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ABSTRACT

Implementing plant hydraulics in an Earth System Model and the implications for the

global carbon and water cycles

Daniel Joseph Kennedy

Uncertainty in the representation of vegetation in Earth System Models is a major con-

tributor to the intermodel spread in climate projections under global warming. Empirical

soil moisture stress parameterizations to model drought effects on photosynthesis have been

identified as a major driver of this uncertainty, leading to a call to develop more mechanistic

models that leverage the principles of soil and plant hydraulic theory. The goal of this dis-

sertation is to develop and install a simplified plant hydraulics representation within a major

Earth System Model, compare its dynamics with a non-hydraulic model, and refine methods

to use transient leaf water potential observations to infer vegetation water-use strategy.

Chapter 1 presents the full model description of Plant Hydraulic Stress (PHS), which we

developed to implement plant hydraulics within the Community Land Model (CLM). PHS

has since been adopted as the default representation of vegetation water use in version 5 of

the CLM. PHS updates vegetation water stress and root water uptake to better reflect plant

hydraulic theory, advancing the physical basis of the modeled vegetation hydrodynamics.

Point simulations of a tropical forest site (Caxiuanã, Brazil) under ambient conditions and

partial precipitation exclusion highlight the differences between PHS and the previous CLM

implementation. Model description and simulation results are contextualized with a list of

benefits and limitations of the new model formulation, including hypotheses that were not

testable in previous versions of the model. Key results include reductions in transpiration



and soil moisture biases relative to a control model under both ambient and exclusion con-

ditions, correcting excessive dry season soil moisture stress in the control model. The new

model structure, which bases water stress on leaf water potential, could have significant im-

plications for vegetation-climate feedbacks, including increased sensitivity of photosynthesis

to atmospheric vapor pressure deficit.

Chapter 2 extends the analysis of PHS to the global scale. Historical simulations with

and without plant hydraulics are compared to understand the influence on interannual soil

moisture and photosynthesis dynamics. The focus of this chapter is on analyzing model

dynamics across the semi-arid tropics. The PHS simulation yields longer soil moisture mem-

ory and increases interannual photosynthesis variability as compared to the non-hydraulic

model. With an analytical derivation and analyses of soil moisture dynamics, we demon-

strate the importance of the root water uptake parameterization for soil moisture memory

and carbon cycle variability.

Chapter 3 investigates methods to use transient leaf water potential observations to in-

fer vegetation water-use strategy. We use a set of soil-plant-atmosphere models, ranging in

complexity, to investigate the underlying meaning of three isohydricity metrics and identify

potential classification errors. The model-based approach allows us to derive analytical ex-

pressions for the three metrics and to more methodically sample both environmental space

and trait space to generate idealized experiments to test the fidelity of the resulting water-

use strategy classifications. We consider two previously defined metrics, isohydricity slope

and hydroscape area, in comparison to a third metric, relative isohydricity, defined herein.

We describe classification challenges resulting from trait coordination and environmental

variability, suggest practical recommendations for metric retrieval, and discuss the value



and limitations of isohydricity and the broader pursuit of response-based metrics of vege-

tation traits. Our results indicate that the major limitations of the isohydricity slope and

hydroscape area metrics can be corrected with the relative isohydricity methods described

here.
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Introduction

Overlaid on the long-term trend of increasing atmospheric CO2 concentration is a seasonal

cycle that belies the tremendous influence of plant activity on the global carbon cycle [Keel-

ing, 1960]. Though CO2 concentrations have been increasing by upwards of 2ppm per year,

each year concentrations in Mauna Loa, Hawaii actually tend to decrease from May to

September [Le Quéré et al., 2018]. This coincides with the Northern Hemisphere growing

season, when CO2 sinks to photosynthesis can temporarily outpace fossil fuel emissions, due

to the large concentration of land mass above the equator. But then, through the Northern

Hemisphere winter, global respiration exceeds photosynthesis, with a large portion of the

previously fixed carbon returned to the atmosphere. Overall this cycle features an approxi-

mately 6ppm seasonal amplitude from peak-to-trough as measured at Mauna Loa, and has

been increasing on average by 0.32% per year [Graven et al., 2013]. The fact that this annual

cycle is roughly three times the size of the long-term trend indicates the scale of vegetation

activity.

Not all of the summer carbon gains are returned to the atmosphere in the winter, but

instead, most years a small fraction has remained on land. The long-term terrestrial carbon

sink has absorbed as much as one-third of anthropogenic carbon emissions [Keenan and

Williams, 2018], representing a valuable ecosystem service that has effectively subsidized
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the cost of global warming. However the fate of the terrestrial carbon sink under climate

change is highly uncertain, and has been identified as a major source of the disagreement

between Earth System Models (ESMs) on future climate projections [De Kauwe et al., 2017,

Friedlingstein et al., 2014, Trugman et al., 2018]. Trees face emerging risk from climate

change globally, which may lead to increases in mortality and decreases in the terrestrial

carbon sink [Allen et al., 2010, Anderegg et al., 2013, McDowell et al., 2016]. Increases in

vapor pressure deficit (VPD) are occurring with global warming [Ficklin and Novick, 2017,

Seager et al., 2015], and are associated with impacts on vegetation, such as large-scale die-

off [Williams et al., 2013, McDowell and Allen, 2015]. In addition to a drying atmosphere,

vegetation must adapt to expected increases in precipitation variability [Pendergrass et al.,

2017]. Soil moisture has a large influence on long-term carbon uptake in ESMs [Green et al.,

2019], but the representation of soil moisture stress on photosynthesis has been identified as

a leading cause of intermodel carbon cycle uncertainty [Trugman et al., 2018].

Understanding how the carbon cycle has responded to past environmental variability can

be used as an emergent constraint on the sensitivity of future carbon dynamics to climate

change [Cox et al., 2013]. ESMs have been shown to systematically overestimate the effect

of soil moisture drought on evaporative fluxes [Ukkola et al., 2016, Bonan et al., 2014]. At

the same time, climate-vegetation models have underestimated the persistence of drought

legacy effects on forest carbon dynamics, which can last 1 to 4 years after severe drought

[Anderegg et al., 2015b], and likewise tend to underestimate the correlation between water

availability and global carbon dynamics on an interannual basis [Humphrey et al., 2018]. In

the tropics models have been shown to exaggerate dry season reductions in photosynthesis

[Restrepo-Coupe et al., 2017]. Models that represent plant hydraulics have shown promise
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in representing the seasonal and diurnal cycles of water stress [Fisher et al., 2006, Powell

et al., 2013, Bonan et al., 2014].

The principles of plant hydraulics can be used to parameterize vegetation water supply

and transpiration demand [Sperry and Love, 2015]. Plant hydraulics are used to calculate

water supply, typically using an Ohm’s law analogy to model water fluxes through the soil-

plant-atmosphere continuum (SPAC), with parameters to represent hydraulic conductivity,

vulnerability to cavitation and embolism during drought, as well as the capacitance of plant

tissue to store water [Tyree and Ewers, 1991]. Likewise steps must be made to estimate

root, stem, and crown area/structure [Bohrer et al., 2005]. Root water uptake especially is

sensitive to the absolute and relative distribution of root mass throughout the soil column

[Bouda and Saiers, 2017, Javaux et al., 2013]. SPAC models can be difficult to parameterize

[Verhoef and Egea, 2014], but the various parameters are often correlated [Bartlett et al.,

2016], which provides a basis for model dimensionality reduction [Christoffersen et al., 2016].

A wide range of empirical (e.g. Ball et al. [1987]) and optimization-based models (e.g.

Cowan and Farquhar [1977]) have been used to model stomatal behavior to predict tran-

spiration demand. Furthermore recent work has developed an approach to unify the two

paradigms [Medlyn et al., 2011]. However significant challenges remain in how to adjust

these solutions under drought conditions [Zhou et al., 2013]. Incorporating plant water po-

tential, which requires a plant hydraulic supply model, has been shown to improve empirical

stomatal models [Anderegg et al., 2017]. Relatedly, several approaches have been devised for

how to incorporate soil moisture, hydraulic constraints, and/or hydraulic costs into stomatal

optimization [Manzoni et al., 2013b, Novick et al., 2016b, Wolf et al., 2016, Sperry et al.,

2017].
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Pairing representations of hydraulic water supply and a stomatal model with hydraulic

constraints or costs yields a fully functional SPAC model [Sperry and Love, 2015]. Such

models range significantly in complexity [Sperry et al., 1998, Bohrer et al., 2005], with

multiple reviews cataloguing the history and evolution of SPAC models [Tyree and Ewers,

1991, Fatichi et al., 2016, Mencuccini et al., 2019]. Mounting evidence suggests that hydraulic

traits are important regulators of ecosystem response to drought [Choat et al., 2012, Mackay

et al., 2015, Giardina et al., 2018, Anderegg et al., 2018]. This and other work has served to

inspire multiple calls to represent plant hydraulics in the next generation of ESMs [Joetzjer

et al., 2014, Trugman et al., 2018], and two such implementations in prominent ecosystem

demography models [Xu et al., 2016, Christoffersen et al., 2016]. Likewise, this has served to

motivate my work to install a plant hydraulics scheme within the Community Land Model,

the land component of the Community Earth System Model.

Finally, we must consider the availability of data to constrain and evaluate such models.

Site-level data, including experimental manipulations, provide the most detail for evaluation

including potentially observations of sap flux, soil moisture, basal increment, and leaf gas

exchange. Such data have been used in many instances to evaluate ESMs and/or plant

hydraulic models (e.g. Fisher et al. [2006, 2007], Powell et al. [2013], Joetzjer et al. [2014]

among many others). Site-based model evaluation can likewise leverage the availability of

site-level forcing data and parameters, such as the soil properties measured in Fisher et al.

[2008], which were used in Chapter 1. Eddy covariance methods provide a level of automa-

tion that allows for continuous observation of gas exchange from forests, albeit integrated

across the flux tower footprint [Baldocchi et al., 2001]. Such observations have likewise been

a valuable resource for model evaluation, for example as in Bonan et al. [2014], which tests
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an implementation of the SPA model [Williams et al., 1996] across six Ameriflux sites, find-

ing that a non-hydraulic modeling approach systematically over-estimated vegetation water

stress. Lastly is the constellation of Earth-observing satellites, which have been referred

to as flux towers in the sky and can offer insights into photosynthesis, transpiration, soil

moisture, and vegetation water content, subject to retrieval error and potentially coarse

spatial/temporal resolution [Schimel et al., 2019]. Leveraging satellite observations to infer

vegetation traits is an area of active research [Momen et al., 2017, Konings and Gentine,

2017], with applications across multiple vegetation biomes [Konings et al., 2017, Giardina

et al., 2018].

This dissertation is comprised of three chapters, which describe and analyze a novel plant

hydraulics model, as well as develop techniques to better leverage available observations of

leaf water potential to infer vegetation water use strategy.

Chapter 1 presents the full model description of Plant Hydraulic Stress (PHS), which is

now the default representation of vegetation water use in version 5 of the Community Land

Model. PHS updates vegetation water stress and root water uptake to better reflect plant

hydraulic theory, advancing the physical basis of the modeled vegetation hydrodynamics.

Point simulations of a tropical forest site (Caxiuanã, Brazil) under ambient conditions and

partial precipitation exclusion highlight the differences between PHS and the previous CLM

implementation. The new model structure, which bases water stress on leaf water poten-

tial, could have significant implications for vegetation-climate feedbacks, including increased

sensitivity of photosynthesis to atmospheric vapor pressure deficit.

Chapter 2 extends the analysis of PHS to the global scale. Historical simulations with

and without plant hydraulics are compared to understand the influence on interannual soil
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moisture and photosynthesis dynamics. The focus of this chapter is on analyzing model

dynamics in a broad semi-arid tropical domain. The PHS simulation yields longer soil

moisture memory and increases interannual photosynthesis variability as compared to the

non-hydraulic model. With an analytical derivation and analyses of soil moisture dynamics,

we demonstrate the importance of the root water uptake parameterization for soil moisture

memory and carbon cycle variability.

Chapter 3 investigates methods to use transient leaf water potential observations to in-

fer vegetation water-use strategy. We consider two established metrics, isohydricity slope

and hydroscape area, in comparison to a third metric, relative isohydricity, defined herein.

We describe classification challenges resulting from trait coordination and environmental

variability, suggest practical recommendations for metric retrieval, and discuss the value

and limitations of isohydricity and the broader pursuit of response-based metrics of vege-

tation traits. Our results indicate that the major limitations of the isohydricity slope and

hydroscape area metrics can be corrected with the relative isohydricity methods described

here.
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Chapter 1

Implementing plant hydraulics

in the Community Land Model, version 5

1.1 Introduction

Trees face emerging risk from climate change globally, which may lead to increases in mor-

tality and decreases in the terrestrial carbon sink [Allen et al., 2010, Anderegg et al., 2013,

McDowell et al., 2016]. In addition to stress from soil moisture drought, vegetation is suscep-

tible to increasing atmospheric demand for evapotranspiration [Restaino et al., 2016, Novick

et al., 2016a, Lemordant et al., 2018]. Increases in vapor pressure deficit (VPD) are occur-

ring with global warming [Ficklin and Novick, 2017, Seager et al., 2015], and are associated

with impacts on vegetation, such as large-scale die-off [Williams et al., 2013, McDowell and

Allen, 2015]. Understanding vegetation response to environmental drivers is important both

for discerning future climate impacts on forests and for modeling feedbacks to the carbon

and hydrological cycles [Lemordant et al., 2018]. Significant uncertainty remains in Earth

System Model (ESM) predictions of the carbon cycle, partly attributed to the response of

vegetation to changes in hydroclimate [De Kauwe et al., 2017, Friedlingstein et al., 2014,

Trugman et al., 2018].

Soil moisture stress parameterizations are used by ESMs to determine the regulation of
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surface fluxes (photosynthesis, transpiration) by vegetation in response to water fluctuations

[Egea et al., 2011, Verhoef and Egea, 2014]. Such parameterizations relate a metric of soil

moisture status to leaf gas exchange, defining the response of stomatal conductance to de-

clining soil water, serving to attenuate transpiration, photosynthesis, and root water uptake

with drying. Water stress dynamics have broad effects on critical land surface processes

within models [Joetzjer et al., 2014], such as evapotranspiration. Likewise, because vege-

tation water use strategies modulate carbon uptake, creating a close coupling between the

Earth System’s carbon and hydrological cycles [Green et al., 2017], vegetation water stress

regulates the global carbon cycle. This occurs on seasonal and interannual timescales, with

stress attenuating transpiration [De Kauwe et al., 2015] and photosynthesis [Stocker et al.,

2018]. Furthermore, water stress parameterizations influence the diurnal cycle, through the

partitioning of latent versus sensible heat, modifying the Bowen ratio [Gentine et al., 2007,

2011]. This in turn feeds back onto surface and air temperature, through land-atmosphere

feedbacks [Bonan, 2008, Seneviratne et al., 2006]. Recent studies have shown that soil mois-

ture stress functions are a major driver of uncertainty in leaf gas exchange in ESMs [Trugman

et al., 2018] and can systematically overestimate the effect of soil moisture drought on evap-

orative fluxes [Ukkola et al., 2016, Bonan et al., 2014]. In Amazonia, which is the focus area

of our model test runs, studies suggest that the CLM (version 3.5) simultaneously underes-

timates the effect of experimental drought treatment [Powell et al., 2013] and overestimates

dry-season reductions in GPP [Restrepo-Coupe et al., 2017].

More mechanistic representations of stress and vegetation water use dynamics have been

achieved by incorporating plant hydraulic theory into land surface models, modeling water

flow throughout the Soil-Plant-Atmosphere continuum (SPAC)[Xu et al., 2016, Christof-
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fersen et al., 2016, Sperry et al., 2017]. Explicit modeling of water flow through the veg-

etation substrate increases model complexity, but is consistent with evidence of dynamic

regulation of vegetation water use in response to both soil and atmospheric drying [Tardieu

and Simonneau, 1998, Sperry et al., 1998, Sperry and Love, 2015]. Furthermore, because

they are based on Darcy’s Law, plant hydraulic models have a robust physical basis com-

pared to models that utilize empirical water stress formulations. Plant hydraulic models

involve new parameters, which may prove challenging to constrain [Drake et al., 2017], but

plant hydraulic trait data are available [Kattge et al., 2011, Anderegg, 2015a], providing con-

straints on parameter estimation. Such trait data have been shown to improve predictions of

species vulnerability to drought [Choat et al., 2012, Mackay et al., 2015, Powell et al., 2018,

Giardina et al., 2018, Anderegg et al., 2018]. Likewise vegetation water status observations

are now available from remote sensing platforms, at a scale that is directly comparable to

model development [Konings et al., 2016, Grant et al., 2016] and therefore can be used to

validate model results [Momen et al., 2017, Konings et al., 2017].

In this study, we develop a new plant water stress parameterization based on hydraulic

theory within the recently released Community Land Model, version 5 (CLM5, the land

component of the Community Earth System Model, version 2). We refer to this hydraulics-

based implementation as the ‘Plant Hydraulic Stress’ (PHS) configuration. Previous versions

of the CLM employed an empirical soil moisture stress function, as described above.

PHS, by explicitly representing plant hydraulics, introduces modeled vegetation water

potential (discretized into leaf, stem and root elements) into the CLM, as well as a physical

model of water supply, from the soil through the vegetation substrate. Transpiration is

attenuated in the model based on leaf water potential, capturing dynamic vegetation water
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use regulation in response to both soil moisture and atmospheric evaporative demand. These

changes in the parameterization framework have numerous implications, including:

1. Leaf water potential serves as a metric for plant water status instead of soil water or soil

matric potential. As such, it reflects vegetation sensitivity to both soil and atmospheric

drying, while serving as a diagnostic for excessive xylem tension and cavitation risk.

2. Using a Darcy’s Law approximation to model plant hydrodynamics allows representa-

tion of hydraulic redistribution [Lee et al., 2005], as water fluxes are always directed

down gradients of water potentials.

3. Root water potential can be used to predict gradient-based root water uptake ap-

proximated by Darcy’s law, replacing the previous empirical transpiration partitioning

heuristic. This provides the means to vary, for example, the mean depth of extraction

with changing soil water conditions.

4. Representation of a range of water use strategies (e.g. isohydricity and anisohydricity),

improving the connection between leaf gas exchange and water availability.

5. Modeling vegetation water potential allows improved connection to remote sensing

observations of vegetation water status (Vegetation Optical Depth) [Konings et al.,

2016].

To assess the new model formulation, we carried out site-level simulations at Caxiuanã

National Forest in Brazil, a terra-firme moist tropical evergreen forest [Fisher et al., 2006].

Starting in 2001, a plot at this site was subjected to an approximately 50% percent pre-

cipitation throughfall exclusion. Due to the large drop in soil moisture at the precipitation

exclusion site, significant vegetation water stress regulation of transpiration and photosyn-
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thesis was observed [da Costa et al., 2010, 2014], providing a drought signal to demonstrate

model dynamics [Fisher et al., 2007].

In this chapter, I therefore:

1. Introduce the PHS theory and implementation in the CLM (Section 1.2)

2. Describe the details of the experiment setup (Section 1.3)

3. Analyze the dynamics of modeled water stress, root water uptake, transpiration, and

soil moisture profiles (Section 1.4)

4. Discuss differences between PHS and the previous CLM water stress configuration

(Section 1.5)

5. Outline the benefits and limitations of the new model (Section 1.5.5)

1.2 Model description

This study develops a new parameterization of water stress (Sections 1.2.4 and 1.2.5) and

root water uptake (Sections 1.2.4 and 1.2.5) within the CLM. We use two configurations

of CLM5 to compare the new parameterization with the corresponding parameterization

from CLM4.5. The new parameterization is called Plant Hydraulic Stress (PHS); PHS is

the default configuration of CLM5. The alternative configuration, which we refer to as Soil

Moisture Stress (SMS), deploys the CLM4.5 default root water uptake and water stress

implementations within CLM5. In Sections 1.2.1-1.2.3, we describe the components that

the two configurations share in common. In Sections 1.2.4 and 1.2.5, we describe their

differences.
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1.2.1 Stomatal conductance

CLM5 implements the Medlyn stomatal conductance model [Franks et al., 2018, Medlyn

et al., 2011], which reconciles the empirical approach to modeling stomatal conductance

with a carbon-water optimization framework [Cowan and Farquhar, 1977]. The Cowan and

Farquhar [1977] optimization requires plants to maximize photosynthesis relative to transpi-

ration costs, which the Medlyn model captures in an empirically tractable form (Equation

1.1). Stomatal conductance of water (gs) is directly related to net photosynthesis (An) and

inversely related to the square root of the vapor pressure deficit near the leaf surface (
√
D)

and the concentration of CO2 at the leaf surface (Ca).

gs = g0 + 1.6

(
1 +

g1√
D

)
An

Ca

(1.1)

The model features two parameters: g0 (µmol / m2 / s) and g1 (kPa0.5). The g0 parameter

is the minimum stomatal conductance, representing cuticular and epidermal losses (small).

