
Predicting Student Failure in an Introductory Programming
Course with Multiple Back-Propagation

José Figueiredo
 Research Unit for Inland

Development (UDI)
 Polytechnic of Guarda

 Portugal
 jfig@ipg.pt

Noel Lopes
 UDI, Polytechnic of Guarda

CISUC, University of Coimbra
 Institution/University Name

 Portugal
 noel@ipg.pt

Francisco José García-
Peñalvo

 Computer Science Department
Research Institute for Educational

Sciences GRIAL
 University of Salamanca

 Spain
 fgarcia@usal.es

KEYWORDS
datasets, neural networks, programming, teaching programming,
learning programming, CS0, CS1

1 Introduction
Nowadays there is an on-growing demand for Computer Science
(CS) professionals. In Europe alone, according to
European Commission, next year there will be a shortage of
more than 800,000 CS professionals. To make matters worse,
CS courses typically present high-dropout rates, aggravating the
shortage of professionals [10, 26]. Accordingly, in recent
years, there has been a growing interest in teaching
programming concepts to young people. Incorporating CS
topics in high-school curriculum’s, such as computer
programming and robotics, has the benefit of developing
students’ skills, such as: problem solving, creativity and
computational thinking [8, 31]. Recognizing this, many
entities and organizations promote countless initiatives to
promote computer programming and computational thinking
[2, 4, 6, 7, 11, 21, 22].

Programming is a process of transforming a mental plan of
cur-rent terms into terms compatible with the computer [13].
When teaching computer programming, the main objective is to
empower students with the skills needed to create computer
programs that can solve real-world problems. In this context,
programming requires quite particular characteristics and
skills that students may struggle to obtain, often in a short
period. Among these, Jenkins [17] identified the following: the
abstract concepts inherent to programming; the competencies
and mental

ABSTRACT
One of the most challenging tasks in computer science and
similar courses consists of both teaching and learning computer
programming. Usually this requires a great deal of work,
dedication, and motivation from both teachers and students.
Accordingly, ever since the first programming languages
emerged, the problems inherent to programming teaching and
learning have been studied and investigated. The theme is very
serious, not only for the important concepts underlying
computer science courses but also for reducing the lack of
motivation, failure, and abandonment that result from students
frustration. Therefore, early identification of potential problems
and immediate response is a fundamental aspect to avoid
student’s failure and reduce dropout rates. In this paper, we
propose a machine-learning (neural network) predictive model
of student failure based on the student profile, which is built
throughout programming classes by continuously monitoring
and evaluating student activities. The resulting model allows
teachers to early identify students that are more likely to fail,
allowing them to devote more time to those students and try
novel strategies to improve their programming skills.

J. Figueiredo, N. Lopes and F. J. García-Peñalvo, "Predicting Student Failure in an Introductory Programming Course with Multiple Back-Propagation," in TEEM’19
Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality (Leon, Spain, October 16th-18th, 2019), M. Á.

Conde-González, F. J. Rodríguez-Sedano, C. Fernández-Llamas and F. J. García-Peñalvo, Eds. ICPS: ACM International Conference Proceedings Series, pp. 44-49, New
York, NY, USA: ACM, 2019. doi: 10.1145/3362789.3362925.

PO
ST

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Gestion del Repositorio Documental de la Universidad de Salamanca

https://core.ac.uk/display/286370321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

abilities required to decompose and solve problems; the use of
specific syntaxes that students are required to memorize; and the
semantics and structure new non-natural languages. As such,
among the topics CS students are required to learn, computer
programming is particularly difficult. This is a well-know fact,
among the Computer Science Education (CSE) community
[3]. Not only teaching computer programming is a recent area
(when compared to other knowledge areas) but it is also a fast-
changing one. Knowledge and tools rapidly become obsolete,
making it harder to teach and learn even the basics.

Although many studies seek to identify the different causes
that lead to a lack of student motivation and high-dropout rates
there is no panacea to solve this problem. Nevertheless,
to counter students’ frustration that may ultimately lead
to dropouts, it is important to identify learning problems as soon
as possible. Accordingly, in this paper, we propose a
Neural Network (NN) predictive model of student failure
based on students’ profiles collected during the classes. The
resulting model allows teachers to early identify students that
are more to fail and take corrective actions.

The remainder of the paper is structured as follows. Section 2
describes related work. Section 3 details the algorithm used
to create a predictive model for the student’s performance.
Section 4 explains the methodology used to create the
aforementioned model. Section 5 presents and discusses the
results obtained and finally, in Section 5 conclusions and future
work are addressed.

