
30th International Rexx Language Symposium (RexxLA), Hursley, Great Britain, September 23rd – 25th, 2019

ooRexx 5 Yielding Swiss Army Knife Usability
Rony G. Flatscher

Department of Information Systems and Operations
WU (Vienna University of Economics and Business)

Vienna, Austria
rony.flatscher@wu.ac.at

Günter Müller
Institute of Informatics and Society

University of Freiburg
Mannheim, Germany

Fraunhofer SIT, Darmstadt, Germany
mueller@iig.uni-freiburg.de

Abstract— The new version 5.0 of the message based object-
oriented programming language ooRexx ("open object-oriented
REXX") is easy to learn, yet powerful. This article introduces
some of the new language features with nutshell examples that
at the same time demonstrate its power when deployed in
different operating system environments. The modern native
API of ooRexx makes it in addition very easy to extend the
language with new functionality and deploy it as a macro
language for any C++-based application.

Keywords—dynamic programming language, object-oriented,
message based, open-source, multi-platform

I. INTRODUCTION
The programming language ooRexx [1] has gone a long

way to become a “swiss army knife (SAK)” tool that can be
run off an USB stick.

Forty years ago, in 1979 the programming language
REXX [2] the most innovative example for human oriented
programming for mainframes and for IBM’s SAA strategy got
released. Despite this forgone time, REXX is still alive in
present day computing and the latest release is a quantum leap
as far as easy learning, powerful experimentation and
prototyping is concerned. It is easier to learn and to maintain
for creating mainframe scripts than the then prevalent, arcane
EXEC language. With IBM’s SAA (System Application
Architecture) strategy REXX was defined as the
scripting/batch language for all IBM operating systems, such
that the language is present up to today. The programming
language REXX, considered to be important was submitted to
ANSI and over time an ANSI REXX standard got created and
published, which to this day is in effect.

With IBM’s desktop operating system OS/2 that got
created in cooperation with Microsoft in the 80’ies the REXX
language appeared on IBM’s extended OS/2 version as a
scripting language, following the SAA strategy in place with
IBM. Due to the importance of REXX then and the paramount
importance of the object-oriented paradigm at that time, IBM
created an experimental object-oriented version of REXX in
its English Hursley lab which drew many concepts from the
object-oriented, message-based Smalltalk programming
language. IBM customers communicated their interest but
also insisted that the object-oriented Rexx interpreter must be
backwardly compatible with REXX such that existing REXX
programs would continue to run unchanged.

IBM created a commercial version of “Object REXX” for
OS/2 and released it as an option with OS/2 Warp 4 at the end
of the 90s, at a time where the desktop war between IBM and
Microsoft was about to be lost to Windows. In the years that
followed IBM’s Windows version of “Object REXX” was
sold to its customers who migrated from OS/2 to Windows
allowing existing REXX programs to continue to run on
Windows, such that the switching costs for the customers
could be controlled at a low level.

In the middle of the new century the non-profit special
interest group “Rexx Language Association (RexxLA)”
received the source code of “Object REXX” from IBM which
led to the open-source release under the name of “open object
Rexx (ooRexx) 3.0”.

As it might be interesting and helpful for assessing the
development of a useful tool over time this article will first
give a brief historical overview in the section entitled “Brief
History of ‘ooRexx’”. To learn about the features that
constitute a “quantum leap” release the section “ooRexx 5
Features” sketch the most important new features, some of
which get demonstrated with small nutshell programs to allow
the reader to learn about and assess the language and some of
its new features.

II. BRIEF HISTORY OF “OOREXX”
ooRexx 3.0 inner workings represented the history of C

and C++ at that point in time. The ability for Assembler- or
C/C++ programmers to interact with the Rexx interpreter were
timid, though it was possible to create “external Rexx function
libraries” in those languages, that would enhance the set of
built-in functions of the Rexx programming language. This
allowed the creation of function packages for interfacing with
relational databases or for supporting socket programming
when the Internet became prevelant using the “REXX-SAA”
interface to Rexx. This interface restricts its data types to
strings as the REXX dynamically typed programming
language internally processed strings only.

