattice parameters of SiP2N4NH from Rietveld refinements. The
expansion of the unit cell with increasing temperature is attributable to expansion of lattice parameters a and c
(2.8 %, 1.6 %).
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Structure description and analysis

Figure B.7.: The structure of SiP2N4NH (a) appears related to sillimanite (Al2SiO5, b) with slightly different topo-
logy as illustrated by the respective point symbols (314.422.59)(38.48.55)2 and (312.420.513)(36.48.57)2 determi-
ned by TOPOS software.[18–21] Both structures may be derived as a hierarchical variant from the CaCl2 structure
(c) by replacing the anion sites with T X4 tetrahedra (T = P/Al, Si; X = N/O).

Table B.8.: SiP2N4NH may be understood as the formal combination of SiPN3 and PNNH in a 1 : 1 ratio. Due to
the densification effect, the formation of SiP2N4NH appears to be favored at high-pressure conditions.

V / Å3 Z V per f.u. / Å3 Density / g·cm−3 Ref.

α-PNNH 149.7 4 37.4 2.662 [22]

β-PNNH 294.6 8 36.8 2.705 [23]

SiPN3 223.6 4 55.9 3.003 [24]

SiPN3 + β-PNNH 741.8 8 92.7 2.885

SiP2N4NH 324.7 4 81.2 3.296 this work
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Minimal bonding ellipsoids (MBE) analysis

Figure B.8.: Minimal bonding ellipsoids (MBE) of P1N4, P2N4 and Si1N6 polyhedra in SiP2N4NH determined
by PIEFACE software.[25] P, Si: blue, N: red.

Table B.9.: Parameters of MBEs in SiP2N4NH indicating almost regular tetrahedral coordination of P1 and P2 and
a distortion of SiN6 polyhedra, due to slight axial elongation.[25]

R1 R2 R3 〈R〉 σ (R) S Center Disp. CN

P1 1.6716 1.6490 1.5949 1.6385 0.0322 −0.0193 0.0542 4

P2 1.6556 1.6544 1.6148 1.6416 0.0189 −0.0233 0.0725 4

Si1 2.0147 1.9078 1.6925 1.8716 0.1340 −0.0598 0 6
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Solid-state NMR and FTIR spectroscopy

Figure B.9.: 31P (a), 31P{1H} (b) and 29Si{1H} (c) NMR spectra of SiP2N4NH. The 29Si{1H} spectrum shows
one additional signal at −101 ppm, which most likely corresponds to Si/O/H species.[26] Spinning sidebands are
marked with asterisks.

Figure B.10.: The conducted 31P NMR spectrum (black circles) was deconvolved by two Voigt functions (green)
with an integral ration of A : B = 1.13(3) : 1.00(3), which is in line with two crystallographic P sites with equal
multiplicity in SiP2N4NH. Difference plot is given in gray. Deconvolution was performed by Igor Pro software.[27]
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Figure B.11.: The FTIR spectrum (ATR) of a generic SiP2N4NH sample shows broad absorption bands at 2900–
3300 cm−1, which can be assigned to vibrational NH modes. Strong absorption bands at < 1600cm−1 correspond
to various combinations of vibrational Si/P/N modes of the condensed network and have been observed in related
compounds as well.[22,28]
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CHARDI analysis

CHARDI analyses of as-presented SiP2N4NH and hypothetical ‘SiP2N5’ have been performed, with the

latter featuring an unsaturated N1 site (Table B.10, B.11).[29] In both structures effective coordination

numbers of P1, P2 and Si1 are 3.97, 3.92 and 5.41, in line with tetrahedral and elongated octahedral

coordination spheres of P and Si. In hypothetical ‘SiP2N5’ total charges of Si1, N2, N3 and N4 (+3.94,

−3.17, −3.02, −2.85) are in good agreement with the respective formal oxidation states +IV/−III. In con-

trast total charges of P1, P2 and N1 (+5.57, +5.49, −2.12) appear too high considering formal oxidation

states +V/−III. Much more reasonable values for these sites (+5.09, +5.01, −3.13), however, are obtained

using the as-presented SiP2N4NH structure model, while values of Si1, N2, N3 and N4 do not change si-

gnificantly (Figure B.12). Thus, CHARDI analyses confirm findings from XRD and NMR investigations

as well as a selective N1–H1 bonding.

Figure B.12.: Total charges of P and N sites determined by CHARDI analysis in hypothetical ‘SiP2N5’ with
unsaturated N1 site (a) and SiP2N4NH with one equivalent H binding to N1 site (b).[29]
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Table B.10.: Results from CHARDI analysis of ‘SiP2N5’.[29] Total charges of P1, P2 and N1 differ significantly
from formal oxidation states (+V/−III), which is attributable to the lack of charge neutrality.

Polyhedron P1N1N3N4N4 P2N1N2N4N4 Si1N2N2N3N3N4N4

Average bond length / Å 1.6397 1.6429 1.8738

Polyhedral volume / Å3 2.2567 2.2699 8.6731

Distortion index 0.01265 0.0177 0.05009

Quadratic elongation 1.0019 1.0022 1.0104

Bond angle variance / °2 6.9447 8.5725 17.0733

Eff. coordination number 3.9658 3.9182 5.4112

Total charges:

P/Si 5.569 5.492 3.939

N1 −2.120 −2.120

N2 −3.167 −3.167

N3 −3.024 −3.024

N4 −2.845 −2.845 −2.845

Table B.11.: Results from CHARDI analysis of SiP2N4NH.[29] Introduction of H with selective N1–H1 bonding
obtained reasonable total charges of all atoms, confirming experimental findings from XRD and NMR investigati-
ons.

Polyhedron P1 N1N3N4N4 P2 N1N2N4N4 Si1 N2N2N3N3N4N4

Average bond length / Å 1.6395 1.6429 1.8738

Polyhedral volume / Å3 2.2561 2.2699 8.6735

Distortion index 0.0125 0.0177 0.0501

Quadratic elongation 1.0019 1.0022 1.0104

Bond angle variance / °2 6.9349 8.6259 17.0694

Eff. coordination number 3.9666 3.9181 5.411

Total charges:

P/Si 5.088 5.011 3.940

N1 −3.122 −3.122

N2 −3.167 −3.167

N3 −3.022 −3.022

N4 −2.845 −2.845 −2.845
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Abstract Phosphorus oxonitride (PON) is isoelectro-

nic with SiO2 and may exhibit a similar broad spectrum

of intriguing properties as silica. However, PON has on-

ly been sparsely investigated under high-pressure conditi-

ons and there has been no evidence on a PON polymorph

with a coordination number of P greater than 4. Herein,

we report a post-coesite (pc) PON polymorph exhibiting a

stishovite-related structure with P in a (5+1) coordination.

The pc-PON was synthesized using the multianvil techni-

que and characterized by powder X-ray diffraction, solid-state NMR spectroscopy, TEM measurements

and in situ synchrotron X-ray diffraction in diamond anvil cells. The structure model was verified by

single-crystal X-ray diffraction at 1.8 GPa and the isothermal bulk modulus of pc-PON was determi-

ned to K0 = 163(2)GPa. Moreover, an orthorhombic PON polymorph (o-PON) was observed under

high-pressure conditions and corroborated as the stable modification at pressures above 17 GPa by DFT

calculations.
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C.1. Experimental Procedures

Preparation of starting materials

P3N5 was prepared according to Stock and Hoffmann from P4S10 (Acros Organics, > 98%) in a conti-

nuous flow of dry ammonia (5.0, Air Liquide).[1] P4S10 was loaded in a fused silica boat and saturated

by a continuous flow of dry ammonia at 298 K for 4 h before it was heated at 1123 K for another 4 h. The

product was washed with concentrated HCl, de-ionized water, and ethanol then dried in vacuum to yield

an orange powder. Phase purity was confirmed by PXRD and FTIR spectroscopy.

cri-PON was prepared according to a modified literature protocol by heating stoichiometric amounts of

P3N5 and P4O10 in a corundum crucible for 48 h at 1053 K in a sealed silica ampoule filled with argon.[2]

Phase purity was confirmed by PXRD and FTIR spectroscopy.

High-pressure high-temperature synthesis

pc-PON was prepared in a high-pressure high-temperature procedure using a 1000 t hydraulic press (Vog-

genreiter, Mainleus, Germany) and the multianvil technique based on a modified Walker-type setup.[3,4]

As a starting material cri-PON was ground, packed in a capsule and sealed with a cap both consisting

of hexagonal boron nitride (Henze, Kempten, Germany). The capsule was placed in the center of two

graphite tubes using two MgO spacers (Cesima Caramics, Wust-Fischbach, Germany). The assembly

was put in the center of an Cr2O3 doped MgO octahedron (5 % Cr2O3, edge length 10 mm, Ceramic

Substrates & Components Ltd, Isle of Wight, United Kingdom) equipped with a sleeve of ZrO2 (Cesima

Ceramics, Wust-Fischbach, Germany) acting as a thermal insulator. To enable electric contact between

the surrounding anvils and the graphite tubes two molybdenum plates were used. The as-prepared octahe-

dron was compressed between eight truncated cubes of cobalt doped tungsten carbide (6 % Co, truncated

edge length 5 mm, Hawedia, Marklkofen, Germany) and the sample was heated by an electric resistance

heating with a maximal power of 3000 W.

The assembly was compressed to 20 GPa within 11 h and than heated up to 1500 K within 10 min. The

temperature was kept for another 15 min before the heating was turned off and the sample was slowly

decompressed within 33 h. pc-PON was isolated as an air- and moisture-stable gray crystalline powder.
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Powder X-ray diffraction (PXRD)

Powder X-ray diffraction measurements were performed on a STOE Stadi P powder diffractometer

(STOE & Cie GmbH, Darmstadt, Germany; Mo-Kα1 radiation, λ = 0.71073Å) equipped with a Ge(111)

monochromator and MYTHEN 1K Si-strip detector (Dectrics, Baden-Daettwil, Switzerland) in modified

Debye-Scherrer geometry. For measurements the sample was loaded into tube capillaries (Hilgenberg,

Malsfeld, Germany) with an outer diameter of 0.2 mm. Indexing, structure solution and refinement from

the PXRD pattern was performed using the TOPAS-Academic V4.1 software.[5] Indexing was achieved

with the SVD-algorithm and intensities were extracted with the Pawley-method.[6,7] The charge-flipping

algorithm was used for structure solution and the pc-PON structure model was subsequently refined with

the Rietveld method.[8–11] Peak profiles were modeled using the fundamental parameters approach and

a possible preferred orientation of crystals was accounted for with a spherical harmonics function of

fourth order.[12] The background was described using a shifted Chebyshev polynomial. Absorption was

treated with a capillary absorption correction. Temperature-dependent PXRD data were collected on a

STOE Stadi P powder diffractometer (STOE & Cie GmbH, Darmstadt, Germany; Mo-Kα1 radiation,

λ = 0.71073Å)) equipped with a Ge(111) monochromator, a STOE resistance graphite furnace and an

IPPSD detector. The sample was loaded in a fused silica capillary (Hilgenberg, Malsfeld, Germany) with

an outer diameter of 0.5 mm and heated from 298 to 1073 K in steps of 20 K with a rate of 5 K·min−1

under Ar atmosphere. The temperature was held constant for data collection.

Transmission electron microscopy (TEM)

TEM experiments were performed on a Titan 80–300 (FEI, USA) with a field emission gun operated at

300 kV. EDX spectra were recorded on a TOPS 30 EDX spectrometer (EDAX, Germany). Bright field

images as well as selected area electron diffraction (SAED) patterns were recorded using an UltraScan

1000 camera (Gatan, USA, resolution: 2k×2k). Corresponding data were processed and evaluated with

the software ES Vision and Digital Micrograph.[13,14] The PON crystals were ground in absolute ethanol

and drop-casted on copper TEM grids coated with a holey carbon film (S160, Plano GmbH, Germany)

and further fixed on a doubletilt holder.
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Computational details

Density functional theory (DFT) calculations were conducted for both, the pc- and the o-PON pha-

se. The structural relaxation of pc- PON was performed with the Vienna ab initio simulation package

(VASP).[15–17] Total energies of the unit cells were converged to 10−6 eV/atom with residual atomic forces

below 10−4 eV. The exchange correlation was treated within the generalized gradient approximation

(GGA) of Perdew, Burke, and Ernzerhof (PBE) and the projector-augmented-wave (PAW) method.[18–21]

For all calculations a plane-wave cut-off of 535 eV was used. The Brillouin zone was sampled on a

Λ-centered k-mesh produced from the method of Monkhorst and Pack of 6× 6× 12.[22] E-V data we-

re obtained from structural relaxations at a range of constant volumes (86 to 107 %) corresponding to

compression and expansion of the unit cells. A variation in lattice parameters a and b was introduced

manually in order to converge tetragonal to orthorhombic PON at constant volume owing to its mar-

ginal difference in total energy. Due to the close similarity of the E-V curves, the step size in volume

compression was 0.25 % below 15 GPa and subsequently increased to 1 % with increasing pressure. The

enthalpy difference ∆H was derived from H = E + pV in the volume region between 32 and 54 Å3, with

the pressure p obtained from the numerical differentiation of p = ∂E/∂V .

