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Abstract 

Mosaicism and the genetic architecture of congenital heart disease 

Alexander Hsieh 

 

Congenital heart disease (CHD) is characterized by structural defects of the heart and 

great vessels.  It is the most common birth defect, affecting an estimated 1% of live births, and is 

the leading cause of mortality among birth defects.  Despite recent progress in genetic research, 

more than 50% of CHD cases remain unexplained.  An estimated 23% are due to aneuploidies 

and copy number variants and up to 30% has been attributed to de novo variation, though that 

number ranges between 3-30% depending on CHD complexity.   

The contribution of somatic mosaicism, or de novo genetic mutations arising after oocyte 

fertilization, to congenital heart disease (CHD) is not well understood due to limitations in 

sample size, detection method, and validation rate. Further, the relationship between mosaicism 

in blood and cardiovascular tissue has not been determined. We developed a computational 

method, Expectation-Maximization-based detection of Mosaicism (EM-mosaic), to analyze 

mosaicism in exome sequences of 2530 CHD proband-parent trios. EM-mosaic accurately 

detected 309 mosaic mutations in blood, with 85 of 94 (90%) candidates tested independently 

confirmed.  We found twenty-five likely damaging mosaics in plausible CHD-risk genes, 

affecting 1% of our cohort. Variants in these genes predicted as damaging had higher variant 



 

 

allele fraction than benign variants, suggesting a role in CHD. The frequency of protein-coding 

mosaic variants detectable in blood was 0.122 or roughly 1 in 8 individuals. Analysis of 66 

individuals with matched cardiac tissue available revealed both tissue-specific and shared 

mosaicism, with shared mosaics generally having higher allele fraction.  

CHD patients often present with comorbid cardiac and extracardiac anomalies that 

further their impact quality of life.  Neurodevelopmental disorders (NDDs) are especially 

prevalent in CHD cases compared to the general population, yet the underlying genetic causes 

remain poorly explained. Further, patients with single ventricle defects undergoing surgery often 

later develop arrhythmias and experience worsening ventricular function.  We used a statistical 

approach to dissect the association between de novo variation and these clinical outcomes and 

found that pleiotropic mutations contribute a large fraction of the risk of acquiring NDD and 

abnormal ventricular function phenotypes in CHD patients. We developed a proof-of-concept 

rare variant risk score that combines information from de novo, rare transmitted, and copy-

number variants and show that prediction of outcomes such as NDD can be improved, especially 

in complex CHD cases. 
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Introduction   

0.1 Introduction to congenital heart disease 

Congenital heart disease (CHD) is characterized by structural defects of the heart and 

great vessels.  It is the most common birth defect, affected an estimated 1% of live births, and is 

the leading cause of mortality among birth defects {van der Linde 2011; Yang 2006}.  Incidence 

rate was found to increase between 1977 and 2005 but has since stabilized at 0.8%-1.1%, with 

minor differences attributable to race/ethnicity and methods of diagnosis {Oyen 2009; Bjonard 

2013}. CHD severity is categorized according the complexity of the patient’s anatomical and 

physiological abnormalities and approximately one third of patients have severe manifestations 

requiring surgical intervention shortly after birth {Zaidi 2017}.  Furthermore, CHD patients 

often acquire cardiac and extracardiac abnormalities that impact quality of life, such as 

arrhythmias, myocardial dysfunctions, and neurodevelopmental disorders (NDDs) {Marino 

2012; Calderon 2014; Miller 2005; Burnham 2010}.  While a range of fetal developmental, 

surgical/post-operative, and genetic factors have been found to associate with these abnormalities 

{Marelli 2016}, thus far none have been identified as the primary contributor {Zaidi 2017}.    

Environmental factors that affect risk of cardiovascular defects in the developing fetus 

(during the preconception stage through to the first trimester of pregnancy) have been studied 

extensively and reviews on the topic {Jenkins 2007; Mone 2004} summarizing a large body of 

work have grouped these factors into the following categories: maternal illness, maternal 
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nutrition, and maternal drug exposure.   Maternal illnesses such as phenylketonuria, 

pregestational diabetes, rubella infection, influenza, and other febrile illnesses are most strongly 

associated with CHD, increasing risk by 2-fold in most cases and up to 18-fold for specific 

defects {Jenkins 2007}.   Conditions such as obesity, HIV, systemic lupus erythematosus, and 

epilepsy have also been shown to be associated with CHD, though the quantifiable risk 

difference has yet to be fully understood.  Poor maternal nutrition during pregnancy – 

specifically deficiency or excess of folic acid and retinoic acid (vitamin A) – also directly 

impacts fetal cardiovascular development {Mone 2004} and intake of multivitamin supplements 

have been shown to reduce the risk of CHD in offspring (OR 0.5-0.8) {Jenkins 2007}.  Finally, 

maternal drug exposure has been associated with a 2- to 4-fold increase in risk of CHD {Jenkins 

2007}.  Examples of non-therapeutic drugs include alcohol, cocaine, marijuana, and other 

narcotics {Mone 2004}.  In sum, these non-genetic environmental factors are estimated to 

explain roughly 10% of CHD cases {Zaidi 2017} – comprehensive reviews {Mone 2004; 

Jenkins 2007} are available that offer more detail than the summary presented here.   

Given its impact on reproductive fitness and its sporadic occurrence in families with no 

prior history, CHD is believed to be driven largely by genetic variation, in particular by de novo 

events in more complex CHD presentations.  In terms of etiology, CHD results from disruption 

of key biological pathways involved in normal cardiac development – including but not limited 

to chromatin remodeling {Zaidi 2013; Homsy 2015}, Notch and RAS signaling {Garg 2005; 

Preuss 2016; Gelb 2011; Weismann 2005}, and cilia and sarcomere genes {Li 2015; Kennedy 

2007; Slough 2008}.  Despite progress made by recent large-scale genetic studies, more than 

50% of CHD cases remain unexplained.  There is an established relationship between strength of 

genetic effect (odds ratio) and risk allele frequency {Manolio 2009} and genetic research in 
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CHD, consequently, has largely focused on rare variants with large effect sizes.  Given the 

prevalence and etiology of CHD and our current model that describes many genomic loci each 

contributing weak effects in an additive manner, we are still severely underpowered to detect 

associations between common variation and CHD.  While recent GWAS studies have uncovered 

evidence of potential CHD susceptibility loci {Cordell 2013; Hu 2013; Agopian 2017; Hanchard 

2016}, the impact of common genetic variants has yet to be fully characterized, primarily due to 

sample size limitations. Larger patient cohorts will be necessary to investigate the complete 

spectrum of genetic variation in CHD; this dissertation will focus on rare genetic variation.  In 

terms of rare genetic variation, roughly 1% of CHD cases are attributed to rare inherited 

variation {Schott 1998; Gebbia 1997; Dina 2015; Durst 2015; Garg 2005}, though this number is 

likely an underestimate due to insufficient sample sizes for detecting the smaller genetic effect of 

mutations that are inherited.  An estimated 23% of CHD cases are due to aneuploidies {Hartman 

2011} and copy number variants {Kim 2016} and up to 30% have been attributed to de novo 

variation {Zaidi 2013; Homsy 2015; Sifrim 2016}, though that number ranges between 3% in 

cases with isolated CHD to 30% in cases with complex CHD.  The biological mechanisms 

governing this difference between isolated and complex CHD cases are not yet fully understood 

and we hypothesize that the mutations causing CHD have pleiotropic effects that also contribute 

to poor clinical outcomes in these same individuals. 

 

0.2 Introduction to genetic mosaicism 

Mosaicism is readily observable in nature – certain types of animal coat color variation, 

for example, have been understood to be manifestations of this biological phenomenon for over a 

century.  However, its role in human disease is still an area of active research.  Mosaicism (or 
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post-zygotic mutation) is largely driven by mutational processes of normal aging and 

development, such as errors in DNA replication and repair, retrotransposition, or gain/loss of 

chromosomes of ploidy, among others {De 2011}.  They tend to occur in the early embryonic 

cells of the dividing zygote and result in two or more cell populations with distinct genotypes 

within the same individual {Biesecker 2013}.  The developmental status of the early embryonic 

cell in which the mutation occurs determines the proportion of mutation-carrying cells and tissue 

distribution of these cells in the post-natal child {Acuna-Hidalgo 2015}.   

Clinical manifestation and detection of mosaicism are not yet fully understood; results 

from previous studies suggest that both differ according to the size of the affected region.  Large-

scale chromosomal abnormalities can manifest as mosaic monosomies/trisomies {Hassold 1984; 

Daber 2011} or isochromosome-related disorders {Hook 1983; Raffel 1986} and are typically 

detected via cytogenetic analysis (e.g. cell-by-cell FISH).  Mosaic copy number variants have 

been implicated in developmental disorders {Conlin 2010; King 2015}, aging {Forsberg 2012}, 

hematological malignancies {Jacobs 2012; Laurie 2012}, certain forms of cancer {Lonigro 2011; 

Amarasinghe 2014}, and congenital heart disease {Prabhu 2015} and are conventionally studied 

using array-based comparative genomic hybridization or SNP microarrays.  Mosaic SNVs and 

indels can manifest as cutaneous/dermatological disorders {Happle 1986; Weinstein 1991; Konig 

2000; Hafner 2006; Hafner 2007}, overgrowth disorders {Wiedemann 1983; Lindhurst 2012; 

Poduri 2012; Lee 2012; Riviere 2012; Kurek 2012}, clonal hematopoiesis {Jaiswal 2014; 

Genovese 2014; Xie 2014}, or cancer {Forbes 2008} and were detected in the past using Sanger 

sequencing but more recently have been detected via next-generation sequencing techniques. 