2 Related work
The first programming courses play an important role in the
student success [26], because they can stimulate all passion,
beauty, joy, and awe for programming [9]. Unfortunately, the
lack of success on the introductory programming courses, can
also be a demotivating factor that may ultimately lead to
abandonment. Therefore, several works focus on predicting the
success of students. Most of these are based on analysis of
student interaction with the programming language compiler,
such as: investigating novice programming mistakes [1];
exploring compilation behavior [16]; analyzing response to
compiler error messages [23]. Other studies focus on comparing
and testing traditional predictors of performance and new data-
driven predictors [27]. Several works have found that the
mathematical ability and exposure to mathematics courses are
important predictors of performance on introductory
programming courses [25, 28, 30]. Moreover, there are also
studies, that link prior programming experience and non-
programming computer experience to the student’s
programming performance [5, 12, 14, 29]. Additionally, the role
of cognitive factors, such as problem-solving, abstract reasoning,
logical ability, and cognitive style for predicting the
programming performance has also been studied [15, 24].

Recently, Machine Learning (ML) methods have also been
used for predicting student’s performance on introductory
programming courses. In [18], support vector machines are used
to predict the students’ final exam scores based on data

automatically collected for instructors. In [26] a prediction model,
named PreSS (Predict Student Success), based on ML algorithms
is proposed, in order to predict the students’ success on
introductory programming courses. Moreover, the study,
analyses and compares the performance of several ML methods.

3 Multiple Back-Propagation with a Neural
Selective Input Model

Multiple Back-Propagation (MBP) is an algorithm, proposed in
[20] for training Multiple Feed-Forward (MFF) networks – a
special type of NN that combines a main network and space
network as depicted in Figure 1. The main network contains
selective activation neurons, whose contribution to the NN
output depends on the stimulus presented to the network. Each
selective activation neuron, k, possesses an importance
factor mk

p, that defines its relevance according to the pattern
(sample), p, presented to the network. Accordingly, the output of
these neurons, yk

p, is given by (1):

𝑦𝑘
𝑝

= 𝑚𝑘
𝑝

ℱ𝑘(𝑎𝑘
𝑝

) = 𝑚𝑘
𝑝

ℱ𝑘(∑𝑗 𝑤𝑗𝑘𝑦𝑗
𝑝

+ 𝜃𝑘), (1)

where ℱ𝑘 is the neuron activation function, 𝑎𝑘
𝑝 its activation, 𝜃𝑘

the bias and 𝑤𝑗𝑘 the weight of the connection between neuron j

and neuron k. The farther from zero 𝑚𝑘
𝑝 is the more important

the neuron contribution becomes. On the other hand, a value of
zero means the neuron is completely irrelevant for the network
output and one can interpret such a value as if the neuron is not
present in the network.

Figure 1: Example of a MFF NN with 3 inputs and 2
outputs. Squares represent inputs, darker circles (with the
symbol×) multipliers, lighter circles neurons, and triangles

bias [20].

Both the main network and the space network, responsible
for determining the importance factors of the selective neurons,
are trained together as a whole. To that end, MBP uses the same
rule for updating the weights as the Back-Propagation (BP)
algorithm, i.e. the main network weights are adjusted by (2):

PO
ST

Δ𝑝𝑤𝑗𝑘 = 𝛾𝛿𝑘
𝑝

𝑦𝑗
𝑝

+ 𝛼Δ𝑙𝑤𝑗𝑘 (2)

where γ is the learning rate, 𝛿𝑘
𝑝 the local gradient of neuron k,

Δ𝑙𝑤𝑗𝑘 the weight change for the last pattern l, α the momentum
term and the local gradient for the output, o, and hidden, h,
neurons, are given respectively by (3) and (4):

𝛿𝑜
𝑝

= (𝑑𝑜
𝑝

− 𝑦𝑜
𝑝

)𝑚𝑜
𝑝

ℱ𝑜
′
(𝑎𝑜

𝑝
), (3)

𝛿ℎ
𝑝

= 𝑚ℎ
𝑝

ℱℎ
′
(𝑎ℎ

𝑝
) ∑𝑁𝑜

𝑜=1 𝛿𝑜
𝑝

𝑤ℎ𝑜. (4)

To deal with missing data a Neural Selective Input Model
(NSIM) was proposed in [19], such that the act of obtaining the
value of 𝑥𝑗

𝑝, represented by a random variable, 𝑟𝑗
𝑝 ∼ Be(qj) (with

Bernoulli distribution), is taken into consideration. To that end,
the values 𝑥𝑗

𝑝
 are transformed by (5):

𝑥
~

𝑗
𝑝

= 𝑟𝑗
𝑝

ℱ𝑘(𝑤𝑗𝑘𝑥𝑗
𝑝

+ 𝜃𝑘). (5)

using a neuron, k, with selective activation (named selective
input), containing a single input, 𝑥𝑗

𝑝, and an importance factor

𝑚𝑘
𝑝 set to 𝑟𝑗

𝑝, as depicted in Figure 2.