Solid-state MAS NMR spectroscopy

A 31P solid-state MAS NMR spectrum was collected using a DSX Advance III 500 spectrometer (Bruker,

Karlsruhe, Germany) with a magnetic field of 11.7 T, corresponding to a Larmor frequency of ν(31P) =

202.5MHz. The sample was placed in a ZrO2 rotor of 1.3 mm in outer diameter, which was mounted in

a commercial pneumatic MAS probe (Bruker, Karlsruhe, Germany) and spun at rotation frequency of

νrot = 50kHz. Experimental data were analyzed with device-specific software.

Fourier transform infrared spectroscopy (FTIR)

The FTIR spectrum was collected on a Spectrum BX II spectrometer with DuraSampler ATR-device

(Perkin Elmer) at ambient conditions.
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Diamond anvil cell (DAC)

For in situ high-pressure investigations up to a maximum pressure of almost 40 GPa a BX90 diamond

anvil cell (DAC) was used.[23] The DAC was equipped with Boehler-Almax type diamond anvils with

350 µm diameter culets and a rhenium gasket, which was preindented to a thickness of 35 µm and drilled

to an inner diameter of 160 µm. Neon was used as pressure-transmitting medium and ruby spheres served

as a pressure standard. The DAC was loaded with a polycrystalline particle of pc-PON and compressed

to an initial pressure of 1.8 GPa after neon pressure-loading.

Synchrotron measurements

In situ XRD experiments were performed at the extreme-conditions beamline P02.2 of PETRA III

(DESY, Hamburg, Germany).[24] The X-ray beam with a wavelength of 0.288 74 Å was focused by

a Kirkpatrick-Baez mirror system to a size of 1.8× 1.9µm2 (V ×H) and diffraction intensities we-

re collected on a PerkinElmer XRD 1621 flat-panel detector. At 1.8 GPa a single-crystal data set was

collected by an ω scan (ωmax = ±38°; ∆ω = 0.5°; texposure = 10s). Indexing and integration of the re-

flection intensities were performed using CrysAlisPro software.[25] A single crystal of an orthoenstatite

((Mg1.93,Fe0.06)(Si1.93,Al0.06)O6, Pbca, a = 8.8117(2), b = 5.18320(10), c = 18.2391(3)Å), was used to

calibrate instrument model of CrysAlisPro software (sample-to-detector distance, the detector’s origin,

offsets of the goniometer angles and rotation of the X-ray beam and the detector around the instrument

axis). The structure was solved with SHELXT and refined in anisotropic approximation against F2 on

all data by full-matrix least squares with SHELXL.[26,27] In order to examine the behavior of pc-PON

under high-pressure conditions a series of 16 wide scans (ωmax = ±20°; texposure = 40s) up to a maxi-

mum pressure of almost 40 GPa were collected. Respective pressure values were determined by the ruby

fluorescence method.[28,29] Powder X-ray diffraction patterns were revealed by masking single-crystal

reflections from diamond and neon followed by subsequent integration using the Dioptas software.[30]

Lattice parameters were determined by Le Bail refinements with Jana2006 using a pseudo-Voigt function

and a manually adjusted background for profile fitting.[31]

181



C. Supporting Information for Chapter 5 (pc-PON)

Equation of state

For a quantitative evaluation of the elastic properties of pc-PON the p-V data were fitted by the second

order Birch-Murnaghan equation (Equation C.1) using the EoSFit7 software.[32–34] Herein, V is the vo-

lume of the unit cell at the pressure p, V0 corresponds to the cell volume at a theoretical pressure of zero,

and K0 is the isothermal bulk modulus.

p(V ) =
3
2

K0

[(
V
V0

)− 7
3

−
(

V
V0

)− 5
3
]

(C.1)
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C.2. Results and Discussion

Crystal structure of pc-PON from PXRD at 1 atm

Indexing of the PXRD pattern suggested tetragonal symmetry with lattice parameters a = 4.6184(2) and

c = 2.45536(9)Å. Analysis of systematically absent reflections indicated space group P42/mnm (no.

136) in which charge flipping led to identification of all atom positions, refined by a subsequent Rietveld

refinement (Figure C.1). A minor amount of γ-HP4N7 was not refined.[35] The increased background in

the region 5° < 2θ < 20° can be assigned to non-crystalline material, formed by amorphization at high-

pressure conditions during synthesis. All atoms are situated on 4 f sites with m.2m site symmetry and

thus, respective x and y coordinates were constrained to one common parameter. The refined coordinates

of P are close to Wyckoff position 2a but refinement indicated a significant displacement, which results

in a split position of P with a 0.874(1) Å distance between the two electron density maxima. Thus, the

site occupation factor of P was set to 0.5. Accounting for the mixed anion position of N and O the

isotropic atomic displacement parameters were constrained to one common parameter and the respective

site occupation factors were set to 0.5 (Table C.2). A crystallographic ordering of P at its split position

as suggested from DFT calculations presented below was simulated using the modified DFT structure

model (Figure C.2). The simulated PXRD pattern shows additional reflections and thus does not match

the experimental one. Moreover, no superstructure reflections were observed during single-crystal XRD

and TEM measurements. Thus, there is no evidence for any superstructure caused by a systematically

ordering of P in pc-PON. Owing to a marginal X-ray scattering contrast of O and N no indications

for any crystallographic N/O-ordering in pc-PON are obtained from PXRD measurements. Previous

investigations by neutron diffraction have indicated similarly a random N/O-disorder in cri-PON, which

was used as a starting material for pc-PON.[36] Due to small sample quantities (< 15mg per batch)

additional investigations by neutron diffraction are, however, not feasible for pc-PON.
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Figure C.1.: Observed (black circles) and calculated (red line) PXRD pattern (Mo-Kα1 radiation, λ = 0.71073Å)
and difference profile (gray) from Rietveld refinement of pc-PON. Peak positions are marked by vertical blue lines.
Tagged reflections (*) can be assigned to γ-HP4N7 as minor side phase.[35]

Figure C.2.: Experimental PXRD of pc-PON (blue) and a simulated PXRD using the modified DFT structure
model presented below with a crystallographic ordering of P (red). As the simulated PXRD pattern does not match
the experimental one, there is no indication for any long-range ordering of P in pc-PON.

184



Table C.1.: Crystallographic data on pc-PON based on Rietveld refinement (p = 1atm).

Formula PON

Crystal system tetragonal

Space group (no.) P42/mnm (136)

Lattice parameters / Å a = 4.62782(10)

c = 2.46042(4)

Cell volume / Å3 V = 52.694(4)

Formula units per cell 2

Calculated X-ray density / g·cm−3 3.843

Linear absorption coefficient / cm−1 17.54

Radiation Mo-Kα1 (λ = 0.71073Å)

θ -range / ° 1.000–38.177

Temperature / K 293

Data points 4958

Number of observed reflections 97

Number of parameters (thereof background) 34 (19)

R indices RBragg = 0.02108

Rp = 0.03535

Rwp = 0.04621

Rexp = 0.03484

Goodness of fit 1.327

Table C.2.: Crystallographic data on pc-PON based on Rietveld refinement (p = 1atm).[a]

x y z Uiso / Å2 s.o.f.

P1 (4 f ) 0.0668(2) 0.0668(2) 0 0.0070(3) 0.5

O1 (4 f ) 0.3345(2) 0.3345(2) 0 0.0045(4) 0.5

N1 (4 f ) 0.3345(2) 0.3345(2) 0 0.0045(4) 0.5

[a] The site occupation factors (s.o. f .) for all atoms were set to 0.5 accounting for the split position of P and the mixed anion
position of N and O, respectively.

185



C. Supporting Information for Chapter 5 (pc-PON)

Table C.3.: Interatomic distances (Å) and angles (°) of pc-PON based on Rietveld refinement (p = 1atm).

P1–(N/O)1 1.6964(8) (N/O)1–P1–(N/O)1 79.36(5)

P1–(N/O)1 1.7521(12) (N/O)1–P1–(N/O)1 104.93(5)

P1–(N/O)1 2.6263(12) (N/O)1–P1–(N/O)1 180

Figure C.3.: Bar chart of interatomic distances between P and N/O in pc-PON and related compounds.[35–39]

Table C.4.: Calculated X-ray densities of selected SiO2 and PON phases. The calculated X-ray density of pc-
PON was determined to 3.843 g·cm−3 corresponding to an increase of 20.1 % relative to coe-PON and 42.2 %
to cri-PON, thus, pc-PON represents the densest PON phase so far.[36,38] However, the increase in density upon
transition is less than reported for the respective SiO2 phases (48.2 and 85.1 %), which may be attributable to the
sixfold coordination of Si in stishovite, resulting in a significant higher density.[40–42]

Cristobalite Coesite Stishovite cri-PON coe-PON pc-PON

Density / g·cm−3 2.318 2.896 4.291 2.702 3.200 3.843

Ref. [40] [41] [42] [36] [38] this work
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TEM and EDX measurements

Figure C.4.: Bright-field image of pc-PON crystallite (a). SAED-tilting series (b, top) with corresponding si-
mulations (b, bottom) with tilting angles (experimental blue, simulated red) and exemplarily indexed reflections.
Simulations based on structural data, obtained from PXRD refinement (structure model in space group P42/mnm
with a = 4.62782(10)Å and c = 2.46042(4)Å). D-values directly measured from SAED patterns: d020 = 2.30Å,
d001 = 2.42Å and d110 = 3.25Å.

Table C.5.: TEM-EDX measurements (300 kV) of pc-PON in atom-%, showing no other elements than P, O and
N in the sample. The measured atomic ratio, within the standard deviations and the precision of the methods for
light elements, is close to P : O : N= 1 : 1 : 1.

1 2 3 4 5 6 7 mean value ideal value

P 43.1 41.0 41.6 42.7 35.5 40.2 42.2 40.9(26) 33.0

O 30.8 31.7 31.0 32.2 29.8 31.7 31.2 31.0(9) 33.0

N 26.1 27.3 27.4 25.1 34.7 28.1 27.6 28.0(31) 33.0
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31P solid-state NMR and FTIR measurements of pc-PON

Figure C.5.: 31P solid-state MAS NMR spectrum of pc-PON (B0 = 11.7T, ν(31P) = 202.5MHz, νrot = 50kHz)
showing one broadened signal at δ =−86.9ppm (∆νFWHM = 20ppm), which can be assigned to the one crystallo-
graphic position of P in the pc-PON structure. Peak broadening can be caused by varying local N/O coordination
of P and has been observed in other PON modifications as well.[38,39] A statistic occupation of the split position of
P may enhance peak broadening in this case. The marked signal at δ = −17ppm (*) can be assigned to a minor
contamination of γ-HP4N7.[35]

Figure C.6.: FTIR spectra of pc-PON (ATR). In contrast to H–P–N compounds (e.g. HPN2, HP4N7) pc-PON does
not show any significant signals in the region 2300–3300 cm−1, which indicates the absence of N–H and O–H
bonds in the PON sample.[35,41,43–46]
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Crystal structure of pc-PON from single-crystal XRD at 1.8 GPa

Table C.6.: Crystallographic data on pc-PON based on single-crystal refinement (p = 1.8GPa).

Formula PON

Crystal system tetragonal

Space group (no.) P42/mnm (136)

Lattice parameters / Å a = 4.6027(3)

c = 2.4560(3)

Cell volume / Å3 V = 52.030(9)

Formula units per cell 2

Calculated X-ray density / g·cm−3 3.892

Linear absorption coefficient / cm−1 1.8

Device PETRA III, DESY

Radiation Synchrotron (λ = 0.28874Å)

θ -range / ° 2.542–17.163

Temperature / K 293

Number of observed reflections 244

Independent reflections (> 2σ ) 113 (100)

Number of parameters 9

F(000) 60

Residual electron density / e·Å−3 0.602; −0.601

R indices Rint = 0.0463;

Rσ = 0.0513;

R1 = 0.0513(> 2σ);

wR2 = 0.1110(> 2σ);

R1 = 0.0577 (all data);

wR2 = 0.1169 (all data);

Goodness of fit 1.343
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Table C.7.: Refined atomic coordinates, isotropic displacement parameters and site occupation factors (s.o. f .) in
pc-PON based on single-crystal refinement (p = 1.8GPa).

x y z Ueq / Å2 s.o.f.