The earliest investigations into mosaicism focused on cutaneous manifestations, as the 

outward manifestation of these phenotypes were more easily recognizable than manifestations in 



5 

 

the internal organs {Happle 1993}. Work by Alfred Blaschko in 1901 was among the first 

studies of mosaicism in humans. Invisible under normal conditions, the Lines of Blaschko 

describe the trajectory along which the cutaneous ectoderm and neural crest differentiate from 

the ectoderm and migrate radially from the dorsal neural tube.  These lines become apparent in 

patients with disorders of the melanocytic system whereby mosaic mutations cause 

hyperpigmentation of the skin.  The patterning – e.g. Type 1a “narrow bands” or Type 1b “broad 

bands” – is largely determined by embryological processes such as cell replication, migration, 

and apoptosis, as well as mutation timing and physiological effect {Happle 1993}.  While benign 

in isolation, mosaic hyperpigmentation is often observed alongside more severe clinical features 

in patients with multisystem diseases such as McCune-Albright Syndrome {Happle 1986; 

Weinstein 1991}, CHILD Syndrome {Happle 1990; Konig 2000}, Segmental Neurofibromatosis 

Type 1 {Ruggieri 2011; Maertens 2007; Messiaen 2011}, or Sturge-Weber Syndrome {Shirley 

2013}.   

Overgrowth disorders are another class of phenotypically recognizable conditions with 

readily identifiable affected tissue that lend themselves to the study of mosaicism.  Proteus 

Syndrome {Wiedemann 1983; Lindhurst 2012}, Megencephaly Syndromes {Lee 2012; Poduri 

2012; Riviere 2012}, and CLOVES Syndrome {Kurek 2012} all involve mosaic activating 

mutations in the PIK3C-AKT pathway that result in asymmetric overgrowth of bones, skin, 

organs, or other tissue.  While the studies of the cutaneous disorders described above used lower-

throughput conventional experimental techniques (e.g. denaturing gradient gel electrophoresis 

{Weinstein 1991}, single-strand conformation analysis {Konig 2000}, etc.) available at the time, 

these more recent studies of overgrowth disorders took advantage of higher-throughput next-

generation sequencing (NGS) technology. 
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In 2012, two large-scale exome-sequencing studies investigating the role of de novo 

variation in neurodevelopmental disorders uncovered pathogenic mosaic mutations in blood, 

prompting further investigation into the disease implications of mosaicism detectable in blood. 

Gilissen et al. and O’Roak et al. sequenced blood samples belonging to large cohorts of 

Intellectual Disability and Autism Spectrum Disorder patients, respectively, and found, in 

addition to pathogenic de novo variants, disease-relevant post-zygotic point mutations that were 

confirmed via Sanger sequencing and ultra-deep resequencing.  In the following years, these 

same research groups and others would go on to publish a set of studies applying various NGS 

techniques to detect mosaicism in the blood of patients with Brain Malformations {Jamuar, 

Walsh 2014}, Intellectual Disability {Acuna-Hidalgo, Gilissen 2015}, Autism Spectrum 

Disorder {Pevsner 2016; Krupp, O’Roak 2017; Lim, Walsh 2017; Dou 2017}, Epilepsy {Stosser 

2018}, Alzheimer’s Disease {Sala Frigerio 2015}, CINCA/NOMID Syndrome {Tanaka 2011}.   

Discrepancies in reported validation rates and fraction of apparent de novo variants 

arising post-zygotically brought to light several key considerations for studying mosaicism: (1) 

sequencing depth and coverage profile affect mosaic detection, (2) extensive filtering is 

necessary to control the false positive rate, and (3) validation should both confirm presence and 

resolve allele fraction.    

There are two key technical challenges when it comes to mosaic detection: distinguishing 

low allele fraction mosaics mutations from technical artifacts and distinguishing high allele 

fraction mosaics from germline heterozygous mutations.  Methods to detect mosaicism in high-

throughput sequencing data tend to use one of two approaches: (1) paired-sample (tumor/normal) 

and (2) single-sample {Xu 2018}.  Paired-sample approaches are most commonly used in cancer 

where DNA is extracted from tumor and benign (normal) tissue and compared to identify tumor-
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specific mutations of clinical interest.  Methods in this space generally focus on distinguishing 

low allele fraction mosaics from technical noise and can be broadly classified into heuristic 

approaches (e.g. VarScan2{Koboldt 2012}, VarDict {Lai 2016}), joint genotyping-based 

approaches (e.g. SomaticSniper {Larson 2012}, JointSNVMix2 {Roth 2012}), and allele 

frequency-based approaches (e.g. MuTect {Cibulskis 2013}, LoFreq {Wilm 2012}, Strelka 

{Saunders 2012}).  Heuristic approaches identify candidate variants on the basis of alternate 

allele read support and variant allele fraction and use tests such as Fisher’s Exact Test comparing 

the allelic depth (REF, ALT) between tumor and normal samples to test for nonrandom 

association {Koboldt 2012}.  Joint genotyping-based approaches use Bayesian comparisons of 

the genotype likelihoods in tumor and normal samples to identify candidate mosaics {Larson 

2012}.  Allele-frequency-based approaches model joint allele fractions and formulate somatic 

variant calling as a 2-model (wild-type vs. mutant) comparison problem, with candidate mosaics 

variants identified on the basis of log likelihood score {Cibulskis 2013}.  Single-sample methods 

(e.g. SomVarIUS {Smith 2016}, Somatic-Germline-Zygosity {Sun 2018}, MosaicHunter 

{Huang 2017}) have been used in cancer and other settings where paired normal tissues are not 

always available.  These methods typically perform somatic-germline classification using a 

probabilistic framework involving estimating the sequencing error probability and the probability 

of being germline for each variant and identifying candidate mosaics using pre-defined 

thresholds {Smith 2016}.  While existing approaches tend to perform well in resolving low allele 

fraction mosaics, distinguishing high allele fraction mosaics from germline variants remains a 

challenge. 

Mosaicism in heart disease is still an emerging area of research.  The earliest studies 

involved sequencing paired blood and tissue samples from a small number of patients with 
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Ventricular Tachycardia {Lerman 1998} or Atrial Fibrillation {Gollob, Bai 2015}.  Priest et al. 

in 2016 implicated a mosaic SCN5A mutation in Long-QT Syndrome by applying a battery of 

sequencing techniques to blood, urine, and saliva samples from a single patient, followed by 

confirmatory RNA-seq of matched heart tissue.  While these studies advanced our understanding 

of the genetics underlying various forms of cardiovascular disease, they were limited in sample 

size and throughput.  The most recent large-scale study of mosaicism in congenital heart disease 

{Manheimer 2018} analyzed exome-sequencing data of blood samples belonging to 715 proband 

parent trios, followed by confirmation via digital-droplet PCR.  While Manheimer et al. did not 

find that mosaics contributed significantly, limitations in terms of sample size, detection method, 

and validation rate suggest that future investigations into the role of mosaicism in CHD stand to 

benefit from a more systematic approach to mosaic detection involving larger study cohorts and 

different tissue types.   

 

0.3 Organization of this dissertation 

The remainder of this dissertation is organized into two chapters. 

In Chapter 1, I will discuss a new method for the detection of mosaic single-nucleotide 

variants in exome-sequencing data of blood and the implications of mosaicism for congenital 

heart disease.  Briefly, we developed a new computational method, EM-mosaic, that detected 

mosaicism CHD patients with 90% validation rate.  We found that in genes related to CHD, 

mosaic variants predicted to be deleterious had higher allele fraction than those predicted to be 

benign, suggesting presence in a larger fraction of the cells in the individual, earlier occurrence 

in development, and a role in disease.  Detected mosaics comprised 10.4% of apparent de novo 

SNVs and occurred at a frequency of 0.122/exome.  Twenty-five patients in our cohort (1%) 
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carried a plausible disease-causing mosaic event, all of which were independently confirmed.  

Analysis of individuals with matched blood and cardiac tissue available supported the notion that 

mosaic mutations in blood samples with relatively high allele fraction were more likely to also 

be detected in the heart. 

 In Chapter 2, I discuss a statistical approach to investigating association between genetic 

variation and poor clinical outcomes in congenital heart disease patients.  We examined the 

contribution of de novo variation to comorbid neurodevelopmental disorder (NDD) and 

abnormal ventricular function phenotypes by gene set and found that pleiotropic mutations 

contribute a large fraction of the risk.  We also developed a proof-of-concept rare variant risk 

score combining information from de novo, inherited, and copy-number variants and 

demonstrate its utility in predicting NDD in CHD patients, particularly those with Complex or 

Unknown CHD presentations.   
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Chapter 1: EM-mosaic: Expectation-Maximization-based detection 

of mosaicism  

In this section, I discuss the development of a computational method, EM-mosaic 

(Expectation-Maximization-based detection of Mosaicism), to detect mosaic single nucleotide 

variants (SNVs) using whole-exome sequencing data (WES) of proband and parent DNA. We 

evaluated our method using a simulation experiment to measure the accuracy of its mosaic 

fraction estimation and its posterior odds-based false discovery rate estimation.  To optimize this 

method, we also measured mosaic detection power as a function of variant allele fraction and 

sequencing depth. We then compared EM-mosaic against an existing method, MosaicHunter 

{Huang 2014}, and applied both methods investigate mosaicism in 2530 CHD proband-parent 

trios from the Pediatric Cardiac Genomics Consortium (PCGC) {Jin 2017}, using exome 

sequences derived from blood-derived DNA.  We detected predicted deleterious mosaic 

mutations in genes involved in known biological processes relevant to CHD or developmental 

disorders in 1% of probands. The accuracy of these mosaic variant detection algorithms was 

assessed using an independent re-sequencing method. We found that among high-confidence 

mosaic mutations in CHD-relevant genes, likely-damaging variants tended to have higher VAF 
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than likely-benign variants. In parallel, we assessed mosaicism by applying EM-mosaic and 

MosaicHunter to 70 discarded tissues from several heart regions obtained from 66 probands who 

underwent cardiac surgical repairs. While VAF varied significantly (>3 fold) between blood and 

cardiovascular tissue at about 60% of sites, in general mosaic variants with high (>15%) VAF 

were more likely shared between blood and cardiac tissue than variants with lower VAF. 