Figure 2: Network with a selective input (k = 3).

4 Methodology work
In order to build a predictive model for determining which
students are more likely to fail, a profile for each student was
built as described in Section 4.1. The collected data was then
divided into training and test datasets. This process is described
in Section 4.2. The training dataset was then used to build the
model while the test dataset was used to validate it. Section 4.3
presents the metrics used to assert the quality of the models.

4.1 Building the student profiles
The idea of building a profile with the student’s programming
competencies is based on the same concept of current video
games such as FIFA 19 or Assassin’s Creed. The characters are
invited to build and improve their characteristics and skills in

specific areas to complete their tasks or change their level. For
example, a FIFA player may train a penalty, dribble, free kicks
and corner kicks practice and other actions to improve his/her
abilities during the game. Likewise, we want each student to be
able to improve and deepen their programming skills by
performing a set of appropriate and worked exercises for each
student and situation.

The profiles, build throughout the programming classes, by
continuously monitoring and evaluating student activities will
then be used to build a predictive model able to determine which
students require more help in order to overcome their difficulties
and achieve the necessary set of programming competences (see
Figure 3).

Table 1 describes the 17 variables (attributes) collected in
order to build each student profile.

Figure 3: Building the model to predict the probability of
retention of students in an introductory programming

course.

Table 1: Student profile attributes collected using
information provided by the students and teacher. PO

ST

4.2 Data analysis and pre-processing
This study involved a group of 85 students of an
introductory programming course (Introduction to
Programming), lectured to the first year, first semester,
students of the CS course at the Polytechnic of Guarda (IPG),
Portugal – an institution of higher education located in the
interior of the country. In this course the C language is used to
teach the basic programming concepts.

In our opinion, our study group has very special
characteristics that might affect the learning process:
• Usually, the IPG Computer Science course, is not the first
choice of students. Naturally, this affects negatively student's
motivation and engagement.
• In recent years, the score needed to enroll the IPG Computer
Science course is typically low. Thus, most students entering this
course are below average.
• Most students reveal general difficulties in the area of CS.
• Typically, students were never exposed to programming
concepts nor had the opportunity to practice computational
thinking activities.

Since students don’t always attend classes, the compiled
dataset contains Missing Values (MV). On average 13.01 ± 2.70
attributes were collected for each student and we were able to
collect all the attributes only for 7 students. The resulting dataset,
containing 23.46% of MV was randomly divided into a training
set containing 40% of the samples (students) and a test set,
containing 60 of the samples (observe Figure 3). Accordingly, the
training dataset encompasses 34 samples and the test dataset
encompasses the remaining 51 samples. Moreover, the training
dataset contains 24.91% of MV while the test dataset contains
22.49% of MV. On average, each student on the training dataset
has 12.76 ± 3.03 attributes and each student on the test dataset
13.18 ± 2.47 attributes.

Table 2 presents the percentage of MV per attribute for each
dataset. Moreover, Table 3 presents the number of students that
approved/failed in each dataset.

Table 2: Percentage of MV in each dataset.

Table 3: Number of students that approved in the first
exam of introduction to Programming course.

4.3 Training and evaluating the models
In order to build a NN predictive model for student failure,
Multiple Back-Propagation software, available at
http://mbp.sourceforge.net/ was used. Several networks were
trained using the train dataset while varying the number of
neurons in the hidden layer.

For evaluating the performance of each network (model) and
asserting its quality, we use several metrics, based on the
confusion matrix, which contains the number of correctly and
incorrectly classified examples for each class (Failed/Approved),
in the form of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN). Figure 4 presents the
confusion matrix for our problem. The accuracy given by (6):

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 . (6)

The accuracy represents the proportion of students that are
correctly classified. Although this metric gives an overall
estimate of our model performance, in our case, it can be
misleading, since there is a big discrepancy between the number
of samples of each class (see Table 3). Therefore, we also use
other metrics, such as the precision and recall (sensitivity),
respectively given by (7) and (8):

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, (7)

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. (8)

PO
ST

A model presenting a high precision rate is rarely wrong
when it predicts that a student will fail the course. On the other
hand, a classifier exhibiting a high recall rate rarely mis-classifies
a student that will fail. Usually there is a trade-off between the
precision and the recall, and generally it is important to balance
and maximize both. This can be accomplished by using the F-
score (9):

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
. (9)

Figure 4: Confusion matrix of the model to predict which
students will fail the Introduction to Programming course.