The g1 parameter relates to the marginal water cost guiding the optimization of carbon

assimilation. These parameters are plant functional type dependent.

While maximizing assimilation relative to water transpiration costs, the Medlyn model

does not resolve concurrent limitations to stomatal conductance associated with declining soil

water (such as in Manzoni et al. [2013b]) or excessive xylem tension. To represent such water

stress, and its impact on leaf-gas exchange, land surface models typically include a ‘water

stress factor’. The PHS implementation follows this approach, using the Medlyn model

to calculate stomatal conductance absent water stress, which is attenuated as leaf water

potential declines (see Section 1.2.3). More recent stomatal conductance models eschew
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the Cowan and Farquhar [1977] optimization in favor of a framework to maximize carbon

assimilation relative to hydraulic costs [Wolf et al., 2016, Sperry et al., 2017, Anderegg et al.,

2018b], which directly incorporate leaf water potential and hydraulic safety margin into the

stomatal conductance formulation. Such models do not require a water stress factor and

should be tested for future versions of PHS.

1.2.2 Photosynthesis

The CLM5 photosynthesis model is described in detail in Bonan et al. [2011], Thornton and

Zimmermann [2007], and Oleson et al. [2013]. Photosynthesis is limited by three factors:

carboxylation-limitations, light-limitations, and export-limitations following Farquhar et al.

[1980] and Harley et al. [1992]. Water stress (as discussed in the next section) is applied

within the carboxylation-limited regime, by attenuating the maximum rate of carboxylation

(Vcmax). The implementation extends Sellers et al. [1996a,b] with co-limitation following

Collatz et al. [1991].

The CLM5 photosynthesis module, in its default configuration, is a two-big-leaf model,

with a sunlit and shaded leaf for each plant functional type [Thornton and Zimmermann,

2007, Dai et al., 2004, Oleson et al., 2013]. The canopy fluxes module iterates the solution

for leaf temperatures to satisfy the leaf surface energy balances on both sunlit and shaded

leaves, in response to forcing conditions. Within this, the photosynthesis module further

iterates to solve for stomatal conductance and intercellular CO2 concentration, balancing

stomatal flux of CO2 with photosynthetic assimilation flux of CO2 (see Appendix Figure

A.1 for a flow chart of these iterations).
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1.2.3 Water stress factor

Uncertainty remains within the literature as to how and where to apply water stress factors to

photosynthesis and/or stomatal conductance [Zhou et al., 2013, Novick et al., 2016b, Sperry

and Love, 2015]. In the CLM, the water stress factor (fw) multiplies the ‘well-watered rate’

of maximum carboxylation (Vcmax,ww) to effect water stress (as described in Oleson et al.

[2013]).

Vcmax = fw Vcmax,ww (1.2)

Attenuating Vcmax is not the only method for incorporating a response to declining wa-

ter availability. Other models opt to apply water stress directly to stomatal conductance,

linking the stomatal conductance model slope parameter to soil moisture (e.g. De Kauwe

et al. [2015]). However, Lin et al. [2018] found that only the intercept parameter and pho-

tosynthesis (through changes in light-use efficiency) were sensitive to soil moisture based on

eddy-covariance observations and not the slope parameter. Furthermore Zhou et al. [2013]

suggest that changes in assimilation tend to exceed those predicted by modulating g1 with

soil moisture, but could be captured by changing Vcmax. These results would thus suggest

that it is appropriate to modulate Vcmax. Other field studies, however, suggest that measured

Vcmax at the leaf level does not change with drought [Flexas et al., 2004]. On the other hand,

the modeled Vcmax is a bulk measure of Vcmax and may implicitly account for mesophyll con-

ductance changes [Rogers et al., 2017], which has been shown to be water stress dependent

[Flexas et al., 2012].

For now, applying water stress through Vcmax seems well-supported, but future refine-
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ments may be appropriate. In this study, we preserve the method of applying water stress

used in CLM4.5, while instead experimenting with how fw responds to environmental con-

ditions.

1.2.4 SMS (CLM4.5 default)

SMS water stress factor

In SMS, fw is calculated as the summation of a soil layer wilting factor (wi) across the n

soil layers, weighted by root fraction (ri) [Oleson et al., 2013]. The soil wilting factor is

a bounded linear function of soil matric potential (ψsoil,i). The function is defined by two

parameters, the soil potential at (and above) which stomates are fully open (ψo) and the

value at which stomates are fully closed (ψc).

fw,SMS =
n∑

i=1

riwi (1.3)

wi = 0 ≤ ψsoil,i − ψc

ψo − ψc

≤ 1 (1.4)

SMS root water uptake

The CLM features a vertically discretized soil column with variable soil layer thicknesses.

The number of soil layers (n) can vary, depending on the depth to bedrock. Soil water

movement in each soil layer is governed by Richards’ equation, with root water uptake (qi)

incorporated as a sink term. Summed over the soil column, root water uptake is required to

equal transpiration (T ).
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T =
n∑
i

qi (1.5)

In the SMS configuration, a heuristic function (based on fw,SMS) is used to determine

qi. Transpiration is partitioned among the soil layers based on the product of the root

fraction and the wilting factor, which is then normalized by fw,SMS to satisfy Equation 1.5.

Because the relative root fractions are used to partition transpiration, root water uptake

is not connected to absolute root biomass. For example, if root biomass doubles in every

soil layer, the relative root fractions do not change, with no impact on modeled soil water

availability.

qi =
riwi

fw,SMS

T (1.6)

Substituting for wi yields the SMS root water uptake equation as a function of the layer-i

soil potential (ψsoil,i).

qi =



0 if ψsoil,i < ψc

T

fw,SMS

ri
ψo − ψc

(ψsoil,i − ψc) if ψc ≤ ψsoil,i ≤ ψo

T

fw,SMS

ri if ψsoil,i > ψo

(1.7)

In the Darcy framework, water fluxes are the product of hydraulic conductance (ki) and

hydraulic gradient (∆ψ). Although SMS does not explicitly calculate hydraulic conduc-

tance, Equation 1.7 can be used to define hydraulic analogs resulting from the transpiration

partitioning heuristic function, allowing easier comparison to the PHS root water uptake
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implementation.

qi = −ki∆ψ

∆ψ = ψc − ψsoil,i

ki =
T

fw,SMS

ri
ψo − ψc

constrained by: ∆ψ =


0 if ψsoil,i < ψc

ψc − ψo if ψsoil,i > ψo

(1.8)

1.2.5 PHS (CLM5 default)

PHS water stress factor

PHS introduces a new formulation for fw, which is based on leaf water potential (ψleaf)

instead of soil potential (described further in Section 1.2.5). The relationship is modeled

with a sigmoidal function, subject to two parameters: the water potential at 50% loss of

stomatal conductance (p50) and a shape-fitting parameter (ck).

fw,PHS = 2
−

ψleaf

p50

ck

(1.9)

ψleaf = ψsoil + ∆ψ (1.10)

Utilizing leaf water potential has been shown to improve stomatal models [Anderegg et al.,

2017] and reflects hydraulic limits on plant transpiration [Manzoni et al., 2013a, Sperry et al.,

1998]. Leaf water potential is modulated by supply of sap to the leaves and by evaporative
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demand, as regulated by stomatal dynamics [Sperry and Love, 2015]. As a result, low soil

water induces stress due to limited water supply, but in addition, high atmospheric VPD can

induce stress with the associated increases in the gradient in water potential across the plant

xylem. This latter mechanism was absent from the previous water stress function (dependent

on soil water potential only), by construction. Given the observed increase in VPD with

global warming, it appears critical to include such mechanistic dependence of water stress

[Novick et al., 2016a]. While the Medlyn stomatal conductance model does depend on VPD,

the model does not (given constant g1) reflect the risk of hydraulic failure [Zhou et al.,

2013]. The new stress factor formulation reflects the dual risks of soil moisture deficit and

atmospheric demand on hydraulic safety [Williams et al., 2013], requiring vegetation to avoid

excessive xylem tension associated with risk of cavitation.

PHS root water uptake

PHS implements an alternative to the SMS heuristic approach for root water uptake, using

a mechanistic representation utilizing Darcy’s Law for flow through porous media to ap-

proximate the vegetation water fluxes. Instead of a constant parameter (ψc) defining the

gradient in water potential within the SMS hydraulic analogy (Equation 1.8), PHS imple-

ments a physical model of vegetation water potential (details in Section 1.2.5). The water

flux from a given soil layer is driven by the gradient between soil potential (ψsoil,i) and the

water potential in the root collar (ψroot), after accounting for the effects of gravity (ρgzi,

where zi is the soil layer depth). Hydraulic conductance across the soil and roots (ksr) is

modeled based on soil hydraulic properties and xylem vulnerability, accounting for both the

path across the soil matrix and through the xylem conduits. Furthermore, in lieu of using
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relative root fraction (as in SMS), ksr depends on the root area index, an absolute measure

of root abundance (details in Appendix Section A.1).

qi = −ksr,i (ψroot − ψsoil,i + ρgzi) (1.11)

Modeling vegetation water potential

The PHS model within CLM5 uses Darcy’s law to approximate the flow of water through

the SPAC, which can be represented with an electrical circuit analogy (Figure 1.1). PHS

solves for vegetation water potential along the path from soil-to-atmosphere. Vegetation

water supply and demand are both coupled to vegetation water potential, as described in

the previous two sections. The solution for vegetation water potential is the set of values

that matches supply with demand, maintaining water balance across each of the vegetation

water potential nodes.

...

ψsunlit-leaf

ψshade-leaf

ψroot

ψstem

Esun

Eshade

ks,1

ks,2

ks,n

k2

k1,a

k1,b

kr,1

kr,2

kr,n

ψsoil,2

ψsoil,n

ψsoil,1

Figure 1.1: Plant hydraulic circuit analog schematic

PHS solves for vegetation water potential at four locations: ψroot, ψstem, ψshade-leaf, and

ψsun-leaf. The number of nodes is chosen as the strict minimum to allow for differences in

segment parameterizations [Simonin et al., 2015, Sperry and Love, 2015], while also conform-
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ing to existing CLM model structure (vertically discretized soil layers, 2-big-leaf). At each

node in the circuit diagram (Figure 1.1), we model water potential, and, between nodes, we

resolve the flux of water based on Darcy’s law. Water uptake from the different soil layers is

assumed to operate in parallel; a typical assumption justified by higher resistance in lateral

versus central roots (e.g. Williams et al. [2001]). Two resistors operate in series between

each ψsoil and ψroot, to represent the path across the soil matrix and then through the root

tissue [Williams et al., 1996]. Specifics on the parameterization of hydraulic conductance for

each segment are provided in Appendix Section A.1.1. Solving for vegetation water potential

requires matching vegetation water supply (root water uptake, sap flux through the stem)

with vegetation water demand (sunlit and shaded leaf transpiration).

Water supply

Water supply is modeled via Darcy’s Law, where the flux of water (q) is the product of the

path hydraulic conductance (k) and the gradient in water potential (ψ2−ψ1) after accounting

for gravitational potential (ρg∆z). Equation 1.12 represents the flow from a generic node 1

to node 2.

q = −k (ψ2 − ψ1 + ρg∆z) (1.12)

For simplicity, PHS does not represent plant tissue water storage (or capacitance, using

the electrical circuit analogy), which is in line with recent supply-loss theory [Sperry and

Love, 2015]. Capacitance significantly complicates the water potential solution [Celia et al.,

1990] and is challenging to parameterize [Bartlett et al., 2016]. However, buffering of water
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stress provided by tissue water storage could potentially be important especially on sub-daily

timescales [Meinzer et al., 2009, Epila et al., 2017], whereby its inclusion may be warranted

in future model versions.

Hydraulic conductance through vegetation segments is modeled following empirical xylem

vulnerability curves [Tyree and Sperry, 1989], where segments lose conductance with increas-

ing xylem tension related to cavitation and embolism [Holbrook et al., 2001]. The vulnera-

bility curves model loss of conductance relative to maximum conductance (kmax) using two

parameters: ck, a sigmoidal shape-fitting parameter, and p50, the water potential at 50%

loss of segment conductance (following Gentine et al. [2016]).

k = kmax 2
−

 ψ1

p50

ck

(1.13)

Both ck and p50 can be estimated from field experiments [Sack et al., 2002], and p50 is

available in the TRY trait database [Kattge et al., 2011]. Parameterization based on p50

aligns with the call for a transition to models that use a wider range of plant functional trait

data in their parameterization [Anderegg, 2015a]. The loss of xylem conductivity is based

on lower terminal water potential (ψ1) as is typical in other simplified models [Xu et al.,

2016], but may underestimate the integrated loss of conductivity [Sperry and Love, 2015].

This bias could underestimate hydraulic limits on gas exchange and/or affect parameter

estimation (e.g. requiring lower kmax). Likewise, xylem are assumed to symmetrically regain

conductance, which may lead to underestimating persistent drought legacies [Anderegg et al.,

2015b]. PHS was explicitly designed as a simplified model that can be refined in future

versions.
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PHS models root, stem, and leaf tissue conductances according to equation 1.13. The

parameterization of kmax varies by hydraulic segment. The conductances across the soil

matrix (ks,1,...,ks,n) to the root surface follows Williams et al. [2001] and Bonan et al. [2014],

which scales soil conductivity [Brooks and Corey, 1964, Clapp and Hornberger, 1978] by

an appropriate conducting distance based on the root distribution. Details are provided in

Appendix Section A.1.1

Water demand

Water demand is calculated using the Medlyn stomatal conductance model (see Section

1.2.1) modulated by the CLM water stress factor. As discussed earlier fw is based on leaf

water potential in PHS, where stress increases as leaf water potential becomes more negative

[Klein and Niu, 2014]. Emerging from this new stress formulation is a connection between

drought stress and hydraulic safety margin (HSM), which measures the difference between

the minimum leaf water experienced by vegetation and the water potential at a given percent

loss of conductivity (e.g. HSM = p50 − ψleaf,min). Variations in HSM have been shown to

explain a significant portion of the variance in ecosystem drought sensitivity [Anderegg et al.,

2018].

fw,sun = 2
−

ψsun-leaf

p50

ck

fw,shade = 2
−

ψshade-leaf

p50

ck
(1.14)

Because leaf water potential is modeled separately for sunlit and shaded leaves, fw takes

on distinct sunlit and shaded values. Shaded and sunlit leaf transpiration (Esun, Eshade)
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are calculated by attenuating maximal transpiration (Esun,max,Eshade,max) according to fw.

Esun,max and Eshade,max are calculated at the beginning of each timestep by running the stom-

atal conductance model with fw = 1. Equations (1.14) and (1.15) reflect a simplification

used within iterations of the PHS module, neglecting non-linear components of the relation-

ship between stress and transpiration (which is resolved through iteration, as described in

Appendix Section A.1.3).

Esun = fwEsun,max

Eshade = fwEshade,max

(1.15)

PHS solution

PHS solves for the set of vegetation water potential values (ψ) that matches water

supply (root water uptake) to water demand (transpiration), while satisfying continuity

across the four water flow segments (soil-to-root, root-to-stem, stem-to-leaf, and leaves-to-

transpiration). Beginning from an initial condition of ψ (from the previous timestep), PHS

computes the flux divergence f (representing the mismatch of flow in and out of each seg-

ment) and iteratively updates ψ until it reaches convergence, i.e. f → 0.

ψ =



ψsun

ψshade

ψstem

ψroot


(1.16)
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f (ψ) =



Esun − qsun

Eshade − qshade

qsun + qshade − qstem

qstem −
∑n

j=1 qroot,j


(1.17)

A =
df

dψ
(1.18)

While |f | > 0

∆ψ = A−1f (ψi)

ψi+1 = ψi + ∆ψ

(1.19)

The numerics are tractable because f has continuous, analytical derivatives and A (a 4x4

matrix with six null entries) is easy to invert when well-conditioned. Supply and demand

converge, because transpiration demand decreases with more negative leaf water potentials

and supply increases with more negative leaf water potentials. The PHS loop is nested

within iterations for intercellular CO2 concentration and leaf temperature. Details on the

numerical implementation are provided in Appendix Section A.1.3.

1.3 Experiment description

We use a set of four simulations to demonstrate the impact of the plant hydrodynamics

model (PHS versus SMS) on a tropical rainforest site, under ambient conditions and par-

tial precipitation throughfall exclusion. This site is located in Eastern Amazonia (Caxiuanã,
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Table 1.1: Select parameter values

Full Name Symbol Value
Maximum Sun Branch Conductance ksun,max 4e-8 s−1

Maximum Shade Branch Conductance kshade,max 4e-8 s−1

Maximum Stem Conductivity kstem,max 4e-8 m/s
Maximum Root Conductivity kr,max 6e-9 m/s

Water potential at 50% loss of conductivity p50 -1.75 MPa
Vulnerability shape parameter ck 2.95

Soil potential with stomata fully open ψo -0.65 MPa
Soil potential with stomata fully closed ψc -2.5 MPa

Medlyn intercept g0 100 µmol / m2 / s
Medlyn slope g1 6 kPa0.5

Soil porosity to 4.64 meters n 0.42
Soil porosity beyond 4.64 meters n 0.28

Saturated soil hydraulic conductivity ks,max 3e-5 m/s
Saturated soil matric potential ψsat 461 Pa

Brooks-Corey parameter b 6

Brazil) and part of the Large-Scale Biosphere-Atmosphere Experiment in the Amazon [Avis-

sar et al., 2002].

1. SMS, with ambient precipitation throughfall (AMB)

2. SMS, with 60% of precipitation throughfall excluded (TFE)

3. PHS, AMB

4. PHS, TFE

All four simulations use the same version of CLM5 (development version r270, www.

github.com/ESCOMP/ctsm/releases/tag/clm4 5 18 r270), which features a switch that can

toggle between SMS and PHS configurations. Simulations are run offline (uncoupled from

an active atmospheric model), spanning from 2001 through 2003, utilizing the satellite phe-

nology (SP) mode of CLM5 in which vegetation state (LAI, canopy height) is prescribed

and biogeochemistry is inactive. Six-year spin-up simulations (one each for SMS and PHS)
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are used to create initial conditions, repeating the ambient simulation twice. This satisfied

steady state soil conditions, with soil matric potential changing by less than 0.2% between

the two loops. Descriptions of site characteristics, forcing data, and observational sap flux

and soil moisture, can be found in Fisher et al. [2007] and Fisher et al. [2008].

1.3.1 Parameter values and throughfall exclusion

Parameter values concerning vegetation hydrodynamics are presented in Table 1. All other

parameters use the default values associated with the r270 version of CLM5. Informed by

parameter values reported in Fisher et al. [2008], we tuned soil hydraulic parameters and

the throughfall exclusion rate, to improve simulated soil moisture relative to observations

(Figure S9). An ensemble of simulations was used to tune the parameters for the PHS

configuration to reasonably reflect sap flux observations (see Appendix A.1).

1.4 Results

1.4.1 Comparison with observations

We tested two configurations of CLM5 (PHS, SMS) with simulations of the Caxiuanã

throughfall exclusion experiment over 2001-2003. We compared modeled transpiration with

observations derived from sap flux velocity and modeled soil moisture with observations

using TDR sensors (see above for experiment and observation details).
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Figure 1.2: Modeled versus observed daily total transpiration. Observations are
derived from field observations of sap flux velocity (see Section 1.3). (a,b) SMS
configuation, under ambient conditions and 60% TFE. (c,d) PHS configuation,
under ambient conditions and 60% TFE.

Transpiration, ambient conditions

Under ambient conditions, PHS reduces error and improves correlation between modeled

and observed transpiration (compared to SMS, Figure 1.2a,c). While the two models make

a similar number of small errors, SMS commits more errors exceeding 1 mm/day. The

absolute value of SMS-OBS transpiration (Figure S3g) exceeds 1 mm/d in 67 of 414 days

with available observations, as compared to just 23 with PHS. And while PHS error is limited

to a maximum of 1.6 mm/d, SMS error exceeds 2 mm/d twelve times. These twelve SMS

errors all result from underestimating transpiration relative to observations, coinciding with
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dry soils, which is discussed further in Section 1.5.4.

While PHS offers improvements in modeled transpiration as measured by RMSE and

correlation, the ambient simulation seems to underestimate transpiration variability, with

a standard deviation of daily transpiration of 0.61 mm/d compared to 0.87 mm/d in the

observations (with SMS, the standard deviation is 0.97 mm/d). As such, PHS features a low

bias for high transpiration values and a high bias for low transpiration values (Figure 1.2c).

The difference in modeled transpiration between PHS and SMS derives from divergent water

stress dynamics, which are discussed in Section 1.5.2.