1.1 Introduction 

Mosaicism results from somatic mutations that arise post-zygotically in an early 

embryonic cell, resulting in two or more cell populations with distinct genotypes in the 

developing embryo {Biesecker 2013}. The developmental status of the early embryonic cell at 

the time of mutagenesis determines the proportion of variant-carrying cells and the tissue 

distribution of these cells in the post-natal child {Acuna-Hidalgo 2015}. While germline variants 

have a variant allele frequency (VAF) of 0.5, somatic mosaic variants have a significantly lower 

VAF. 

Post-zygotic mosaic mutations have been implicated in several diseases including non-

malignant developmental disorders such as overgrowth syndromes {Poduri 2013; Lindhurst 

2012; Kurek 2016}, structural brain malformations {Poduri 2012; Jamuar 2014; Riviere 2012; 

Lee 2012}, epilepsy {Stosser 2018}, and autism spectrum disorder {Lim 2017; Krupp 2017; 

Freed 2016; Dou 2017}. Recent analyses also identified mosaic variants in a cohort of patients 

with congenital heart disease (CHD) {Manheimer 2018}, but the prevalence of these was far less 

than germline variants (CHD) {Zaidi 2013; Homsy 2015; Jin 2017; Zaidi 2017}.  

Assessment of the frequency of mosaicism in human disease is confounded by technical 

issues, including differences in sequencing depth, DNA sources, and variant assessment 

pipelines. Low levels of mosaicism can escape the detection threshold of traditional sequencing 
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methods with standard read depths, while post-zygotic mutations with a higher percentage of 

affected cells are difficult to discriminate from germline de novo mutations {Acuna-Hidalgo 

2015}. All of these issues can lead to substantially different conclusions. For example, analyses 

of mosaicism in autism spectrum disorder was recently assessed from whole exome sequence 

(WES) data from whole blood DNA from 2506 families (proband, parents and unaffected 

sibling; trios and quads) in the Simons Simplex Collection (SSC) {Fischbach 2010}.  The 

primary sequence data were analyzed by three groups; one that identified a protein-coding 

somatic mosaic variant rate of 0.074 per individual {Freed 2016}, another that found a mosaic 

rate of 0.059 per individual {Lim 2017}, and a third group that reported a mosaic rate of 0.125 

per individual {Krupp 2017}. This disparity suggests the need for more systematic mosaic 

mutation detection methods that account for dataset-specific confounding factors. 

By contrast, analyses of affected tissues can improve the sensitivity and specificity of 

detection of somatic mosaicism. In cancer, methods to detect these events, such as MuTect 

{Cibulskis 2013}, compare tumor and benign tissues from the same patient. Mosaicism has also 

been demonstrated from the analyses of unpaired samples with cancer and other pathologies 

{Sun 2018; Huang 2017; Smith 2015} by the demonstration of variants in affected tissues that 

are absent from blood-derived DNA {Symoens 2017; McDonald 2018}. With access to cardiac 

tissues from patients with CHD obtained during surgical repair, we hypothesized that analyses of 

mosaicism in cardiac tissue might improve insights into the causes of this common congenital 

anomaly. As many cardiomyocyte lineages share a mesodermal origin with blood cells but exit 

the cell cycle during embryogenesis, we also sought to determine if mosaicism in the heart 

exhibited distinct patterns of mosaicism with regard to variant frequency and allele fractions. 
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1.2 Results  

1.2.1 High-accuracy detection of mosaic mutations in WES data using EM-mosaic 

  We analyzed whole exome sequence (WES) data from 2530 CHD proband-parent trios 

{Homsy 2015; Jin 2017} (>Table S1). Among this cohort, 1205 probands had CHD with 

neurodevelopmental disorders (NDD) and/or extracardiac manifestations (EM), 788 had isolated 

CHD at the time of enrollment, 539 had undetermined NDD status due to young neonatal age at 

the time of enrollment, and 9 subjects had incomplete data (>Table S2).  

Previous WES analyses {Jin 2017} identified 1742 germline de novo SNVs among 838 

cases with NDD and/or EM, 516 isolated cases, 644 cases of unknown NDD status, and 7 with 

incomplete data. These de novo variants were identified using the Genome Analysis Toolkit 

(GATK) pipeline {McKenna 2010; DePristo 2011} assuming a germline diploid model in which 

the expected VAF is 0.5. This model has limited sensitivity to detect mosaic mutations for which 

the fraction of alternative allele reads is significantly below 0.5, especially because de novo 

variants with VAF<0.2 were excluded to reduce false discovery.  

To efficiently capture mosaic variants with VAF<0.4, we developed a new method (EM-

mosaic) to detect mosaic variants in WES sequence of a proband and parents (trios). Potential 

mosaic variants were identified in WES sequence data using SAMtools mpileup {Li 2009} with 

settings designed to capture sites with VAF between 0.1-0.4 and merged with the variants found 

by the GATK pipeline {Jin 2017} (>Fig. 1.1) to create a union variant set. To reduce the 

elevated false positive rate inherent in low-VAF calls, we applied a set of empirical filters to 

remove likely technical artifacts due to sequencing errors associated with repetitive and/or low 

complexity sequences. We then manually inspected de novo SNVs with VAF<0.3 (n=582) using 
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IGV and filtered out an additional 188 likely false positives. After preprocessing and outlier 

removal, the remaining 2971 de novo SNVs were used as input to our mosaic detection model.  

Among the 2971 de novo SNVs, this pipeline identified 309 sites as candidate mosaics based on 

posterior odds score (>Fig. 1.2A-B, Table S3), including 50 sites that were previously reported 

as germline de novo variants {Jin 2017}. An additional 86 sites were identified as having 

posterior odds below our threshold of 10 but greater than 1 (>Fig. 1.3A-B), including a ZEB2 

variant with posterior odds 4.7 that was previously confirmed via ddPCR {Manheimer 2018}. 

Among these 86 variants, 53 are likely mosaic and 33 are likely germline (>Fig. 1.3B). We 

chose not to include these sites since there was insufficient evidence to confidently resolve them 

individually as mosaic or germline.  
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Figure 1.1. EM-mosaic flowchart 

We first processed our SAMtools de novo calls using our upstream filters (n=2396 sites passing all filters). We then 

applied the same upstream filters to the published dnSNVs from Jin et al. (n=2650 sites passing all filters) before 

finally taking the union of these two call sets (n=3192). High-confidence mosaics (n=309) were defined as mosaics 

passing IGV inspection and having posterior odds > 10. Grey text indicates which filters removed candidate mosaic 

variants called by MosaicHunter but not by EM-mosaic. 
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Figure 1.2. Mosaic detection by Expectation-Maximization.  

(A) Expectation-Maximization (EM) Estimation to decompose the variant allele fraction (VAF) distribution of our 

input variants into mosaic and germline distributions. The EM-estimated prior mosaic fraction was 12.15% and the 

mean of the mosaic VAF distribution was 0.15. (B) Read depth vs. VAF distrubution of individual variants. The 

blue line denotes mean VAF (0.49) and the red lines denote the 95% confidence interval under our Beta-Binomial 

model. Mosaic variants are defined as sites with posterior odds > 10, corresponding to a False Discovery Rate of 

9.1%.  Germline variants are represented in black and mosaic variants are represented in red. (C) Estimated mosaic 

detection power as a function of average sample depth for values between 40x and 500x. 
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Figure 1.3. Blood variants with posterior odds between 1 and 10.  

(A) Distribution of the 86 variants with posterior odds between 1 and 10. (B) Histogram of counts by bin. To 

estimate the number of potential mosaics missed by our threshold, counts of each bin were scaled by the estimated 

true positive rate (TPR; posterior odds / 1+posterior odds). By our estimate, 54/86 variants were likely mosaic and 

32/86 were likely germline. 

 

Table 1.1. Mosaic detection by EM-mosaic, MosaicHunter; validated by PCR product 

sequencing 

  
Union Shared 

Unique 

EM-mosaic MosaicHunter 

Mosaic Variants (total)* 315 (332) 56 (57) 218 (240) 29 (35) 

Mosaic Candidates 367 58 251 58 

Mosaic Candidate VAF mean (SD) 0.13 (0.06) 0.12 (0.05) 0.13 (0.06) 0.10 (0.05) 

MiSeq 

Confirmation 

Total Tested 143 22 75 46 

Mosaic 108 21 64 23 

Germline 3 0 3 0 

No Variant 32 1 8 23 

Validation Rate 76% 95% 85% 50% 

*Estimated number of mosaic variants found among 2530 CHD probands (total number of mosaic variants detected by EM-

mosaic and MosaicHunter). 
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Figure 1.4. MosaicHunter workflow.  

Quality Control filters excluded any sites that were (1) present in ExAC (2) G>T with Nalt<10 (3) parent Nalt>2. 

Outliers were defined as probands carrying more than 20 mosaics, or non-unique sites. We also removed sites called 

as germline by GATK Haplotype Caller. High-confidence mosaics (n=116) were defined as having Likelihood Ratio 

> 80 and affecting coding regions excluding MUC/HLA genes. Grey text indicates which filters removed variants 

called by EM-mosaic but not by MosaicHunter. 
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1.2.2 Method evaluation via simulation experiment 

 We evaluated EM-mosaic using a simulation experiment to measure the accuracy of its 

mosaic fraction estimation and its posterior odds-based false discovery rate (FDR) estimation.  

We simulated roughly 1 million variants (Nalt, N) for a range of sample average sequencing depth 

values (40x, 60x, 100x) and spiked in a known fraction of simulated mosaic variants.  We then 

applied EM-mosaic to each dataset and compared the resulting mosaic and germline predictions 

for each variant against their ground truth labels.  We found that our EM-estimated mosaic 

fraction was consistent with the true fraction across all datasets ( 0.3%), with slight 

overestimation at lower sequencing depth (40x) and slight underestimation at higher sequencing 

depth (100x).  We next estimated the false discovery rate (FDR) for each variant as a function of 

posterior odds (1/(1+posterior odds)).  Then, for FDR cutoffs j = {0, 0.01, …, 0.99, 1.0}, we 

calculated both the 𝑞𝑣𝑎𝑙𝑢𝑒𝑗 =
∑ 𝑓𝑑𝑟𝑖
𝑁
1

𝑁
  as well as the False Discovery Proportion (FDPj ; the 

fraction of variants with a ground truth label of “germline”) using the N variants with FDR < j.  