P1 (4 f ) 0.0661(2) 0.0661(2) 0 0.0094(3) 0.5

O1 (4 f ) 0.3325(3) 0.3325(3) 0 0.0139(4) 0.5

N1 (4 f ) 0.3325(3) 0.3325(3) 0 0.0139(4) 0.5

Table C.8.: Anisotropic displacement parameters (Å2) of pc-PON based on single-crystal refinement (p =

1.8GPa).

U11 U22 U33 U23 U13 U12

P1 (4 f ) 0.0105(4) 0.0105(4) 0.0072(5) 0 0 −0.0008(3)

O1 (4 f ) 0.0164(6) 0.0164(6) 0.0089(7) 0 0 −0.0027(6)

N1 (4 f ) 0.0164(6) 0.0164(6) 0.0089(7) 0 0 −0.0027(6)

Figure C.7.: Crystal structure of pc-PON from single-crystal structure refinement. Ellipsoids are displayed at 90 %
probability level. P: black, N,O: blue.

190



Table C.9.: Interatomic distances (Å) and angles (°) of pc-PON based on single-crystal refinement (p = 1.8GPa).

P1–(N/O)1 1.6976(14) (N/O)1–P1–(N/O)1 79.92(8)

P1–(N/O)1 1.7341(21) (N/O)1–P1–(N/O)1 104.68(8)

P1–(N/O)1 2.5946(21) (N/O)1–P1–(N/O)1 180

Table C.10.: Comparison of crystallographic data of pc-PON from powder and single-crystal X-ray refinements.

Formula PON

Crystal system tetragonal

Space group (no.) P42/mnm (136)

Lattice parameters / Å a = 4.62782(10) a = 4.6027(3)

c = 2.46042(4) c = 2.4560(3)

Cell volume / Å3 V = 52.694(4) V = 52.030(9)

Z 2

Sample Powder Single-crystal

Radiation source Mo-Kα1 Synchrotron

Wavelength / Å 0.71073 0.28874

Obs. indep. reflections 97 113

θ -range / ° 1.000–38.177 2.542–17.163

Resolution / Å 0.57 0.49

Temperature / K 293

Pressure / GPa 10−4 1.8

Goodness of fit 1.327 1.343

CSD deposition number 433717 434035
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Figure C.8.: Isosurfaces of the electron density for pc-PON based on PXRD (a) and single-crystal XRD refinement
(b), indicating that both refinements are tantamount in quality and accuracy. Isosurface levels are 20, 13, 9, and
6 electron·a−3

0 , respectively (a0 = Bohr radius).

High-pressure PXRD patterns of pc- and o-PON from synchrotron measurements

Figure C.9.: Pressure-dependent powder X-ray diffraction patterns from synchrotron measurements (λ =

0.28874Å) showing two different types of pattern. Corresponding pressures (GPa) are given on the left side. The
pc-PON structure (blue pattern) seems to be preserved up to ca. 20 GPa. At higher pressures, however, a new phase
is observed (green pattern), as the reflections in the region 10.0° < 2θ < 11.5° change significantly. At 19.6 GPa
the phases coexist, as both types of pattern superpose (red pattern). The regions of interest are highlighted and
enlarged on the right side. The broad signals in the range 6° < 2θ < 9° up to 5.2 GPa can be assigned to a liquid
neon phase in the DAC.
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Temperature-dependent PXRD of pc-PON

Figure C.10.: Temperature-dependent X-ray diffraction patterns from pc-PON (Mo-Kα1, λ = 0.71073Å) collec-
ted in steps of 20 K. At ca. 900 K phase transition to cri-PON is observed, proving pc-PON to be metastable at
ambient conditions.
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Tetragonal to orthorhombic phase transition in PON, spontaneous strain formalism

To compare the nature of the phase transition from tetragonal to orthorhombic symmetry in PON to SiO2,

it is described in terms of spontaneous strains as reported in former works for SiO2.[47] Therefore, the

lattice parameters of the pc-PON (P42/mnm, high-symmetry phase) are extrapolated into the pressure

regime of o-PON (Pnnm, low-symmetry phase). Hereby, symmetry-breaking (sb) and non-symmetry-

breaking (nsb) elements of the spontaneous strain are distinguished.[48,49] The respective non-zero com-

ponents ε11sb, ε22sb, ε11nsb, ε22nsb, ε33nsb and VS are calculated according to equations C.2–C.5 where a0,

c0 and V0 corresponds to the extrapolated parameters of the tetragonal phase and a, b, c and V to those

of the orthorhombic one.

ε11sb =−ε22sb = (a−b)/2a0 (C.2)

ε11nsb = ε22nsb = (a+b)/2a0−1 (C.3)

ε33nsb = c/c0−1 (C.4)

VS =V/V0−1 (C.5)

Figure C.11 illustrates the calculated spontaneous strain components and the volume strain VS. An

evaluation of the observed phase transition in terms of spontaneous strain is justified as the relation VS =

ε11nsb + ε33nsb is almost preserved in the whole pressure range. The non-symmetry-breaking elements

of the spontaneous strain ε11nsb, ε22nsb, ε33nsb as well as the volume strain VS remain small in the whole

pressure range. The symmetry-breaking components ε11sb and ε22sb, however, show the largest magnitude

by far. Almost identical results were obtained for rutile-type (P42/mnm) → CaCl2-type (Pnnm) phase

transition in SiO2 corroborating the kinship of both compounds. Although, we were not able to extract

any structural information on o-PON, the mechanism of phase transition seems to be similar to the one

observed in SiO2. Thus, one would expect a tilting of the P coordination polyhedra in the a-b plane with

increasing pressure and a CaCl2-related structure for o-PON.
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Figure C.11.: Evolution of the lattice parameters with pressure (top) and calculated symmetry-breaking (sb) and
non-symmetry-breaking (nsb) components of spontaneous strain as a function of pressure with ε11sb (orange)
appearing the largest component (bottom).
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Figure C.12.: Schematic illustration of the stishovite→ CaCl2-type SiO2 phase transition, which is characterized
by an alternating tilting of the SiO6 octahedra in the a-b plane. A similar mechanism is assumed for the tetragonal
→ orthorhombic phase transition in PON, considering reduction of symmetry and findings from spontaneous strain
formalism.

Equation of states and elastic properties of pc-PON

In order to classify pc-PON on its elastic properties, equations of state were fitted using a second order

Birch-Murnaghan equation with V0 = 52.64(2) Å3 and K0 = 163(2)GPa. Corresponding parameters refi-

ned from the calculated p-V data obtained from DFT calculations were determined to be V0 = 53.8(2)Å

and K0 = 164(9)GPa. Keeping in mind that GGA based calculations typically show a systematic overe-

stimation of the cell volume, the calculated data are in very good agreement with the experimental ones.

A corresponding refinement of o-PON was not possible. Due to softening effects up to 30 GPa there are

not enough reliable pressure points. Therefore, the as-refined equations of state of pc-PON are extrapola-

ted to the pressure regime of o-PON (blue lines, Figure C.13). By analogy with stishovite and CaCl2-type

SiO2 the orthorhombic phase (o-PON) appears slightly more compressible than the tetragonal one (pc-

PON).[47] However, as only small deviations from the extrapolated equations of state are observed, one

would expect a minor change of the bulk modulus upon transition.

196



Figure C.13.: Experimental and calculated pressure points of tetragonal (blue) and o-PON (green) and extrapolated
equations of state of pc-PON (blue lines).

Figure C.14.: Pressure evolution of a3 and c3 in pc-PON and refined equations of state (second order Birch-
Murnaghan) with K0(a3) = 109(2)GPa and K0(c3) = 927(35)GPa, respectively.
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DFT calculations

Figure C.15.: Structure model of pc-PON from structure relaxation with N/O-order used for DFT calculations
(top). The alternating displacement of the P atoms appears as a coupled feature of the introduced N/O-ordering
model resulting in N[3] and O[2], which are bound to three and two P atoms, respectively (bottom). P: black, O:
red, N: blue.
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Figure C.16.: E-V curves of pc- (blue) and o-PON (green) from DFT calculations for two formulas of PON and
relative enthalpy per formula unit of PON as a function of pressure with transition pressure of 17 GPa (inlay).

Figure C.17.: E-V curves of cri-, coe- and pc-PON from DFT calculations for one formula of PON.[38] The two
curves of coe-PON correspond to two different N/O ordering models.
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Abstract The high-pressure behavior of non-metal ni-

trides is of special interest for inorganic and theoretical

chemistry as well as materials science, as these com-

pounds feature intriguing elastic properties. The double

nitride α-BP3N6 was investigated by in situ single-crystal

X-ray diffraction (XRD) upon cold compression to a ma-

ximum pressure of about 42 GPa, and its isothermal bulk

modulus at ambient conditions was determined to be

146(6) GPa. At maximum pressure the sample was laser-

heated, which resulted in the formation of an unprecedented high-pressure polymorph, β-BP3N6. Its

structure was elucidated by single-crystal XRD, and can be described as a decoration of a distorted

hexagonal close packing of N with B in tetrahedral and P in octahedral voids. Hence, β-BP3N6 is the

first nitride to contain PN6 octahedra, representing the much sought-after proof of principle for sixfold

N-coordinated P that has been predicted for numerous high-pressure phases of nitrides.
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D.1. Experimental Procedures

Multianvil synthesis of α-BP3N6

Single-crystals of α-BP3N6 were synthesized according to Vogel et al., starting from (PNCl2)3, NH4N3

and h-BN in a high-pressure high-temperature reaction in a 1000 t hydraulic press (Voggenreiter, Main-

leus) using the multianvil technique and a modified Walker-type module.[1–3] In a glovebox (< 1ppm

O2, H2O; MBraun) stoichiometric amounts of the starting materials and an additional amount of NH4Cl

(25 wt-%) were ground and packed tightly into a crucible of h-BN (Henze, Kempten), which was closed

with a lid of h-BN. The crucible was surrounded by two graphite furnaces and a ZrO2 sleeve (Cesima

Ceramics, Wust-Fischbeck) acting as a thermal insulator. The as-described sample was centered in a

drilled through octahedron (5 % Cr2O3-doped MgO, 18 mm edge length, Ceramic Substrates & Com-

ponents Ltd, Isle of Wight) using two MgO spacers (Cesima Ceramics, Wust-Fischbeck) and contacted

using two Mo plates from both sides. The octahedron was placed in the center of eight Co-doped WC

cubes with truncated edges (7 % Co, 11 mm edge length, Hawedia, Marklkofen), which were separated

by pyrophyllite gaskets. The assembly was compressed to 8 GPa and the sample was heated to 1100 ◦C

within 1 h. The temperature was kept constant for 5 h, before the sample was allowed to cool down to

ambient temperature within 1 h. After subsequent slow decompression the recovered sample was washed

with de-ionized water and α-BP3N6 was obtained as colorless, block-like single-crystals (Figure D.1).

Energy-dispersive X-ray (EDX) spectroscopy was performed as chemical analysis (Table D.1).

Scanning electron microscopy and energy-dispersive X-ray spectroscopy

Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy was performed

on a Helios Nanolab G3 UC (FEI, Hillsboro), which was equipped with a X-Max 80 SDD detector

(Oxford Instruments, Abingdon). For data collection and analysis the Aztec software was used.[4] To

ensure electrical conductivity of the sample, it was coated with carbon using an electron beam evaporator

(BAL-TEC MED 020, Bal Tec AG).

Synchrotron measurements and data analysis

In situ XRD measurements were carried out at the Extreme Conditions Beamline P02.2 (PETRA III)

at the Deutsches Elektronen-Synchrotron (DESY, Hamburg).[5] The X-ray beam (λ = 0.2894Å) was
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focused to 1.4×1.8 µm2 (V ×H) by a Kirkpatrick-Baez mirror system and diffraction patterns were

collected on a PerkinElmer XRD 1621 flat-panel detector. W served as an internal pressure standard.