The adaptation by Rick McGuire of the ooRexx kernel to
different architectures (32-, 64-bit) and to different operating
systems, created a new powerful, native interface to ooRexx
comparable to JNI (“Java native interface”). In September
2009 ooRexx 4.0 got released with the new kernel and the new
native interface which has been allowing C++ programmers
to easily employ ooRexx as a scripting language.

In 2010 BSF4ooRexx [3] (“Bean Scripting Framework for
ooRexx”) realized a two-way bridge between ooRexx and
Java, camouflaging Java as the dynamically typed, case-
independent, message-based, object-oriented ooRexx. This
allows ooRexx programmers without Java programming skills
to take advantage of the Java runtime-environment as all of
the Java class libraries and Java objects appear as ooRexx
class libraries and ooRexx objects which get messages sent to
them.

In the past five years ooRexx has been reworked and
enhanced in many respects considerably [4][5], starting out

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/286370713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

with switching the build tools from autotools to CMake, to
increasing execution speeds in different areas, such that speed
improvements of up to a factor of 20 have been realized!

III. OOREXX 5 FEATURES
ooRexx is a message-based object-oriented programming

language. The tilde character (~) serves as the explicit
message operator, where the receiver object is left of it and the
message name right of it. Should the message carry arguments
then they will be comma-separated and enclosed in
parentheses immediately following the message name.

Conceptually the receiver will fetch the message with its
arguments, if any, and then look up its class for a method by
the same name, invoke that method with the supplied
arguments, if any, and return the result, if any. If a method
cannot be found in the class of the receiver, then its superclass
will be inspected and if necessary its superclass up to and
including the ooRexx root class named Object. In the case that
a method by the name of the received message cannot be
found, the receiver object will raise an error “object cannot
understand message” very much like Smalltalk.

A. New Features
Due to the manifold new features, this section aims at

noting the major ones and briefly describe them:

• Creating ooRexx from source has become easier by
changing the build system from autotools to CMake,
which also eases the creation of external ooRexx
function libraries considerably.

• The need to have administrative rights in order to
install ooRexx has been lifted. This significant change
took place in a manner that allows to create USB-
runtimes to carry along, but also to have multiple
ooRexx interpreters for different architectures and
different ooRexx versions executing at the same time
without impeding each other on the same machine.

• Performance work on the kernel achieved a
considerably faster (up to a factor of 20) interpreter and
among other things improved the multithreading
algorithms to increase the stability and speed of
scheduling threads and switching between ooRexx
threads and threads of third party programs interacting
with ooRexx via its native interface.

• Access to the runtime environment of ooRexx
programs have been extended by making a “local”
environment directory available to the package object
that gets created for each ooRexx program. Storing
objects in this environment directory will speed up
looking up environment symbols (ooRexx symbols
that start with a dot).

• Introduction of a “package” scope for methods
restricting access from within of an ooRexx package.

• Introduction of the boolean method “isNil” in the
ooRexx root class “Object” which makes it
considerably easier and faster to determine whether an
object is “.nil” (an ooRexx sentinel object representing
the semantics of “null” in the language).

• Introduction of name spaces: all ooRexx supplied
routines and classes can now be referred to
unambiguously with using the prefix “rexx:”.

B. New Notations
Two notable new notations have been introduced into the

language: a new array notation and a new variable reference
notation.

a) New Array Notation
Like in many other programming languages arrays play an

important role in ooRexx and get used in many places. ooRexx
5 introduces a new notation: a comma separated list of values
in ooRexx will be regarded as an expression yielding an array
containing the listed values, if not used as an argument list.
This notation can be used even in an argument list as an array
argument, if the comma separated enumeration of values is
enclosed within parentheses. Fig. 1 demonstrates this notation.

b) VariableReference Notation
An interesting new feature added to the ooRexx

programming language are variable references. It has become
possible to get a variable reference and supply it as an
argument to any routine which becomes thereby able to
replace the value the variable refers to. The variable reference
operator is either the smaller (<) or the greater (>) character
which both serve as synonyms for each other. Fig. 2 exploits
this new feature by allowing the routine work to change the
variable a in the caller to refer to a different string (“from the
work routine”) upon return.