Transpiration, TFE

PHS performs better than SMS at reproducing transpiration observations under TFE (Figure

1.2b,d), featuring a higher R2 (0.45 vs. 0.3) and lower RMSE (0.74 vs. 1.03 mm/d). However,

both implementations show degraded results under TFE as compared to ambient rainfall

conditions. Simulating the wet season under TFE (February-March-April) is prone to high

transpiration biases in both models, where, in the observations, transpiration is reduced

32% by TFE, as compared to modeled reductions of only 1.6 and 4% for PHS and SMS,

respectively. This may indicate that the models’ sensitivity to soil potential declines are

underestimated, or that water drains from the root zone more quickly after precipitation

events than we represent with the soil hydraulic parameters (Figure 1.3b,d). Difficulty

reproducing the effect of TFE (and the influence of soil moisture on leaf gas exchange) at

Caxiuanã has precedent in the literature [Restrepo-Coupe et al., 2017, Powell et al., 2013].
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Figure 1.3: Volumetric soil water content (-) over time under ambient and TFE
conditions at a depth of 50cm. (a/b) SMS (c/d) PHS. Arrows indicate start
of TFE. Supplementary Figure S11 plots 7 other soil depths. In the SMS con-
figuration, soil moisture can tend to ‘stick’ at water content of 0.1 during the
dry season, which corresponds to ψsoil=-2.5MPa and is the value of the SMS soil
wilting parameter, ψc.

Soil moisture

The second source of observations for model evaluation is volumetric soil moisture. These

data are used to evaluate the parameterization of root water uptake. Modeled soil moisture

values (at a depth of 50 cm) are comparable between model configurations during the wet

season (February-March-April) under ambient conditions, both yielding averages of 28%

(Figure 1.3a,c). With excess rainfall, soil moisture is largely determined by the soil field

capacity and saturated conductivity, which are the same in both model configurations. With

water shortfalls, the root water uptake parameterizations drive the soil moisture dynamics,

and the models diverge, as SMS consistently generates lower soil moisture values (than PHS)
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within the first meter of the soil column (Figure 1.3, Figure S11). Soil moisture averages

to 10% during the dry season (September-October-November, ambient case, depth=50cm)

with SMS, as compared to 16% with PHS. PHS better comports with observations, reducing

RMSE by 57% relative to SMS (Figure 1.3a,c).

We highlight the soil moisture at 50 cm depth, but similar patterns are observed through-

out the first meter of the soil column (Figure S11). The 50-cm depth emphasizes the effect

of modeled root water uptake, because it features higher root fraction than the deeper soil

layers (Figure S1), but avoids the high frequency dynamics of the top soil layer from soil

evaporation and precipitation events that do not relate to differences between PHS and SMS.

Under TFE, SMS minimum soil moisture is again 10%, but holds there for a longer dura-

tion (Figure 1.3). Contrastingly, PHS achieves lower dry season soil moisture values under

TFE as compared to ambient conditions. PHS better comports with observations, reducing

RMSE by 42% relative to SMS (Figure 1.3a,c), however both models seem to feature a high

bias in soil moisture in the root-zone (under TFE) during the wet season (Figure 1.3, Figure

S11).

1.4.2 Vegetation water potential

PHS updates both the water stress and root water uptake parameterizations based on mod-

eling vegetation water potential. Leaf water potential features a pronounced diurnal cycle,

reaching -1.65 MPa at midday (Figure 1.4a). Most of the midday pressure drop occurs

between ψroot and ψstem (∆=-1.47 MPa), representing the root collar and upper stem, re-

spectively. Stem, shade, and leaf curves are all roughly equal, resulting in overlapping lines
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Figure 1.4: (a,b) 2003 dry season (September-October-November) diurnal mean
of modeled vegetation water potential under ambient and TFE conditions. Curves
are drawn for sunlit leaf, shaded leaf, stem, and root water potentials, with the
latter three overlapping. (c) Monthly mean midday (12h-14h) vegetation water
potential under ambient (solid line) and TFE (dotted line) conditions. Here
curves are drawn only for sunlit leaf and root water potential. The arrow indicates
the start of TFE.

in Figure 1.4a, relating to high stem-to-leaf conductance from the parameter values used in

this experiment. Stem-to-leaf conductance does not drive leaf water potential in the cur-

rent parameterization of the model, but may be important to investigate further, given the

reported dynamics of leaf conductance [Simonin et al., 2015].

Under TFE, model midday leaf water potential decreases to -2.31 MPa (Figure 1.4b).

This change derives from a decrease in predawn root water potential (lower soil moisture)

and in the drop in root water potential between predawn and midday (due to reduced soil-to-

root conductance). This comports with previous evidence that seasonal changes in hydraulic

resistance are larger belowground [Fisher et al., 2006]. Despite reduced stem conductance,

the pressure drop from root-to-stem acts in the opposite direction, reduced in magnitude to

-1.02 MPa (from -1.47 MPa), following from 54% reductions in transpiration. In this way,
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stomatal regulation serves to mitigate the drop in leaf water potential due to soil drying and

reduced hydraulic conductance.

Midday leaf water potential features a seasonal cycle, with lower values during the dry

season (Figure 1.4c). Under ambient conditions, modeled root water potential values com-

port well with wet season observations in Fisher et al. [2006], but are less negative than

dry season observations. Modeled leaf water potential values under ambient conditions are

less negative than field observations (Fisher et al. [2006] report average ψleaf of -1.71 MPa

during the wet season and -2.47 MPa during the dry season), but are within the range of

observations. The parameter values used here may underestimate isohydricity (which would

be reflected by minimal leaf water potential drop during drought) in response to TFE, given

that observations showed no significant difference between ambient and TFE leaf water

potential [Fisher et al., 2006].

1.4.3 Stress dynamics

Modeling vegetation water potential enables a diurnal mode of variability in vegetation water

stress. While the SMS stress factor has minimal diurnal variability, PHS features increased

stress at midday (Figure 1.5a,b), corresponding to the drop in leaf water potential induced

by increasing demand for transpiration (Figure 1.4b,c). Average midday stress values are

comparable between the two model configurations during the 2003 dry season (Figure 1.5),

but PHS achieves more photosynthesis over the course of the average dry-season day (Figure

S4), due to lower stress in the mornings and afternoons.

The SMS stress factor lacks diurnal variability, because it is based on average root-zone
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Figure 1.5: 2003 dry season (SON) diurnal mean water stress function for (a)
SMS, and (b) PHS. Note that the water stress factor equals 1 when there is no
stress and 0 when fully stressed.

soil matric potential (Equation 1.3), which evolves over longer timescales. PHS utilizes leaf

water potential to calculate stress (Equation 1.9), which responds to both water supply and

transpiration demand. As such, the PHS stress factor responds to both soil moisture and

VPD, while SMS responds only to soil moisture (Figure 1.6). Under ambient conditions,

SMS features significant stress associated with declining soil water status, but PHS stress is

primarily demand-driven, with less impact from soil moisture (Figure 1.6a,c). With TFE,

stress increases in both model configurations, and the effect of soil moisture on PHS stress

increases markedly (Figure 1.6d).

1.4.4 Gross primary productivity (GPP)

The two stress parameterizations feature differing seasonal cycles of GPP, with PHS expe-

riencing less seasonal variability in stress (Figure 1.7a-d). Under ambient conditions, SMS

predicts little to no stress (fw=1) during the wetter months (January through July). Mean-
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Figure 1.6: Water stress factor versus vapor pressure deficit (2002-2003), con-
strained to timesteps with downwelling shortwave radiation between 400 and 425
W/m2 (n=515). Radiation is controlled to highlight the relationship with VPD,
the reverse (controlling for VPD) is shown in Supplementary Figure S6. For SMS
(a,b), data are subdivided based on average soil matric potential, weighted by
root fraction. For PHS (c,d), data are subdivided based on predawn (5h) root
water potential. Blue dots represent the wettest tercile, yellow dots represent
the intermediate tercile, and red dots represent the driest tercile (values defining
each tercile are in Table 1.2). PHS utilizes leaf water potential as the basis for
its water stress factor, which introduces a dependence on transpiration demand.

while PHS models significant stress, with highly variable fw, ranging as low as 0.5. Despite

abundant soil water, PHS still imposes stress, due to high transpiration demand when VPD

and downwelling solar radiation are high. This results in lower wet season GPP and lower

GPP variability than with SMS (Figure 1.7e,g). Contrastingly, SMS imposes more stress

than PHS during the dry season (Figure 1.7b,d), resulting in lower dry season GPP. Obser-

vations show that GPP increases at Caxiuanã during the dry season [Restrepo-Coupe et al.,

2017], suggesting that both model configurations, but especially SMS, may overestimate dry

season water stress under ambient conditions.
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Table 1.2: Root-zone soil potentiala (MPa) terciles. The two cut-points are used
to divide the points in each subplot of Figure 1.6 into three groups, based on
root-zone soil moisture.

Simulation T1 T2
SMS, Ambient -0.01 -0.54

SMS, TFE -0.29 -1.74
PHS, Ambient -0.01 -0.05

PHS, TFE -0.05 -0.33
aSMS values correspond to daily mean root-fraction weighted soil poten-
tial. PHS values correspond to predawn root water potential.
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Figure 1.7: (a-d) Daily stress factor (midday, averaged over 12h-14h) and (e-h)
GPP (daily total) over 2002-2003 under ambient (left column) and TFE (right
column) conditions. Output from the SMS configuration (a,b,e,f) are plotted
with gray color, while output from the PHS configuration (c,d,g,h) are plotted in
black.

The modeled effect of TFE is relatively small during the wet season, with modeled

reductions in GPP of 1.3 and 3.8% for PHS and SMS, respectively. Based on transpiration

observations, both configurations likely underestimate the TFE effect during the wet season

(discussed further in Section 1.5.2). SMS imposes more dry season stress, resulting in a 63%
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reduction of GPP due to TFE, compared to 44% with PHS. Comparing dry season stress to

the wet season, and TFE conditions to ambient, precipitation shortfalls (and the associate

reductions in soil moisture) lead to less added stress under PHS as compared to SMS.

However, PHS experiences more stress overall, due to the effects of xylem tension imposed

by the gradient of water potential from soil-to-leaf (discussed further in Section 1.5.2). The

sensitivity of leaf gas exchange to transpiration demand is subject to the representation of

hydraulic conductance in PHS, which requires caveats related to parametric uncertainty and

hydraulic simplifications (see Section 1.2.5).

1.4.5 Root water uptake (RWU)

Figure 1.8: Vertical profile of soil water content (by volume) over 2003 under 60%
throughfall exclusion, for (a) SMS, and (b) PHS. Soil water content under ambient
conditions is shown in Supplementary Figure S9. PHS spreads the vegetation
transpiration sink over a larger vertical extent, which prevents the very low soil
moisture values observed in SMS.
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In addition to updating water stress, PHS implements updated RWU, consistent with

hydraulic theory [Cai et al., 2018, Warren et al., 2015]. The parameterization of RWU affects

the vertical distribution of soil water (Figure 1.8, Figure S9), as SMS tends to achieve drier

upper soil layers, whereas PHS spreads the drying effects of transpiration over a larger

vertical extent. As described in Section 1.4.1 (Figure 1.3), this yields a dry bias relative to

soil moisture observations in the root-zone for SMS (within the dry season).

RWU, within a given soil layer, is the product of hydraulic conductance (ks,r) for water

flow and the gradient (∆ψ) in water potential from ψsoil,i to ψroot (see Section 1.2.5). With

PHS, reductions in RWU with drying are imposed by declining ks,r, which decreases by

almost 3 orders of magnitude as soil potential declines from 0 to -1 MPa (Soil Layer 5, Figure

S7). This derives primarily from the exponential dynamics of soil conductivity [Brooks and

Corey, 1964]. ∆ψ tends to increase with drying (due to dynamic ψroot), partially mitigating

the reductions to RWU imposed by ks,r. With SMS, the opposite is true: reductions in

RWU are imposed by declining ∆ψ and are (to a small extent) mitigated by increases in the

(implied) conductance. RWU (within a given soil layer) is more sensitive to soil potential

with PHS (Figure S10), which prevents soil potential from getting much lower than -1 MPa,

as compared to values as low as -2.5MPa under SMS.

While RWU within a given soil layer is more sensitive to soil potential with PHS, transpi-

ration overall is less sensitive to shortfalls in precipitation associated with dry season onset

and TFE (as compared to SMS, Figure S3). This is because, within PHS, there is more

flexibility to compensate for dry layers by switching the RWU to moist layers. As such, PHS

can compensate for its sensitivity to soil potential by spreading the drying associated with

the transpiration sink over a larger vertical extent (Figure 1.8). Following from this, with
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Figure 1.9: 2003 dry season (SON) cumulative root water uptake and precipi-
tation. (a) Cumulative precipitation over time under ambient conditions (b,c)
Cumulative water uptake over time from above and below 0.2m, respectively. (d)
Cumulative root water uptake over the soil column (accumulating from depth).
An equivalent plot for the wet season is shown in Supplementary Figure S5. The
new root water uptake parameterization allows PHS to maintain more transpi-
ration under TFE by utilizing more deep soil water.

PHS, dry season transpiration is less sensitive to TFE, due to increased RWU from below 2

meters in depth (Figure 1.9d). The shifting of water extraction based on water availability is

also present under ambient conditions, as PHS shifts RWU from near-surface (0-0.2m depth)

to the deeper soil layers (beyond 0.2m) during drydowns (Figure 1.9a-c).

Lastly, PHS eschews constraints on RWU imposed by SMS (Equation 1.7), that sets

extraction to zero if ψsoil,i is drier than ψc and to a maximal value when ψsoil,i is wetter than

ψo (SMS parameters for soil potential with stomates fully closed and open, respectively).

Hydraulic theory does not support either constraint. Furthermore, the non-linearity of RWU

at ψc (Figure S7), creates a situation where dry soil layers tend to stick at ψsoil,i=ψc (Figure
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1.3). Likewise, the constraint at ψc precludes the representation of hydraulic redistribution.

1.4.6 Hydraulic redistribution (HR)
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Figure 1.10: Total hydraulic redistribution (cm) by month across 2003. For
(a) ambient throughfall conditions, and (b) 60% throughfall exclusion. Darker
shading shows portion of HR at night [6pm,6am), lighter shading shows portion
of HR during the day [6am,6pm). Total HR refers to the sum of all negative root
water uptake flows, whenever water is deposited by roots into a given soil layer
(instead of being extracted).

SMS precludes HR (contrary to PHS) setting root water uptake to zero when reversed

gradients in water potential occur (ψsoil,i¡ψc). With PHS, HR totals to 38.9 cm under ambient

conditions and 40.0 cm under TFE over the course of 2003, with the majority (28.0, 26.7

cm) of this HR occurring at night (Figure 1.10), in line with established theory [Jackson

et al., 2000, Lee et al., 2005] and observations [Oliveira et al., 2005, Burgess et al., 1998].

HR occurs in both directions (Figure S8), but is predominately downwards (AMB: 30.7cm,

TFE: 33.8cm). The amount of HR is difficult to evaluate due to scarce observations. The

simplicity of the hydraulic representation may lead to overestimating HR, which is discussed
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further in Section 1.5.3.

1.4.7 Soil moisture effect on transpiration
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Figure 1.11: Difference between modeled and observed transpiration (mm/d)
versus model soil potential (MPa), for (a,b) SMS and (c,d) PHS. Solid lines
are drawn at the median, binning points every 0.2MPa for SMS and 0.05 MPa
for PHS (note the different soil potential axes). Dotted lines are drawn at zero,
where modeled and observed transpiration are in agreement. The two models use
different root water uptake paradigms, from which we define different operators
for column effective soil potential. For SMS we average over the soil column
weighted by root fraction and over time (daily mean). For PHS we use predawn
(5h) root water potential. Based on available observations, n = 414/436 days
under ambient/TFE conditions.

Model soil potential shows limited relationship to sap flux observations under ambient

conditions (Figure S12b,f), which is indicative of limited soil moisture stress. However, in

the SMS configuration, modeled transpiration decreases strongly with more negative soil

potential (Figure S12a), biasing the model relative to observations (Fig 1.11a).
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Sap flux observations under TFE show a stronger relationship with soil potential espe-

cially with PHS (Figure S12h,d). With SMS, the modeled attenuation of transpiration with

soil potential again seems to bias modeled transpiration (Fig 1.11b). The two PHS simula-

tions feature less structure in transpiration bias vs. soil potential and less bias overall (Fig

1.11c,d).

1.5 Discussion

1.5.1 Can modeling vegetation water potential improve the

CLM?

In this study, we have implemented plant hydraulic theory within CLM5, using dynamic

vegetation water potential to modulate leaf gas exchange and root water uptake. Darcy’s

Law, which is already used to model soil water movement in the CLM, offers a useful

approximation for vegetation water fluxes [Sperry et al., 1998]. PHS installs a model for

predicting vegetation water potential by extending Darcy’s Law through the vegetation

substrate (Figure 1.1), creating four new water potential prognostic variables (ψroot, ψstem,

ψshade-leaf, and ψsun-leaf). The model is able to capture expected diurnal and seasonal dynamics

of vegetation water potential, with lower values within the stem and leaves at midday and

during the dry season (Figure 1.4). PHS uses the new vegetation water potential variables to

advance the physical basis for representing the SPAC, particularly with regard to modeling

vegetation water stress and root water uptake.

To demonstrate the new model dynamics, we utilized a site-level experiment testing
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PHS by simulating the Caxiuanã throughfall exclusion experiment [Fisher et al., 2007].

We found that PHS improves output for both transpiration and soil moisture relative to

observations as compared to the control model (see Section 1.4.1, Figures 1.2,1.3). While

this is encouraging, especially given the soil moisture dependence of the SMS bias (see

Section 1.4.7), the improvement is specific to the site and experiment described herein, and

model skill will need to be re-evaluated in a broader context. Instead, the value of opting

for a single site (in lieu of global simulations) resides in the opportunity to perform detailed

analyses to elucidate the new model dynamics in order to complement this first description

of PHS.

1.5.2 Stomatal conductance: soil moisture stress vs. xylem

tension stress

The first of these analyses is of the response of stomatal conductance stress to environmental

factors, namely: soil moisture, vapor pressure deficit, and solar radiation. The Medlyn

stomatal conductance model, as implemented in the CLM, requires a notion of water stress to

attenuate stomatal conductance in order to capture the effects of diminishing water supply,

with various relevant implementations described in the literature (see Section 1.2.3). We

tested two such approaches, which alternatively base stress on either soil water potential

(SMS) or leaf water potential (PHS). The two configurations feature significantly different

stress dynamics on both diurnal and seasonal timescales (Figures 1.5,1.7).

Leaf water potential is (in simplified terms) the sum of soil water potential and the

gradient of water potential from soil-to-leaf (ψl = ψs + ∆ψ). Therefore using ψl as the
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driver of water stress preserves a relationship between stress and soil potential, but now

also represents the effect of increasing demand for transpiration (reflected by increases in

∆ψ). PHS offers a mechanistic approach to water stress, utilizing a physical justification

that interprets water stress as the result of increasing xylem tension, which has previously

been used as a primary [Sperry et al., 2017] or contributing [Novick et al., 2016b] factor

to stomatal regulation. In the model, vegetation will (according to the specific hydraulic

parameter values) limit transpiration in order to avoid overly negative leaf water potential

values, which are associated with cavitation and embolism [Tyree and Sperry, 1989]. As

a result, PHS stress responds to changing soil moisture, but unlike SMS, also responds to

VPD and downwelling solar radiation (Figure 1.6), which modulate transpiration demand.

This imparts a diurnal pattern to PHS stress, with higher stress around midday, whereas

with SMS, stress is relatively constant throughout the day (Figure 1.5). The PHS stress

formulation will impart an increased sensitivity of GPP to rising VPD under climate change,

which could lead to a diminished terrestrial carbon sink relative to SMS projections.

Soil water potential approaches (as in SMS) lack a straightforward physical basis, but

rather empirically relate stomatal conductance and/or photosynthetic parameters with soil

potential (or soil moisture). However, in the case of SMS, the empirical relationship is very

difficult to constrain, due to scarce observations of the stress driver, root-fraction-weighted

soil potential. As a result, soil moisture stress functions have been shown to contribute

significant uncertainty to the carbon cycle in Earth System Models [Trugman et al., 2018].

Leaf water potential, on the other hand, is more easily measured in situ [Boyer, 1967] and

has been shown to correlate with remote sensing products [Momen et al., 2017], offering

better observational constraints for PHS. Likewise, incorporating plant hydraulics may allow
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for improved model representation of tree mortality [McDowell et al., 2018]. The PHS

formulation represents an incremental approach to coupling stomatal conductance to leaf

water potential, inheriting the established CLM stomatal conductance model [Franks et al.,

2018], while adapting the water stress factor to depend on leaf water potential. This could

be refined in future versions of PHS, incorporating recent work that directly incorporates

leaf water potential within the stomatal optimization [Wolf et al., 2016, Sperry et al., 2017,

Anderegg et al., 2018b].