Powder X-ray diffraction patterns of W were obtained from wide scans (ωmax = ±20°; texposure = 20s)

by masking diamond reflections and radial integration using the Dioptas software.[6] Lattice parameters

of W were refined using the TOPAS Academic software (Pawley method) and pressures were determined

on the basis of W equation of states.[7–9]

Single-crystal data of α- and β-BP3N6 were collected by ω scans (ωmax =±38°; ∆ω = 0.5°; texposure =

1–10 s), using 25/50 µm Pt filters for α-BP3N6 in the pressure range of 2.9(1)GPa ≤ p ≤ 42.4(1)GPa

(Table D.2). The dataset of pressure-quenched β-BP3N6 was collected at ambient pressure without any

filters. Due to the beam intensity varying temporality during data collection at ambient pressure (technical

issue of the storage ring), datasets appear of poor quality as discussed in the manuscript and below. High-

pressure data sets were not affected by this technical issue. Data analysis was performed using the CrysA-

lisPro software.[10] Due to fragmentation of the single-crystals, the laser heated sample showed multiple

crystalline phases and domains as illustrated in Figure D.6. Using the reciprocal space viewer (Ewald Ex-

plorer, CrysAlisPro) reflections were grouped manually for separate indexing. As the indexed domains

showed only few overlapped reflections, data sets were integrated independently. For integration of the

ambient-pressure dataset of β-BP3N6 a filter for Rint (30 %) was applied. For instrument model calibra-

tion of CrysAlisPro (sample-to-detector distance, the detector’s origin, offsets of the goniometer angles

and rotation of the X-ray beam and the detector around the instrument axis) a single-crystal of an ortho-

enstatite ((Mg1.93,Fe0.06)(Si1.93,Al0.06)O6, Pbca, a= 8.8117(2), b= 5.18320(10), c= 18.2391(3)Å), was

used.

Pressure-dependent XRD data of α-BP3N6 were solved independently at each pressure point using

the SHELXT algorithm and structure refinement was performed with SHELXL in isotropic approxima-

tion against F2 on all data by the full-matrix least squares algorithm.[11,12] The β-BP3N6 structure at

42.4(1) GPa was solved with SHELXT and refined in isotropic approximation against F2 on all data by

full-matrix least squares with SHELXL.[11,12] The structure model at ambient pressure was refined by

full-matrix least squares using the high-pressure model as a starting point. Owing to a low number of

observed reflections, the atomic displacement parameters of the P and N atoms were constrained to one

common parameter, respectively. A refinement of the unknown monoclinic cell reported below (Figure

D.6) was not feasible on the basis of the collected data.
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Laser-heated diamond anvil cell

High-pressure experiments were carried out using a BX90 diamond anvil cell, which was equipped with

two Boehler-Almax-type diamond anvils (250 µm culet) separated by a Re gasket.[13] The gasket was

pre-indented to 30 µm and laser-drilled to an inner diameter of 100 µm. Ne was used as a pressure-

transmitting medium and W served as an internal pressure standard. The cell was loaded with two single

crystals of α-BP3N6 and compressed to an initial pressure of 2.9(1) GPa (Figure D.4). After cold com-

pression to a maximum pressure of 42.4(1) GPa, the sample was heated from one side using a focused

NIR fiber laser (λ = 1070nm, 10×10 µm2). After a 3 s flash the laser was turned off and the sample

was allowed to cool down to ambient temperature before single-crystal XRD data were collected (Figu-

re D.5). Owing to a very short heating period, the maximum temperature was not measured.

Equation of state

The pressure-dependent evolution of the unit cell volume of α-BP3N6 (2.9(1)GPa ≤ p ≤ 42.4(1)GPa)

was described by a second order Birch-Murnaghan equation of state (Equation D.1) using the EoSFit7

software.[14–16] Herein, the pressure p is described as a function of cell volume V with V0 corresponding

to the cell volume at a theoretical pressure of zero and K0 representing the isothermal bulk modulus.

p(V ) =
3
2

K0

[(
V
V0

)− 7
3

−
(

V
V0

)− 5
3
]

(D.1)

Minimal bonding ellipsoids (MBE)

Each coordination polyhedra can be described as an ellipsoid with the ligands occupying its surface,

when a displacement from the centre of the central atom is considered.[17] The so-called minimal bonding

ellipsoid (MBE) is characterized by its radii R1, R2, and R3 with mean radius 〈R〉 and standard deviation

σ(R), the latter providing information on the distortion of the ellipsoid itself. The shape parameter S

indicates oblate (S < 0), regular (S≈ 0) and prolate (S > 0) shape of the coordination polyhedra and the

respective centre displacement of the central atom is given as a scalar. Herein, MBE analysis was used

to quantify the distortions of the B/N and P/N polyhedra and fitting was performed using the PIEFACE

software.[17]
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D.2. Results and Discussion

Data on α-BP3N6

Table D.1.: From EDX measurements (atom-%) the atomic ratio B : P : N was calculated to 1.1(1) : 3.0(1) : 5.5(1),
which is in good agreement with the nominal ratio of BP3N6.[1] Trace amounts of O were not considered, as they
are most likely attributable to surface hydrolysis of the crystals.[1]

C1 C2 C3 C4 C5 Average Normalized ratio

B 11 % 11 % 12 % 11 % 11 % 11(1) % 1.1(1)

P 31 % 30 % 30 % 31 % 32 % 31(1) % 3.0(1)

N 57 % 57 % 56 % 56 % 57 % 57(1) % 5.5(1)

O 1 % 2 % 2 % 2 % 1 % 2(1) % 0.1(1)

Figure D.1.: SEM images of a generic α-BP3N6 sample showing block-like single-crystals of α-BP3N6.[1]
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Table D.2.: Crystallographic data of α-BP3N6 from single-crystal XRD refinements at ambient pressure[1] and 2.9(1)GPa≤ p≤ 42.4(1)GPa.

Formula α-BP3N6

Pressure / GPa 0.00010(1) 2.9(1) 10.5(1) 11.3(1) 14.3(1) 26.1(1) 32.9(1) 42.4(1)

Crystal system monoclinic

Molecular weight / g·mol−1 187.78

Space group P21/c (no. 14)

a / Å 5.0272(11) 5.0174(2) 4.9558(2) 4.9471(2) 4.9270(2) 4.8347(6) 4.7926(8) 4.7223(10)

b / Å 4.5306(12) 4.5192(1) 4.4602(1) 4.4513(1) 4.4319(1) 4.3484(2) 4.3145(3) 4.2614(4)

c / Å 17.332(3) 17.305(4) 17.076(4) 17.045(4) 16.971(3) 16.674(10) 16.545(14) 16.371(18)

β / ° 106.387(9) 106.39(1) 106.49(2) 106.50(1) 106.53(1) 106.52(3) 106.51(5) 106.39(6)

Cell volume / Å3 378.72(15) 376.45(9) 361.91(9) 359.89(8) 355.25(7) 336.1(2) 328.0(3) 316.1(4)

Formula units per cell 4

Calculated X-ray density / g·cm−3 3.293 3.313 3.446 3.466 3.511 3.711 3.802 3.946

Radiation Mo-Kα (λ = 0.71073Å) Synchrotron (λ = 0.28940Å)

Device Bruker D8 Venture PETRA III, P02.2

Filter / µm Pt – 50 50 25 50 25 25 25

F(000) 368

Observed reflections 7378 2254 2143 1960 1967 1868 1849 1777

Independent reflections (> 2σ ) 1662 (1377) 1040 (972) 999 (967) 881 (853) 862 (821) 836 (792) 827 (772) 805 (755)

Number of parameters 91 42

Rint 0.0482 0.0169 0.0227 0.0210 0.0202 0.0201 0.0218 0.0245

Rσ 0.0454 0.0227 0.0256 0.0239 0.0246 0.0221 0.0236 0.0261

R1 (all data) 0.0483 0.0328 0.0424 0.0372 0.0345 0.0431 0.0401 0.0460

wR2 (all data) 0.1001 0.0938 0.1137 0.1070 0.0993 0.1075 0.1016 0.1301

CSD 434784 1898720 1898716 1898723 1898724 1898717 1898721 1898718
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Table D.3.: Interatomic T –N (T = B, P) distances (Å) occurring in α-BP3N6 from single-crystal XRD refinements at ambient pressure[1] and 2.9(1)GPa ≤ p ≤
42.4(1)GPa as well as mean interatomic T –N distances for qualitative discussion. Standard deviations of mean interatomic T –N distances were calculated by
averaging the respective standard deviations obtained from single-crystal XRD refinements.

Pressure / GPa 0.00010(1) 2.9(1) 10.5(1) 11.3(1) 14.3(1) 26.1(1) 32.9(1) 42.4(1)

P1–N6 1.5543(23) 1.5575(22) 1.5532(21) 1.5518(25) 1.5493(25) 1.5438(20) 1.5411(20) 1.5356(26)

N1 1.6564(18) 1.6566(18) 1.6405(19) 1.6408(22) 1.6348(20) 1.6166(21) 1.6089(23) 1.5986(32)

N3 1.6647(20) 1.6622(11) 1.6502(14) 1.6469(15) 1.6446(14) 1.6288(14) 1.6207(35) 1.6100(19)

N3 1.6658(20) 1.6665(32) 1.6515(32) 1.6501(34) 1.6462(34) 1.6323(35) 1.6223(14) 1.6135(51)

P2–N5 1.5676(18) 1.5706(27) 1.5628(27) 1.5686(28) 1.5678(27) 1.5540(28) 1.5523(29) 1.5517(42)

N6 1.5830(24) 1.5846(35) 1.5790(34) 1.5765(36) 1.5763(36) 1.5643(35) 1.5596(36) 1.5536(51)

N2 1.6719(20) 1.6685(13) 1.6527(16) 1.6516(17) 1.6487(16) 1.6310(16) 1.6259(15) 1.6160(21)

N1 1.6734(20) 1.6723(14) 1.6610(15) 1.6587(19) 1.6530(15) 1.6381(15) 1.6316(16) 1.6232(21)

P3–N5 1.5449(19) 1.5456(14) 1.5415(14) 1.5402(14) 1.5391(14) 1.5311(14) 1.5286(14) 1.5214(18)

N2 1.6558(18) 1.6548(17) 1.6408(18) 1.6401(21) 1.6353(19) 1.6188(19) 1.6107(21) 1.5997(29)

N4 1.6627(19) 1.6630(22) 1.6501(22) 1.6479(26) 1.6440(23) 1.6273(26) 1.6220(32) 1.6116(34)

N4 1.6747(18) 1.6703(28) 1.6544(29) 1.6557(31) 1.6505(31) 1.6308(31) 1.6232(25) 1.6164(46)

B1–N4 1.5473(34) 1.5376(44) 1.5209(55) 1.5160(57) 1.5090(56) 1.4855(56) 1.4698(55) 1.4597(75)

N3 1.5706(28) 1.5704(38) 1.5434(47) 1.5414(48) 1.5353(48) 1.5104(47) 1.5070(47) 1.4902(64)

N2 1.5735(30) 1.5714(23) 1.5553(23) 1.5529(29) 1.5460(26) 1.5231(26) 1.5150(26) 1.4978(25)

N1 1.5846(29) 1.5798(19) 1.5590(22) 1.5567(25) 1.5527(21) 1.5235(20) 1.5156(20) 1.5029(32)

Mean P–N 1.631(2) 1.631(2) 1.620(2) 1.619(3) 1.616(3) 1.601(3) 1.596(3) 1.588(4)

Mean B–N 1.569(3) 1.565(3) 1.545(4) 1.542(4) 1.536(4) 1.511(4) 1.502(4) 1.488(5)
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Figure D.2.: Uniform contraction of lattice parameters in α-BP3N6 upon pressure loading (a) and pressure-
dependent evolution of mean interatomic P–N and B–N distances in α-BP3N6 as reported in Table D.3 (b).[1]

Figure D.3.: Pressure-dependent centre displacement (a) and σ(R) (b) of the T N4 tetrahedra (T = B, P) in α-
BP3N6 obtained from MBE analysis.[1,17] Only small changes in centre displacement and σ(R) indicate an isotropic
contraction of the T N4 tetrahedra upon pressure load without a significant change in distortion.
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Table D.4.: Pressure-dependent ellipsoidal parameters of the MBE analyses of α-BP3N6 as partially illustrated in
Figure D.3.[1,17]