C. Directives
Directives in ooRexx are placed at the end of a program

and are led in with two consecutive colons (::). Before an

arr="one", "two", "three" -- define an array
do item over arr -- iterate over items
 say item -- display item
end

one
two
three

Figure 1: New array notation

Figure 1b: Output of running program in fig.1

a="hello!" -- refers to string "hello!"
call work >a
say a -- refers to string "from the work routine"

::routine work
 use arg >tmp -- "tmp" now represents variable "a"
 tmp="from the work routine"

Figure 2: Variable reference notation

ooRexx program gets executed by the interpreter, it will first
syntax check the program and thereafter carry out all
directives, before running the program with the statement in
the first line. This way the environment for a program can be
set up prior to running it.

A typical usage of directives in ooRexx is related to
defining classes with the ::CLASS directive, their methods
with the ::METHOD and access to their attributes with the
::ATTRIBUTE directive. As a result the interpreter will create
the classes with their methods and attribute getter and setters
methods at load time and makes them available well before
the ooRexx program gets executed with the first statement at
the top of the program.

a) “::REQUIRES” Directive
The “::REQUIRES“ directive denotes a Rexx program that

is required. The interpreter when at the stage of processing the
directives will call the Rexx program and upon return makes
its public routines and public classes accessible to the
program. If such a required Rexx program was already
required, then the interpreter will simply make its public
routines and public classes available to the Rexx program that
requires it.

To support the new namespace feature the ::REQUIRES
directive got enhanced allowing optional subkeyword
NAMESPACE followed by the namespace string, an example
would be: “::requires pgm.rex namespace xyz”. Any public
routine or public class can then be qualified with the prefix
“xyz:”.

b) New Directive “::ANNOTATION”
ooRexx 5 employs the directive concept to allow for

annotating ooRexx packages, classes, methods and routines
with the new “::ANNOTATION” directive supplying an
annotation name and its value. All annotations in an ooRexx
program can be fetched by sending the annotations message
to the respective objects at runtime, which will return
StringTable objects that store the annotation name/value pairs.

c) New Directive “::RESOURCE”
The new “::RESOURCE” directive allows one to define

string data consisting of any number of lines until the needle
“::END” is encountered. This new feature is meant for
allowing to store and retrieve string data at runtime, e.g. help
text, (multiline) SQL statements or base64 encoded binary
data and much more. The interpreter will store all such string
resources in a StringTable that can be accessed with the
.resources environment symbol. Each entry will use the name
of the resource as the index value and store all its strings as an
array for its item. Fig. 3 demonstrates this extremely useful
new feature with two resources. Fig. 3b depicts its output.

D. Keyword Instructions
ooRexx 5 consists of 30 keyword instructions which are

fully documented in “rexxref.pdf”. The following notable
changes have been incorporated:

• “ADDRESS” Keyword Instruction

REXX can be used as a scripting language and as such
makes it easy to direct commands to the execution
environment using the ADDRESS keyword statement.
The ANSI-REXX standard defines an optional variant
that allows one to redirect the standard files stdin,
stdout, and stderr to REXX associative arrays (“stem
variables”). ooRexx 5.0 implements for the first time
this optional feature and in addition to stem variables
allows collection and stream objects to be used in place
of stdin, stdout and stderr.

Fig. 4 demonstrates an ooRexx program that supplies
the command “set | sort” to the operating system,
where the command “set” will retrieve the
environment variables and pipe them using stdout to
the sort filter which reads the data using stdin. The
sorted data then are output using stdout. Fig. 4b
demonstrates an excerpt of the output to stdout. The
ooRexx variable RC (“return code”) makes the return
code of the command directly available to the ooRexx

say "greetings:"
say .resources~greetings
 -- fetch the string array turn it to a string, decode
say .resources~secret~makeString~decodeBase64

::resource greetings -- note the empty lines

 Hello,
 REXX 2019!

::END

::resource secret -- base64 encoded
b29SZXh4IGlzIGNvb2whIDop
::END

Figure 3: The "::resource" directive

greetings:

 Hello,
 REXX 2019!

ooRexx is cool! :)

Figure 3b: Output of running program in fig. 3

program upon return from the command. This ooRexx
program will run on Windows, Linux and MacOS
unchanged.