1.5.3 Structural improvements in modeling root water uptake

Dynamic vegetation water potential

PHS introduces dynamic vegetation water potential (Figure 1.4), for the first time, into the

default configuration of the CLM. Seasonally and diurnally dynamic leaf water potentials

are observed in the field [Fisher et al., 2006], adjusting to variations in soil water supply

and transpiration demand. Dynamism in the gradient of water potential from soil-to-leaf,

according to the Darcy’s Law approximation of vegetation water fluxes, drives RWU. This

is especially important for partitioning the transpiration sink among soil layers with varying

soil potential states [Jarvis, 2011]. A mechanistic representation of RWU with dynamic

vegetation water potential allows for modeling a range of water use strategies, and/or testing

hypotheses regarding such strategies on the ESM scale. One example is testing the effects

of increasing carbon allocation to root biomass, which was not well-represented in previous

versions of the CLM, because water availability depended on relative root fraction and

would not respond to increase in absolute biomass. Another example is testing the effects
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of iso/anisohydry, which can be diagnosed from remote sensing observations [Konings and

Gentine, 2017], on leaf gas exchange and drought vulnerability. The spectrum of isohydric

to anisohydric behavior, corresponding to highly regulated versus relatively unregulated leaf

water potential, cannot be represented in previous versions of the model that do not model

leaf water potential. Likewise, variations in hydraulic safety margin, which have been shown

to correlate with drought sensitivity [Anderegg et al., 2018], can now be represented in the

model due to prognostic leaf water potential.

Mechanistic hydraulic conductance, with response to drying

Likewise, PHS implements mechanistic hydraulic conductance through the SPAC, reflecting

declines in conductance associated with decreasing water potential in both plant vessels

and soil substrate [Tyree and Sperry, 1989]. Hydraulic theory describes soil conductance as

featuring an exponential relationship with soil potential [Brooks and Corey, 1964], ranging

three orders of magnitude over the range of soil potential observed in our simulations (Figure

S7). This shapes the PHS response of RWU to soil drought, and is not captured by the

linear loss of RWU exhibited in SMS (between the parameters: ψo and ψc, Figure S10). As

a result, PHS RWU is more sensitive to drying soils, which seems to ameliorate dry biases

in soil moisture observed in SMS relative to observations (Figure 1.3). At the same time,

the mechanistic approach of PHS better reflects soil-root hydraulic theory [Cai et al., 2018,

Warren et al., 2015].
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Compensatory RWU

Utilizing a hydraulic approach (with dynamic vegetation water potential and mechanistic

hydraulic conductance) enables a more flexible representation of RWU. This includes the

ability to model hydraulic redistribution (next Section) and compensatory RWU. Compen-

satory RWU occurs when soil water extraction switches soil layers to maintain transpiration

through precipitation shortfalls. For example, as surface soil layers dry, tap roots can be

used to harness reserves of soil water at depth [Oliveira et al., 2005], partially compensat-

ing for reduced RWU near the surface. In an SMS-style paradigm, this process is not fully

represented.

With identical rooting profiles, PHS extracts 29% of transpiration from beyond 2 meters

depth under TFE (during the 2003 dry season) as compared to 13% with SMS. In PHS, as

the surface soil layers dry out, conductance decreases rapidly, leading to reduced near-surface

RWU. In response, the vegetation ‘pulls’ harder, as ψroot becomes more negative, creating a

larger gradient to the deeper soil layers, yielding increased RWU in those still-moist layers.

SMS lacks the flexibility to achieve this type of compensatory RWU, because it models RWU

fluxes based on a constant soil wilting potential (ψc) and does not explicitly impose a loss of

hydraulic conductance as soils dry. As a result, PHS maintains higher levels of transpiration

and photosynthesis than SMS during the dry season under both ambient and TFE conditions

(Figures S3,1.7). This process may be especially important for modeling evapotranspiration

in semi-arid ecosystems [Jarvis, 2011] and in Amazonia, where water contributions of deep

roots are often important [Nepstad et al., 1994].
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Hydraulic redistribution

PHS simulates substantial HR at our test site, both upwards and downwards (Figure 1.10,

Figure S8), which conforms with field observations [Burgess et al., 1998, Oliveira et al., 2005].

Modeled HR is weighted towards downward transfers, moving near-surface water from rain

events deeper into the soil column. This may serve to save excess water for when it is most

needed, such as during the dry season, and would seem to convey an advantage to deep-

rooted individuals, banking water for later use out of reach of shallow-rooted competitors.

HR can offer significant water subsidies during dry periods [Jackson et al., 2000] and has

been highlighted as an important missing feature in CLM [Lee et al., 2005, Tang et al., 2015].

However, we should note that observations of HR are extremely difficult and rare, and the

degree to which HR actually occurs in real-world systems remains unclear. Unequivocal

detection of HR involves the observation of reverse flow along transport roots, typically at

rates close to the detection threshold of sap flow monitoring systems [Oliveira et al., 2005].

Installing a representation of HR was not a primary objective in the development of

PHS. Rather it was the natural consequence of our simplified Darcy’s Law implementation

for root water uptake. However, it remains to be seen whether HR, as modeled in this

implementation, is a feature or a liability. One challenge we faced was that in an initial

implementation of PHS, HR seemed to oversupply the top layer of the soil column (spanning 0

to 2 cm below the ground surface) and thus significantly degraded modeled soil evaporation

(not shown). To remedy this problem, we set the hydraulic conductance to zero in the

uppermost soil layer, disallowing any root water uptake there.

PHS may overestimate HR, given the simplified root system architecture [Bouda and
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Saiers, 2017] and the lack of an explicit representation of fine-root cavitation [Kotowska

et al., 2015]. In our simulations, HR increases annual total root water uptake by up to 52%

relative to transpiration alone (2003, TFE). Other models, similar to the SMS paradigm,

disallow HR by constraining root water uptake to be positive [Xu et al., 2016]. We view the

PHS implementation of HR into the default versions of the CLM as a ‘null’ hypothesis for

the functioning of this process, and as a platform to allow further refinement from the plant

hydraulics community. Isotopologues of water could be used as a tool to further constrain

this redistribution in the CLM in the future.

1.5.4 The influence of soil moisture on transpiration

The stress effects of declining soil water potential seems to bias SMS predictions of tran-

spiration relative to sap flux observations (Figure 1.11a,b). Under ambient conditions, soil

water shows little relationship with sap flux observations with either model configuration

(Figure S12b,f), however SMS modeled transpiration decreases strongly in response to soil

drying (Figure S12a). This creates a bias where SMS underestimates transpiration during

the drier soil conditions, which is in line with Bonan et al. [2014], where the water stress

factor was found to impose too much attenuation of transpiration (in CLM4.5).

With PHS the transpiration bias does not seem to strongly depend on soil potential, while

also featuring less bias overall (Figure 1.11c,d). Likewise PHS yields a stronger relationship

than SMS between soil potential and sap flux observations during TFE (Figure S12d,h).

While improvements in modeled transpiration were expected with PHS (more parameters),

it seems promising that the gains are associated with the reduction of a soil moisture induced
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bias. This could indicate that PHS better models the relationship between soil potential and

water stress or the dynamics of soil potential itself (or a combination thereof). The reduction

in bias introduced by the water stress function (especially as it depends on soil potential)

represents a major development, given repeated calls to improve vegetation water stress in

the next generation of terrestrial biosphere models [Powell et al., 2013, Rogers et al., 2017,

Trugman et al., 2018].

1.5.5 Benefits and limitations of PHS

Benefits

1. Advances the physical basis of the CLM

• Mechanistic xylem tension stress replaces empirical soil moisture stress

• Root water uptake reflects established hydraulic theory

• More appropriate response of water availability to root abundance

2. Improves modeled vegetation hydrodynamics

• Better match to observations of soil moisture and transpiration (higher correla-

tion, lower RMSE)

• Importantly, the improvements modeling transpiration are achieved by removing

a bias associated with soil water status

• Permits representation of compensatory root water uptake and hydraulic redis-

tribution

• Avoids excessive soil layer drying observed with SMS

3. Creates an interface to new observational constraints
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• Parameters are better represented in trait databases (e.g. kmax, p50).

• New state variables modeling vegetation water potential are introduced, which are

measured in situ and have been shown to correlate with remote sensing products

[Momen et al., 2017].

• And given that vegetation water potential is downstream of soil water potential,

this may actually provide an important constraint on root-zone soil moisture.

4. Enables a platform for testing various hydraulics-oriented hypotheses within the ESM

context

• What are the relative contributions to water stress of VPD vs. soil moisture?

• Does the spectrum of isohydric vs. anisohydric regulation of vegetation water

potential explain patterns in the terrestrial carbon and hydrological cycles?

• Are certain regions of the concatenated hydraulic-parameter / climate space par-

ticularly vulnerable to climate change?

Limitations

1. Plant hydraulics are highly simplified

• Does not model vegetation tissue water storage (capacitance)

• Loss of conductance (vulnerability) not integrated across vegetation tissue or soil

matrix (based on lower terminus)

• Stem-to-leaf resistance is not fully deployed

• Simplified root system architecture

• These simplifications create a null hypothesis for further testing by the hydraulic
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community and yield a relatively light-weight model

2. Uncertainty regarding the parameterization of water stress

• PHS models water stress (fw) as a sigmoidal function of leaf water potential,

which is used to attenuate Vcmax

• Stress attenuation of Vcmax was also utilized in CLM4.5/SMS, which allowed for

easier comparison between model versions

• However, significant uncertainty exists in coupling the PHS water stress factor

to the Medlyn stomatal conductance model, which could be resolved in future

versions by recent work that directly incorporates hydraulic limitations within

the stomatal optimization [Wolf et al., 2016, Sperry et al., 2017, Anderegg et al.,

2018b].

3. Increased model complexity

• Can potentially be mitigated by hydraulic trait coordination, improved parameter

priors, and observational constraints on vegetation water potential

• However, the spatial scale of the CLM does not match to the experiments asso-

ciated with reported parameter values in trait database

4. We do not provide a definitive assessment on model skill

• We saw broad improvements in modeled transpiration and soil moisture, when

comparing PHS to SMS. However, like SMS, PHS overestimates transpiration

during the wet season under TFE, effectively underestimating the effect of reduced

precipitation throughfall.
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• This report is not meant to be a definitive assessment of model skill, as it presents

a single site with results specific to experimental setup and parameter values

• The single site framework was utilized to allow for more detailed analysis of the

model dynamics to supplement the model description

1.6 Conclusion

The PHS configuration of the CLM5 within the Community Earth System Model (CESM2)

is, to our knowledge, the first land-surface model within an ESM with a representation

of vegetation water potential running in its default configuration. In this paper, we have

described the model implementation, and illustrated a comparison of the model dynamics

for a tropical rainforest site subjected to water limitation, given that prediction of rainforest

responses to drought is one of the key uncertainties in the ESM predictions [Huntingford

et al., 2013].

Overall, the new model behavior differs from the default configuration in ways that are

expected, given its structural properties, and in many cases, provides better correspondence

with observations than the default structure. Modeling vegetation water potential allows for

new parameterizations for the model representations of root water uptake and vegetation

water stress, which better conform to established plant hydraulic theory. PHS root water

uptake, driven by dynamic vegetation water potential, allows representation of compensatory

root water uptake and hydraulic redistribution. As a result, PHS utilizes more of the soil

column to buffer precipitation shortfalls, which, in both the ambient and TFE simulations,

reduces dry season biases in transpiration and root-zone soil moisture. PHS water stress
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requires vegetation to avoid extreme values of leaf water potential, associated with excessive

xylem tension and hydraulic failure. This incorporates a dependence of the CLM water

stress factor on transpiration demand, which was previously not represented. As a result,

photosynthesis is more sensitive to VPD with PHS.

The new model structure will likely have significant implications on climate feedbacks,

given the changes in precipitation and VPD sensitivity introduced by PHS. In this paper,

however, we have not aimed at undertaking a comprehensive assessment of which model

structure performs better, given the substantial parametric uncertainty in both models, and

the dependence on numerous other features of the CLM external to water stress representa-

tion that contribute to model-observation divergences, such as, in this case, the overestima-

tion of wet season transpiration under TFE.

In lieu of this type of assessment, we propose that the new PHS model structure 1) is

more closely aligned with known plant hydraulics theory, 2) provides significantly improved

connections to real-world observational data streams (of leaf and stem water status, sap flow,

percent loss conductance) and 3) represents known features of ecohydrological function that

the control model cannot capture, including hydraulic redistribution, changes in the depth

of water uptake with drought stress, plant embolism impacts on gas exchange, and responses

of water uptake to changes in root abundance.
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Chapter 2

Plant hydraulics increase soil moisture memory and carbon

cycle variability in the dry tropics

2.1 Introduction

The terrestrial carbon sink has provided a valuable ecosystem service, removing up to one

third of anthropogenic carbon emissions from the atmosphere [Keenan and Williams, 2018].

However the fate of the terrestrial carbon sink under climate change is highly uncertain

in Earth System Models (ESMs) and is a major source of disagreement among climate

projections [Friedlingstein et al., 2014]. Terrestrial carbon dynamics are complex and highly

variable, responding to (among others): temperature, light, precipitation, humidity, and

nutrient availability, subject to potentially non-linear and hysteretic behavior [Keenan et al.,

2012, Keenan and Williams, 2018]. Understanding how the carbon cycle has responded to

past environmental variability can be used as an emergent constraint on the sensitivity of

future carbon dynamics to climate change [Cox et al., 2013].

Recent work has demonstrated the large influence of soil moisture on the global car-

bon cycle across the full spectrum of analytical tools: including ESM simulations [Green

et al., 2019], eddy covariance observations [Stocker et al., 2018], and satellite remote sensing

retrievals [Humphrey et al., 2018]. Great progress has been made improving model vegeta-
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tion processes and soil moisture dynamics using satellite and eddy covariance data [Bonan

et al., 2011, Swenson and Lawrence, 2015]. However, models are not able to reproduce ob-

served correlations between global water availability and carbon exchange [Humphrey et al.,

2018] or certain aspects of observed vegetation functionality [Lee et al., 2005, Javaux et al.,

2013]. In particular, the parameterization of soil moisture stress on photosynthesis has been

identified as a major driver of carbon cycle uncertainty in ESMs [Trugman et al., 2018].

ESMs generally use an empirical water stress factor to attenuate transpiration and pho-

tosynthesis as a linear function of soil moisture (or soil water potential), averaged over the

soil column, weighted by root density [Verhoef and Egea, 2014, Oleson et al., 2013]. Such

functions are very difficult to constrain empirically due to the scarcity of root-zone soil mois-

ture measurements [Trugman et al., 2018], and have difficulty reproducing observed drought

effects on photosynthesis and transpiration [Powell et al., 2013, Kennedy et al., 2019]. Fur-

thermore, a related formulation is generally used to model root water uptake, partitioning

the total transpiration sink among vertically discretized soil layers as a linear function of soil

moisture (or soil potential) and root fraction, which contradicts current theory in soil and

plant hydraulics [Javaux et al., 2013]. This has led to a call for hydraulically-enabled pa-

rameterizations of water stress and root water uptake [Trugman et al., 2018], of which there

are multiple examples in the most recent generation of dynamic global vegetation models

[Christoffersen et al., 2016, Xu et al., 2016, Kennedy et al., 2019].

We recently installed a simplified plant hydraulics model in the Community Land Model

(CLM), the land component of the Community Earth System Model. This hydraulics sub-

component is called Plant Hydraulic Stress (PHS) and is responsible for calculating root

water uptake and drought limitations to photosynthesis and transpiration. PHS is the de-
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fault configuration for vegetation hydrodynamics for version 5 of CLM, and by extension,

version 2 of CESM. This was the first implementation of plant hydraulics within the de-

fault version of a coupled ESM to our knowledge. A complete model description is provided

in Kennedy et al. [2019], along with point simulations of a tropical forest site subject to

precipitation throughfall exclusion, which highlight improvements in transpiration and soil

moisture dynamics with PHS.

In this study we extended our analysis of PHS to the global scale, with a ≈1◦ resolution

simulation over the historical period (1850-2013), using CLM5. For comparison we carried

out an identical simulation without plant hydraulics, instead swapping in the CLM4.5 param-

eterizations of soil moisture stress and root water uptake [Oleson et al., 2013]. In particular

we were interested in testing the effects of hydraulic root water uptake on soil moisture

memory and carbon cycle variability. Our analyses are focused on semi-arid regions, which

play an outsized role in the trend and variability of terrestrial carbon exchange [Poulter

et al., 2014, Ahlström et al., 2015] and feature longer soil moisture memory [Rahman et al.,

2015]. We found that plant hydraulics contribute to longer soil moisture memory and larger

interannual variations in photosynthesis in semi-arid regions, which may partly explain why

the previous generation of land models tend to underestimate the correlation between water

availability and carbon exchange observed in remote sensing data [Humphrey et al., 2018].

The representation of vegetation water dynamics and stress are especially important due

to increases in precipitation variability [Pendergrass et al., 2017] and atmospheric dryness

[Ficklin and Novick, 2017, Zhou et al., 2019a] expected with climate change.
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2.2 Experiment description

We performed two global simulations from 1850-2013 at a resolution of 0.94◦ latitude by

1.25◦ longitude. The simulations used the ‘offline’ mode, with the model forced by a data

atmosphere using the GSWP3v1 climate reconstruction (see Bonan et al. [2019] for descrip-

tion of the forcing data and its uncertainty). Likewise we used the satellite phenology mode,

which prescribes leaf area index derived from remote sensing observations [Oleson et al.,

2013]. Eschewing an interactive atmosphere model and prognostic biogeochemistry omits

certain land-atmosphere interactions, but allows for an easier comparison of the first-order

effects of implementing plant hydraulics. CLM5 source code is open access, with supporting

documentation available at https://escomp.github.io/ctsm-docs.

CLM5 uses PHS as the default representation of vegetation hydrodynamics. Implemen-

tations of plant hydraulics and/or hydraulic root water uptake have been tested previously

in the CLM showing positive results [Bonan et al., 2014, Lee et al., 2005, Tang et al., 2015],

but none were incorporated into the various supported versions of the model (e.g. CLM2-

CLM4.5). To test the effects of PHS, we compare with the non-hydraulic hydrodynamics

scheme of the previous CLM versions, which we refer to as Soil Moisture Stress (SMS,

described further in the next section).

• Case 1 (PHS): running the default CLM5, which features PHS

• Case 2 (SMS): CLM5, but with SMS switched in for PHS

Because many other changes were implemented in the model development process be-

tween version 4.5 and 5 of the CLM [Lawrence et al., 2019], we use CLM5 for both simula-

tions. This isolates the effects of plant hydraulics by only swapping in SMS for PHS in Case
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2, which can be achieved using a plant hydaulics on/off switch we included in the source

code. The two cases utilize identical forcing data and leaf area, and share the same param-

eterizations for root distribution, soil characteristics, and photosynthetic parameters. They

only differ in the calculation of root water uptake and the prognosis of water stress, which

serves to attenuate photosynthesis and transpiration. All analyses are based on the last 50

years of the simulations (1964-2013), which allows for soil moisture to spin up from initial

conditions. Full details on the various analyses presented here are included in Appendix B.1.

2.3 Model description

A full model description and detailed analyses at a single site comparing PHS and SMS

can be found in Kennedy et al. [2019]. Instead, we limit our focus here to the effects of

hydraulic root water uptake on soil moisture memory and carbon cycle variability. In this

section we describe the SMS and PHS parameterizations of root water uptake, and examine

the implications for how soil moisture near the surface is coupled to soil moisture deeper in

the soil column.

Root density decreases exponentially with depth [Jackson et al., 1996], such that root

water uptake fluxes (per unit depth) are generally higher near the surface with both model

configurations. Likewise direct evaporation from the soil surface disproportionately affects

the upper soil layers. As a result, exposing a well-watered soil column to drought condi-

tions would cause the upper soil layers to dry at a faster rate, creating a gradient in soil

water potential, increasing with depth. Multiple processes act in the direction of restoring

equilibrium to the vertical profile of soil water potential, including capillary rise following

58



Darcy’s Law and a shift in the vertical distribution of root water uptake. The size of these

restoring fluxes, relative to the size and frequency of perturbations to the surface soil layers,

determines the degree of coupling between deep and surface soil moisture.

For example, if the so-called restoring fluxes are very small relative to perturbations in

surface soil moisture, the timescale of communication between the surface and deep soil

reservoirs may be longer than the period between rain events. As such, the drought pertur-

bation could be erased by infiltration before it is communicated to the deeper soil layers.

While the parameterizations of soil evaporation, drainage, and Darcy flow are all identical

in the two cases considered here, the models differ in their representations of root water

uptake. We therefore expect potential differences in the strength of the coupling between

soil moisture in the surface and deep soil layers.