Pressure / GPa R1 R2 R3 〈R〉 σR S Centre Displacement Coordination

B1 0.00010(1) 1.661 1.531 1.509 1.567 0.067 0.065 0.041 4

2.9(1) 1.563 1.483 1.412 1.486 0.062 0.004 0.042 4

10.5(1) 1.623 1.502 1.477 1.534 0.064 0.058 0.042 4

11.3(1) 1.634 1.506 1.490 1.543 0.065 0.068 0.042 4

14.3(1) 1.629 1.506 1.486 1.540 0.063 0.062 0.042 4

26.1(1) 1.656 1.525 1.507 1.563 0.066 0.067 0.044 4

32.9(1) 1.593 1.490 1.444 1.509 0.062 0.034 0.044 4

42.4(1) 1.581 1.488 1.431 1.500 0.062 0.021 0.045 4

P1 0.00010(1) 1.705 1.630 1.560 1.632 0.059 0.002 0.105 4

2.9(1) 1.668 1.545 1.539 1.584 0.059 0.070 0.121 4

10.5(1) 1.692 1.598 1.553 1.614 0.058 0.028 0.112 4

11.3(1) 1.696 1.607 1.555 1.620 0.058 0.020 0.109 4

14.3(1) 1.694 1.605 1.556 1.618 0.057 0.022 0.109 4

26.1(1) 1.706 1.628 1.563 1.632 0.058 0.006 0.104 4

32.9(1) 1.682 1.569 1.549 1.600 0.058 0.054 0.117 4

42.4(1) 1.677 1.558 1.545 1.593 0.059 0.062 0.119 4

P2 0.00010(1) 1.688 1.627 1.551 1.622 0.056 −0.010 0.070 4

2.9(1) 1.674 1.566 1.508 1.583 0.069 0.029 0.084 4

10.5(1) 1.685 1.602 1.540 1.609 0.060 0.010 0.074 4

11.3(1) 1.685 1.608 1.542 1.612 0.059 0.005 0.071 4

14.3(1) 1.684 1.608 1.543 1.612 0.058 0.005 0.073 4

26.1(1) 1.690 1.625 1.551 1.622 0.057 −0.007 0.070 4

32.9(1) 1.677 1.583 1.523 1.594 0.063 0.018 0.077 4

42.4(1) 1.675 1.576 1.517 1.589 0.065 0.022 0.080 4

P3 0.00010(1) 0.187 1.593 1.391 1.618 0.197 0.022 0.127 4

2.9(1) 1.829 1.579 1.293 1.567 0.219 −0.045 0.134 4

10.5(1) 1.849 1.592 1.360 1.600 0.200 −0.007 0.129 4

11.3(1) 1.856 1.591 1.368 1.605 0.200 0.003 0.128 4

14.3(1) 1.853 1.594 1.366 1.604 0.199 −0.003 0.129 4

26.1(1) 1.869 1.594 1.389 1.617 0.197 0.019 0.126 4

32.9(1) 1.839 1.583 1.328 1.583 0.209 −0.022 0.131 4

42.4(1) 1.835 1.581 1.315 1.577 0.212 −0.030 0.132 4
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α-BP3N6 −→ β-BP3N6 phase transition

Figure D.4.: Microphotographs of BX90 DAC (250 µm culet, Re gasket) loaded with W and two crystals of α-
BP3N6 at 2.9(1) GPa (a), and temperature- and pressure-quenched sample at ambient conditions, which had been
laser heated at 42.4(1) GPa (b).

Figure D.5.: X-ray diffraction pattern (ωmax = 0; texposure = 2s) of the BP3N6 sample before (a, α-BP3N6, single-
crystal), and after on-line laser heating at 42.4(1) GPa (b, crystalline multi-phase grains including domains of
β-BP3N6).
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Figure D.6.: The screenshots of a generic indexed XRD data set (Ewald Explorer, CrysAlisPro) show the three
major domains of a crystalline multi-phase grain, which formed upon laser heating at 42.4(1) GPa.[10] Analysis of
several XRD data sets suggested the formation of two previously unknown phases with orthorhombic (domain 1;
β-BP3N6) and monoclinic metrics (domain 2, 3), respectively. Datasets of the monoclinic cell, however, could not
be refined and thus, this phase is not discussed within this manuscript.
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Figure D.7.: The α-BP3N6−→β-BP3N6 phase transition is characterized by a significant decrease in volume
(23 %) and can be classified as a 1st order phase transition (reconstructive). Densities of selected pressure points
are provided in the legend.
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Data on β-BP3N6

Single-crystal XRD refinements

Table D.5.: Crystallographic data of β-BP3N6 at 42.4(1) GPa and ambient pressure from single-crystal XRD refi-
nements. Owing to a low number of observed reflections at ambient pressure, the atomic displacement parameters
of P and N were constrained to one common parameter, respectively.

Formula β-BP3N6

Pressure / GPa 42.4(1) 0.00010(1)

Crystal system orthorhombic

Molecular weight / g·mol−1 187.78

Space group Pna21 (no. 33)

Lattice parameters / Å a = 8.6666(10) a = 8.992(2)

b = 7.411(4) b = 7.685(9)

c = 4.0115(4) c = 4.1787(11)

Cell volume / Å3 257.65(14) 288.8(4)

Formula units per cell 4

Calculated X-ray density / g·cm−3 4.841 4.319

Linear absorption coefficient / cm−1 0.217 0.194

Radiation Synchrotron (λ = 0.28940Å)

Device PETRA III, P02.2

θ -range / ° 1.91 < θ < 18.36 1.84 < θ < 9.24

h,k,l range −14≤ h≤ 14 −9≤ h≤ 9

−7≤ k ≤ 6 −5≤ k ≤ 3

−6≤ l ≤ 6 −4≤ l ≤ 4

F(000) 368

Observed reflections 1265 217

Independent reflections (> 2σ ) 771 (710) 162 (114)

Constraints 0 7

Number of parameters 41 34

Rint; Rσ 0.0653; 0.0617 0.0673; 0.0760

Final R indices (I > 2σ(I)) R1 = 0.0755; wR2 = 0.2026 R1 = 0.0767; wR2 = 0.1964

Final R indices (all data) R1 = 0.0794; wR2 = 0.2114 R1 = 0.0878; wR2 = 0.2142

Goodness of fit 1.121 1.003

Flack parameter x[a] −1.5(10) −2.1(10)

Residual electron density / eÅ−3 1.614; −2.431 0.842; −0.825

CSD 1898722 1898719

[a]Owing to low Friedel pair coverage the Flack parameter could not be refined reliably.
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Table D.6.: Fractional coordinates and isotropic atomic displacement parameters of β-BP3N6 at 42.4(1) GPa from
single-crystal XRD refinement. All atoms occupy the general position with Wyckoff no. 4a.

Atom x y z Uiso / Å2

P1 0.11000(13) 0.3881(4) 0.7550(4) 0.0045(3)

P2 0.37349(15) 0.2577(4) 0.2469(3) 0.0045(3)

P3 0.11308(13) 0.0672(4) 0.2372(4) 0.0043(3)

B1 0.2075(7) 0.5774(18) 0.1805(15) 0.0064(11)

N1 0.0523(5) 0.5808(12) 0.0090(13) 0.0051(8)

N2 0.2946(5) 0.0730(13) 0.0409(12) 0.0040(8)

N3 0.2088(5) 0.2308(14) 0.5109(12) 0.0056(8)

N4 0.2791(5) 0.4181(13) 0.0000(14) 0.0059(8)

N5 0.0345(5) 0.2385(13) 0.0151(13) 0.0061(8)

N6 0.4549(6) 0.4168(14) 0.4705(14) 0.0062(8)

Table D.7.: Fractional coordinates and isotropic atomic displacement parameters of β-BP3N6 at ambient pressure
from single-crystal XRD refinement. All atoms occupy the general position with Wyckoff no. 4a and isotropic
displacement parameters of P and N were constrained to one common parameter, respectively.

Atom x y z Uiso / Å2

P1 0.1100(6) 0.389(2) 0.766(2) 0.010(2)

P2 0.3731(5) 0.258(2) 0.247(2) 0.010(2)

P3 0.1127(6) 0.066(2) 0.237(2) 0.010(2)

B1 0.211(3) 0.567(7) 0.205(10) 0.018(9)

N1 0.054(2) 0.591(6) 0.024(6) 0.010(3)

N2 0.291(2) 0.081(5) 0.057(6) 0.010(3)

N3 0.208(2) 0.234(7) 0.520(6) 0.010(3)

N4 0.279(2) 0.407(6) 0.002(6) 0.010(3)

N5 0.035(2) 0.246(7) 0.024(5) 0.010(3)

N6 0.453(2) 0.416(7) 0.461(5) 0.010(3)

220



Figure D.8.: Coordination polyhedra of all atom sites in β-BP3N6 at 42.4(1) GPa. Phosphorus (gray) and boron
(green) are in six- and fourfold N coordination, respectively. N (blue) is found in four- and threefold coordination
of P and B as represented by the Niggli formula 3

∞

[
B[4]P[6]

3N[4]
4N[3]

2
]
.

221



D. Supporting Information for Chapter 6 (β -BP3N6)

Table D.8.: Interatomic T –N (T = B, P) distances (Å) occurring in β-BP3N6 at 42.4(1) GPa and ambient pressure
from single-crystal refinement with standard deviations given in brackets. High standard deviations at ambient
pressure are attributable to the lack of high-quality single-crystal data at this pressure point. Standard deviations
of mean interatomic T –N distances were calculated by averaging the respective standard deviations obtained from
single-crystal XRD refinements.

Pressure / GPa 42.4(1) 0.00010(1)

P1–N5 1.657(8) 1.68(4)

N1 1.734(5) 1.79(2)

N3 1.747(8) 1.80(4)

N4 1.779(5) 1.82(2)

N2 1.816(8) 1.93(3)

N1 1.824(8) 1.95(4)

P2–N6 1.641(9) 1.67(4)

N5 1.677(5) 1.73(2)

N2 1.739(9) 1.74(4)

N4 1.750(8) 1.75(4)

N3 1.788(5) 1.88(2)

N1 1.799(8) 1.85(4)

P3–N6 1.654(8) 1.72(2)

N6 1.664(6) 1.73(4)

N5 1.694(8) 1.79(5)

N2 1.760(5) 1.78(2)

N4 1.790(8) 1.91(4)

N3 1.834(8) 1.95(4)

B1–N2 1.446(8) 1.47(5)

N3 1.511(14) 1.67(7)

N1 1.511(8) 1.61(4)

N4 1.518(14) 1.61(6)

Mean P–N 1.74(1) 1.81(4)

Mean B–N 1.50(1) 1.59(6)
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Figure D.9.: The overlay of the coordination polyhedra in β-BP3N6 at 42.4(1) GPa (red) and ambient pressure
(green) show no significant changes upon pressurequenching. Elongated interatomic distances are not apparent
from this illustration, as the unit cell parameters were normalized to those at 42.4(1) GPa to visualize relative
distortions. B, P and N atoms are displayed as spheres 0.6 Å in diameter.

Table D.9.: Interatomic angles (°) occurring in β-BP3N6 obtained from single-crystal refinement at 42.4(1) GPa.

N5–P1–N1 97.3(3) N6–P2–N5 86.2(3) N6–P3–N6 96.8(3) N2–B1–N3 118.2(5)

N5–P1–N3 95.7(3) N6–P2–N2 173.9(3) N6–P3–N5 91.2(4) N2–B1–N1 116.4(5)

N5–P1–N4 93.5(3) N6–P2–N4 91.3(3) N6–P3–N2 92.6(3) N2–B1–N4 117.7(5)

N5–P1–N2 169.2(3) N6–P2–N3 95.7(3) N6–P3–N4 98.7(3) N3–B1–N1 102.1(5)

N5–P1–N1 93.7(3) N6–P2–N1 92.9(4) N6–P3–N3 173.8(3) N3–B1–N4 100.0(9)

N1–P1–N3 99.6(3) N5–P2–N2 94.4(3) N6–P3–N5 84.9(3) N1–B1–N4 99.2(5)

N1–P1–N4 165.1(2) N5–P2–N4 93.7(3) N6–P3–N2 170.5(3)

N1–P1–N2 90.0(3) N5–P2–N3 173.8(2) N6–P3–N4 98.2(3)

N1–P1–N1 89.5(3) N5–P2–N1 92.2(3) N6–P3–N3 89.4(3)

N3–P1–N4 89.4(3) N2–P2–N4 94.7(4) N5–P3–N2 96.1(3)

N3–P1–N2 90.9(3) N2–P2–N3 83.1(3) N5–P3–N4 169.1(3)

N3–P1–N1 165.9(3) N2–P2–N1 81.1(3) N5–P3–N3 90.1(3)

N4–P1–N2 78.0(3) N4–P2–N3 92.2(3) N2–P3–N4 79.2(2)

N4–P1–N1 79.6(3) N4–P2–N1 173.0(3) N2–P3–N3 81.2(2)

N2–P1–N1 78.4(3) N3–P2–N1 81.8(3) N4–P3–N3 79.6(3)
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Table D.10.: Interatomic angles (°) occurring in β-BP3N6 obtained from single-crystal refinement at ambient
pressure. High uncertainties are attributable to the lack of high-quality single-crystal data at this pressure point.