We found that our posterior odds-based FDR estimates were consistent with the true FDR values 

(>Fig. 1.5C).  Simulation experiment results for the 60x dataset (representative of the sequencing 

depth used for the CHD patient cohort) are summarized in Figure 1.5; results from the other 

datasets (40x, 100x) can be found in Figure 1.17.   
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Figure 1.5. Simulation experiment results (60x dataset).   

(A) We simulated n=1,015,017 variants at sample average sequencing depth 60x (n=900,439 germline, n=114,470 

mosaic). (B) Our EM approach accurately estimated mosaic fraction (simulated = 11.28%, inferred = 11.23%).  (C) 

Our posterior-odds-based FDR was consistent with the FDR as determined from the ground truth variant labels (# 

false positives / # predicted positives).  The dashed lines denote perfect concordance with a margin of +/- 0.01. 
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1.2.3 Mosaic mutations found in blood derived DNA with MosaicHunter  

We also employed MosaicHunter, which uses a Bayesian genotyping algorithm with a 

series of stringent filters (see Materials and Methods) for discovering mosaic variants using 

WGS genotype information from trios. {Huang 2017} Among the 2530 CHD trios, 

MosaicHunter identified an initial set of 58976 sites showing evidence of mosaicism, including 

214 high-confidence variants located in coding regions. (>Fig. 1.4). After applying a minimum 

likelihood ratio (LR) cutoff of 80 for distinguishing mosaic from germline mutation, and 

additional heuristic filters (Materials and Methods), MosaicHunter identified 116 coding sites 

(>Table S4) or 0.05 mosaics /individual. 

Of the mosaic candidates detected by MosaicHunter, 58/116 (50%) were also identified 

by EM-mosaic while 58/116 (50%) candidates were unique to MosaicHunter (>Table 1.1). Of 

the 58 candidates unique to MosaicHunter, 35 were filtered out by EM-mosaic on the basis of 

insufficient alternate allele read support, 16 had a non-zero allelic depth in the parents, and 7 

failed quality filters. The 251 candidates unique to EM-mosaic were discarded by the 

MosaicHunter pipeline during BAM reprocessing (n=13), quality filtering (n=146), application 

of LR cutoff (22), or were not called due to inadequate read depth (n=70) (>Fig. 1.4).  

 

1.2.4 Sequence confirmation of candidate mosaic variants and estimation of mosaicism in 

CHD  

From the 367 high-confidence EM-mosaic and/or MosaicHunter SNVs, we selected 143 

candidates (97 identified by EM-mosaic; 68 identified by MosaicHunter) for experimental 

confirmation using MiSeq amplicon resequencing (>Table S5; Tables S11 and S12; Methods). 

DNA fragments encompassing the putative mosaic variant were PCR-amplified from proband 
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and each parent DNA, sequenced on an Illumina MiSeq next generation sequencer and VAF was 

calculated for each individual. These candidate mosaics included SNVs on the extremes of the 

VAF spectrum, as well as mosaics that were flagged by MosaicHunter quality filters. Candidates 

mosaic variants were considered confirmed by MiSeq analyses if they demonstrated an amplicon 

VAF exceeding 0.01 but less than 0.45, so as to indicate a variant of post-zygotic origin. MiSeq 

VAF values closely correlated with those originally determined by exome sequencing (P= 

2.2x10-16; >Fig. 1.6). 

We confirmed 85/97 (88%) EM-mosaic candidate mosaic variants. Three candidate 

variants were likely germline de novo SNVs (VAF>0.45). Nine candidate variants were ‘false 

positives’ that were neither germline de novo SNVs or mosaic SNVs since either no variant 

reads were detected by MiSeq sequencing of the proband amplicon, or the same small fraction of 

variants were detected in proband amplicon and one parent’s amplicon.  

  Parallel analyses with MosaicHunter confirmed 44/68 (65%) candidate mosaic variants. 

There were 23 sites for which no variant reads were detected by MiSeq amplicon sequencing 

(MiSeq VAF<0.001) or in which the same small fraction of variant reads was detected in the 

proband amplicon as in one parent’s amplicon.   

 We considered whether estimates of mosaic variant frequency were sensitive to whole 

exome sequencing depth by calibrating estimates of mosaic detection power using properties of 

the sequence data (average read depth, prior mosaic fraction, and the value of our overdispersion 

parameter θ) (>Fig. 1.16; Materials and Methods). Our projected mosaic detection power curves 

demonstrated more than a doubling of power to detect mosaic variants with VAF 0.2 as 

sequencing depth increases from 40x to 80x (>Fig. 1.2C). Projected mosaic detection power 
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curves for less stringent mosaic cutoffs showed similar increases of power with increasing 

sequencing depth (>Fig. 1.7). 

  To estimate the ‘true’ frequency of mosaicism per blood DNA exome, independent of 

average coverage detection power constraints, we estimated the ‘true’ mosaic count in a VAF 

range by multiplying the number of mosaics by the inverse of the detection power for each VAF 

bin. Applying this method to the 184 of 309 high-confidence EM-mosaic variants with 

VAF>0.1, we estimated the adjusted number of mosaics with VAF>0.1 to be 361 (>Fig. 1.7A). 

Thus, the true frequency of coding mosaics in the blood (0.4>VAF >0.1) is 0.14 variants per 

individual, representing a non-negligible class of mutations with potential contribution to genetic 

risk for congenital heart disease. The estimated true mosaic frequency does not change 

significantly when using less stringent mosaic definitions (>Fig. 1.7B-C). In sum, we identified 

315 blood mosaic variants in 2530 CHD probands or 0.13 mosaic variants per subject with a 

mean VAF of 0.13±0.06. We do not anticipate that doubling the sequencing depth would change 

significantly this estimate.  
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Figure 1.6. Targeted sequencing to validate candidate blood mosaic variants.  

(A) EM-mosaic and (B) MosaicHunter variants were assayed using PCR followed by MiSeq for high-depth 

assessment of mosaicism. Variants with x symbols were shared by both pipelines. Mosaic variants that validated are 

black, while variants with VAF > 0.45 and therefore germline are red. Validation VAF values demonstrated 

significant correlation with the original WES-derived VAF for EM-mosaic (Pearson’s correlation P=2.2x10-16) and 

MosaicHunter (P=8.2x10-11).  (C) We observed an inflation of VAF when comparing MiSeq against WES data, 

which we attribute to a combination of reference bias and preferential amplification of G and C reference bases. 

 

 

 

 

 

 

A B

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Variant Allele Fraction (WES)

V
a

ri
a
n

t 
A

lle
le

 F
ra

c
ti
o

n
 (

M
iS

e
q
)

Mosaic

Germline

No Variant

Contamination

Overlap

MosaicHunter−only

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Variant Allele Fraction (WES)

V
a

ri
a
n

t 
A

lle
le

 F
ra

c
ti
o

n
 (

M
iS

e
q
)

Mosaic

Germline

No Variant

Contamination

Overlap

EM−mosaic−only

C



25 

 

 

 

 
 

Figure 1.7. Estimated mosaic detection power using less stringent mosaic definitions.  

(A) Estimated true frequency of detectable coding mosaics (0.4>VAF>0.1) adjusted by detection power (n=341; 

0.135/exome) (B) Calibrated mosaic detection power and estimated true mosaic frequency of detectable coding 

mosaics, using posterior odds cutoff of 5 (n=361; 0.143/exome). (C) Calibrated mosaic detection power and 
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estimated true mosaic frequency of detectable coding mosaics, using posterior odds cutoff of 2 (0.4>VAF>0.1; 

n=424; 0.168/exome). 

 

 

1.2.5 Mosaic variants occurred most frequently at CpG sequences. 

 Previous studies demonstrated a strong preference for de novo C>T mutations at CpG 

dinucleotides compared to other dinucleotides due to the spontaneous deamination of 5-

methylcytosine {Fryxell 2005; Francioli 2015}. We asked whether the germline de novo variants 

observed in CHD probands and the 332 mosaic sites demonstrated a similar sequence preference 

(>Fig. 1.8, Table 1.1, Tables S3 and S4). Of the 2662 germline de novo mutations identified in 

2530 CHD probands, 979 variants (37% of all variants) involved mutation of the cytosine of a 

CpG dinucleotide (>Fig. 1.8A). By contrast, 99 (29% of all mosaic SNVs) of 332 mosaic SNVs 

altered the cytosine of a CpG dinucleotide more than expected by chance (2.2x above 

expectation; p=2.0E15). Ignoring the high CpG mutation frequency, cytosines and guanines were 

~2-fold more likely to be mutated than adenines or thymidines both for germline mutations and 

for mosaic variants. Surprisingly, somatic mutations of A>C/T>G transversions in ApC 

dinucleotides were ~2-fold greater than the corresponding germline mutations (P=5x10-8; >Fig. 

1.8B).  

  

Figure 1.8. Mutation spectrum of detected germline and mosaic variants.  
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Rates of specific mutations for (A) germline, (B) blood mosaic, and (C) CHD tissue mosaic variants. Transitions 

predominated in both variant sets. 

 

 

1.2.6 Detection of mosaic mutations in CHD tissues 

  Using EM-mosaic and MosaicHunter we analyzed exome sequences from 70 cardiac 

tissues derived from 66 subjects with CHD (>Table S6) and paired blood samples. Among 57 de 

novo variants (allele depth approximately 0.5) that were previously identified in blood-derived 

DNA, 54 were also found in CHD tissues. Of the 3 de novo variants not present in cardiac tissue, 

1 was outside of the tissue WES capture region and 2 occurred in a single proband (>Table 1.2). 