5 Results and Discussion
In order to build a NN predictive model for student failure,
Multiple Back-Propagation software, available at
http://mbp.sourceforge.net/ was used. Several networks were
trained, varying the number of hidden neurons in the main
network. The best network had a single neuron with selective
activation. Figure 5 presents the confusion matrix of the
resulting NN model in the test dataset. Moreover, Table 4
presents the performance of the model in the test data.

Figure 5: Confusion matrix of the NN model for predicting
student success in the dataset.

Table 4: Performance of the NN predictive model for
student failure.

The resulting NN model presents high-accuracy. Only three
students are misclassified. However, as depicted in Figure 5,
from these, only one is incorrectly classified as approved when it
should be classified as failed (FN). Ideally this value would be
zero, since these students will not be given special attention,
because the model predicts they will succeed and unfortunately,
they will fail. Nevertheless, the proposed model allows the
teacher to accurately determine which students require
additional attention and intervene early on in order to reduce
attrition rates.

6 Conclusion
In this paper we presented a Neural Network predictive model
for student failure based on the student profile, which is built
throughout computer programming classes by continuously
monitoring and evaluating student activities. The resulting
model allows teachers to early identify students that are more
likely to fail, allowing them to devote more time to those
students and try novel strategies to improve their programming
skills. Future work will focus on more gathering additional
information to explore the possibility of creating models for
determining the students’ performance on specific contents (e.g.
defining variables, using iterative or conditional structures).

REFERENCES
[1] Altadmri, A. and Brown, N.C.C. 2015. 37 Million Compilations:

Investigating Novice Programming Mistakes in Large-Scale Student
Data. Sigcse ’15. (2015). DOI:https://doi.org/10.1145/2676723.2677258.

[2] Basogain, X. et al. 2017. Computational Thinking in pre-university
Blended Learning classrooms. Computers in Human Behavior. (May
2017). DOI:https://doi.org/10.1016/j.chb.2017.04.058.

[3] Bergin, S. and Reilly, R. 2005. Programming: Factors that Influence
Success. SIGCSE ’05: Proceedings of the 36th SIGCSE Technical Symposium
on Computer Science Education (St. Louis, Missouri, United States, 2005),
411–415.

[4] Cole, E. 2015. On Pre-requisite Skills for Universal Computational
Thinking Education. (2015), 253–254.
DOI:https://doi.org/10.1145/2787622.2787737.

[5] Evans, G.E. and Simkin, M.G. 1989. What best predicts computer
proficiency? Communications of the ACM. 32, 11 (1989), 1322–1327.
DOI:https://doi.org/10.1145/68814.68817.

[6] Garcia-Peñalvo, F.J. 2016. What Computational Thinking Is. Journal of
Information Technology Research. 9(3), v–vi, October (2016).

[7] García-Peñalvo, F.J. et al. 2016. Evaluation Of Existing Resources
(Study/Analysis). (Jan. 2016).
DOI:https://doi.org/10.5281/ZENODO.163112.

[8] García-Peñalvo, F.J. and Mendes, A.J. 2017. Exploring the computational
thinking effects in pre-university education. Computers in Human
Behavior. (Dec. 2017). DOI:https://doi.org/10.1016/j.chb.2017.12.005.

[9] Garcia, D.D. et al. 2016. Rediscovering the passion, beauty, joy, and awe:
{Making} computing fun again, part 7. Proceedings of the 47th ACM
Technical Symposium on Computer Science Education (SIGCSE ’16).
(2016), 273–274. DOI:https://doi.org/10.1145/2538862.2538874.

[10] Giannakos, M.N. et al. 2017. Understanding student retention in
computer science education: The role of environment, gains, barriers

PO
ST

and usefulness. Education and Information Technologies. 22, 5 (2017),
2365–2382. DOI:https://doi.org/10.1007/s10639-016-9538-1.

[11] Grover, S. and Pea, R. 2013. Computational Thinking in K-12: A Review
of the State of the Field. Educational Researcher. 42, 1 (2013).
DOI:https://doi.org/10.3102/0013189X12463051.

[12] Hagan, D. and Markham, S. 2004. Does it help to have some
programming experience before beginning a computing degree
program? ACM SIGCSE Bulletin. 32, 3 (2004), 25–28.
DOI:https://doi.org/10.1145/353519.343063.