N5–P1–N1 95(1) N6–P2–N5 87(1) N6–P3–N6 98(1) N2–B1–N1 117(3)

N5–P1–N3 97(1) N6–P2–N2 174(2) N6–P3–N2 169(1) N2–B1–N4 126(3)

N5–P1–N4 92(1) N6–P2–N4 93(2) N6–P3–N5 83(1) N2–B1–N3 114(3)

N5–P1–N2 167(2) N6–P2–N1 91(2) N6–P3–N4 99(1) N1–B1–N4 100(2)

N5–P1–N1 93(2) N6–P2–N3 95(1) N6–P3–N3 89(1) N1–B1–N3 94(2)

N1–P1–N3 97(1) N5–P2–N2 95(1) N6–P3–N2 94(1) N4–B1–N3 100(4)

N1–P1–N4 170(1) N5–P2–N4 96(1) N6–P3–N5 93(2)

N1–P1–N2 93(1) N5–P2–N1 91(1) N6–P3–N4 98(1)

N1–P1–N1 92(2) N5–P2–N3 172(1) N6–P3–N3 173(2)

N3–P1–N4 87(1) N2–P2–N4 92(2) N2–P3–N5 95(1)

N3–P1–N2 91(2) N2–P2–N1 84(2) N2–P3–N4 80(1)

N3–P1–N1 165(2) N2–P2–N3 82(1) N2–P3–N3 80(1)

N4–P1–N2 79(1) N4–P2–N1 172(2) N5–P3–N4 169(2)

N4–P1–N1 82(2) N4–P2–N3 92(1) N5–P3–N3 88(2)

N2–P1–N1 76(2) N1–P2–N3 80(1) N4–P3–N3 81(1)
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Minimal bonding ellipsoids (MBE)

Figure D.10.: Minimal bonding ellipsoids (MBEs) of BN4 and PN6 polyhedra in β-BP3N6 at 42.4(1) GPa fitted
with the PIEFACE software.[17] B/P: blue, N: red.

Table D.11.: Ellipsoidal parameters of MBEs of the in β-BP3N6 structure at 42.4(1) GPa.[17]

R1 R2 R3 〈R〉 σ (R) S Center Disp. CN

B1 1.608 1.440 1.408 1.485 0.088 0.083 0.162 4

P1 1.801 1.763 1.695 1.753 0.044 −0.017 0.083 6

P2 1.843 1.722 1.622 1.729 0.090 0.007 0.072 6

P3 1.866 1.717 1.590 1.725 0.112 0.006 0.106 6
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CHARDI analysis

Table D.12.: CHARDI analysis of the β-BP3N6 structure at 42.4(1) GPa revealed mean effective coordination
numbers of 3.93 and 5.68 for B and P and mean total charges of +3.07, +4.98 and −3.00 for B, P and N, in line
with formal oxidation states (+III, +V, −III).[18]

Polyhedra P1N6 P2N6 P3N6 B1N4

Average bond length / Å 1.7594 1.7325 1.7326 1.4963

Polyhedral volume / Å3 7.0984 6.8473 6.7847 1.6726

Distortion index (bond length) 0.02667 0.02828 0.03585 0.01674

Quadratic elongation 1.0163 1.0095 1.0162 1.0189

Bond angle variance / °2 54.0037 28.7111 51.2013 88.2130

Effective coordination number 5.6999 5.6998 5.6306 3.9360

Total charges

P/B 5.099 4.967 4.860 3.074

N1 −2.890 −2.890 −2.890

N2 −3.125 −3.125 −3.125 −3.125

N3 −2.775 −2.775 −2.775 −2.775

N4 −2.891 −2.891 −2.891 −2.891

N5 −3.090 −3.090 −3.090

N6 −3.230 −3.230

MAPLE analysis

Table D.13.: The Madelung part of lattice energy (MAPLE) of the β-BP3N6 structure was determined to
92 631 kJ·mol−1 at 42.4(1) GPa, which is in fair agreement with values for α-BP3N6 and the sum of respective
binary nitrides.[19–24]

Phase(s) MAPLE / kJ·mol−1 Difference

β-BP3N6 (42.4(1) GPa) 92631

α-P3N5 + c-BN 91 732 1.0 %

α-P3N5 + h-BN 91 877 0.8 %

γ-P3N5 + c-BN 90 049 2.9 %

γ-P3N5 + h-BN 90 194 2.7 %

α-BP3N6 90 556 2.3 %
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Abstract Owing to its outstanding elastic properties,

the nitride spinel γ-Si3N4 is of considered interest for ma-

terials scientists and chemists. DFT calculations suggest

that Si3N4-analog beryllium phosphorus nitride BeP2N4

adopts the spinel structure at elevated pressures as well

and shows outstanding elastic properties. Herein, we in-

vestigate phenakite-type BeP2N4 by single-crystal syn-

chrotron X-ray diffraction and report the phase transiti-

on into the spinel-type phase at 47 GPa and 1800 K in a

laser-heated diamond anvil cell. The structure of spinel-

type BeP2N4 was refined from pressure-dependent in situ synchrotron powder X-ray diffraction measu-

rements down to ambient pressure, which proves spinel-type BeP2N4 a quenchable and metastable phase

at ambient conditions. Its isothermal bulk modulus was determined to 325(8) GPa from equation of state,

which indicates that spinel-type BeP2N4 is an ultraincompressible material.
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E.1. Experimental Procedures

Safety instructions

Owing to the toxicity of beryllium and its compounds, handling and preparations were carried out care-

fully and with proper safety arrangements.[1] The sample size was chosen to the smallest possible amount

in each step and starting materials (Be, Be3N2) have only been handled either in a separate glovebox with

fine particulate air filter, or in sealed containers. All contaminated materials were properly purged or dis-

posed.

Preparation of starting materials

Beryllium nitride Be3N2 was synthesized by heating Be (abcr, 99 %) in N2 atmosphere at 1400 ◦C for 5 h

in a radio-frequency furnace.[2] The reaction product contained up to 5 wt-% Be as a minor side phase

as determined by powder X-ray diffraction and Rietveld refinement. An additional purification for the

high-pressure high-temperature reaction towards BeP2N4, however, was not necessary.[3,4]

Phosphorus nitride P3N5 was obtained by ammonolysis of P4S10 (Acros Organics, > 98 %).[5] P4S10

was loaded in a fused silica tube and saturated in a flow of dry ammonia (Air Liquide, 5.0) for 4 h at

ambient temperature. Subsequently, the reaction mixture was heated to 850 ◦C for 4 h in a flow of dry

ammonia. The reaction product was yielded as an orange powder and its purity was confirmed by powder

X-ray diffraction, FTIR spectroscopy and CHNS analysis.[6]

Multianvil synthesis of phenakite-type BeP2N4

phe-BeP2N4 was synthesized following the description of Pucher et al. from Be3N2 and P3N5 in a high-

pressure high-temperature reaction, using a hydraulic 1000 t press and a modified Walker module.[7,8]

In a glovebox (MBraun, Garching, Germany; < 1 ppm O2, H2O; fine particulate air filter) stoichiometric

amounts of Be3N2 and P3N5 were ground in a tungsten carbide (WC) mortar and packed tightly in a

crucible made of h-BN (Henze, Kempten, Germany), which was sealed with a h-BN cap. The crucible,

enveloped by two graphite sleeves acting as the resistance heating and a ZrO2 sleeve acting as a heat

shield, was placed in a drilled octahedron (5 % Cr2O3 doped MgO, 18 mm edge length, Ceramic Sub-

strates & Components Ltd, Isle of Wight, United Kingdom). The sample was centered in the octahedron

using two MgO spacers and two Mo discs, which served as an electric contact to the graphite furnaces.
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The as-prepared octahedron was placed in the center of eight Co-doped WC cubes with truncated edges

(7 % Co, 11 mm edge length, Hawedia, Marklkofen, Germany), which were separated by pyrophylli-

te gaskets (Ceramic Substrates & Components Ltd, Isle of Wight, United Kingdom). A more detailed

description of the octahedron-within-cubes payload can be found in literature.[9] The assembly was com-

pressed to 7 GPa within 200 min and heated subsequently to 1500 ◦C within 40 min . The temperature

was kept constant for another 30 min before the sample was allowed to cool down to ambient temperature

within 30 min . The assembly was decompressed within 600 min and the reaction product was obtained

as an air and moisture resistant gray powder owing to minor amounts of black phosphorus, which appears

as a side phase of phe-BeP2N4, as was confirmed by powder X-ray diffraction (Figure E.1).[7,10]

Powder X-ray diffraction (PXRD)

Powder X-ray diffraction patterns of the starting materials and phe-BeP2N4 were collected on a STOE

Stadi P (STOE & Cie GmbH, Darmstadt, Germany, Mo-Kα1 radiation, λ = 0.71073Å, Ge(111) mono-

chromator) equipped with a MYTHEN 1K Si strip detector in modified Debye-Scherrer geometry. For

this purpose, the samples were sealed in glass capillaries with an outer diameter of 0.3 mm (Hilgenberg,

Malsfeld, Germany).

Synchrotron measurements

Pressure-dependent X-ray diffraction (XRD) measurements were performed at the Extreme Conditions

Beamline P02.2 (PETRA III) at the Deutsches Elektronen-Synchrotron (DESY, Hamburg, Germany).[11]

The X-ray beam (λ = 0.2894Å) was focused to 1.4×1.8 µm2 (V ×H) by a Kirkpatrick-Baez mirror sys-

tem and diffraction patterns were collected on a PerkinElmer XRD 1621 flat-panel detector. Internal pres-

sures were determined using the ruby fluorescence method and a relative error of 2 % was assumed.[12,13]

To find a suitable particle of phe-BeP2N4, several grains of the as-obtained sample from the multianvil

syntheses were loaded on a diamond anvil and tested by XRD (Figure E.2). Subsequently, an ω step scan

(ωmax =±33°; ∆ω = 0.5°; texposure = 1s) of a suitable multi-domain grain of phe-BeP2N4 was collected

and data analysis was performed using the CrysAlisPro software.[14] Several domains could be indexed

using the reciprocal space viewer (Ewald Explorer, CrysAlisPro, Figure E.3), of which the most intense
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domain was integrated independently (low number of overlapping reflections) to yield a single-crystal

dataset of phe-BeP2N4 (Table E.1–E.11).

A single-crystal of an ortho-enstatite ((Mg1.93,Fe0.06)(Si1.93,Al0.06)O6, Pbca, a = 8.8117(2),

b = 5.18320(10), c = 18.2391(3)Å) was used for instrument model calibration of CrysAlisPro (sample-

to-detector distance, the detector’s origin, offsets of the goniometer angles and rotation of the X-ray beam

and the detector around the instrument axis).

Powder X-ray diffraction patterns of spinel-type sp-BeP2N4 were obtained from wide scans (ωmax =

±20°; texposure = 20s) by radial integration with masked diamond reflections using the Dioptas

software.[15]

Laser-heated diamond anvil cell and synthesis of sp-BeP2N4

Synthesis and cold decompression of sp-BeP2N4 were performed in a symmetrical diamond anvil cell,

using two Boehler-Almax-type diamond anvils (200 µm culet, DESY supply) separated by a Re gasket

that had been pre-indented to 30 µm and laser-drilled to an inner diameter of about 80 µm. Ne was used

as a pressure-transmitting medium and ruby spheres served as an internal pressure standard. The cell was

loaded with a pre-selected polycrystalline particle of phe-BeP2N4 and compressed to an initial pressure

of 0.2 GPa after pressure loading.

The sample was cold-compressed to approximately 20 GPa and a step scan was collected, before

the pressure was increased to 47.3(9) GPa. At maximum pressure another step scan was collected and

subsequently the sample was heated from both sides to 1800(200) K using a focused NIR fiber laser

(λ = 1070nm, 10×10 µm2). After 5 s of heating the appearance of non-indexed reflections indicated the

formation of the predicted spinel-type BeP2N4 phase (Figure E.5). To ensure a full conversion of phe-

into sp-BeP2N4 within the heated area, the sample was heated for another 60 s (Figure E.5). The sam-

ple was allowed to cool down to ambient temperature before pressure-dependent PXRD patterns were

collected upon cold decompression.