In addition, 23 distinct candidate mosaic variants were detected by EM-mosaic (n=13), 

MosaicHunter (n=6), or by both algorithms (n= 4). All 23 candidates were tested via MiSeq 

amplicon sequencing of blood and cardiac tissue DNAs; 15 of 23 unique candidate mosaics were 

confirmed (>Table 1.2, S7), including a CCNC variant that was identified in two different CHD 

tissues from proband 1-01684. Ten (86%) confirmed mosaic variants were detected in blood and 

cardiac tissues (MAF>0.01), four were found only in cardiac tissue, and one was found only in 

blood. Of the 7 mosaics detected by blood WES analysis, 4 were confirmed in the corresponding 

cardiac tissue sample.  Remarkably, five confirmed cardiac tissue mosaic variants occurred in 

one proband (1-07004), one of which was also present in blood DNA.  

These analyses indicate a frequency of coding mosaics (0.4>VAF >0.1) in the cardiac 

tissues of 0.14 per individual (9 of 66 probands), which approximated our estimate of 0.14 blood 

mosaics per individual (>Fig. 1.7A). Despite these similar frequencies, multiple distinct mosaic 

variants were identified in these tissues. Mosaics with highest VAF were more likely to be found 

in both tissues (Mann-Whitney U Test P=0.019), presumably indicating that the mutation 

occurred earlier in lineage development (>Fig. 1.9, Fig. 1.10).  
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Figure 1.9. Validated mosaics detected in probands with matched blood and cardiovascular tissue 

samples available.  

Validation VAF from blood compared to validation VAF from cardiovascular tissue demonstrated tissue-specific 

mosaicism (red) as well as shared mosaicism (blue). Predicted effect of mosaic variants corresponds to marker 

shape. 

 

 
Figure 1.10. Mosaic variants shared in blood and cardiovascular tissues have higher variant allele 

fraction.  
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Validation VAF from (A) cardiovascular tissue and (B) blood had higher VAF for shared variants compared to 

tissue-specific variants (p=0.101 and 0.015, respectively). 

 

Table 1.2. Mosaics detected in individuals with matched cardiovascular tissue and blood 

ID Gene 
Variant 

Class 
Pipeline 

CHD Tissue Blood WES VAF 

Location 
WES 

AD 
WES 

VAF 
MiSeq 

VAF 
WES 

AD 
WES 

VAF 
MiSeq 

VAF 

1-00543 CTCFL Bmis EM-mosaic AO 138,36 0.21 0.32 29,8 0.22 0.19 

1-00984 ZNF16 syn EM-mosaic LV 262,1 0.00 0.01 100,7 0.07 0.07 

1-01282 GABRA6 Dmis MosaicHunter RV 104,1 0.01 0.01 55,12 0.18 0.18 

1-01684 CCNC Bmis Both AoValve, RV 36,7 0.16 0.17, 0.19 224,40 0.15 0.14 

1-02672 TOR1A syn Both AtrSpt 159,10 0.06 0.10 29,6 0.17 0.19 

1-03512 RFX3 LoF MosaicHunter RV 156,15 0.09 0.08 39,0 0.00 0.03 

1-04652 PCDH10 syn Both AtrSpt 154,19 0.11 0.14 15,1 0.06 0.10 

1-07004 ANK2 Bmis MosaicHunter SubAoMembr 226,13 0.05 0.04 30,0 0.00 0.00 

1-07004 MYH14 Bmis Both SubAoMembr 124,22 0.15 0.27 33,0 0.00 0.00 

1-07004 NRG3 Bmis EM-mosaic SubAoMembr 152,30 0.16 0.24 43,0 0.00 0.00 

1-07004 NUDT21 Bmis Both SubAoMembr 137,22 0.14 0.14 74,0 0.00 0.02 

1-07004 TET3 Dmis MosaicHunter SubAoMembr 131,1 0.01 0.03 81,16 0.16 0.27 

1-07299 RRS1 syn Both RV, UNK 160,25 0.14 0.25 22,2 0.08 0.14 

1-09869 PIK3C2G LoF MosaicHunter LV 126,9 0.07 0.10 31,0 0.00 0.00 

1-11800 TMEM45A Bmis MosaicHunter RV 213,0 0.00 0.00 32,7 0.18 0.06 

 
Characteristics of mosaic variants predicted for individuals with blood and cardiovascular tissue WES data 

available. Among 15 mosaics, 5 were detected via analysis of blood WES, 8 were detected from cardiovascular 

tissue WES, and 2 were detected by both approaches. Six of 7 (86%) mosaics detected from analysis of blood were 

present in both DNA sources with MiSeq VAF≥0.01. Two additional variants previously identified as de novo 

germline variants in blood WES were absent from CHD tissue WES. Minimum 1023 MiSeq reads used to determine 

VAF. Abbreviations: AD, allelic depth (reference, alternate); AO, aorta; AtrSpt, atrial septum; Bmis, benign 

missense; Dmis, deleterious missense; LOF, Loss of function variant; LV, left ventricle; RV, right ventricle; VAF, 

variant allele fraction. 

 

1.2.7 Blood and cardiac tissue mosaics likely to contribute to CHD 

Our prior genetic studies of CHD studies showed that damaging de novo variants 

typically occurred in genes highly expressed in the top quartile of the developing E9.5 mouse 

heart (HHE) {Zaidi 2013; Homsy 2015} or that contribute to CHD in mouse models {Jin 2017}. 

Among the 342 mosaic variants identified from blood or cardiac tissue analyses that were not 

false by MiSeq, 65 altered these HHE and/or mouse CHD genes (n=4558, >Table S8). RefSeq 

functional annotation predicted 52 variants as likely-damaging variants (LOF, Dmis), and 46 as 

likely benign, missense (>Tables S8, S9). In total, we observed potentially CHD-causing mosaic 

mutations in 25 participants, representing 1% of the 2530 total participants in our CHD cohort. 
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Among these 25 mosaics, we confirmed 22/22 (100%) candidates tested via MiSeq.  Notably, 

multiple likely-damaging mosaic variants altered genes (ISL1, SETD2, NOVA2, SMAD9, LZTR1, 

KCTD10, KCTD20, FZD5, and QKI) involved in key developmental pathways, which may 

account for the extra-cardiac phenotypes observed in these patients (>Table 1.3, S10). There was 

no difference in the proportion of individuals with extracardiac features among those with 

damaging mosaic variants compared to the overall cohort (11/25 vs 909/ 2521, P=0.68), and 

there was a wide range of CHD subtypes.  Five subjects carried additional de novo LoF or Dmis 

variants (1-06216, TYRP1; 1-04046, KRT13; 1-06677, TRIP4; 1-05011, KDM5B; 1-00018, 

SBF1) and 4 genes harbored de novo LoF or Dmis variants other than those listed in Table 1.3 

(FBN1; PKD1; LZTR1; PIK3C2G). No CNVs were detected in these subjects, with the 

exception of 1-00192 (duplication at chr15:22062306-23062355; non-overlapping with the 

GLYR1 mosaic). 

If mosaic variants were unrelated to CHD, we would expect similar allelic fractions 

between mosaics with variants predicted as likely damaging or likely benign. However, we 

found that the allele fraction of likely damaging variants was significantly higher (Mann-

Whitney U Test P=0.001, >Fig. 1.11A). Moreover, among mosaic variants in genes that are not 

included among HHE or mouse CHD genes, we found no significant difference of allele fraction 

(P=0.985, >Fig. 1.11B). We repeated these analyses using less stringent posterior odds cutoffs of 

2 and 5 and found the same result (>Fig. 1.12). Together these data support our conclusion that 

at least some likely-damaging mosaic variants identified here contribute to CHD.  These results 

were determined independently of MiSeq validation results.  
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Figure 1.11. Damaging mosaics in CHD-related genes have higher variant allele fraction than 

likely-benign mosaics.  

(A) Among the 76 mosaics in CHD-related genes, likely damaging variants have a higher VAF than likely benign 

(Mann-Whitney U p=0.001). (B) Among the 233 mosaics in Other (non-CHD-related) genes, there is no difference 

in VAF based on predicted effect (p=0.985). 
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Figure 1.12. Damaging CHD-related mosaics have higher VAF under less stringent definitions of 

mosaicism.  

(A) Using posterior odds cutoff of 5 (corresponding to 315 mosaics). Among 78 mosaics in CHD-related genes 

(left), there were 14 variants predicted as damaging, 63 variants predicted as likely-benign, and 1 variant of 

unknown functional consequence. Among 237 mosaics in non-CHD-related genes (right), there were 41 variants 

predicted as damaging, 184 variants predicted as likely-benign, and 2 variants of unknown functional consequence. 

(B) Using posterior odds cutoff of 2 (corresponding to 352 mosaics). Among 89 mosaics in CHD-related genes 

(left), there were 17 variants predicted as damaging, 71 variants predicted as likely-benign, and 1 variant of 

unknown functional consequence. Among 263 mosaics in non-CHD-related genes (right), there were 54 variants 

predicted as damaging, 206 variants predicted as likely-benign, and 3 variants of unknown functional consequence. 
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Table 1.3. Damaging Mosaics in CHD-relevant genes 

ASD, atrial septal defect; BAV, bicuspid aortic valve; Dmis, deleterious missense; episcore, haploinsufficiency score 

(percentile rank) {Han 2018}; Heart Exp, heart expression percentile rank; LoF, loss-of-function; pLI, probability 

of loss-of-function intolerance {gnomAD}; PCGC, Pediatric Cardiac Genomics Consortium; VAF, variant allele 

fraction; VSD, ventricular septal defect. *VAF refers to CHD tissue WES.  
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Figure 1.13. Mosaic rate by proband age.  

(A) Age distribution for all 2530 probands in cohort. (B) Mosaic Rate across Age ranges. Rate = # mosaics/# 

probands in age bin. Note: 9/2530 probands missing Age information. 1/367 mosaic belong to a proband with 

missing Age. 

 

 

Figure 1.14. Mosaic rate by parental age at birth.  

Mosaic rate by age of father (blue) and mother (red) at birth. Rate = # mosaics/# probands in each parental age bin. 