To ease piping e.g. the stdout data into ooRexx the
“ADDRESS … WITH” variant can be employed. Fig.
5 first creates an ooRexx array object to receive the
stdout data and then issues the above command.
Instead of displaying the stdout data in the terminal it
gets redirected into the supplied ooRexx array and can
be immediately accessed in ooRexx. Fig. 5b shows the
first two array elements which correspond to the first
two lines in fig. 4b.

Fig. 6 Uses the operating system “sort” command but
supplies the strings in an ooRexx array to stdin and
fetches the “sort” stdout data into another ooRexx
array for direct processing in ooRexx. Fig. 6b depicts
the created output.

This way any operating system command can be
supplied by ooRexx and if necessary any of the
standard files stdin, stdout and/or stderr can be
redirected to ooRexx objects.

• “DO” Keyword Instruction

The DO keyword instruction allows defining blocks
which can be used for creating loops and iterating over
collections. ooRexx collection classes have a proper
iterator class named “Supplier” which allows iterating
over all index/item pairs after creating a snapshot of the
collection. To get such an iterator object from any
ooRexx collection one merely needs to send the
message “supplier” to the collection object.
The new DO variant “do with index x item y over
supplierObject” eases iterating over supplier objects
considerably: each loop will have variable “x” refer the
current index value and variable “y” the associated
item value.

• “SELECT” Keyword Instruction

ooRexx introduces the “select case expression” variant
as defined in the NetRexx programming language
created by the original author of REXX, Mike F.
Cowlishaw, to allow writing Java programs in an
easier to learn programming language that applies the
proven “human oriented” principles. This variant of
“SELECT” allows to evaluate the expression at the top
of the block and simplifies the denoted “when”

"set | sort" -- command to environment
say "RC="rc -- display return code

Figure 4: Command to environment

ACPath=C:\Program Files (x86)\Lenovo\Access Connections\
ALLUSERSPROFILE=C:\ProgramData
APPDATA=C:\Users\Administrator\AppData\Roaming
… cut …
RC=0

Figure 4b: Output of running program in fig. 4 under Windows

out=.array~new -- create Rexx array
 -- command to environment: stdout gets redirected to array
address system "set | sort" with output using (out)
do i=1 to 3 -- display first three array entries
 say "out["i"]="out[i]
end
say "RC="rc -- display return code

Figure 5: "address ... with" fetching stdout in ooRexx

out[1]=ACPath=C:\Program Files (x86)\Lenovo\Access Connections\
out[2]=ALLUSERSPROFILE=C:\ProgramData
out[3]=APPDATA=C:\Users\Administrator\AppData\Roaming
RC=0

Figure 5b: Output of running program in fig. 5 under Windows

RC=0
Angie
Berta
Tracy
Figure 6b: Output of running program in fig. 6

in ="Tracy","Angie","Berta" -- input data
out=.array~new -- output data
 -- command to environment use ooRexx arrays for stdin and stdout
address system "sort" with input using (in) output using (out)
say "RC="rc -- display return code
do item over out -- iterate over all items of array
 say item -- display items
end

Figure 6: "address ... with" supplying stdin and fetching stdout in ooRexx

conditions by explicitly listing the values for which
they got defined instead of boolean expressions.

• “USE” Keyword Instruction

The USE keyword instruction allows to fetch
arguments by reference and define default values.
ooRexx 5 introduces a new “USE LOCAL” keyword
instruction variant which can only be used in method
routines as it reverts the semantics of local variables to
be regarded as attributes (object variables) instead.
“USE LOCAL” allows a blank delimited list of variable
names to be listed, which should be regarded as local
variables. This new feature is very helpful for classes
that possess many attributes (object variables) and to
which method routines of the class need direct access.
It is the inverse of the “EXPOSE” keyword instruction
of method routines which usually is used to denote a
blank delimited list of attributes that get directly
accessed by the method routine.

E. New ooRexx Classes
The REXX and ooRexx programming languages follow

the “keep the language small” philosophy. Adding new built-
in functions or ooRexx classes are therefore rare and warrant
learning about them and the motivation to add them to the
language.

• New Utility Class “VariableReference”

This class represents a variable reference and
maintains the name of the referenced variable and the
value that variable refers to.