SMS root water uptake (Equation 2.1) utilizes a transpiration partitioning heuristic de-

rived from its empirical soil moisture stress definition. Stress is calculated for each soil layer

(e.g. soil layer i) with a piecewise linear function of the layer soil water potential (ψs,i),

declining from 1 (unstressed) starting at po until it reaches 0 (fully stressed) at pc, where po

and pc are PFT-dependent parameters representing the soil water potentials with stomates

fully open and closed, respectively. Root water uptake (qi) is determined by multiplying the

stress term by transpiration (T ) and the layer root fraction (ri), subject to normalization

by βt, the root-weighted average stress across all soil layers, guaranteeing that root water

uptake matches transpiration.
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SMS root water uptake parameterization:

qi =
T · ri
βt
· ψs,i − pc
po − pc

=


T · ri
βt

for ψs,i > po

0 for ψs,i < pc

(2.1)

With PHS, we used the principles of plant hydraulics and gradient-based flow to represent

root water uptake. Root water uptake in a given soil layer is proportional to the gradient

between ψs,i and the root water potential (ψroot) after accounting for the effects of gravity

based on the soil layer depth (zi). That gradient is multiplied by the soil-to-root hydraulic

conductance (ki), which accounts for conductances of the soil matrix and then root vessels

in series. Following hydraulic theory, ki is a function of ψs,i, subject to parameters related to

the soil and xylem properties as well as the root distribution. Unlike pc, ψroot is a dynamic

variable, adjusted each timestep to balance root water uptake with transpiration in response

to evolving environmental conditions, including soil water potential, vapor pressure deficit,

and solar radiation.

PHS root water uptake parameterization:

qi = ki (ψs,i − ψroot − ρgzi)

ki = f (ψs,i , soil properties , root xylem properties , root distribution)

(2.2)

To better understand how the vertical distribution of root water uptake responds to

drydown, we can examine the ratio of root water uptake occurring at 100 versus 10 cm

(q100cm/q10cm), corresponding to depth and near-surface, respectively. Starting with SMS,
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we use Equation 2.1 to generate an expression for q100cm/q10cm (Equation 2.3). When looking

at the ratio, multiple terms in Equation 2.1 cancel, leaving the ratio of root densities and

the gradients between the soil water potentials and the parameter, pc.

SMS:

q100cm

q10cm

=
r100cm

r10cm

· ψs,100cm − pc
ψs,10cm − pc

(2.3)

When both soil layers are well-watered (ψs ≥ po), q100cm/q10cm will equal r100cm/r10cm.

If we assume that ψs,100cm remains ≥ po and plug in some typical parameter values, this

equation can be used to gauge how the vertical distribution of root water uptake might shift

during a drydown. The CLM5 values for po and pc are -0.5 and -2.5 MPa, respectively, for

broadleaf evergreen tropical trees. Should ψs,10cm decrease to -1MPa during drought, the

ratio in root water uptake would increase to 1.33r100cm/r10cm, or a 33% increase relative to

the well-watered ratio.

The ratio in the PHS configuration looks quite similar (Equation 2.4), except that instead

of the ratios of root density, we use the ratios of hydraulic conductance, and instead of

measuring gradient relative to ψc we use the prognostic ψroot. PHS likewise accounts for the

effects of gravity, but these are quite small relative to the expected soil potential dynamics.

PHS:

q100cm

q10cm

=
k100cm

k10cm

· ψs,100cm − ψroot − 0.01MPa

ψs,10cm − ψroot − 0.001MPa
(2.4)

However, whereas r100cm/r10cm is static, k is a function of soil potential. Our previous

work showed that k can decline more than 2 orders of magnitude from ψs ≈ 0 to −1MPa

[Kennedy et al., 2019]. This would be multiplied by the effects due to changes in the gradient

ratio, which we would also expect to be larger with PHS, as ψroot tends to be less negative

61



than pc. As such we could expect an increase to more than 100 times the well-watered ratio

of q100cm to q10cm. To some extent this will be offset by the fact that the well-watered ratio

of k100cm/k10cm is smaller than r100cm/r10cm, due to a larger dependence on root density and

the length-scaling of root conductance. Still we expect the net effect to result in increased

communication between the deep and shallow soil moisture with PHS, including higher

correlations between soil moisture values and stronger coupling coefficients.
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2.4 Results and discussion

An important implication of the coupling between surface and deep soil moisture is its

influence on photosynthesis. Root zone soil water dynamics are an important driver of

photosynthesis, and the parameterization of soil moisture’s influence on photosynthesis has

been identified as a major driver of carbon cycle uncertainty in Earth System Models [Trug-

man et al., 2018]. Earth system models may underestimate the relative contribution of low

frequency modes of soil moisture variability and generally do not capture the interannual

correlation observed between observations of total water storage and the global carbon cycle

[Humphrey et al., 2018]. As such, an important benchmark for the effects of PHS is the

change in the carbon cycle interannuallly as compared to SMS.

Gross primary productivity (GPP) measures ecosystem photosynthesis, and is a critical

driver of the carbon cycle, along with fire and respiration. Globally, GPP interannual vari-

ability (IAV, calculated as the standard deviation of annual GPP) is higher with PHS at 4.15

PgC/yr as compared to 3.99 PgC/yr with SMS. The two models are in strongest disagree-

ment in the tropics (Figure 2.1b), with a high density of relatively large values of ∆IAV,

both positive and negative. Correspondingly, the interquartile range of ∆IAV is largest in

the tropics (Figure 2.1a). IAV tends to be higher with PHS (as compared to SMS) in dry

areas of the tropics and lower in wet areas, with an apparent threshold around 1200 mm/yr

of mean annual precipitation (Figure 2.1c). But overall, aggregate IAV in the tropics is

higher with PHS as compared to SMS (3.09 PgC/yr vs. 2.94 PgC/yr), indicating that the

effect in dry areas outweighs that in wet.

Semi-arid regions are of particular interest due to their outsized role in both the trend and
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Figure 2.1: The change in the interannual variability of GPP between two con-
figurations of CLM5: PHS, the default mode, which represents plant hydraulics,
and SMS, which does not. Top right, the map of ∆IAV across 1964-2013. Top
left, the mean and interquartile range compiled latitudinally with a 10◦moving
window for smoothing. Bottom left, scatter plot of ∆IAV versus mean annual
precipitation for gridcells between 30◦S and 30◦N, along with a binned average
drawn in red. Bottom right, the PHS model schematic. In each case ∆IAV is
calculated as PHS-SMS, such that positive values indicate more variability with
PHS and negative values indicate more variability with SMS.

variability of the land carbon sink [Poulter et al., 2014, Ahlström et al., 2015]. Furthermore,

because soil moisture limitations are stronger, and soil moisture memory longer [Rahman

et al., 2015], we expect the influence of the PHS root water uptake parameterization to have

the largest effect in semi-arid regions. As a result we have focused our analysis in tropical

semi-arid regions, using a threshold of annual precipitation less than 1200 mm/yr. To better
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understand the difference between the models we focused on gridcells with mean GPP greater

than 0.5 gC/m2/d for subsequent analyses, which filters out areas with negligible vegetation

activity. This eliminates 38% of land area in the tropical semi-arid domain (such as the

Sahara Desert), but only 1.9% of aggregate GPP. We likewise removed gridcells with mean

annual temperature less than 14◦C, which eliminates another 3.7% of land area, primarily

in the Andes and Himalayas.

-3 -2 -1 0 1 2 3

[SMS] GPP anomaly (PgC/yr)

-3

-2

-1

0

1

2

3

[P
H

S
] G

P
P

 a
no

m
al

y 
(P

gC
/y

r)

Semi-arid tropics (1964-2013)

Study Domain

1:1
slope=1.13

Figure 2.2: Model vs. model comparison of annual GPP anomalies across a semi-
arid tropical domain. Anomalies are calculated relative to the respective model
means over 1964-2013. The model-model slope does not match the 1:1 line, but
rather PHS anomalies are on average 13% larger in magnitude than SMS.

GPP IAV across this domain is 1.21 PgC/yr with PHS and 1.06 PgC/yr with SMS. In-

terannual anomalies in aggregate GPP are highly correlated between the two models (Figure

2.2, R2=0.99), but with a slope that is significantly greater than 1 (T=6.8, p�0.01). Given

the calculated slope of 1.13, interannual GPP anomalies with PHS are on average 13% larger
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than with SMS in aggregate across the study domain. This change can be attributed to the

vegetation hydrodynamics, because all else was held constant across the two simulations.

However it remains to be seen to what extent the increased GPP interannual variability

with PHS results from our hypothesis of increased communication between the surface and

deep soil layers.

Composite annual average soil water content in the top 10cm of the soil column

(SWC10cm) shows a strong relationship with GPP in both models (Figure 2.3). GPP is

both larger and more variable with PHS as compared to SMS. However the slopes between

GPP and SWC10cm are very similar in both models (Supp Figure B.1). This suggests that

PHS GPP is more variable not because it is more sensitive to changes in soil moisture, but

instead because it samples a larger range in soil moisture. The range in composite average

SWC10cm is 16% larger with PHS than with SMS, which is comparable to the 17% increased

range in composite average GPP.

We showed that PHS has more flexibility to switch root water uptake to deep soil layers

(see Equations 2.3 and 2.4), whereby deep root water uptake can be used to avoid excessively

dry soil moisture near the surface. This is confirmed by the mean seasonal cycles of soil water

potential across the study domain (Figure 2.4a). PHS soil water potential at 10cm in depth

(near surface) is consistently wetter than with SMS, especially in the drier portion of the

year (JAS). Correspondingly, soil water potential at 100cm (deep soil) is drier with PHS and

features a more pronounced seasonal cycle. By using more water from the deep soil layers,

PHS can limit the amount of drying in the upper layers.

In both models, there is a strong interannual relationship between 10cm and 100cm soil

water potential (Figure 2.4b, Supp Figure B.4). In September, the driest month of our
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Figure 2.3: The relationship between composite annual average GPP and
SWC10cm for PHS and SMS. GPP is uniformly higher with PHS. While the
average soil moisture is comparable between the two models (mean SWC10cm =
18.84 and 18.83mm for PHS and SMS, respectively), the composite annual aver-
age shows larger variability with PHS, as seen in the probability density subplot.
To create the composite average, we first sorted the annual timeseries for each
pixel by dryness before aggregating across the study domain. As a result, the left-
most data point does not correspond to a specific calendar year, but rather to the
driest year diagnosed separately for each gridcell in the domain. See Appendix
B.1 for complete analysis details.

composite timeseries, PHS shows larger interannual ranges in both 10cm and 100cm soil

water potentials. Though SMS can achieve just as large a slope in the relationship between

the surface and deep soil water potential, it seems to require surface soil potential to reach a

drier threshold before the deep soils begin to dry appreciably. As a result, September 10cm

soil water potential is wetter than -2MPa in just 4 out of the 50 years with SMS, whereas

PHS remains above -2MPa more than half the time (28 out of 50 years).

This is consistent with our discussion of Equations 2.3 and 2.4 (see Section 2.3), which

showed that PHS is expected to more rapidly shift root water uptake to deep soil layers
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Figure 2.4: Soil potential seasonal cycles at depths of 10 and 100cm (a) and
the interannual relationship between them (b). The average seasonal cycles were
produced by re-indexing gridcells in the semi-arid domain to align the three month
period with the lowest average precipitation. The most common dry season was
JJA (Supp Figure B.3), so we plotted the seasonal cycles in (a) to align with
that. PHS features a smaller seasonal cycle in 10cm soil potential and a larger
seasonal cycle in 100cm soil potential. The composite interannual relationship is
shown for ‘composite’ September (b), along with point density information. Both
10cm and 100cm soil water potential show a larger interannual range with PHS.
Interannual relationships for all twelve months are shown in Supp Fig B.4.

during drydown. PHS utilizes well-established soil and plant hydraulic theory to model

root water uptake, calculating fluxes proportional to gradients in water potential, subject to

variable hydraulic conductances across the soil matrix and through the plant tissue. SMS

utilizes an empirical transpiration partitioning heuristic without factoring in the soil or xylem

conductances. Soil hydraulic conductance decreases exponentially as a function of soil water

potential [Brooks and Corey, 1964], leading PHS to switch to deeper root water extraction

earlier than SMS, despite identical root profiles.

Because PHS can more flexibly access deep soil water reserves, it diagnoses less soil

moisture stress for each level of surface soil moisture (Figure 2.3). In turn, PHS produces
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higher levels of transpiration (by 3.3% on average across the study domain, Supp Figure

B.5), requiring more root water uptake overall, which may partially contribute to the larger

seasonal range in 100 cm soil moisture. However, as found with GPP, interannual ET shows

comparable sensitivity to SWC10cm in PHS and SMS (Supp Figure B.5), such that the

increased interannual variability in soil moisture seen in PHS is more likely due to an altered

coupling between deep and shallow soil moisture than to the higher levels of transpiration.

The increase in GPP IAV observed with PHS seems to be related to longer timescales

of precipitation influence, rather than higher sensitivity to precipitation anomalies. GPP

anomalies with PHS are 10% larger than with SMS integrated over the year following large

negative precipitation anomalies and 22% larger following large positive anomalies (Figure

2.5b). However the initial response in GPP after both wet and dry anomalies is smaller

for PHS than SMS. Instead the increased integrated response is due to longer lags in the

response of GPP. Lag periods were likewise longer with PHS in the observed responses of

SWC10cm, but to a lesser extent than observed with GPP.

The longer timescales of GPP response likely involve storage and access of water below

10cm. An alternative variable measuring water availability is total water storage (TWS),

which tracks total surface and soil column water, comparable to observations from the

GRACE satellites. We found a pronounced shift towards higher correlation coefficients

in the relationship between surface soil moisture and TWS with PHS as compared to SMS

(Figure 2.6a). Likewise GPP shows higher correlations to TWS with PHS than with SMS

(Figure 2.6b). Recent work showed that an ensemble of dynamic global vegetation models

(TRENDYv3, Sitch et al. [2015]) underestimate the observed correlation between GRACE

observations and global net carbon exchange, and likely underweight low frequency modes
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Figure 2.5: The lag periods of surface soil moisture and GPP anomalies after
large positive and negative precipitation anomalies. We identified the ten largest
positive and negative precipitation anomalies in each gridcell and extracted the
timeseries of GPP and SWC10cm anomalies for the following year, composited
across the semi-arid tropics regime via a land-area-weighted average. The x
symbols are used to denote the e-folding period, marking the time it takes for
anomalies to fall to 1/e times the maximum anomaly. Lag periods are longer and
integrated effects larger for PHS as compared to SMS.

of soil moisture variability [Humphrey et al., 2018]. Our results show that representing plant

hydraulics may be an important step in correcting these model biases.

Well-established hydraulic theory finds that soil conductances respond exponentially to

soil water potential [Brooks and Corey, 1964]. This requires PHS to switch root water

uptake from drying upper soil layers to deeper, still-wet layers much sooner than with SMS,

resulting in increased communication between the surface and deep soil moisture. Our

results confirm this behavior, with PHS featuring larger ranges in deep soil moisture and

increased correlation between SWC10cm and TWS in semi-arid regions. To our knowledge,

most (if not all) of the models in the TRENDYv3 intercomparison (including CLM4) utilize

non-hydraulic root water uptake parameterizations. This may partly explain why models
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Figure 2.6: Probability distributions of surface soil moisture (left) and GPP
(right) with TWS across the dry tropics domain. PHS shifts both distributions
to higher correlation values relative to SMS. Correlations were assessed based on
annual average values across 1964-2013. Weighted density was plotted for bin
widths of 0.1 units. Probability density was weighted by GPP, such that the
density value for each bin represents the percentage of total GPP corresponding
to the given range in correlation coefficient. For example, with PHS, 25% of
the total GPP across dry tropics derives from gridcells where the correlation
coefficient between GPP and TWS is between 0.8 and 0.9.

were found to underestimate the correlation between GRACE observations and the global

carbon cycle [Humphrey et al., 2018]. Furthermore, results from the CMIP5 intercomparison,

which likewise generally lack hydraulic representation, showed that ESMs project further

decoupling of surface and total soil moisture in the future, with surface soil moisture drying

faster than deep soil moisture under global warming [Berg et al., 2017]. This trend may

be reduced or nullified in a hydraulically-enabled model, because the more flexible root

water uptake would act to oppose vertical gradients in soil water potential imposed by the

increased atmospheric aridity [Ficklin and Novick, 2017, Zhou et al., 2019a] and/or the

increased precipitation variability [Pendergrass et al., 2017] expected with further warming.
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2.5 Conclusion

The question posed by Berg et al. [2017] is an important one: how will soils respond to

the increased aridity projected under global warming? Our results indicate that model

predictions are sensitive to the parameterization of root water uptake. The two models

considered here (SMS/PHS) disagree over the level of communication between surface and

deep soil moisture, with the strongest effects in semi-arid regions, which showed increased

soil moisture memory and interannual variability of photosynthesis with PHS. We argue

that the seasonal and interannual dynamics of root water uptake in SMS are in conflict

with fundamental precepts of soil and plant hydraulic theory. This could have significant

implications for vegetation function under climate change, and by extension the global water

and carbon cycles, given the large influence of soil moisture on carbon cycle projections

[Green et al., 2019]. While significant structural and parametric uncertainties remain in the

continued development of plant hydraulic models on the ESM scale [Verhoef and Egea, 2014,

Mencuccini et al., 2019], gradient flow for root water uptake has a strong physical basis in

well-established hydraulic theory.
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Chapter 3

Pitfalls in isohydricity and their corrections

3.1 Introduction

Water is critical for vegetation growth and maintenance, but it is often a limited resource,

with a large influence on terrestrial biosphere productivity [Green et al., 2019, Humphrey

et al., 2018, Anderegg et al., 2018]. Determining how to acquire, store, and utilize water

to live and reproduce effectively defines a plant’s water-use strategy (WS). The emergent

WS of a given plant should maximize in the given environment, while managing the risks

associated with water shortage. Different species may present divergent WS’s in the same

climate, possibly to take advantage of unique ecological niches, or due to different degrees

of risk tolerance. Because the vegetation xylem network is often the path of least resistance

for water to travel from soil-to-atmosphere, the WS can have significant control over local

hydrology [Porporato et al., 2001]. While much progress has been made at the leaf and tree

levels, scaling such information to the landscape level is a significant challenge [Mencuccini

et al., 2019]. Limitations in our understanding of vegetation WS on the ecosystem scale has

been identified as a major driver of carbon cycle uncertainty [Trugman et al., 2018].

Observations indicate a diversity of vegetation WS’s, with evidence of trait coordination

and tradeoffs [Mencuccini et al., 2015, Fu and Meinzer, 2018, Liu et al., 2019]. As an example:
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in dry environments, where open stomates will quickly lose water, plants may reduce leaf area

to limit transpiration, while investing more nutrient resources per unit leaf area to increase

photosynthetic yield [Wright et al., 2002]. WS depends on many components, including

(among others): rooting depth, leaf area, and hydraulic architecture, but also more dynamic

factors, such as leaf orientation and stomatal aperture [Mencuccini et al., 2019]. Stomatal

optimality theory suggests that WS aims at optimizing leaf gas exchange, by regulating

stomatal conductance to maximize carbon uptake relative to water lost to transpiration

[Cowan and Farquhar, 1977]. Understanding the spectrum of water-use strategies, and how

they respond to environmental variation, is critical for projecting how vegetation may be

affected by climate change and for understanding the land-atmosphere feedbacks to the

global water and carbon cycles.

Quantitative metrics are critical for comparing WS across sites, species, and/or climates

[Ratzmann et al., 2019]. This could include plant morphological traits measured in labora-

tory assays (such as leaf turgor loss point) or empirical descriptions developed from tran-

sient observations of ecological response variables (such as transpiration or photosynthesis).

Iso/anisohydry provides one such description of WS, classifying vegetation according to the

dynamics of leaf water potential (ΨL), which reflects stomatal regulation as well as the vul-

nerability of xylem to cavitation. Various (at times conflicting) definitions of iso/anisohydry

exist, as documented in multiple recent reports, such as the variation of ΨL to soil ver-

sus atmospheric drying [Mart́ınez-Vilalta and Garcia-Forner, 2017, Hochberg et al., 2018,

Novick et al., 2019, Li et al., 2019, Feng et al., 2019]. Broadly speaking, an isohydric plant

will have small variations in ΨL compared to an anisohydric plant (iso- for near constant

ΨL). Formerly described as a dichotomy [Tardieu and Simonneau, 1998], recent studies have
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developed quantitative metrics to organize vegetation within a spectrum of iso/anisohydry

[Mart́ınez-Vilalta et al., 2014, Klein and Niu, 2014, Skelton et al., 2015, Meinzer et al.,

2016]. However, the framework of iso/anisohydry, especially when defined according to ΨL

regulation, has been criticized [Mart́ınez-Vilalta and Garcia-Forner, 2017, Feng et al., 2019],

including a call to abandon the terminology [Hochberg et al., 2018].

Despite these challenges, the iso/anisohydric framework has proven to be highly popular

and widely-used [Hochberg et al., 2018, Novick et al., 2019]. This likely reflects the eco-

physiological community’s interest in identifying metrics that can generalize WS strategies

across large landscapes (i.e. at policy- and management-relevant scales). Isohydricity is a

particularly attractive method, notwithstanding its flaws, because it relies on a relatively

minimal set of observations (i.e. primarily leaf water potential data). Moreover, this frame-

work is also particularly attractive due to the fact that information about the regulation of

leaf water potential can be detected from remote-sensing observations [Konings and Gentine,

2017]. Thus, rather than abandon the framework entirely, the goal of this study is to better

understand the relationship between isohydricity metrics and vegetation WS.