[13] Hoc, J.-M. and Nguyen-Xuan, A. 1990. Language Semantics, Mental
Models and Analogy. J.-M. Hoc, T. R. G. Green, R. Samurçay, & D. J.
Gilmore (Eds.), Psychology of Programming. (1990), 139–156.

[14] Holden, E. and Weeden, E. 2004. The impact of prior experience in an
information technology programming course sequence. (2004), 41.
DOI:https://doi.org/10.1145/947121.947131.

[15] Hostetler, T.R. 1983. Predicting Student Success in an Introductory
Programming Course. SIGCSE Bull. 15, 3 (1983), 40–43.
DOI:https://doi.org/10.1145/382188.382571.

[16] Jadud, M.C. 2006. Methods and tools for exploring novice compilation
behaviour. Proceedings of the Third International Workshop on Computing
Education Research. Figure 1 (2006), 73–84.
DOI:https://doi.org/10.1145/1151588.1151600.

[17] Jenkins, T. 2002. On the Difficulty of Learning to Program. Language. 4,
(2002), 53–58. DOI:https://doi.org/10.1109/ISIT.2013.6620675.

[18] Liao, S.N. et al. 2019. A Robust Machine Learning Technique to Predict
Low-performing Students. ACM Transactions on Computing Education.
19, 3 (2019), 1–19. DOI:https://doi.org/10.1145/3277569.

[19] Lopes, N. and Ribeiro, B. 2012. Handling Missing Values via a Neural
Selective Input Model. Neural Network World. 22, (2012), 357–370.
DOI:https://doi.org/10.14311/NNW.2012.22.021.

[20] Lopes, N. and Ribeiro, B. 2001. Hybrid learning in a multi-neural
network architecture. INNS-IEEE International Joint Conference on
Neural Networks (IJCNN 2001) (2001), Vol-4. 2788-2793.

[21] Lye, S.Y. and Koh, J.H.L. 2014. Review on teaching and learning of
computational thinking through programming: What is next for K-12?

Computers in Human Behavior. 41, (2014), 51–61.
DOI:https://doi.org/10.1016/j.chb.2014.09.012.

[22] Mason, D. et al. 2016. Computational Thinking as a Liberal Study.
Proceedings of the 47th ACM Technical Symposium on Computer Science
Education (SIGCSE ’16). (2016), 24–29.
DOI:https://doi.org/10.1145/2839509.2844655.

[23] Munson, J.P. and Schilling, E.A. 2016. Analyzing Novice Programmers’
Response to Compiler Error Messages. J. Comput. Sci. Coll. 31, 3 (2016),
53–61.

[24] Nowaczyk, R. 2019. Cognitive skills needed in computer programming
paper presented at the annual meeting of the southeastern psychological
association (march. (2019).

[25] Patil, S.P. and Goje, A.C. 2009. The effect of developments in student
attributes on success in programming of management students. 2009
International Conference on Education Technology and Computer, ICETC
2009. (2009), 191–193. DOI:https://doi.org/10.1109/ICETC.2009.35.

[26] Quille, K. and Bergin, S. 2019. CS1: how will they do? How can we help?
A decade of research and practice. Computer Science Education. 29, 2–3
(2019), 254–282. DOI:https://doi.org/10.1080/08993408.2019.1612679.

[27] Watson, C. et al. 2014. No tests required: comparing traditional and
dynamic predictors of programming success. Proceedings of the 45th
ACM technical symposium on Computer science education - SIGCSE ’14.
44, July (2014), 469–474. DOI:https://doi.org/10.1145/2538862.2538930.

[28] Werth, L.H. 1986. Predicting Student Performance in a Beginning
Computer Science Class. SIGCSE Bull. 18, 1 (1986), 138–143.
DOI:https://doi.org/10.1145/953055.5701.

[29] Wiedenbeck, S. et al. 2004. Factors affecting course outcomes in
introductory programming. 16th Workshop of the Psychology of
Programming Interest Group. April (2004), 97–110.
DOI:https://doi.org/10.1.1.103.9447.

[30] Wilson, B.C. and Shrock, S. 2004. Contributing to success in an
introductory computer science course. ACM SIGCSE Bulletin. 33, 1
(2004), 184–188. DOI:https://doi.org/10.1145/366413.364581.

[31] Wing, J.M. 2006. Computational thinking. Communications of the ACM.
49, 3 (Mar. 2006), 33. DOI:https://doi.org/10.1145/1118178.1118215.

PO
ST