Note: 9/2530 probands missing age information. 1/367 mosaic belong to a proband with missing age. 
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1.3 Discussion  

Distinguishing mosaic mutations from constitutional mutations has both clinical 

management and reproductive implications for proband and parents. Individuals with mosaic 

mutations are generally clinically less severely affected for conditions that affect multiple parts 

of the body {Happle 1986; Wallis 1990; Cohn 1990; Etheridge 2011; Donkervoort 2015; 

Weinstein 2016}. Mutations that occur post-zygotically should have no recurrence risk for the 

parents and could have a recurrence risk of less than 50% for the proband depending on gonadal 

involvement. This study is among the first investigations of the role of post-zygotic mosaic 

mutations in CHD. We developed a new computational method to robustly detect mosaic single 

nucleotide variants from blood WES data at standard read depth. Applying this method to a 

cohort of 2530 CHD patients, we detected 309 high-confidence mosaics (with a confirmation 

frequency of 88% in a subset of variants assessed) or 0.12 variants per proband.  Sequencing of 

cardiac tissue to greater depth identified an additional 8 mosaic variants that had not been 

detected in blood WES, 6 of which are present in cardiac tissue but not blood. We found 

significantly more variants per proband in cardiac tissue DNA (0.23 variants per proband) than 

in blood DNA (0.12 variants per proband; p=0.02). While the increased numbers of mosaic 

variants in cardiac tissue DNA vs blood DNA may reflect technical differences such as 

sequencing read depth of cardiac tissue DNA vs blood DNA, it is possible that somatic variation 

occurs more frequently in cardiac tissue of CHD probands than in their blood. Whether or not 

there are more cardiac tissue mosaic variants in CHD probands than blood DNA variants, we 

found 10 mosaic variants among 66 CHD proband cardiac tissues with a higher VAF in tissue 

than in blood (Table 1.2) and 5 variants among these individuals with a higher VAF in blood 

than in tissue.  
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In total, we observed potentially CHD-causing mosaic mutations in 25 participants, 

representing 1% of the 2530 total participants in our CHD cohort. Among these 25 mosaics, we 

confirmed 22/22 (100%) candidates tested.  We found that in CHD-related genes, likely-

damaging mosaic mutations have significantly greater alternative allele fraction than likely-

benign mosaics, suggesting that some of these variants contribute to CHD. Comparison of blood 

and cardiovascular tissues demonstrated tissue-specific mosaic variants, though those variants 

with a higher VAF were more likely to be shared between tissues. Due to limitations of 

conventional clinical interpretation for both mosaic and constitutional CHD variants (Materials 

and Methods), we cannot know with complete certainty which among these 25 variants is 

pathogenic and instead propose that, among our detected mosaics, the 23 detected from blood 

WES data provide an estimate of the disease-causing mosaics detectable in blood with standard 

exome-sequencing read depth. Nine of these variants affect genes known to have a role in 

cardiac development: ISL1, SETD2, NOVA2, QKI, SMAD9, LZTR1, KCTD10, KCTD20, and 

FZD5.  

The mosaic LOF mutation in ISL1 is likely to be the cause of CHD in participant 1-

05095. ISL1 is a transcription factor essential to normal cardiac development that regulates 

expression of NKX, GATA, and TBX family genes {Golzio 2012; Colombo 2018} and controls 

secondary heart field differentiation and atrial septation {Colombo 2018; Briggs 2012}. ISL1 

deficiency has been shown to lead to severe CHD in mice {Cai 2003; Golzio 2012}. Participant 

1-05095 has an isolated atrial septal defect consistent with a secondary heart field defect 

phenotype {Stevens 2010} and has no other previously reported damaging germline variants in 

CHD-related genes.  
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Damaging germline de novo variants in CHD subjects are enriched in genes related to 

chromatin modification and RNA processing {Homsy 2015; Jin 2017}. Three genes with 

damaging mosaic variants discovered here have related functions. SETD2 is a histone 

methyltransferase required for embryonic vascular remodeling {Hu 2010}; it is both sensitive to 

haploinsufficiency and highly expressed in the heart during development. NOVA2 is a key 

alternative-splicing regulator involved in angiogenesis that has been shown to disrupt vascular 

lumen formation when depleted {Giampietro 2015}. QKI encodes an RNA-binding protein that 

regulates splicing, RNA export from the nucleus, protein translation, and RNA stability {Lauriat 

2008}. QKI is also highly expressed in the heart during development and has been shown to 

cause CHD and other blood vessel defects in mice when dysregulated {Noveroske 2002}.  

Other damaging mosaic variants affect processes known to be relevant to CHD. SMAD9 is 

involved in the TGF-beta signaling pathway. TGF-beta signaling plays a critical role in cardiac 

development and cardiovascular physiology, leading to pulmonary arterial hypertension and 

cardiac abnormalities in mice when dysregulated {Drake 2015; Soubrier 2013}. LZTR1 encodes 

a member of the BTB-Kelch superfamily that is highly expressed in the heart during 

development and has been associated with Noonan {Yamamoto 2015; Ghedira 2017} and 

DiGeorge Syndromes {Kurahashi 1995}, both of which are characterized by CHD. KCTD10 

binds to and represses the transcriptional activity of TBX5 (T-box transcription factor), which 

plays a dose-dependent role in the formation of cardiac chambers {Tong 2014}. KCTD10 is 

highly expressed in the heart during development and has been shown to produce CHD in mice 

when dysregulated {Ren 2014}. KCTD20 is a positive regulator of Akt {Nawa 2013} also highly 

expressed in the heart during development. FZD5 is haploinsufficient and encodes a 
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transmembrane receptor involved in Wnt, mTOR, and Hippo signaling pathways and has been 

shown to play a role in cardiac development {Dawson 2013}. 

Finally, two mosaic variants found in cardiac tissue, genes encoding RFX3 and 

PIK3C2G, may be disease-relevant. PIK3C2G is a signaling kinase involved in cell proliferation, 

survival, and migration, as well as oncogenic transformation and protein trafficking {OMIM: 

609001; RefSeq}. The effects of PIK3C2G haploinsufficiency during cardiac development has 

not been characterized. RFX3 is a highly-constrained ciliogenic transcription factor that leads to 

pronounced laterality defects {Rasmdell 2005} and disruption of RFX3 leads to congenital heart 

malformations in mice {Lo 2011 MGI: 5560494}. Notably the RFX3 LoF variant has a 4-fold 

higher VAF in cardiac tissue than in blood.  

Several investigators who studied cancer and diseases with cutaneous manifestations 

proposed that the VAF correlates with time of mutation acquisition and disease burden 

{Belickova 2016; Sallman 2016; Happle 1986}. In this study, we used VAF as a proxy for 

cellular percentage and mutational timing, with increasing VAF corresponding to events 

occurring earlier in development. Thus, we assume that CHD-causal mosaic events identified in 

blood-derived DNA occurred during or shortly after the gastrulation process (3rd week of 

development) {Moorman 2003} in the mesodermal progenitor cells that differentiate into both 

heart precursor cells (cardiogenic mesoderm) and blood precursor cells (hemangioblasts). We 

found that in CHD-relevant genes, mosaic sites predicted to be damaging tended to have higher 

VAF than sites predicted to be likely benign, consistent with the hypothesis that these mutations 

arose early in fetal development and play significant roles in CHD. However, additional 

functional studies are necessary to fully assess causality.  
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Finally, we recognize that while our method is able to detect a large fraction of mosaic 

variants in blood, our calibrated estimates for the true number of mosaics suggest there are a 

non-negligible number of additional mutations that were not identified by our method. At our 

current average sequencing depth of 60x, we have limited sensitivity in the low VAF (<0.05) 

range. To reliably identify these low allelic fraction sites, ultra-deep sequencing will be critical to 

distinguishing true variants from noise. At 500x, we estimate detection sensitivity for mosaic 

events at VAF 0.05 to be above 80%. We also recognize age-related clonal hematopoiesis 

{Jaiswal 2014; Genovese 2014} as a potential confounding factor in somatic mutation detection; 

however, our study cohort includes mostly pediatric cases and we did not observe mosaic 

mutations in genes related to clonal expansion (e.g. ASXL1, DNMT3A, TET2, JAK2) nor did we 

observe a relationship between proband age and mosaic rate (>Fig. 1.13, Fig. 1.14), suggesting 

minimal impact from this process.  

This study is among the first investigations of the role of post-zygotic mosaic mutations 

in CHD. Despite limitations in sequencing depth and sample type, EM-mosaic was able to detect 

309 high-confidence mosaics with resequencing confirmation in 88% of cases assessed. Using 

MosaicHunter, an additional 64 candidate mosaic sites were identified, of which 23/46 (50%) 

candidates from blood DNA and 4/6 (67%) from CHD tissue DNA validated. In total, we 

observed potentially CHD-causing mosaic mutations in 25 participants, representing 1% of our 

CHD cohort, and propose that these 25 cases provide an estimate of the disease-causing mosaics 

detectable in blood with standard exome-sequencing read depth. Additionally, we found that in 

CHD-related genes, likely-damaging mosaics have significantly greater alternative allele fraction 

than likely benign mosaics, suggesting that many of these variants cause CHD and occurred 

early in development. In the subset of our cohort for which cardiovascular tissue samples were 
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available, we show that mosaics detected in blood can also be found in the disease-relevant tissue 

and that, while the VAF for mosaic variants often differed between blood and cardiovascular 

tissue DNA, variants with higher VAF were more likely to be shared between tissues. Given 

current limitations in sequencing depth and on the availability of relevant tissues, particularly for 

conditions impacting internal organs like the heart, the full extent of the role of mosaicism in 

many diseases remains to be explored. However, as datasets containing larger numbers of blood 

and other tissue samples sequenced at higher depths become increasingly available, we will be 

able to more fully characterize the biological processes underlying post-zygotic mutation and, by 

extension, the contribution of mosaicism to disease using the methods presented here. 