We use a set of soil-plant-atmosphere models, ranging in complexity, to investigate the

underlying meaning of isohydricity retrievals (as pertains to WS) and identify potential clas-

sification errors. The model-based approach allows us to derive analytical expressions of the

underlying trait retrievals offered by various isohydricity metrics and to more methodically

sample both environmental space and trait space to generate idealized experiments to test

the fidelity of the resulting WS classifications. We consider two established metrics, iso-

hydricity slope (σ, Mart́ınez-Vilalta et al. [2014]) and hydroscape area (HA, Meinzer et al.

[2016]) in comparison to a third metric, relative isoshydricity, defined herein. We describe
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classification challenges resulting from trait coordination and environmental variability, sug-

gest practical recommendations for metric retrieval, and discuss the value and limitations

of isohydricity and the broader pursuit of response-based metrics of vegetation WS. We

show that many of the pitfalls of isohydricity can be corrected with the relative isohydricity

methods described here.

3.2 Water-use strategy and iso/anisohydry

Isohydricity metrics are formulated on the assumption that the emergent response of ΨL to

transient environmental conditions captures meaningful facets of WS. Testing this assump-

tion benefits from a clear mathematical framework of WS. As such, we define WS as the

relationship between environmental forcing and ecological response (Figure 3.1). Depending

on the specific application, some variables (such as Ψsoil) could alternatively appear as a

forcing, internal, and/or response variable. The broadest definition (as pictured) will desig-

nate any variables under significant vegetation control as model internal variables, such as

Ψsoil and leaf area. Metrics of WS should measure the influence of vegetation in a way that

consistently reproduces the relationship between forcing and response.

If WS metrics capture internal model processes, we can define a ‘response indicator’ (RI)

as the result of a certain WS given certain forcing conditions (F), such that WS(F)=RI.

Both WS metrics and response indicators are of interest, but have different purposes. WS

provides a generic description of plant function meant to apply across environmental con-

ditions, whereas a response indicator can offer a better sense of a plant’s vulnerability to

a particular set of environmental conditions. Given a model of plant function and observa-
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tions of environmental conditions, one can convert between WS and RI as needed. Carrying

out such a conversion should be considered in lieu of comparing WS metrics with response

indicators. The distinction between WS metrics and response indicators, may partly explain

why σ, a WS metric, was not correlated with minimum ΨL or the seasonal range in ΨL

[Mart́ınez-Vilalta and Garcia-Forner, 2017], which are instead response indicators.

The isohydricity slope, σ is defined in Mart́ınez-Vilalta et al. [2014] as the slope of the

relationship between midday ΨL and soil water potential, Ψs (Equation 3.1).

σ =
dΨL

dΨs

(3.1)

WS

Forcing
● Precipitation
● Temperature
● Humidity
● Insolation
● Wind
● ...

Response
● Transpiration
● Photosynthesis
● Mortality
● 𝛹L

𝛹soil 

Internal

Figure 3.1: Water-use strategy (WS) can be conceptualized as the transfer func-
tion between meteorological forcing and ecological response. Depending on the
framework definition, some variables (such as Ψsoil) could appear as any of forcing,
internal, or response variables.

If our interest were solely predicting ΨL, we could expect that a satisfactory isohydricity

metric would perform well. However, when it comes to assessing WS metrics, we are typically

more interested in the changes in transpiration, photosynthesis, and/or mortality in response

to environmental drivers (e.g. drought or heat wave) than in ΨL, itself. As such, the burden

of proof for isohydricity metrics exceeds simply modeling ΨL, but also that the information
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distilled from the dynamics in ΨL plays an important part in determining transpiration,

photosynthesis, mortality, or some combination thereof. Plant hydraulic theory suggests

that ΨL is indeed a unifying variable coordinating transpiration supply and loss [Sperry and

Love, 2015] and governing the risk of highly damaging xylem cavitation that can lead to

mortality [Delzon and Cochard, 2014]. Likewise plant water potential has been shown to

improve empirical stomatal models [Novick et al., 2016b, Anderegg et al., 2017], establishing

a basis for isohydricity metrics.

The appeal of σ is that it reduces the complexity of soil-plant-atmosphere relations to

a single variable, which can be used to compare across different climates and/or species.

This allows for organizing species and/or individuals in a digestible way that should capture

how plants respond to drying soils. The common interpretation is that more isohydric

plants (lower σ) are hydraulic-risk-averse, closing stomates earlier into a drought to prevent

hydraulic failure associated with overly negative ΨL, whereas more anisohydric plants (higher

σ) operate further into drought or heat wave in favor of continued carbon assimilation. The

metric can be computed from field-measured transient ΨL data, using predawn ΨL as a

proxy for Ψs, but has also been estimated at the landscape-scale utilizing microwave remote

sensing data [Li et al., 2017, Konings and Gentine, 2017]. Recent applications include using

σ to investigate how ecosystems respond to variations in precipitation and vapor pressure

deficit in grasslands [Konings et al., 2017] and tropical forests [Giardina et al., 2018].

However, multiple studies have pointed to some limits of the σ metric [Feng et al., 2019,

Hochberg et al., 2018], including a common garden experiment where σ retrievals were not

in line with the varying hydraulic function of 10 eucalypt species [Li et al., 2019]. Moreover

the risk-tolerant/risk-averse interpretations of anisohydric versus isohydric behavior do not
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always align with empirical findings [Garcia-Forner et al., 2017, Hochberg et al., 2018, Li

et al., 2019]. Finally, the functional space describing the diversity of WS’s likely exceeds

the single dimension implied by the σ metric [Feng et al., 2018]. This leads to our driving

question: is σ actually capturing a meaningful and predictive facet of vegetation WS?

3.3 Isohydricity pitfalls and their corrections

3.3.1 Theoretical derivation of isohydricity

Throughout this study, we use a suite of soil-plant-atmosphere models, of increasing complex-

ity to investigate σ and identify potential classification errors. Operating from a modeling

perspective allows us to supplement and advance recent work oriented from an empirical

perspective [Hochberg et al., 2018, Feng et al., 2019, Li et al., 2019]. Specifically, such an-

alytical work allows quantifying potential limits in the isohydric metric and where/if the

pitfalls could be resolved. Using models, we can methodically sample the vegetation trait

space and hydrologic conditions in a way that is not possible in the field. Likewise, the model

output provides high-resolution output of all the pertinent outcome variables (ΨL, stomatal

conductance, transpiration, and photosynthesis), which will be used to assess the metric re-

trievals. Subject to model assumptions, we know the “truth” so that we can directly assess

the meaningfulness of isohydricity in the absence of measurement errors and biases.

We can also use the modeling framework to develop analytical definitions of various

relevant WS metrics. In other words, what trait or combination of traits are driving the

relationship embedded in the σ retrieval? To answer this, we start by inspecting the soil-
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plant-atmosphere continuum (SPAC) model used in Mart́ınez-Vilalta et al. [2014] (Equations

3.2-3.4). This is a simplified, steady-state, SPAC model with transpiration (T ) set to match

sap flux (J), neglecting hydraulic segmentation, plant water storage, the leaf boundary layer,

and gravitational effects.

T = gL · AL ·DL = −ks · As · (ΨL −Ψs) = J (3.2)

Stomatal conductance (gL) and whole-plant hydraulic conductance (ks) are estimated by

multiplying a maximum conductance parameter (gL,max, ks,max) by an attenuation function

that declines from 1 to 0 as soils dry (fg and fk,(Equations 3.3,3.4), respectively). We make a

small correction to Mart́ınez-Vilalta et al. [2014], emphasizing that transpiration depends on

leaf-level vapor pressure deficit, which we will refer to as DL, and not on air vapor pressure

deficit [Lin et al., 2018]. Both fg and fk are defined as functions of only Ψs, neglecting the

effects of insolation, vapor pressure deficit, and CO2 concentration that have been observed

in the literature [Medlyn et al., 2011, Sperry et al., 1998].

gL = gL,max · fg (Ψs) (3.3)

ks = ks,max · fk (Ψs) (3.4)

Our goal is to derive an expression for σ in terms of the vegetation traits it serves to

measure. To do so we need only find the expression for ΨL and then diffentiate with respect

to Ψs, recalling that σ =
dΨL

dΨs

. Equations 3.2-3.4 can be combined and rearranged to yield
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the following expression for ΨL:

ΨL = Ψs −DL ·
gL,max · AL

ks,max · As

· fg
fk

(3.5)

which, when differentiated with respect to Ψs yields:

σ = 1− d

dΨs

(
DL ·

gL,max · AL

ks,max · As

· fg
fk

)
(3.6)

As defined, gL,max and ks,max do not depend on Ψs and can be pulled outside the dif-

ferentiation operator via the product rule. Conversely fg and fk must remain inside the

derivative. DL is not independent of soil water potential, but instead is strongly correlated

with Ψs through land-atmosphere feedbacks [Seneviratne et al., 2010, Zhou et al., 2019a,b],

such that we opt to leave it inside the derivative (Equation 3.7). For brevity, we neglect any

correlation between
AL

As

and Ψs, which tends to have relatively small effects on leaf water

potential dynamics when compared to the effects of DL [Novick et al., 2019].

σ = 1−
(
gL,max · AL

ks,max · As

)
· d

dΨs

(
DL ·

fg
fk

)
(3.7)

Equation 3.7, previously unreported to our knowledge, specifically identifies the com-

bination of traits retrieved by σ, as suggested by the simplified SPAC model described in

Mart́ınez-Vilalta et al. [2014]. Whereas σ is typically described in terms of stomatal regu-

lation, Equation 3.7 demonstrates that the metric instead depends on the ratio of stomatal

to xylem conductance, via (gL,max/ks,max) and (fg/fk). In addition to standard plant traits

such as gL,max and ks,max, the expression shows that σ depends on DL, which is largely under
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environmental control. Because σ does not control for DL, it is not strictly a measure of

vegetation WS and will not consistently reproduce the relationship between meteorological

forcing and ecological response.

3.3.2 Correcting isohydricity: a new metric

Our goal was to adapt the σ metric in a way that allows reliable comparison across sites,

species, and climates. There were two major constraints for this process: first that we must

be able to compute this new metric with a similar set of observational data, and second that

it still has its basis in the concept of iso/anisohydry. As such, our new metric still involves

a regression against Ψs, but will no longer use ΨL as the independent variable, as with σ.

Our approach was to reverse-engineer the process, starting with the specific combination of

traits we seek to measure. To achieve a narrower trait retrieval and removes the effect of DL,

we chose to measure the variations of fg/fk in response to changes in Ψs, which maintains

a basis in the concept of iso/anisohydry.

Therefore the first step in engineering our new regression is to derive an expression for

fg/fk, which can be achieved by rearranging Equation 3.5 to yield:

fg
fk

= − ΨL −Ψs

DL ·
gL,max · AL

ks,max · As

(3.8)

As a result, if instead of using ΨL as the independent variable for our regression, we use

the right side of 3.8, we will be measuring the variations in fg/fk. This is a much narrower

trait definition than provided by σ (Equation 3.7). Likewise in rearranging Equation 3.5 to

arrive at Equation 3.8, we divided by DL, which served to remove the effects of DL from
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our regression. To simplify Equation 3.8 further, we introduce the isohydricity intercept

parameter (Λ), defined in Mart́ınez-Vilalta et al. [2014].

Λ = −DL,0 ·
gL,max · AL

ks,max · As

(3.9)

Λ is the value of ΨL when Ψs ≈ 0, which likewise measures the soil-to-leaf water potential

gradient at Ψs ≈ 0. This can be used to simplify our expression for fg/fk, given that Λ is

very similar to the denominator in 3.8. A major advantage of using this substitution is

that it allows the new metric to be calculated with similar data to the standard σ retrieval

[Mart́ınez-Vilalta et al., 2014]. However, we emphasize that Λ depends not on generic DL,

but rather on DL,0, the value of DL when Ψs ≈ 0. Due to the correlation between DL and

Ψs through land-atmosphere feedbacks [Seneviratne et al., 2010, Zhou et al., 2019a,b], we

cannot assume that DL,0 = DL.

Our new expression after substitution is:

fg
fk

=
DL,0

DL

· ΨL −Ψs

Λ
(3.10)

The final step in the metric derivation is to differentiate with respect to Ψs. Whereas the

standard σ retrieval utilizes the total derivative notation [Mart́ınez-Vilalta et al., 2014], this

can alias to Ψs what are actually DL effects [Novick et al., 2019]. So instead we utilize the

partial derivative with respect to Ψs, emphasizing that we are tracking variations of fg/fk
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Figure 3.2: Comparing metric regressions for σ and IR. While both metrics
involve regression against Ψs, IR tracks variations in the normalized soil-to-leaf
water potential gradient (see Equation 3.12), whereas σ tracks ΨL directly.

only in response to Ψs variations, and not due to the correlated variations in DL.

∂

∂Ψs

(
fg
fk

)
=

∂

∂Ψs


�
�

���
1

DL,0

DL

· ΨL −Ψs

Λ

 (3.11)

We can simplify this expression further by noting that the derivatives of ΨL and Ψs with

respect to Ψs, are by definition σ and 1, respectively. We utilize the σΨs notation defined in

Novick et al. [2019], which emphasizes that we are referring to σ resulting from the effects

of only Ψs on ΨL, and not the effects of DL. Λ is by definition a constant, and is expected

to be negative. To remove any ambiguity due to sign conventions, we use the absolute value

of Λ (multiplying by -1, accordingly). As a result we reach the simplified expression for an

alternative isohydricity metric:

IR =
∂

∂Ψs

(
fg
fk

)
=

1− σΨs

|Λ|
(3.12)
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We refer to this new metric as relative isohydricity (IR), which refers to the normalization

by Λ. Instead of tracking the dynamics of ΨL with respect to Ψs (as in σ), this new metric

tracks the dynamics of ΨL − Ψs, which is the gradient in water potential from soil to leaf

(∆Ψ). Dividing by Λ serves to normalize by the initial potential gradient ∆Ψ, and has

the effect of normalizing for DL,0. Due to this normalization, IR relates to an/isohydric

effects relative to well-watered conditions and does not capture variability across species in

maximum transpiration or maximum photosynthesis. Furthermore IR ‘forces’ with Ψs, such

that aspects of WS that affect the evolution of Ψs from one day to the next are not explicitly

captured. In this way the IR metric captures just one dimension of WS. Follow up work

could consider the extent to which IR is correlated (or not) with complementary metrics

designed to describe these other aspects of WS.

Whereas σ is the regression slope of ΨL versus Ψs, we can diagnose IR by plotting

(ΨL−Ψs)/|Λ| versus Ψs (taking care to control for covarying DL, discussed further in Section

3.4.3). When plotting ΨL (as in σ), two modes of variability are combined: Ψs dynamics

and ∆Ψ dynamics. With Ψs as the dependent variable the Ψs dynamics are immutably 1:1.

This has led to the historical convention defining plants as being isohydric when σ < 1 and

anisohydric when σ ≥ 1, which requires discerning whether the slope of the σ regression is

greater than or less than 1 (Figure 3.2a). With IR, Ψs is removed, and instead a normalized

version of ∆Ψ is used as the independent variable. Plants are classified as isohydric if the

soil-to-leaf potential gradient decreases as soils dry (IR > 0), or anisohydric if the gradient

increases as soils dry (IR ≥ 0). This leads to an easier visual interpretation, simply discerning

whether the data are trending up or down (Figure 3.2b). Note that the two metrics function

in opposite directions: a higher value of σ means more anisohydric, while a higher value of
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IR means more isohydric. As such, we would say that σ is an anisohydricity metric, whereas

IR is an isohydricity metric.

Figure 3.3: Schematic representation of the hydroscape area as defined in Meinzer
et al. [2016]. HA is defined as the area of the triangle (shaded above) bounded
by the σ regression (drawn in blue), the 1:1 line (dashed), and the y-axis. Larger
HA is associated with more anisohydric behavior.

Meinzer et al. [2016] suggested an alternative isohydricity metric, the hydroscape area

(HA), defined as the area bounded by the σ regression, the 1:1 line, and the y-axis, when

plotting ΨL versus Ψs (Figure 3.3). Larger HA is associated with more anisohydric behavior,

such that, like σ, HA is an anisohydricity metric. Meinzer et al. [2016] showed that HA was

strongly correlated with leaf osmotic potential at full and zero turgor. Follow-up work found

that HA showed stronger correlations than σ to the functional traits of 10 hydraulically

diverse eucalypt species in a common garden experiment [Li et al., 2019]. The base of the

HA triangle has length |Λ|/(1− σ), and the height is Λ, such that:

HA =
1

2

Λ2

1− σ
(3.13)
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HA is similar in form to IR, because the base of its triangle is the inverse of IR. As

such we expect a strong (albeit inverse) relationship between HA and IR. The fact that HA

measures anisohydricity and IR, isohydricity, explains the inverse relationship. However,

HA uses σ and not σΨs , which could lead to inconsistent classifications due to contributions

of covarying DL. Furthermore, the height of the HA triangle is |Λ|, which introduces an

additional dependence on DL,0. Equation 3.14 presents the HA trait retrieval relative to the

simplified SPAC model of Equations 3.2-3.4. While HA may function well in common-garden

experiments, it may feature classification errors when compared across climates. We propose

that IR may feature some of the benefits attributed to HA, while reducing environmental

dependence.

HA =
1

2

gL,max · AL

ks,max · As

·D2
L,0

d

dΨs

(
fg
fk
·DL

) (3.14)

3.4 Four idealized test cases

Section 3.3 used a simplified SPAC model to analytically identify the pitfalls of the con-

ventional isohydricity metric (σ) and to introduce a more appropriate relative isohydricity

metic, IR (Equation 3.12). This section presents four idealized cases to test whether IR, and

former σ, accurately reflect the underlying vegetation WS. In each of the first three experi-

ments, the vegetation traits were defined to impose identical stomatal regulation (dfg/dΨs)

in the control and variant cases. Consequently, we would expect equivalent metric diagnoses

for the control and variant cases. These experiments were designed to reveal potential WS

misclassifications using either σ, IR, or both. The fourth experiment imposes more complex
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trait parameterizations to demonstrate the challenges of nonlinear isohydricity response.

Brief descriptions of each experiment are provided below, with detailed summaries of the

model and experimental setup provided in Appendices C.1 and C.2.

3.4.1 Experiment 1: absolute versus relative isohydricity

In our first experiment, we utilized the same simplified SPAC model (Equations 3.2-3.4) to

consider two co-located species with distinct values of σ.

Species 1: Species 2:

σ1 = 0.75 σ2 = 0.5

Λ1 = −1MPa Λ2 = −2MPa

(3.15)

We defined Species 1 to have a larger value of σ, indicating more anisohydric behavaior

compared to Species 2 (Figure 3.4a). Positive correlation between the σ and Λ parameters

has been observed in the field and in remote sensing data [Mart́ınez-Vilalta et al., 2014, Kon-

ings and Gentine, 2017], and both parameters show correlations with forest height [Konings

and Gentine, 2017]. According to these findings, we set Λ2 to be more negative than Λ1.

This indicates that Species 2 has a larger initial water potential gradient from soil-to-leaf.

We now consider a hypothetical soil drydown, assuming that there are no noticeable

changes in ks or DL. Because ks and DL are held constant, Tdry/Twet will be equal to the

ratio of soil-to-leaf water potential gradient at the end of the drydown versus the beginning

(∆Ψdry/∆Ψwet). Species 2 is more isohydric, losing 0.5MPa of gradient per 1MPa of soil
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Figure 3.4: Despite equivalent stomatal regulation Experiment 1, absolute versus
relative isohydricity. Two distinct species were defined such that coordination
between σ and Λ results in identical stomatal regulation. The absolute isohy-
dricity metric, σ, diagnoses distinct WS’s (a), whereas the relative isohydricity
metric, IR, diagnoses identical WS’s (b).

drydown, while Species 1 loses only 0.25MPa per 1MPa (gradient losses are defined by 1-

σ). However, because Species 2 likewise has a larger initial gradient (-2MPa vs. -1MPa

for Species 1), the relative loss of gradient is equivalent, with both species losing 25% of

their initial gradients per 1MPa of drying. As a result, transpiration losses will likewise be

equivalent, with reductions of 25% of the initial transpiration for each 1MPa of soil drying.

In this example, both species impose equivalent stomatal regulation in response to soil

drying, however Species 2 is classified as more isohydric by σ (Figure 3.4a). As such, the σ

retrieval is inconsistent with the observed WS on transpiration. Likewise HA would feature

distinct retrievals for the two species, however with Species 2 classified as less isohydric. This

inconsistency is resolved using the IR framework (Figure 3.4b), which diagnoses identical

values for both species: IR=0.25 MPa−1, consistent with the calculation of transpiration

reduction above. IR takes into account not just the rate at which a plant loses water
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potential gradient from soil-to-leaf (1-σ), but also how much it started with, |Λ|. In an

absolute sense, Species 2 loses more gradient during a given drydown, but the amount of

transpiration regulation is the same, because Species 2 had more gradient initially. The

coordination of σ and Λ may partly explain the counter-intuitive finding that taller forests

across Amazonia, with lower σ, were less sensitive to precipitation variability than shorter

forests [Giardina et al., 2018]. When accounting for coordinated effects on Λ, we might find

that the taller forests would present as less isohydric than shorter forests, as measured by

IR .