Single-crystal X-ray diffraction refinement

The structure of phe-BeP2N4 was solved using the SHELXT algorithm and refined with SHELXL against

F2 on all data by the full-matrix least squares algorithm.[16,17] All atoms were refined anisotropically and
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without any restraints or constraints. Solution and refinement was performed using the WinGX software

package and the resulting structure model was visualized using VESTA.[18,19]

Rietveld refinements

Rietveld refinements were performed with the TOPAS Academic software.[20,21] All atoms were refined

isotropically and the values of Biso were fixed to 0.8. The background was described by a shifted Cheby-

shev polynomial. Peak profiles were modeled with to the fundamental parameters approach in the case

of STOE measurements and by Pseudo-Voigt functions in the case of synchrotron measurements.[22,23]

The emission profile of the synchrotron radiation was refined from a CeO2 standard and kept constant

for the pressure-dependent Rietveld refinements of sp-BeP2N4.

Equation of state

The pressure-volume data from cold decompression of sp-BeP2N4 were described by a second (Equa-

tion E.1) and third order Birch-Murnaghan equation of state (Equation E.2) using the EoSFit7 soft-

ware.[24–26] The pressure p is described as a function of cell volume V with V0 corresponding to the

cell volume at a theoretical pressure of zero and K0 representing the isothermal bulk modulus with its

derivation K′0, which is fixed to 4 in the case of a second order Birch-Murnaghan equation of state.

p(V ) =
3
2

K0

[(
V
V0

)− 7
3

−
(

V
V0

)− 5
3
]

(E.1)

p(V ) =
3
2

K0

[(
V
V0

)− 7
3

−
(

V
V0

)− 5
3
]
·

[
1+

3
4
(
K′0−4

)
·

((
V
V0

)− 2
3

−1

)]
(E.2)
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E.2. Results and Discussion

Powder X-ray diffraction of phe-BeP2N4

Figure E.1.: Experimental PXRD pattern of the sample obtained from the multianvil synthesis (black, Mo-Kα1,
λ = 0.71073Å) confirming that phe-BeP2N4 is the majority phase (simulated blue pattern) next to some minor
amounts of black phosphorus (Bragg reflections marked by asterisks).[7,10]

Single-crystal X-ray diffraction of phe-BeP2N4

Figure E.2.: Microphotograph of a diamond anvil, which was loaded with particles of the phe-BeP2N4 containing
sample (a). The green highlighted particle appeared as a suitable multi-domain grain for high-pressure investigati-
ons, as indicated by synchrotron XRD measurements (b, c). Processing of the single-crystal XRD data is visualized
in Figure E.3.
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Figure E.3.: From the XRD measurement of the pre-selected phe-BeP2N4 particle (Figure E.2) three major do-
mains (1, 2, 3) were indexed (Ewald Explorer, CrysAlisPro), of which domain 2 appeared as the most intense.[14]

Its diffraction intensities were integrated independently, as there was only a minor and random overlap with the
other domains.
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Table E.1.: Crystallographic data on phe-BeP2N4 from single-crystal XRD at ambient conditions.

Formula phe-BeP2N4

Crystal system hexagonal

Molecular weight / g·mol−1 126.99

Space group (no.) R3̄ (148)

Lattice parameters / Å a = 12.6979(15)

c = 8.3595(10)

Cell volume / Å3 1167.3(5)

Formula units per cell 18

Calculated X-ray density / g·cm−3 3.252

Linear absorption coefficient / cm−1 0.144

Radiation Synchrotron (λ = 0.28940Å)

Device P02.2, PETRA III, DESY

θ -range / ° 1.8 < θ < 13.95

F(000) 1116

Observed reflections 2856

Independent reflections (> 2σ ) 1241 (979)

Number of parameters 64

Rint; Rσ 0.0656; 0.0763

Final R indices (I > 2σ(I)) R1 = 0.0546; wR2 = 0.1297

Final R indices (all data) R1 = 0.0668; wR2 = 0.1403

Goodness of fit 1.015

Residual electron density / e·Å−3 1.145; −1.078

CSD 1946333
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Table E.2.: Fractional coordinates and isotropic atomic displacement parameters of phe-BeP2N4 from single-
crystal XRD refinement at ambient conditions. All atoms occupy the general Wyckoff position 18 f .

Atom x y z Ueq / Å2

Be1 0.1932(3) 0.2116(3) 0.2498(3) 0.0040(1)

P1 0.21293(5) 0.01881(5) 0.41728(6) 0.0040(1)

P2 0.20947(5) 0.01369(5) 0.08278(6) 0.0054(4)

N1 0.2042(2) 0.0807(2) 0.2482(2) 0.0047(4)

N2 0.0036(2) 0.3325(2) 0.0845(2) 0.0050(4)

N3 0.1221(2) 0.2116(2) 0.0746(2) 0.0052(4)

N4 0.1182(2) 0.2131(2) 0.4252(2) 0.0058(7)

Table E.3.: Anisotropic atomic displacement parameters (Å2) of phe-BeP2N4 from single-crystal XRD refinement
at ambient conditions.

Atom U11 U22 U33 U23 U13 U12

Be1 0.005(1) 0.006(1) 0.008(1) 0.0012(7) 0.0007(7) 0.0031(9)

P1 0.0041(2) 0.0038(3) 0.0044(2) −0.0001(1) 0.0000(2) 0.0023(2)

P2 0.0036(2) 0.0037(2) 0.0046(2) 0.0001(2) 0.0002(1) 0.0017(2)

N1 0.0067(7) 0.0037(7) 0.0050(6) −0.0001(5) 0.0003(5) 0.0020(6)

N2 0.0048(7) 0.0048(7) 0.0043(6) −0.0009(4) 0.0003(4) 0.0023(6)

N3 0.0047(7) 0.0066(7) 0.0044(6) −0.0004(5) 0.0008(5) 0.0033(6)

N4 0.0042(7) 0.0065(7) 0.0052(6) −0.0006(5) −0.0007(5) 0.0028(6)
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Table E.4.: Comparison of the crystallographic data of phe-BeP2N4 reported in this work (single-crystal XRD)
and those published by Pucher et al. (PXRD).[7]

Formula phe-BeP2N4

Crystal system hexagonal

Space group (no.) R3̄ (148)

Lattice parameters / Å a = 12.6979(15) a = 12.6897(2)

c = 8.3595(10) c = 8.3469(2)

Cell volume / Å3 1167.3(5) 1164.01(4)

Formula units per cell 18

Calc. X-ray density / g·cm−3 3.252 3.258

Be1(x,y,z) 0.1932(3), 0.2116(3), 0.2498(3) 0.2080(20), 0.2223(20), 0.249(4)

P1(x,y,z) 0.21293(5), 0.01881(5), 0.41728(6) 0.2127(5), 0.0208(4), 0.4165(7)

P2(x,y,z) 0.20947(5), 0.01369(5), 0.08278(6) 0.2011(5), 0.0061(5), 0.0770(7)

N1(x,y,z) 0.20419(17), 0.08070(17), 0.2482(2) 0.1936(10), 0.0730(8), 0.2486(15)

N2(x,y,z) 0.00355(15), 0.33250(15), 0.0845(2) 0.3318(11), 0.3297(11), 0.2611(16)

N3(x,y,z) 0.12209(17), 0.21155(16), 0.0746(2) 0.1293(10), 0.2158(10), 0.0805(15)

N4(x,y,z) 0.11817(16), 0.21305(17), 0.4252(2) 0.1297(13), 0.2275(10), 0.4192(15)

Reference this work Pucher et al.[7]

Method single-crystal XRD, synchrotron powder XRD, Cu-Kα1
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Figure E.4.: phe-BeP2N4 was cold-compressed to an intermediate pressure of 19.3(4) GPa, at which a XRD step
scan was collected before the pressure was increased to 47.3(9) GPa and another XRD step scan was collected. At
both datasets were indexed with the cell metrics of phe-BeP2N4 as illustrated with the CrysAlisPro Ewald Explorer
(19.3(4) GPa: red, 47.3(9) GPa: blue).[14] Corresponding cell metrics are listed in Table E.5.

Table E.5.: Pressure evolution of the lattice parameters of phe-BeP2N4, which were obtained from synchrotron
XRD step scans.

Pressure / GPa a / Å c / Å V / Å3

0.00010(1) 12.698(2) 8.360(1) 1167.3(5)

19.3(4) 12.437(2) 8.14(3) 1090(1)

47.3(9) 12.087(5) 7.931(3) 1003.4(7)
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phe-BeP2N4 −→ sp-BeP2N4 phase transition

Figure E.5.: XRD patterns of the BeP2N4 sample before (a, phe-BeP2N4), during (b, phe- and sp-BeP2N4) and after
laser heating at 47.3(9) GPa (c, sp-BeP2N4). Calculated Bragg reflections of phe- and sp-BeP2N4 are visualized
in green and red. The intense reflection at 2θ ≈ 9° corresponds to Ne, which served as a pressure transmitting
medium. Minor amounts of phe-BeP2N4 in c are marked with green circles (top) and white asterisks (bottom).
Weak scattering of the Re gasket is labelled in b and c.
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Figure E.6.: Scheme summarizing the synchrotron experiments performed within this work. The pre-selected
particle (Figure E.2) of phe-BeP2N4 (1) was cold compressed to 19.3(4) GPa, before the pressure was increased
to 47.3(9) GPa (2, Figure E.4, Table E.5). Upon laser heating at maximum pressure, phe-BeP2N4 transformed into
the predicted sp-BeP2N4 (3, Figure E.5). This phase transition is characterized by a significant decrease in volume
(20 %) and thus can be classified as a first order phase transition. At ambient temperature sp-BeP2N4 was stepwise
decompressed to ambient pressure (4) to probe its elastic properties (Table E.9).

Rietveld refinements of sp-BeP2N4

Figure E.7.: Rietveld plots of the refinement of sp-BeP2N4 at 47.3(9) GPa (a) and ambient pressure (b). Observed
and calculated intensities are displayed in black and red, respectively. The difference plot (Iobs− Icalc) is drawn in
gray and calculated Bragg reflections of sp-BeP2N4 (orange) and Ne (blue) are marked by vertical lines.
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Table E.6.: Crystallographic data on sp-BeP2N4 from Rietveld refinements at 47.3(9) GPa and ambient pressure.

Formula sp-BeP2N4

Crystal system cubic

Space group (no.) Fd3̄m (227)

Pressure / GPa 47.3(9) 0.00010(1)

Lattice parameter a / Å 7.1948(2) 7.5107(2)

Cell volume / Å3 372.44(3) 423.68(3)

Formula units per cell 8

Calc. X-ray density / g·cm−3 4.530 3.982

Device P02.2, PETRA III, DESY

Radiation Synchrotron (λ = 0.28940Å)

θ -range / ° 1.5 < θ < 12

Temperature / K 293(2)

Data points 1677

Number of observed reflections 41 47

Number of parameters (thereof background) 35(28)

Rp (background corrected) / %[a] 0.266 (17.7) 0.134 (30.5)

Rwp (background corrected) / %[a] 0.444 (9.40) 0.205 (12.8)

RBragg / %[a] 0.254 0.174

CSD 1946347 1946345

[a] Owing to a very high background of the synchrotron PXRD measurements, the reported R values are very low and may

not serve as the most suitable quality criteria in this case. The background corrected indices, however, indicate that the peak

profiles that have been modelled with Pseudo-Voigt functions in the first approximation differ from the observed profiles. The

comparison of the integral observed and calculated intensities, in turn, shows only marginal deviations, as represented by low

values of RBragg. In conclusion, the graphical plots in Figure E.7 in combination with the respective values of RBragg may serve

as the most appropriate indicators of quality for the Rietveld refinements performed within this work.
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Table E.7.: Fractional coordinates and isotropic atomic displacement parameters of sp-BeP2N4 from Rietveld
refinement at 47.3(9) GPa.

Atom Wyck. x y z Biso / Å2

Be1 8b 3/8 3/8 3/8 0.8 (fixed)

P1 16c 0 0 0 0.8 (fixed)

N1 32e 0.2438(3) 0.2438(3) 0.2438(3) 0.8 (fixed)

Table E.8.: Fractional coordinates and isotropic atomic displacement parameters of sp-BeP2N4 from Rietveld
refinement at ambient pressure.

Atom Wyck. x y z Biso / Å2

Be1 8b 3/8 3/8 3/8 0.8 (fixed)

P1 16c 0 0 0 0.8 (fixed)

N1 32e 0.2403(3) 0.2403(3) 0.2403(3) 0.8 (fixed)
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Table E.9.: Pressure evolution of the lattice parameter a, the unit cell volume V , the calculated X-ray density
ρcalc, the fractional coordinate of N1 (x = y = z) and the interatomic Be–N and P–N distances for sp-BeP2N4.
The provided CSD numbers contain the supplementary crystallographic data to those phases. These data can be
obtained free of charge from The Cambridge Crystallographic Data Centre.