 

1.4 Materials and Methods 

1.4.1 Samples and sequencing data 

We analyzed WES data from 2530 Congenital Heart Disease (CHD) proband-parents trio 

families who were recruited as part of the Pediatric Cardiac Genomics Consortium (PCGC) 

study {Homsy 2015; Jin 2017}. Genomic DNA from venous blood or saliva was captured using 

Nimblegen v.2 exome capture reagent (Roche) or Nimblegen SeqCap EZ MedExome Target 

Enrichment Kit (Roche) followed by Illumina DNA sequencing (paired-end, 2x75bp) {Jin 2017, 

Zaidi 2013}. Genomic DNA from 70 surgically-discarded cardiovascular tissue samples (2-

10mg) was isolated using DNeasy Blood & Tissue Kit (QIAgen), then captured using xGen 

Exome Research Panel v1.0 reagent (IDT) followed by Illumina DNA sequencing (paired-end, 

2x75bp). Sequence reads were mapped to the hg19 human reference genome with BWA-MEM 

and BAM files were further processed following GATK Best Practices, which included 

duplication marking, indel realignment, and base quality recalibration steps. Blood and saliva 
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samples had sample average depth 60x and cardiovascular tissue samples had sample average 

depth 160x. 

 

1.4.2 De novo variant calling and annotation 

  We processed our sample BAMs and called variants on a per-trio basis using SAMtools 

(v1.3.1-42) and BCFtools (v1.3.1-174). Pileups were generated using samtools ‘mpileup’ 

command with mapQ 20 and baseQ 13 to minimize the effect of poorly mapped reads on variant 

allele fraction, followed by bcftools ‘call’ using a cutoff of 1.1 for the posterior probability of the 

homozygous reference genotype parameter (-p) to capture additional sites with variant allele 

fraction suggestive of post-zygotic origin that would otherwise be excluded under the default 

threshold of 0.01. To identify de novo mutations from trio VCF files, we selected sites with (i) a 

minimum of 6 reads supporting the alternate allele in the proband and (ii) for both parents, a 

minimum depth of 10 reads and 0 alternate allele read support. Variants were then annotated 

using ANNOVAR (v2017-07-17) to include information from refGene, gnomAD (March 2017), 

1000 Genomes (August 2015), ExAC, genomicSuperDups, CADD (v1.3) COSMIC (v70), and 

dbSNP (v147) databases, as well as pathogenicity predictions from a variety of established 

methods included as part of the dbNSFP (v3.0a) database or generated in-house (MCAP, 

REVEL, MVP, MPC). We used REVEL {Ionnidis 2016} to evaluate missense variant functional 

consequence, using the recommended threshold of 0.5 corresponding to sensitivity of 0.754 and 

specificity of 0.891. We used spliceAI {Jaganathan 2019} to predict the variant functional 

impact on splicing using the delta score thresholds of 0.2 for likely pathogenic (high recall), 0.5 

for pathogenic (recommended), and 0.8 for pathogenic (high precision).  We considered sites 

predicted to be Likely Gene-Disrupting (LOF) (stopgain, stoploss, frameshift indels, splice-site), 
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Deleterious Missense (Dmis; nonsynonymous SNV with REVEL>0.5), or splice-damaging 

(Benign Missense or synonymous SNV with delta score > 0.5) to be damaging and likely disease 

causing. We considered sites predicted to be Synonymous (delta score ≤ 0.5) or Benign missense 

(Bmis; nonsynonymous SNV with REVEL ≤ 0.5 and delta score ≤ 0.5) to be non-damaging. 

 

1.4.3 Pre-processing and quality control 

  To reduce the number of low VAF technical artifacts introduced by our variant calling 

approach, we pre-processed our variants using a variety of filters. We first excluded indels from 

further analysis, as their downstream model parameter estimates were less stable than those of 

SNVs. We then filtered our variant call set for rare heterozygous coding mutations (Minor Allele 

Frequency (MAF) ≤ 10-4 across all populations represented in gnomAD and ExAC databases). 

To account for regions in the reference genome that are likely to affect read-depth estimates, we 

removed variant sites found in regions of non-unique mappability (score<1; 300bp), likely 

segmental duplication (score>0.95), and known low-complexity {Li 2014}. We then excluded 

sites located in MUC and HLA genes and imposed a maximum variant read depth threshold of 

500. We used SAMtools PV4 to exclude sites with evidence of technical issues using a cutoff of 

1e-3 for baseQ Bias and Tail Distance Bias and a cutoff of 1e-6 for mapQ Bias. To account for 

potential strand bias, we used an in-house script to flag sites that have either (1) 0 alternate allele 

read support on either the forward or reverse strand or (2) p<1e-3 and (Odds Ratio (OR)<0.33 or 

OR>3) when applying a two-sided Fisher’s Exact Test to compare proportions of reference and 

alternate allele read counts on the forward and reverse strands. We also excluded sites with 

cohort frequency>1%, as well as sites belonging to outlier samples (with abnormally high de 

novo SNV (dnSNV) counts, cutoff = 8) and variant clusters (defined as sites with neighboring 
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SNVs within 10bp). Finally, we applied an FDR-based minimum Nalt filtering step (>Fig 1.15) to 

control for false positives caused purely by sequencing errors.  

 

Figure 1.15. FDR-based minimum Nalt threshold.  

An FDR-based approach was used to determine a threshold for the minimum number of reads supporting the 

alternate allele for each site to avoid false positives caused purely by sequencing errors. Assuming that sequencing 

errors are independent and that errors occur with probability 0.005, with the probability of an allele-specific error 

being 0.005/3=0.00167, and given the total number of reads (N) supporting a variant site, we iterated over a range of 

possible Nalt values between 1 and 0.5*N and estimated the expected number of false-positives due to sequencing 

error, exome-wide ((1- fPoisson(x=n, λ=N*0.005/3))*3x107 ; where fPoisson is the probability of x events in a Poisson 

process with mean λ). Assuming one coding de novo SNV per exome {Acuna-Hidalgo 2016} and that roughly 10% 

of de novo SNVs arise post-zygotically {Lim 2017; Krupp 2017; Freed 2016}, we used a conservative assumption 

of 0.1 mosaic mutation per exome. To constrain theoretical FDR to 10% we allowed a maximum of 0.01 false 

positives per exome and used the corresponding Nalt value to define an FDR-based minimum Nalt threshold for each 

variant. We then excluded variants with alternate allele read counts below this threshold. 
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1.4.4 IGV visualization of low allele fraction de novo SNVs 

To reduce the impact of technical artifacts on model parameter estimation, we manually 

inspected de novo SNVs with VAF<0.3 (n=558) using Integrative Genomics Viewer (v2.3.97) to 

visualize the local read pileup at each variant across all members of a given trio family. We 

focused on the allele fraction range 0.0-0.3 since this range is enriched for technical artifacts that 

could potentially impact downstream parameter estimation. Sites were filtered out if (1) there are 

inconsistent mismatches in the reads supporting the mosaic allele, (2) the site overlaps or is 

adjacent to an indel, (3) the site has low MAPQ or is not Primary alignment, (4) there is evidence 

of technical bias (strand, read position, tail distance), or (5) the site is mainly supported by soft-

clipped reads. 

  

1.4.5 Expectation-Maximization to estimate prior mosaic fraction and control FDR 

  Current estimates for the fraction of de novo events occurring post-zygotically are 

unstable due to differences in study factors such as variant calling methods, average sequencing 

depth, and paternal ages. In order to use this fraction as a prior probability in our posterior odds 

and false discovery calculations, we reason that this value must be estimated from the data itself. 

We used an Expectation-Maximization algorithm to jointly estimate the fraction of mosaics 

among apparent de novo mutations and to calculate a per-site likelihood ratio score. This initial 

mosaic fraction estimate gives us a prior probability of mosaicism, independent of sequencing 

depth or variant caller, and allows us to calculate for each variant the posterior odds that a given 

site is mosaic rather than germline. To control for false discovery among our predicted mosaic 

candidates, we chose a posterior odds threshold of 10 to restrict FDR to 9.1%.  
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1.4.6 Mosaic mutation detection model 

  To distinguish variant sites that show evidence of mosaicism from germline heterozygous 

sites, we modeled the number of reads supporting the variant allele (Nalt) as a function of the 

total variant position read depth (N). In the typical case, Nalt follows a Binomial distribution with 

parameters N (site depth) and p (mean VAF). However, we observed notable overdispersion in 

the distribution of variant allele fraction compared to the expectations under this Binomial model 

(>Fig. 1.16). To account for this overdispersion, we instead modeled Nalt using a Beta-Binomial 

distribution {Heinrich 2012; Ramu 2013}. We estimated an overdispersion parameter θ for our 

model as follows: for site depth values N in the range 1 to 500, we (1) bin variants by identifying 

all sites with depth N, (2) calculate a maximum-likelihood estimate θ value using N and all Nalt 

values observed for variants in a given bin, and (3) estimate a global θ value by taking the 

average of θ values across all bins, weighted by the number of variants in each bin. We then used 

θ in our Expectation-Maximization approach to jointly estimate prior mosaic fraction and to 

calculate per-site likelihood ratios. 

  To calculate the posterior odds that a given variant arose post-zygotically, we first 

calculated a likelihood ratio (LR) of two models: M0: germline heterozygous variant, and M1: 

mosaic variant. Under our null model M0, we calculated the probability of observing Nalt from a 

Beta-Binomial distribution with site depth N, observed mean germline VAF p, and 

overdispersion parameter θ. Under our alternate model M1, we calculated the probability of 

observing Nalt from a Beta-Binomial distribution with site depth N, observed site VAF p=Nalt/N, 

and overdispersion parameter θ. Finally, for each variant, we calculated LR by using the ratio of 

probabilities under each model and posterior odds by multiplying LR by our E-M estimated prior 

mosaic fraction estimate. We defined mosaic sites as those with posterior odds greater than 10 
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(corresponding to 9.1% FDR). We used posterior odds in this context to be able to control for 

false discovery, but we output similarly valid p-value and likelihood ratio scores for each de 

novo SNV.   

 

Figure 1.16. Overdispersion.  