3.4.2 Experiment 2: altering atmospheric demand via mean DL

Whereas our first experiment utilized a common garden experiment, the second tests for

stable classification across climates. To test this we must use an alternative plant hydraulics

model (described in Appendix C.1) that better represents the influence of DL. We generated

two simulations using identical traits and identical meteorological forcing, except that one

simulation takes place with DL=1kPa, while the other has DL=3kPa. Again we disallow

covariation between DL and define ks to be constant (these simplifications are removed in

Experiments 3 and 4, respectively).

The resulting values for σ were 0.7 and 0.56 under low and high DL, respectively, in-

correctly inferring distinct WS’s despite identical traits. With higher DL, the same plant is

observed to be more isohydric, according to σ, further emphasizing that σ does not translate

into plant traits but is rather dependent on the environment [Feng et al., 2019, Novick et al.,

2019]. HA would likewise result in two distinct classifications, although with the higher DL
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case classified as less isohydric.The difference in classification follows from the dependence

of the σ and HA metrics on DL, as shown in Equations 3.7 and 3.14. Using the IR frame-

work, which removes the effect of DL,0 through the normalization by Λ (Equation 3.10),

the regression retrieves IR=0.33 MPa−1 for both simulations and thus largely resolves the

confounding interaction of environment and plant traits in the other two metrics.
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Figure 3.5: Experiment 2, altering mean DL. Simulations with identical vege-
tation traits were performed with DL=1kPa (blue curves) and 3kPa (red). (a)
Resulting water potential data plotted in the σ framework. (b) Resulting water
potential data plotted in the IR framework. The IR regression yields the same
value in both cases, whereas σ depends on the climate state.

3.4.3 Experiment 3: DL covaries with Ψs

Given the coupling between DL and Ψs through land-atmosphere interactions [Seneviratne

et al., 2010, Zhou et al., 2019a], we perform a similar test for covarying DL with Ψs (Figure

3.6). We varied DL on a linear ramp from 0.5 kPa to 3.5 kPa (red lines), as the soil dries

from 0 to -3 MPa, with a control simulation where DL is held constant at 0.5 kPa (blue

lines).
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Figure 3.6: Experiment 3, the effect of covarying DL. Simulations with identical
vegetation traits were performed with constant (blue curves) and covarying (red)
DL. Neither σ nor IR can achieve a stable retrieval when using the slope as
measured by the total derivative. We suggest a suitable correction for IR in
Figure 3.7.

Despite identical vegetation traits used in the two simulations, both metrics are affected

by DL covarying with Ψs (Figure 3.6). Whereas in previous cases, the normalization process

yielded identical retrievals for identical traits, in this case IR (as plotted) indicates distinct

WS’s in the two simulations. With DL constant, the plant reduces the normalized gradient

at a constant rate of 0.33 per MPa. With DL covarying, gradient first increases due to rising

DL, and then declines at a faster rate beyond Ψs=-1MPa. The distinct WS’s result from

the fact that we have not appropriately controlled for the effects of DL as required by the

derivation in Section 3.3.2.

To measure the effects of DL, we carried out a supplementary experiment, where Ψs is

set constant, while DL is varied over the 0.5 kPa to 3.5 kPa (Figure 3.7a). This SPAC model

has four distinct mechanisms by which DL can influence the normalized water potential

gradient.
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Figure 3.7: Removing the effect of covarying DL. We can diagnose and remove
the effects of covarying DL using a control simulation where Ψs is constant and
DL varies. Panel (a) shows the various effects of covarying DL, the combination
of those effects, and a suitable approximation. Panel (b) shows the IR regression
under constant DL (blue) and with covarying DL after adjusting for the measured
and approximated DL effects.

1. Atmospheric demand: higher DL leads to larger atmospheric demand with a positive

effect on ∆Ψ

2. Stomatal optimization (Medlyn fg): with higher DL, the Medlyn model reduces stom-

atal conductance, yielding a negative effect on ∆Ψ.

3. Hydraulic stress (hydraulic fg): the model includes a stress term proportional to ΨL,

with higher DL, ΨL is typically reduced, with a negative effect on ∆Ψ.

4. Loss of hydraulic conductance (f−1
k ): whole plant hydraulic conductance will tend to

decrease with higher DL due to lower ΨL, with a positive effect on ∆Ψ. By using the

inverse (f−1
k ), the combined effect is the product of the four constituent factors.

We can observe each of these effects separately in the model simulation, recording the

factor by which each multiplies ∆Ψ (Figure 3.7a). Increased atmospheric demand has the

largest effect, countered by reductions from hydraulic stress and the Medlyn model. In this
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experiment ks is held constant, such that f−1
k = 1. The combined effect (heavy red line)

on ∆Ψ is positive. When the combined DL effect is removed from Figure 3.6, we achieve a

stable retrieval with IR=0.33MPa−1 under both constant and covarying DL (Figure 3.7b).

In this case, we can use the control simulation to separately estimate the effects resulting

from variations in DL. With transient observations, this can be estimated utilizing the

framework of [Novick et al., 2019] to disentangle Ψs and DL effects. While DL and Ψs are

strongly related on seasonal timescales [Seneviratne et al., 2010, Zhou et al., 2019a,b], daily

or sub-daily observations could be used to independently sample DL [Novick et al., 2016a,

Stocker et al., 2018].

A rough approximation can be achieved by multiplying the observed ∆Ψ data by

(DL/DL,0)−0.5, in order to estimate the effects of atmospheric demand and the Medlyn-

induced stomatal closure (Figure 3.7, dotted red lines). Accounting for DL effects on hy-

draulic fg and f−1
k would require information on the shapes of these curves which is not

available a priori. However these two effects will be opposing, and we expect the net effect

to be smaller than the atmospheric demand and Medlyn effects.

3.4.4 Experiment 4: dynamic hydraulic conductivity ks

Our fourth experiment is designed to introduce two final complications:

1. Hydraulic conductivity (ks) is allowed to vary.

2. Non-linear functions are used for fk and fg.

None of experiments 1-3 featured dynamic ks, and the stomatal parameters were defined

in such a way that fg was a linear function of Ψs. Mart́ınez-Vilalta et al. [2014] found that
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a linear fit to ΨL was appropriate in the σ framework based on empirical data, but ensuing

work has questioned the compatibility of linearity assumptions and current hydraulic theory

[Hochberg et al., 2018].

Model configuration
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Figure 3.8: Experiment 4, non-linear vulnerability parameterizations lead to non-
linear isohydricity curves. (a) Visual depiction of the model parameterizations
for hydraulic vulnerability (fk) and stomatal regulation (fg). (b) Resulting wa-
ter potential data plotted in the σ framework. (c) Resulting water potential
data plotted in the IR framework alongside relative transpiration. Plotting the
same underlying data, the IR framework more clearly identifies the four distinct
regimes.

For Experiment 4, we defined non-linear parameterizations of hydraulic vulnerability and

stomatal regulation using piecewise linear functions (Figure 3.8a, see Appendix C.1 for the

full model description). These are idealized formulations of the conductances, but do conform

with findings that relative stomatal closure tends to lead loss of hydraulic conductance
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[Bartlett et al., 2016]. In this case, we revert to forcing with constant DL=1kPa.

The resulting hydraulic behavior can be separated into 4 distinct regimes:

1. No stomatal regulation, no hydraulic vulnerability: σ=1, IR=0 MPa−1.

2. Stomatal regulation only: σ=0.73, IR=0.67 MPa−1.

3. Stomatal regulation and loss of hydraulic conductance: σ=0.95→0.02, IR=0.12→2.5

MPa−1.

4. Zero transpiration: σ=1, IR=0 MPa−1.

The two metrics utilize different scales but are fundamentally in agreement on the ob-

served WS. The distinct behavior among Regimes 1, 2, and 3 occurs in response to the

sequencing of onset of stomatal closure versus onset of hydraulic vulnerability. Stomatal

closure does not begin until Ψs=-0.75MPa, creating Regime 1, which features the pure

anisohydry of constant ∆Ψ. Regime 2 features stress-induced isohydry, where the normal-

ized gradient shrinks due to stomatal closure. Regime 3 can be identified by the decoupling

of ∆Ψ and T . ∆Ψ responds to the ratio of stomatal to hydraulic conductance, while T re-

mains proportional to stomatal conductance, leading to a decoupling effect while hydraulic

conductance declines. Regime 4 is marked by the cessation of transpiration. Data from

Regime 4 should generally be excluded from metric retrievals, given the limited effect of WS

absent transpiration. However, time spent in Regime 4 may be of interest for diagnosing

drought-induced mortality [Gentine et al., 2016, McDowell et al., 2018].

The non-linearity of Experiment 4 presents a challenge to scalar metric retrieval, in both

the σ and IR frameworks. In such cases, a single parameter value will be inadequate to

describe a plant’s isohydricity. Describing WS in Regimes 1 and 2 could be achieved with
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two parameters: the soil water potential at stress onset and then an IR value to be applied

thereafter, but only up to the threshold of Regime 3. Though the inferred WS in this case

would be a function of Ψs, we are still in effect controlling for environmental conditions.

Describing WS in Regime 3 is significantly more challenging. The standard interpreta-

tion of iso/anisohydry would characterize the more anisohydric behavior at the beginning

of Regime 3 as evidence of reduced stomatal regulation. However the rate of stomatal regu-

lation is slightly increased (Figure 3.8b), and the apparent anisohydry actually results from

hydraulic vulnerability. If in response to drydown, a plant applies a 50% reduction in stom-

atal conductance, but also experiences a 50% loss of hydraulic conductance, the opposing

effects would yield constant ΨL. Said plant looks identical (according to IR, σ, and HA)

to a plant that applies no reduction in stomatal conductance and experiences no loss of hy-

draulic conductance (which would likewise result in constant ΨL). However these two plants

clearly have differing WS, as the first would experience an ∼50% reduction in transpira-

tion/photosynthesis, while we would expect the second to maintain maximal values. This

mismatch is a fundamental issue that must be resolved in order to correctly interpret IR or

other such isohydricity metrics (discussed in Section 3.5.2).

3.5 Discussion

3.5.1 Advantages of the IR metric

In Section 3.3.2, we define relative isohydricity (IR), which tracks variations in the soil-to-

leaf water potential gradient (∆Ψ) in response to changes in Ψs. This metric effectively
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normalizes the traditional isohydric metric by the well-watered leaf water potential (i.e. Λ),

and in doing so reduces noise and the confounding influence in environment-trait interactions

which have challenged the application of the isohydricity concept over coarse spatial scales.

Our new metric, however, retains many of the feautures that made σ attractive in the first

place, including minimal data requirements, and clear tractability with WS strategies that

has clear consequences for both carbon uptake (through stomatal closure) and the risk of

drought-driven mortality (by describing the likelihood of excessively low ΨL that can lead

to cavitation.

Tracking ∆Ψ instead of ΨL (as in σ) enables easier (visual) interpretation of the iso-

hydricity curves (Figure 3.2) and introduces IR as a new isohydricity metric, where larger

values are associated with more isohydric behavior. IR offers a narrower trait retrieval, mea-

suring the relative changes in the ratio of stomatal to hydraulic conductance in response to

soil drying (Equation 3.12). IR normalizes ∆Ψ by Λ (Equation 3.11), which is the value of

ΨL when Ψs = 0 and the well-watered value of ∆Ψ. This normalization posits that the rate

of change of ∆Ψ should be measured against the amount of ∆Ψ originally available (Λ).

Furthermore, accounting for Λ serves to remove any dependence on DL,0. As a result, two

distinct classification errors that occur using σ are easily avoided with IR.

1. Two species with equivalent stomatal regulation resulting from coordination between

σ and Λ are classified by σ as having distinct WS, whereas IR yields the same value

for both cases (Figure 3.4).

2. A single species with static hydraulic traits features a stable retrieval with IR when

mean DL is varied, but two distinct values for σ (Figure 3.5). Because σ does not
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control for DL it cannot consistently reproduce the effects of vegetation WS.

Extending beyond σ, we can compare IR with an alternative isohydricity metric described

in Meinzer et al. [2016], the hydroscape area (HA, Figure 3.3). HA was shown to correlate

well with leaf osmotic potential at full and zero turgor [Meinzer et al., 2016], and showed

stronger correlations than σ to several hydraulic traits in a common garden experiment

featuring ten eucalpyt species [Li et al., 2019]. The length of the base of the HA triangle

is |Λ|/(1-σ), which is the inverse of IR (when DL is constant). As such we expect a strong

relationship between HA and IR. However, like σ, HA depends on DL (Equation 3.14), which

could cause misclassification when comparing across climates. For example in Figure 3.5,

two species with identical traits would diverge in HA, which classifies the high DL case as

more anisohydric (whereas σ classifies the high DL case as less anisohydric, and IR provides

equivalent metric retrievals for the high and low DL cases). We propose that IR may feature

some of the benefits attributed to HA, while reducing potential environmental dependence.

3.5.2 Practical considerations

Isohydricity metrics are typically defined to measure the vegetation response to variations in

Ψs [Hochberg et al., 2018]. However, due to the land-atmosphere feedbacks that couple DL to

Ψs [Seneviratne et al., 2010, Zhou et al., 2019b], a total derivative with respect to Ψs can alias

what are actually DL effects [Novick et al., 2019]. While this may be acceptable for common

garden experiments, it presents a challenge for comparing across climates. As a result,

neither IR nor σ yielded a stable retrieval for a single species under constant vs. covarying

DL when a total derivative approach was utilized (Figure 3.6). However, to the extent

99



that it is possible to separately estimate Ψs vs. DL effects (Figure 3.7) a stable retrieval

can be achieved with IR, by correcting for DL effects (comparable to a partial derivative

approach). In the case of covarying DL, we would recommend applying the framework of

Novick et al. [2019] to retrieve IRΨs
and IRDL

in analogy to their definitions of σΨs and σDL
.

Other variables subject to land-atmosphere feedbacks should also be inspected for possible

covariation with Ψs, including AL.

We further recommend testing linearity assumptions in practice and avoiding extrap-

olation of IR outside the bounds of the Ψs observing conditions. While Mart́ınez-Vilalta

et al. [2014] justified a linear fit between ΨL and Ψs empirically, linearity is not guaranteed

by plant hydraulic theory [Hochberg et al., 2018]. We examined three potential regimes

of isohydric behavior (Figure 3.8) corresponding to: (1) free evolution of ΨL before stress

onset (pure anisohydry), (2) stomatal regulation before tangible hydraulic losses (coupled

regulation), and (3) stomatal regulation coincident with hydraulic vulnerability (decoupled

regulation). We would recommend that IR be fit only to data where T > 0, eschewing

Regime 4 (in agreement with Meinzer et al. [2016]). Defining regimes and/or the use of

multiple parameters may be required to effectively characterize the an/isohydric behavior in

cases of pronounced non-linearity. Our results indicate that IR shows promise for character-

izing vegetation WS in the proposed Regimes 1 and 2, correcting potential misclassifications

resulting from the σ and HA metrics. The extent to which such characterizations are useful

will depend on the amount of time vegetation spends in Regimes 1 and 2, which will need

to be investigated with observational data. A dependence of IR on Ψs is not contrary to our

goal of limiting the environmental dependence of our metric retrieval, because the procedure

outlined here explicitly controls for Ψs and should result in the same empirical fit across
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environments. The same cannot be said of σ, where changing mean DL was shown to alter

the metric retrieval despite identical hydraulic traits (Figure 3.5).

Interpreting isohydricity data in the case of varying ks still represents a significant chal-

lenge. In our first three experiments we set ks to remain constant, but allowed it to vary

in Experiment 4 (Figure 3.8, Regime 3). While an/isohydry is typically discussed in terms

of stomatal regulation, variations in ∆Ψ (and ΨL) instead respond to the ratio of stomatal

to hydraulic conductance. In that way, isohydricity metrics (including IR) do not track

stomatal regulation per se, but the combined (opposing) effects of stomatal regulation and

xylem vulnerability. The comparability of IR retrievals in Regime 3, especially across species,

will therefore depend on the extent to which the fg/fk ratio evolves in a consistent/orderly

manner. There is empirical support for broadly consistent sequencing of various hydraulic

traits [Bartlett et al., 2016], but the extent to which IR captures a meaningful facet of WS

in Regime 3 must be tested further with observations. If applying the an/isohydry con-

cept through Regime 3 proves infeasible, alternative techniques might be developed that

utilize ΨL data together with concurrent transpiration and/or photosynthesis observations,

to disentangle the effects of stomatal regulation and hydraulic vulnerability.

3.6 Conclusion

While the framework of an/isohydry has been criticized in the recent literature [Mart́ınez-

Vilalta and Garcia-Forner, 2017, Hochberg et al., 2018, Feng et al., 2019], we found that

several of the major flaws could be addressed by an alternative regression, which we call

relative isohydricity. In our four idealized experiments, we showed that the IR metric could

101



avoid the pitfalls of σ and HA, providing a meaningful description of WS that can be com-

pared across species and climates. Response-based metrics are a valuable tool for generating

insights about vegetation water-use strategy across large landscapes, which is the typical

Earth System modeling scale as well as an important policy- and management-relevant scale.

Observations of leaf water potential contain valuable information encoding both stomatal

regulation as well as xylem vulnerability. Developing techniques to leverage these observa-

tions could provide new insights into vegetation water-use strategy and its effects on the

global carbon and water cycles. Thus, rather than abandon the framework of an/isohydry

entirely, the goal of this study is to better understand the relationship between isohydricity

metrics and vegetation WS. We assert that WS metrics should explicitly identify the traits

they measure. As such, we provide trait definitions for the three metrics discussed herein

(Equations 3.7, 3.12, and 3.14) and conclude that IR offers significant improvements over σ

and HA.
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Conclusions

Understanding how vegetation might respond to climate change is a critically important

question, especially given the feedbacks from vegetation onto climate through adjustments

to surface energy partitioning and potential changes in the terrestrial carbon sink. Models

must be constructed with the non-stationary nature of our climate in mind. In light of

this, we replaced a poorly-constrained empirical representation of vegetation hydrodynamics

with a more mechanistic model that implements a simplified framework distilled from well-

established plant and soil hydraulic theory. This work extends recent advances in describing

plant hydraulic function and stomatal regulation to represent vegetation in an Earth System

Model (ESM).

Considerable structural and parametric uncertainty remains in the ongoing development

of plant hydraulic models on the ESM scale. In particular, we still lack a robust under-

standing of emerging vegetation function on these larger spatial scales. Traditional plant

physiological research is conducted on a leaf-level or individual tree basis, with considerable

uncertainty in the process of scaling up the stand or landscape scales. Understanding emer-

gent vegetation water-use strategy is a critical road block to confidently modeling the global

carbon and water cycles, both historically and under climate change.

We developed new techniques to better leverage leaf water potential data to infer water-
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use strategy. Specifically, we derived a new metric of hydraulic regulation in response to

soil drying, called relative isohydricity. Continued development of vegetation models will

benefit from the expanded capacity to observe plant function at the landscape scale in

response to environmental variability, using the stream of data from a constellation of Earth-

observing satellites and the various site-level observation networks, including NEON and

Fluxnet, among others. This includes testing the importance of relative isohydricity for

describing drought-induced productivity losses and other hypotheses about vegetation water-

use strategies.

Our results indicate that implementing plant hydraulics will have significant impacts on

the global carbon and water cycles through increased sensitivity to vapor pressure deficit

and a more flexible root water uptake paradigm. Our work simultaneously brings the CLM

into better agreement with prevailing stomatal and hydraulic theory, while also enabling a

new facet of benchmarking with leaf water potential observations. The next step in this pro-

cess will be to test how implementing plant hydraulics influences projections of vegetation

function under future climate change. Because PHS has been adopted as the default repre-

sentation of vegetation hydrodynamics in CLM5/CESM2, we will have many opportunities

do just that in the suite of experiments underway for the Climate Model Intercomparison

Project, phase 6 (CMIP6).
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Appendix A

Chapter 1 supplemental materials

A.1 Appendix to model description

A.1.1 Details of water supply

PHS resolves flow across four different segments, soil-to-root, root-to-stem, stem-to-leaf, and
leaf-to-transpiration.