Pressure / GPa a / Å V / Å3 ρcalc / g·cm−3 N1(x, y, z) Be–N / Å P–N / Å CSD

47.3(9) 7.1948(2) 372.44(3) 4.530 0.2438(3) 1.635(2) 1.755(2) 1946347

44.6(9) 7.2076(2) 374.43(3) 4.505 0.2434(3) 1.643(2) 1.756(2) 1946344

40.9(8) 7.2371(3) 379.05(5) 4.451 0.2445(4) 1.636(3) 1.770(3) 1946343

38.5(8) 7.2536(3) 381.65(5) 4.421 0.2444(4) 1.641(3) 1.774(3) 1946342

37.7(8) 7.2602(4) 382.69(6) 4.408 0.2440(5) 1.647(4) 1.773(4) 1946340

34.0(7) 7.2877(2) 387.05(3) 4.359 0.2425(3) 1.673(2) 1.769(2) 1946339

31.0(6) 7.3054(3) 389.88(5) 4.327 0.2437(4) 1.661(3) 1.782(3) 1946338

28.5(6) 7.3221(3) 392.56(5) 4.297 0.2430(4) 1.674(3) 1.781(3) 1946337

21.8(4) 7.3557(3) 397.99(5) 4.239 0.2411(4) 1.706(3) 1.776(3) 1946336

17.8(4) 7.3786(2) 401.72(3) 4.199 0.2410(3) 1.713(2) 1.781(2) 1946335

13.2(3) 7.4088(2) 406.67(3) 4.148 0.2402(2) 1.730(2) 1.783(2) 1946334

11.9(2) 7.4191(1) 408.37(2) 4.131 0.2395(2) 1.741(2) 1.780(2) 1946346

7.4(1) 7.4598(2) 415.13(3) 4.064 0.2411(2) 1.730(2) 1.801(2) 1946349

5.0(1) 7.4702(2) 416.87(3) 4.047 0.2421(3) 1.720(2) 1.811(2) 1946341

3.3(1) 7.4846(1) 419.28(2) 4.023 0.2400(2) 1.750(2) 1.799(2) 1946348

1.8(1) 7.4969(2) 421.35(3) 4.004 0.2411(3) 1.739(2) 1.810(2) 1946332

0.00010(1) 7.5107(2) 423.68(3) 3.982 0.2403(3) 1.752(2) 1.808(2) 1946345

246



Figure E.8.: Pressure evolution of the interatomic P–N and Be–N distances that were obtained from pressure-
dependent Rietveld refinements.

Table E.10.: The Madelung part of lattice energy (MAPLE) of sp-BeP2N4 is 58 140 kJ·mol−1 at 47.3(9) GPa, which
is in line with the calculated values for phe-BeP2N4 and the weighted sum of binary nitrides P3N5 and Be3N2.[3,6,27]

Phase(s) MAPLE / kJ·mol−1 Difference

sp-BeP2N4 (47.3(9) GPa) 58 140

phe-BeP2N4 58 542 0.7 %

1/3 (2 P3N5 + Be3N2) = „BeP2N4“ 58 992 1.4 %
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Table E.11.: Comparison of the experimental and calculated crystallographic data on sp-BeP2N4.[7]

Formula sp-BeP2N4

Method PXRD, Rietveld DFT (LDA) DFT (GGA)

Crystal system cubic

Space group (no.) Fd3̄m (227)

Lattice parameter a / Å 7.5107(2) 7.4654 7.5648

Cell volume / Å3 423.68(3) 416.06 432.9

Formula units per cell 8

Calculated density / g·cm−3 3.982 4.055 3.897

Be1(x,y,z) 3/8, 3/8, 3/8 3/8, 3/8, 3/8 3/8, 3/8, 3/8

P1(x,y,z) 0, 0, 0 0, 0, 0 0, 0, 0

N1(x,y,z) 0.2403(3), 0.2403(3), 0.2403(3) 0.24062, 0.24062, 0.24062 0.24053, 0.24053, 0.24053

Reference this work Pucher et al.[7]
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Equation of state of sp-BeP2N4

Figure E.9.: The pressure-volume data from pressure-dependent Rietveld refinements of sp-BeP2N4 were fitted by
a 2nd (a) and 3rd order Birch-Murnaghan equation of state (b).[24,25] Respective plots of the normalized pressure as
a function of strain f are provided (c, d), as well as an illustration of the 1σ (68.3 %), 2σ (95.4 %, and 3σ (99.7 %)
level of confidence for V0, K0 and K′0 (e–h). The experimental data are best described by the 3rd order Birch-
Murnaghan equation of state on a sufficient level of accuracy (fit parameters: V0 = 423.68(6) Å3, K0 = 325(8)GPa,
K′0 = 2.4(5)).
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Figure E.10.: The full width at half maximum (FWHM) of the reflection (111) of sp-BeP2N4 appears increased
between 18 and 44 GPa, which may be owed to a non-hydrostatic sample environment that may also affected the
experimental p-V data, as discussed below.

Discussion of the elastic properties of sp-BeP2N4

sp-BeP2N4 was investigated by pressure-dependent powder synchrotron XRD measurements and Riet-

veld refinements. The as-obtained experimental pressure-volume data are suitable for the examination of

the elastic properties of sp-BeP2N4 (Table E.5), when errors of both, pressure and volume are considered.

The pressure-volume data was initially fitted by a 2nd order Birch-Murnaghan equation of state (Equa-

tion E.1, Figure E.9a, c, e) with fitting parameters V0 = 423.76(7) Å3, K0 = 305(5) GPa, and K′0 = 4 (fixed).

This model was suggested to be suitable for sp-BeP2N4 as K′0 was proposed to be approximately 4 from

DFT calculations.[28,29] However, as illustrated in Figure E.9a, a significant mismatch of the experimen-

tal data at high pressures is observed. Therefore, the p-V data was fitted by a 3rd order Birch-Murnaghan

equation of state (Equation E.2, Figure E.9b, d, f, h) with fitting parameters V0 = 423.68(6) Å3, K0 =

325(8) GPa, K′0 = 2.4(5), which fits the experimental data quite well. Remaining minor deviations of the

experimental data and the fitted curve at p > 25 GPa may be owed to non-hydrostatic conditions in the

DAC, as is indicated by a slightly increased full width at half maximum (FWHM) of the title compound’s

(111) reflection at high pressures (Figure E.10). Summarizing, the experimental p-V data may be best

described by the 3rd order Birch-Murnaghan equation of state (V0 = 423.68(6) Å3, K0 = 325(8) GPa, K′0

= 2.4(5)), however, a possibly non-hydrostatic sample environment at high pressures may have affected

the experimental p-V data systematically.
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The as-obtained bulk modulus K0(sp-BeP2N4) = 325(8) GPa appears higher than values that were pro-

posed by DFT calculations (K0,calc = 263–291 GPa, Table E.12), whereas its derivation K′0 = 2.4(5) turns

out to be lower than calculated previously (K′0,calc = 3.990–4.036).[7,28–30] These significant deviations

may be related to errors in the experimental data, as discussed above, but may be also attributable to sys-

tematical errors within the DFT calculations. It was demonstrated for PBE-based DFT calculations, for

instance, that the bulk modulus K0 is systematically underestimated by about 4.9 %, whereas its derivati-

on K′0 is overestimated by about 4.8 %.[31] sp-BeP2N4 may further feature a more covalent character than

has been assumed from the theoretical studies, as the covalency can be correlated with a compound’s

elastic properties.[32]

Moreover, the presented experimental data suggest sp-BeP2N4 to be even less compressible than

spinel-type Si3N4 (γ-Si3N4),[33] for which a bulk modulus of K0 = 290–317 GPa was reported.[33–36]

This effect, however small, may be owed to a higher degree of covalency in sp-BeP2N4, as both, the

Be–N and P–N bonds may be considered more covalent than the Si–N bond, referring to theoretical

examinations[30] and the energies of the constituting valence orbitals in a first approximation.[37] Mo-

reover, the unit cell volume of sp-BeP2N4 at ambient pressure is about 10 % smaller as compared with

γ-Si3N4.[33] Therefore, sp-BeP2N4 features a higher valence electron density than γ-Si3N4, which likely

affects its compressibility, as well.[32] A rather significant difference between sp-BeP2N4 and γ-Si3N4

is observed for the derivation of the bulk modulus K′0, which was determined to 2.4(4) and 6.0(8) for

sp-BeP2N4 and γ-Si3N4, respectively.[35] This may be attributable to the different elemental composi-

tion of the nitride spinels. The BeN4 and PN6 polyhedra, therefore, likely affect the compressibility of

sp-BeP2N4 in a different way, than the omnipresent Si–N bonds in γ-Si3N4.

In contrast to its compressibility, the hardness of sp-BeP2N4 is of considerable conjecture. The Vickers

hardness of sp-BeP2N4 was proposed to HV = 45 GPa from (semi)empirical calculations,[28] but first-

principle calculations propose a significant lower hardness for sp-BeP2N4, considering its low shear

strength.[29] Latest calculations on the hardness of group 14 nitride spinels showed that their hardness can

be correlated with their electronic structure (e. g. band gap).[38] Within the scope of future examinations,

therefore, hardness measurements of sp-BeP2N4 may be supported by experimental and theoretical inves-

tigations on its electronic structure, as exemplarily shown for solid solutions within the (GexSi1−x)3N4

system.[39]
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Table E.12.: Comparison of certain experimental and calculated values of sp-BeP2N4 at ambient pressure.

Reference Method a / Å V / Å3 ρ / g·cm−3 Be–N / Å P–N / Å V0 / Å3 K0 / GPa K0’

Pucher et al.[7] LDA 7.4654 416.1 4.05 1.7376 1.7619 416.1 291 -

Pucher et al.[7] GGA 7.5648 432.9 3.90 1.7991 1.8224 432.9 263 -

Ching et al.[30] OLCAO (LDA) 7.4654 416.1 4.05 1.762 1.822 432.9 279 -

Ding et al.[28] LDA 7.4470 413.0 4.05 1.7855 1.8288 - 280 3.997

Ding et al.[28] GGA 7.4710 417.0 4.09 1.7855 1.8288 - 268 4.036

Zhang et al.[29] GGA 7.5530 430.9 4.19 1.759 1.819 - 268 3.990

this work exp., DAC 7.5107(2) 423.68(3) 3.982 1.752(2) 1.808(2) 423.7(1) 325(8) 2.4(5)
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chael Hanfland, Anna Pakhomova, and Hanns-Peter Liermann, and X-ray diffraction data was ana-
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F.5. Deposited Crystal Structures

The Crystallographic Information Files (CIFs) of the compounds that are discussed within this thesis
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lographic Data Centre (CDCC), Cambridge, United Kingdom. These data can be downloaded free of

charge quoting the respective depository number.

Table F.1.: List of the compounds that are discussed within this thesis with corresponding depository numbers.

Compound Pressure / GPa CSD Compound Pressure / GPa CSD

pc-PON 0.00010(1) 433717 phe-BeP2N4 0.00010(1) 1946333

pc-PON 1.8(1) 434035

sp-BeP2N4 0.00010(1) 1946345

SiP2N4NH 0.00010(1) 1880683 sp-BeP2N4 1.8(1) 1946332

sp-BeP2N4 3.3(1) 1946348

α-BP3N6 0.00010(1) 434784 sp-BeP2N4 5.0(1) 1946341

α-BP3N6 2.9(1) 1898720 sp-BeP2N4 7.4(1) 1946349

α-BP3N6 10.5(1) 1898716 sp-BeP2N4 11.9(2) 1946346

α-BP3N6 11.3(1) 1898723 sp-BeP2N4 13.2(3) 1946334

α-BP3N6 14.3(1) 1898724 sp-BeP2N4 17.8(4) 1946335

α-BP3N6 26.1(1) 1898717 sp-BeP2N4 21.8(4) 1946336

α-BP3N6 32.9(1) 1898721 sp-BeP2N4 28.5(6) 1946337

α-BP3N6 42.4(1) 1898718 sp-BeP2N4 31.0(6) 1946338

sp-BeP2N4 34.0(7) 1946339

β-BP3N6 0.00010(1) 1898719 sp-BeP2N4 37.7(8) 1946340

β-BP3N6 42.4(1) 1898722 sp-BeP2N4 38.5(8) 1946342

sp-BeP2N4 40.9(8) 1946343

sp-BeP2N4 44.6(9) 1946344
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