• New Utility Class “AlarmNotification”

ooRexx is a multi threaded programming language.
The ooRexx “Alarm” class allows one to send an
ooRexx message later, after a certain time has elapsed
or a certain date and time has arrived. The
“AlarmNotification” mixin class defines the abstract
method “triggered” which allows one to learn when
the alarm object sent off the message
asynchroneously.

• New Utility Class “MessageNotification”

ooRexx is a multi threaded programming language.
The fundamental ooRexx class “Message” (messages
are first order objects) can be used to create message
objects. In the case a message gets executed
asynchroneously sending it the “start” (instead of the
“send”) message, one can request to be notified when
the asynchroneous message completed. The “notify”
method in the Message class expects the object that
wants to get notified about completion to implement
the abstract “messageCompleted” method of the
“MessageNotification” mixin class.

• New Utility Class “EventSemaphore”

ooRexx is a multi threaded programming language.
This ooRexx class allows multiple ooRexx threads to
synchronize on it. Once the event semaphore gets
posted, all blocked threads are able to run again.

• New Utility Class “MutexSemaphore”

ooRexx is a multi threaded programming language.
This ooRexx class allows multiple ooRexx threads to
use a shared resource, guaranteeing that only one of the
threads can execute at a single point in time while all
other threads keep waiting on the semaphore block.
Once the thread holding the lock ends one of the
waiting threads gets the control and is able to execute.

• New Collection Class “StringTable”

ooRexx like many programming languages supplies a
directory like collection class, which in ooRexx is
named “Directory”. One interesting feature of it
exploits the ooRexx unknown mechanism which
allows one to intercept the error condition when a
method cannot be found. In this case the ooRexx
runtime environment will search for a method with the
name unknown and if found, invokes it instead
supplying the unknown message and arguments sent
with it. This way a class can react specifically in the
case of (expected) unknown messages. The directory
class exploits this feature by creating or fetching
entries dynamically. In the case of fetching an entry by
the name of the unknown message it needs to check for
methods serving as entries and execute them, returning
whatever it returns. This incurs some overhead and is
rarely used in ooRexx programs.

To improve the runtime performance the new ooRexx
class “StringTable” got introduced which forgoes the
ability to lookup and execute method objects. As the
ooRexx 5 interpreter employs this class internally,
some performance gains can be attributed to this class.

IV. ROUNDUP AND OUTLOOK
Since 2014 work on the open-source ooRexx 5.0 has

aimed at improving functionality but still keeping it “human
oriented” in its syntax and feature sets. In the process
considerable execution speed improvements have taken place
in all areas of the interpreter.

With the new ability to use ooRexx without administrative
rights and allow different versions of ooRexx to stably run
concurrently on a computer, one has become able to create
“USB-versions” of ooRexx. This makes it possible to carry
along one owns ooRexx interpreters for different architectures
and operating systems together with matching ooRexx
function packages like BSF4ooRexx (and Java) as well as
ooRexx utilities on an USB stick. This way the easy to learn
programming language ooRexx can be used as a SAK-tool
(“swiss-army-knife” tool) from Windows, Linux, MacOS to
even IBM mainframe “Linux on IBM Z”.

REFERENCES
[1] R. G. Flatscher. Introduction to Rexx and ooRexx. Vienna: facultas,

2013.
[2] M. F. Cowlishaw. The REXX Language. (2nd edition). Englewood

Cliffs, New Jersey: Prentice Hall, 1990.
[3] R. G. Flatscher. “The 2010 Edition of BSF4ooRexx”. 2010

International Rexx Symposium, Almere, Netherlands, 2010.
[4] R. G. Flatscher. “ooRexx 5.00 New Features”. 2017 International Rexx

Symposium, Amsterdam, Netherlands, 2017.
[5] R. G. Flatscher. “Menschenfreund”. ‘ix, vol. 30, pp. 66-70, Nov.

2017.

	I. Introduction
	II. Brief History of “ooRexx”
	III. ooRexx 5 Features
	A. New Features
	B. New Notations
	a) New Array Notation
	b) VariableReference Notation

	C. Directives
	a) “::REQUIRES” Directive
	b) New Directive “::ANNOTATION”
	c) New Directive “::RESOURCE”

	D. Keyword Instructions
	E. New ooRexx Classes

	IV. Roundup and Outlook
	References