Stem-to-leaf. The area bases are sunlit and shaded leaf area, respectively. Note that
gravity is assumed negligible here. Likewise there is no length scaling applied to maximum
conductance. Therefore the input parameter for kleaf,max should be a conductance (s−1).

qsun = ksun · LAI-sun · (ψstem − ψsun-leaf)

qshade = kshade · LAI-shade · (ψstem − ψshade-leaf)
(A.1)

ksun = kshade = kleaf,max · f (ψstem) (A.2)

f (ψ) = 2
−

 ψ

p50

ck

(A.3)

Root-to-stem. The area basis is stem area index. The input parameter is maximum stem
xylem conductivity (Kstem,max). Stem conductance (kstem) is the result of scaling maximum
conductivity by the tree height (h) and applying loss relative to maximum conductance via
the vulnerability curve f (ψroot).

qstem = kstem · SAI · (ψroot − ψstem − ρgh) (A.4)

kstem =
Kstem,max

h
· f (ψroot) (A.5)

Soil-to-root. Area basis is RAI in soil layer i, which is based on the layer root fraction
times the total root area. Total root area is calculated as the sum of stem and leaf area
indices multiplied by a relative root area parameter (froot). The vertical root distribution is
defined by the layer root fraction (ri), which follows a one-parameter (by PFT) power law
decay following Jackson et al. [1996].

qsr,i = ksr,i · RAIi · (ψsoil,i − ψroot − ρgzi) (A.6)

RAIi = froot · (SAI + LAI) · ri (A.7)
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ksr,i =
kr,i + ks,i
kr,i · ks,i

(A.8)

kr,i =
Kr,max

li
f (ψsoil,i) (A.9)

li = zi + x (A.10)

ks,i =
Ks,i

d
(A.11)

The soil-and-root conductance ksr,i reflects two resistors in series, from soil-to-root (ks,i)
and through the root tissue (kr,i). The root tissue conductance is attenuated via the vul-
nerability curve framework. The input parameter is maximum root xylem conductivity, on
the basis of RAI as defined above. The root conductivity is scaled by the conducting length,
which is estimated as the sum of soil layer depth (zi) and average lateral extent (x, static
parameter). The soil conductivity Ks,i is calculated from the layer soil matric potential
(ψsoil,i) and soil properties as described in Oleson et al. [2013] utilizing typical soil hydraulic
theory [Brooks and Corey, 1964, Clapp and Hornberger, 1978]. The soil conductance (ks,i)
is the result of scaling the conductivity by d, the distance between roots estimated following
Williams et al. [1996] and Bonan et al. [2014]

A.1.2 Details of water demand

The CLM5 implementation utilizes the Medlyn stomatal conductance model [Medlyn et al.,
2011], while also applying water stress through Vcmax. Transpiration is calculated reflecting
contributions from both stomatal conductance and leaf boundary layer conductance (gb).

Vcmax = fw Vcmax,ww (A.12)

gs = g0 +

(
1 +

g1√
D

)
A

Ca

(A.13)

Esun = gs,sun ∗ ρ ∗ VPD ∗ laisun ∗
(

1 +
gs,sun
gb

)−1

Eshade = gs,shade ∗ ρ ∗ VPD ∗ laishade ∗
(

1 +
gs,shade
gb

)−1
(A.14)

At the beginning of a set of PHS iterations, we solve for Esun,max and Eshade,max, by
running the stomatal conductance scheme with fw set to 1 (no stress). Within each PHS
iteration, we do not resolve the full stomatal conductance scheme, but instead consider only
the linear attenuation of stomatal conductance by fw. Transpiration is attenuated relative
to the maximal values according to leaf water potential.
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Esun = Esun,max ∗ 2
−

ψleaf

ψ50

ck

Eshade = Eshade,max ∗ 2
−

ψleaf

ψ50

ck
(A.15)

We define fw as the ratio of attenuated stomatal conductance (gs,sun, gs,shade) to max-
imal stomatal conductance (gs,sun,max, gs,shade,max), where gs,sun,max and gs,shade,max are the
stomatal conductance values associated with Esun,max and Eshade,max. As such, the definition
in the main text (Equation 1.14), represents a linear simplification between fw, stomatal
conductance, and transpiration.

fw,sun =
gs,sun

gs,sun,max

fw,shade =
gs,shade

gs,shade,max

(A.16)

After each PHS iteration, we compute gs,sun and gs,shade via Equations A.12 and A.12
(which involves iterating for intercellular CO2 concentration). We then update gs,sun,max

and gs,shade,max to achieve consistency between equations (A.14) and (A.15). At this point
gs,sun,max and gs,shade,max no longer refer to the values associated with fw = 1, but rather also
incorporate the non-linearity between gs and fw. The PHS iteration continues to convergence
of fw (see Figure A.1). The numerics have proven to be stable in practice, but future versions
may aim to better integrate PHS within the stomatal conductance scheme to improve the
coherence of Equations 1.14 and A.16.

gs,sun,max =
gs,sun
fw,sun

gs,shade,max =
gs,shade
fw,shade

(A.17)
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fw convergence?

Calculate metabolic parameters
(Vcmax, Jmax, Rd, Kc, Ko, Γ*)

Set fw,sun and fw,shade = 1

Calculate Ci

ci convergence?

PHS solves for  and fw

Calculate assimilation (An) and stomatal conductance (gs,sun, gs,shade)
using fw   [includes water stress]

Calculate leaf temperature (Tl) and fluxes (Hl,λEl)

Tl convergence?

ci convergence?

Initial Ci

Initial Tl

Initial Ci

no

no

no

no

Calculate Ci

Calculate assimilation (An,max), stomatal conductance (gs,sun,max, gs,shade,max), 
transpiration (Tsun,max, Tshade,max) [absent water stress]

Update 
gs,sun,max & gs,shade,max

Figure A.1: Flow chart of PHS iterative solution
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A.1.3 Details of water potential solution

The continuity of water flow through the system yields four equations

Esun = qsun

Eshade = qshade

qsun + qshade = qstem

qstem =
nlevsoi∑
i=1

qsr,i

(A.18)

We seek the set of vegetation water potential values (four unknowns),

ψ =


ψsunleaf

ψshadeleaf

ψstem

ψroot

 (A.19)

that satisfies these equations, as forced by the soil moisture and atmospheric state.
Each flux on the schematic can be represented in terms of the relevant water potentials.
Defining the transpiration fluxes:

Esun = Esun,max · 2
−

ψsunleaf

p50

ck

Eshade = Eshade,max · 2
−

ψshadeleaf

p50

ck
(A.20)

Defining the water supply fluxes:

qsun = kleaf,max · 2
−

ψstem

p50

ck

· LAIsun · (ψstem − ψsunleaf )

qshade = kleaf,max · 2
−

ψstem

p50

ck

· LAIshade · (ψstem − ψshadeleaf )

qstem =
kstem,max

z2

· 2
−

ψroot

p50

ck

· SAI · (ψroot − ψstem −∆ψz)

qroot =
nlevsoi∑
i=1

qsr,i =
nlevsoi∑
i=1

ksr,i ·RAI · (ψsoil,i − ψroot + ∆ψz,i)

(A.21)

In the CLM parameter file, p50 and ck are allowed to vary by flux level (transpiration
vs. stem flux vs. root flux), but in our experiment (and on the default CLM parameter
file), a single value is used for each. PHS solves for the vector ψ that satisfying water flow
continuity as forced by atmospheric state and soil moisture. Due to the model non-linearity,
we use a linearized explicit approach, iterating with Newton’s method. The initial guess
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is the solution for ψ (vector) from the previous time step. The general framework, from
iteration m to m+ 1 is:

qm+1 = qm +
δq

δψ
∆ψ

ψm+1 = ψm + ∆ψ

(A.22)

So for our first flux balance equation, which requires sunlit leaf transpiration equal the
flux of water from the main stem to the sunlit leaf, we have (at iteration m+ 1):

Em+1
sun = qm+1

sun (A.23)

This can be linearized to:

Em
sun +

δEsun

δψ
∆ψ = qmsun +

δqsun
δψ

∆ψ (A.24)

And rearranged to be:

δqsun
δψ

∆ψ − δEsun

δψ
∆ψ = Em

sun − qmsun (A.25)

And for the other 3 flux balance equations:

δqshade
δψ

∆ψ − δEsha

δψ
∆ψ = Em

sha − qm1b
δqstem
δψ

∆ψ − δqsun
δψ

∆ψ − δqshade
δψ

∆ψ = qmsun + qmshade − qmstem
δqsoil
δψ

∆ψ − δqstem
δψ

∆ψ = qmstem − qmsoil

(A.26)

Putting all four together in matrix form:

δq1a

δψ
− δEsun

δψ
δq1b

δψ
− δEsha

δψ
δq2

δψ
− δq1a

δψ
− δq1b

δψ
δqsoil
δψ
− δq2

δψ


∆ψ =


Em

sun − qm1a
Em

sha − qm1b
qm1a + qm1b − qm2
qm2 − qmsoil

 (A.27)

Now to expand the left-hand side, from vector ψ to the four distinct plant water potential

nodes, noting that many derivatives are zero (e.g.
δEsun

δψsha

= 0)

Introducing the notation: A∆ψ = b
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∆ψ =


∆ψsunleaf

∆ψshadeleaf

∆ψstem

∆ψroot

 (A.28)

A =



δq1a

δψsun

− δEsun

δψsun

0
δq1a

δψstem

0

0
δq1b

δψsha

− δEsha

δψsha

δq1b

δψstem

0

− δq1a

δψsun

− δq1b

δψsha

δq2

δψstem

− δq1a

δψstem

− δq1b

δψstem

δq2

δψroot

0 0 − δq2

δψstem

δqsoil
δψroot

− δq2

δψroot


(A.29)

b =


Em

sun − qmb1
Em

sha − qmb2
qmb1 + qmb2 − qmstem
qmstem − qmsoil

 (A.30)

We can compute all the entries for A and b based on the soil potential and maximum
transpiration forcings and can solve to find:

∆ψ = A−1b (A.31)

ψm+1 = ψm + ∆ψ (A.32)

We iterate until b→ 0, signifying water flux balance through the system. The result is a
final set of water potentials ( ψroot, ψstem, ψshadeleaf , ψsunleaf ) satisfying non-divergent water
flux through the system.

A.1.4 Parameter tuning exercise

We used a factorial design to create 972 ensemble members based on the parameter values
below. We ran PHS simulations for each parameter vector under both AMB and TFE
conditions. All simulations used the same initial conditions, which were the result of a
previous simulation. We evaluated the ensemble members based on the fit to sap flux
observations, selecting that which maximized R2

amb +R2
tfe−RMSEamb−RMSEtfe (Figure

S2).
Stem conductivity, kmax: 2e-8, 4e-8, 8e-8 s−1

Root conductivity, kr,max: 2e-9, 6e-8, 18e-9 s−1

Root and stem vulnerability p50: -1.75, -2.25, -2.75 MPa
Stomatal p50: above plus either 0 or 0.5MPa
Vulnerability shape parameter, ck: 2.95, 3.95, 5.45 (unitless)
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Medlyn slope, g1: 6, 7 kPa0.5

Rooting depth parameter, β: 0.95, 0.98, 0.993 (unitless)

A.2 Supplementary figures
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Figure A.2: Cumulative rooting distribution.
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Figure A.3: Results of the PHS parameter tuning exercise. The main text PHS
simulation was chosen to maximize R2 - RMSE.
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Figure A.8: (a,b) Log of conductance (ks,r) versus soil potential for Soil Layer 5.
(c,d) Log of hydraulic gradient (∆ψ) versus soil potential for Soil Layer 5. Note
that the soil potential axes vary for PHS vs. SMS. Multiplied together ks,r and
∆ψ yield the Layer-5 root water uptake. PHS conductance decreases by almost 3
orders of magnitude between 0 and -1MPa, which leads to reduced RWU, though
this is offset (by about half) due to increases in ∆ψ. SMS ∆ψ decreases by less
than 1 order of magnitude between 0 and -2MPa, leading to higher sensitivity to
soil potential with PHS, see Figure 10. Approaching -2.5MPa, SMS ∆ψ decreases
abruptly, due to the discontinuity at ψc. Only midday (12h-14h, 2002-2003)
timesteps are shown to emphasize the relationship with soil potential. With
SMS, conductance is not modeled explicitly, but rather calculated as k=q/∆ψ
(see Section 2.4.2). For soil potentials greater than or equal to 2.5MPa, ∆ψ=0,
and SMS implied conductance is undefined, but could probably be considered to
equal 0. PHS conductance captures both root tissue and soil matrix resistances
(operating in series).
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Appendix B

Chapter 2 supplemental materials

B.1 Analysis details

Semi-arid tropics study domain:

• Latitude ∈ [30◦N, 30◦S]
• Mean annual precipitation < 1200 mm/yr
• Mean annual temperature > 14 ◦C
• Mean annual GPP > 0.5 gC/m2/d

For Figure 2.1a, the latitudinal mean and interquartile range were smoothed using an
11-gridcell moving window, which spans 10.4◦. Both were weighted by land area. For the
IQR, we therefore used the ∆IAV thresholds that exceeded the values for 25% and 75% of
land area in the given moving window to compute IQR. For Figure 2.1a, we used 200mm/yr
bins to produce a smooth average curve, again area-weighted.

For Figure 2.2 we used a standard area-weighted approach to calculate the average annual
GPP anomalies for each model. For Figure 2.3, we used a composite approach to average
across gridcells. Instead of averaging together the 1964 GPP annual means across the ≈1800
gridcells, we first sorted each gridcell’s timeseries according to dryness. We then average GPP
and SWC10cm values for ’year 1’ across all gridcells, which corresponds to the driest year
in each gridcell. This may be 1964 for some gridcells and 2005 for others. Annual average
TWS was used as the dryness metric to sort the timeseries. The same compositing approach
is used for Figure 2.4b and Supp Figure B.4.

For Figure 2.4a, we computed composite mean seasonal cycles for soil water potential at
two depths for both models. Because the various gridcells feature differing dry seasons, it
was necessary to re-index the timeseries to line up the dry seasons. We defined dry season
as the contiguous 3month period with the least rain on average over the 50 year analysis
period. JJA was the most common dry season (Supp Figure B.3), so we reindexed all
gridcells to have JJA as their dry season before averaging. Likewise in Figure 2.4b, while we
display the ‘September’ interannual relationship, this refers to September in the composite
timeseries. This is in fact September for about 30% of gridcells, but it is also March for
about 23% of gridcells. More precisely we are referring to the month immediately following
the three-month dry season.

For Figure 2.5, we looked at how soil moisture and photosynthesis evolved after large
precipitation anomalies, both dry and wet. Across the 50 year analysis period, we identified
the 10 largest positive and 10 largest negative 1-month precipitation anomalies for each
gridcell, disallowing repeats within +/- 3 months in order to better sample across years.
Then we averaged together the soil moisture and GPP over the next 12 months for those
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10 anomalies across all gridcells, weighted by land area. Because the two simulations use
the same precipitation forcing, we are comparing all the same anomalies. E-folding times
for the composite curves were calculated as the time-period for SWC10cm or GPP to fall to
1/e times the maximum anomaly, with linear extrapolation between months.

For Figure 2.6a, Pearson correlation coefficients were computed between annual average
SWC10cm and TWS for each gridcell. We then summarized this data with a GPP-weighted
probability distribution, calculating how much of total GPP across the domain falls in each
of the correlation coefficient bins (bin width = 0.1). The full code for all the analyses in this
study is available online at https://github.com/djk2120/PHSglobal.

B.2 Supplementary figures
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Figure B.1: Slope values relating GPP and SWC10cm. This plot complements
Figure 2.3, demonstrating that the sensitivities of GPP to SWC10cm are compa-
rable for PHS and SMS.
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Figure B.3: Dry season onset. In order to compute the composite average soil
potential seasonal cycles in Figure 2.4, we aligned the dry season across all grid-
cells. Dry season was defined as the three month period with the lowest average
precipitation across 1964-2013. The most common dry season was JJA, so this
was chosen as the composite dry season. The next most common dry season
was DJF. A map of the corresponding pixels demonstrates shows a sample of the
geographic footprints. Light gray areas are not part of our semi-arid, tropical
study domain.
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Figure B.4: The relationships between composite mean soil potential at depths of
100cm vs. 10cm across 50 years in the semi-arid tropcs. Subplots are numbered
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that 9 isn’t necessarily September, but rather is 3 months after dry season onset.
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Appendix C

Chapter 3 supplemental materials

C.1 Model description

For several of the simulations presented herein, we use a soil-plant-atmosphere continuum
model with simplified plant hydraulics to test σ and IR. As with the [Mart́ınez-Vilalta
et al., 2014] representation, we assume steady-state where transpiration T ) matches sap
flux (J). The same equation is used for T (Equation C.1), but several changes affect the
parameterization of gL (Equation 3.3).

T = gL · AL ·DL (C.1)

gL = gL,max · fg (ΨL) (C.2)

First, instead of fg depending on Ψs as in Equation 3.3, here the dependence is on
ΨL (which, in turn, depends on Ψs). The use of ΨL reflects the influence of hydraulic
constraints on stomatal function [Sperry and Love, 2015] and has been used in numerous
other implementations [Kennedy et al., 2019, Xu et al., 2016, Wolf et al., 2016] Likewise,
instead of the generic attenuation function fg, we specify the relationship to ΨL subject to
two parameters, pg,1 and pg,2, which represent the leaf water potential values at maximal
and zero conductance, respectively. Conductance for ΨL outside the range of pg,1 and pg,2
are either 0 or gL,max, as appropriate.

fg =
ΨL − pg,2
pg,1 − pg,2

(C.3)

Furthermore, instead of defining gL,max as a constant parameter, we adopt a common
stomatal conductance model (Equation C.4), which incorporates the effects of photosynthe-
sis, ambient CO2 concentration (Ca), and DL on stomatal conductance [Medlyn et al., 2011].
In doing so, we expand our model to also represent net photosynthesis (A) and intercellular
CO2 concentration (Ci), as described in Medlyn et al. [2011]. For simplicity, we set the
Medlyn intercept parameter (g0) to 0, and omit the effects of leaf respiration.
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Table C.1: List of variables and abbreviations

Abbreviation Full Name Units
Γ CO2 compensation point ppm
Λ ΨL at Ψs = 0 MPa
σ isohydricity slope [ - ]

ΨL leaf water potential MPa
Ψs soil water potential MPa
Ψ water potential along the hydraulic continuum MPa

∆Ψ ΨL −Ψs, hydraulic gradient from soil to leaf MPa
A net photosynthesis µmol/m2/s
AJ rate of electron transport mol/m2/s
AL leaf area [ - ]
As basal sapwood area [ - ]
Ca ambient CO2 concentration ppm
Ci intercellular CO2 concentration ppm
DL leaf-level vapor pressure deficit [ - ]
fg fraction of maximum stomatal conductance [ - ]
fk fraction of maximum hydraulic conductance [ - ]
gL stomatal conductance to water vapor mm/s
gLc stomatal conductance to CO2 mol/m2/s
IR relative isohydricity MPa−1

J sap flux mm/s
ks whole plant hydraulic conductance mm/s/MPa

SPAC soil-plant-atmosphere continuum not applicable
T transpiration mm/s

gL,max = g0 +

(
1 +

g1√
DL

)
A

Ca

(C.4)

A =
Aj

4

Ci − Γ

Ci + 2Γ
(C.5)

Ci = Ca −
A

gLc
(C.6)

gLc =
1

1.6
gL (C.7)

We also adopt a more realistic model of J , where hydraulic conductance (ks) varies along
the continuum from soil-to-leaf (Equation C.8), as water potential (Ψ) decreases from Ψs

to ΨL. Likewise, we specify the function for fk, which depends on Ψ at the given point
in the soil-to-leaf continuum subject to the parameters pk,1 and pk,2, which represent the
water potential values at maximal and zero conductance, respectively. Like gL, ks is set
to 0 or ks,max outside the domain of pk,1 and pk,2. This is a common simplified sap flux
representation in the vein of Sperry et al. [1998].

144



J =

∫ ΨL

Ψs

ks (Ψ) dΨ (C.8)

ks = ks,max · fk (Ψ) (C.9)

fk =
Ψ− pk,2
pk,1 − pk,2

(C.10)

We do not present this as the only or best SPAC model. Our goal here is simply to
expand the model from Mart́ınez-Vilalta et al. [2014] in a way to allow further testing σ
and IR, imposing some typical model elements. In particular we will look at how these two
metrics will respond to:

• a change in mean DL

• when DL is correlated with Ψs

• nonlinear parameterizations of fg and fk

C.2 Experiment description

Table C.2: List of isohydricity experiments

Exp 1 Exp 2 Exp 3 Exp 4
Description Relative isohydricity Alter mean DL Covarying DL Dynamic ks

Model MV2014 ←− Simple plant hydraulics −→
Variant ‘Species 2’ DL=3kPa DL=0.5→3.5kPa ks = ks,max · f (Ψs)
Control ‘Species 1’ DL=1kPa DL=0.5kPa n/a

DL Forcing constant see above see above 1 kPa
(not explicitly defined)

Ψs Forcing ←− 0 to -3 MPa −→
ks constant constant constant varies

ks,max (not explicitly defined) 2e-4 2e-4 4.5e-4 mm/s/MPa
pg,1 (not explicitly defined) -0.9 -0.6 -1.15 MPa
pg,2 (not explicitly defined) -3 -3 -2.25 MPa
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C.3 Supplementary figures
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Figure C.1: Transpiration for a change in mean DL
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