Overdispersion is commonly seen in WES data {Heinrich 2012; Ramu 2013} and is defined as observing variance 

(in terms of (A) Nalt or (B) VAF of variants with a given DP value) higher than expected across DP values, under a 

given statistical model. The blue line denotes the expectation under a Binomial model and the red line denotes the 

expectation under a Beta-Binomial model. 

 

1.4.7 Simulation experiment 

Variant datasets used in the simulation experiment were generated as follows: 

For a given sample average sequencing depth value S, 

1) Generate n > 1,000,000 VAF values where VAF ~ Beta(=0.8, =7) / 2 

2) Generate n variant position read depth values (N) where N ~ NegativeBinomial(θ=4, 

mean=S) 

3) Generate n variant alternate allele read depth values (Nalt) where Nalt = VAF * N and 

recalculate VAF = Nalt / N 
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4) Apply FDR-based minimum Nalt threshold (used to control false positives during 

variant calling), removing ~90% of variants and leaving ~100,000 mosaics 

5) Apply the same procedure to generate 10 * n germline variants 

6) Combine mosaic variants with germline variants to produce final dataset 

7) Calculate true mosaic fraction  

 

To evaluate method performance on each dataset, we first estimated the false discovery 

rate (FDR) for each variant as a function of posterior odds (1/(1+posterior odds)).  Then, for 

FDR cutoffs j = {0, 0.01, …, 0.99, 1.0}, we calculated both the 𝑞𝑣𝑎𝑙𝑢𝑒𝑗 =
∑ 𝑓𝑑𝑟𝑖
𝑁
1

𝑁
  as well as the 

False Discovery Proportion (FDPj ; the fraction of variants with a ground truth label of 

“germline”) using the N variants with FDR < j before comparing the results.  Results are shown 

in Fig. 1.17. 
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Figure 1.17. Simulation experiment results for 40x, 60x, 100x.  

Panel order from left to right correspond to 40x, 60x, 100x, respectively.  (A) Simulated variant datasets with a 

known true fraction of spiked in mosaic variants. (B) EM-estimated mosaic fraction compared to true mosaic 

fraction. (C) q-value vs. FDPtruth plots.  

 

1.4.8 Mutation confirmation by MiSeq amplicon sequencing 

  Chromosome coordinates were expanded 500 bp upstream and downstream of the 

candidate mosaic variants in the UCSC Genome Browser. Primer 3 Plus software was used to 
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design forward and reverse primers to generate 150-300 bp amplimers containing the candidate 

site. PCR reactions consisting of genomic DNA, primers, and Phusion polymerase were 

amplified by thermal cycling and purified with AMPure XP beads. The purified PCR product 

was quantified, and 0.5-1.0 ng of product was used to construct Nextera XT libraries according 

to the protocol published by Illumina. Libraries were purified using AMPure XP beads, and final 

libraries were quantified and pooled to undergo sequencing through Illumina MiSeq. 

We experimentally tested for the presence our predicted post-zygotic sites in the original 

blood DNA and cardiovascular tissue DNA samples using Illumina MiSeq Amplicon 

sequencing. The Amplicon Deep Sequencing workflow, optimized for the detection of somatic 

mutations in tumor samples, offers ultra-high sequencing depth (>1000x) that gives us the 

resolution to confirm low VAF variants, accurately estimate site VAF, and to distinguish true 

variant calls from technical artifacts. Mosaic candidates were considered validated if the variant 

allele matched the MiSeq call and both the mosaic VAF and MiSeq VAF indicated post-zygotic 

origin (VAF<0.45). 

Mosaic candidates were selected for confirmation on the basis of VAF, plausible 

involvement in CHD (based on predicted pathogenicity and HHE status), and detection method 

(Table S11; Table S12).  We sampled mosaics from both ends of the VAF spectrum to evaluate 

our ability to distinguish high VAF mosaics (VAF>0.2; n=29) from germline variants and to 

distinguish low VAF mosaics (VAF<=0.1; n=52) from technical artifacts.  Confirmation rate 

across different VAF bins is shown in >Figure 1.18.  We also selected for confirmation mosaics 

detected uniquely by either EM-mosaic or MosaicHunter, for the sake of method comparison 

(Table 1).   
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To examine a potential source of bias in our candidate selection process, we compared 

the posterior odds distribution of selected candidate mosaics (n=97) against those not chosen 

(n=212). We found that our tested candidates had lower posterior odds than untested mosaics 

(meantested=5.382, meanuntested=7.050, log10-scale; Mann Whitney U P=0.002) (>Fig 1.19), 

suggesting that our validation rate is not buoyed by testing variants with the strongest evidence 

of mosaicism.  For method development purposes, we intentionally focused on mosaics with 

lower posterior odds as these variants fall in the VAF range for which it is most difficult to 

distinguish germline from mosaic.  
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Figure 1.18. Confirmation rate across VAF bins.  

The number of candidates for which we performed MiSeq resequencing among (A) the union set (n=143 tested) (B) 

all EM-mosaic calls (n=97) and (C) all MosaicHunter (n=68) calls vs. the number confirmed as mosaic for VAF 

ranges [0, 0.1), [0.1, 0.2), and [0.2, 0.3). 
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Figure 1.19. Posterior odds comparison for tested vs. untested mosaics.  

Among 309 candidates with EM-mosaic posterior odds scores available, we compared the distribution of tested 

(n=97) vs. untested (n=212) mosaics.  The log10-scaled posterior odds distribution for the tested group is shown in 

blue (mean=5.382).  The log10-scaled mean posterior odds for the untested group is shown in red 

 

1.4.9 Investigating the relationship between VAF and pathogenicity 

  We hypothesized that mosaic contribution to disease is positively correlated with cellular 

percentage and by extension mutational timing. Here, we used variant allele fraction as a proxy 

for cellular percentage. We grouped mosaics into likely-damaging and likely-benign and 

compared the distribution of allele fraction in CHD-related genes. We defined likely-damaging 

variants as: (a) likely gene-disrupting (LOF) variants (including premature stop-gain, 

frameshifting, and variants located in canonical splice sites), (b) missense variants predicted to 

be damaging by REVEL {Ioannidis 2016} (with score ≥ 0.5) or (c) missense variants and 

synonymous predicted to be splice-damaging by spliceAI (with score > 0.5). One of the main 
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findings from previous CHD studies is that damaging de novo variants in genes highly expressed 

in the developing heart (“HHE”, ranked in the top 25% by cardiac expression data in mouse at 

E14.5 {Zaidi 2013; Homsy 2015}) contribute to non-isolated CHD cases that have additional 

congenital anomalies or neurodevelopmental disorders. Therefore, we considered the union of 

HHE genes and known candidate CHD genes {Jin 2017} as CHD-related genes (n=4558). For 

mosaics in CHD-related genes and for mosaics in other genes, we used a Mann-Whitney U Test 

to compare the VAF distributions of likely-damaging and likely-benign groups. 

 

1.4.10 Estimated contribution of mosaicism to CHD 

  We identified likely disease-causing mosaic mutations on the basis of predicted 

pathogenicity and presence in genes involved in biological processes relevant to CHD or 

developmental disorders. Each mosaic mutation was annotated with gene-specific information, 

including heart expression percentile, probability of loss-of-function intolerance (pLI) score 

{Lek 2016}, whether dysregulation causes CHD in mice {Smith 2018; Finger 2017}, and gene 

function {NCBI RefSeq}. We focused on HHE genes, genes with high pLI (pLI>0.9), genes that 

cause CHD phenotypes in mice, and genes involved in key developmental processes such as 

Wnt, mTOR, and TGF-beta signaling pathways. Then, for each patient, we used the clinical 

phenotype to further prioritize mosaic mutations most likely contributing to that individual’s 

clinical features. Detailed mutation annotation and clinical phenotypes for the mosaic carriers 

described above can be found in Table S10. We estimate the contribution of mosaicism to CHD 

as the percentage of individuals carrying likely disease-causing mosaic mutations among all 

individuals in our CHD cohort. 
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1.4.11 Union with validated de novo SNVs from Jin et al. Nature Genetics 2017 

  As part of the PCGC program, Jin et al. previously sequenced and processed a cohort of 

2871 CHD probands – including 2530 parent-offspring trios used in this study – to investigate 

the contribution of rare inherited and de novo variants to CHD. They called a total of 2992 

proband de novo variants, including 2872 SNVs and 118 indels, and Sanger confirmed a subset 

of the most likely-disease causing variants. Since we processed the same proband-parent trios 

using different variant calling pipelines, we combined the results of our two approaches to 

provide a more complete input de novo call set for mosaic variant detection.  

  We first processed our SAMtools de novo calls using our upstream filters (n=2396 sites 

passing all filters). We then applied the same upstream filters to the published dnSNVs from Jin 

et al. (n=2650 sites passing all filters) before finally taking the union of these two call sets 

(n=3192). There were 1814 sites in the intersection, with 836 sites unique to the Jin et al. calls 

and 542 sites unique to our SAMtools calls. After preprocessing, outlier removal, and FDR-

based minimum Nalt filtering, the remaining 2971 dnSNVs were used as input to our mosaic 

detection model. 

  

1.4.12 Mutation spectrum analysis 

  We compared the mutation spectrum – the frequencies of all possible base changes – of 

our predicted mosaic candidates against the spectrum of our predicted germline heterozygous 

variants. Under the assumption that that post-zygotic events occur randomly (i.e. due to errors in 

DNA replication rather than a specific biological process), the mosaic mutation spectrum should 

not differ significantly from the germline mutation spectrum. We used Pearson’s Chi-square Test 

to test for a difference in frequencies across all base changes between our predicted sets of 
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variants. We interpreted large qualitative differences in base change frequencies as evidence of 

technical artifacts and rejection of the Chi-square null as evidence of systemic issues in our 

pipeline.  

  

1.4.13 Mosaic detection power given sample average coverage 

  To model statistical power in the context of mosaic variant detection, we considered two 

conditional probabilities: (i) the probability of detecting a mosaic event (i.e. the probability of a 

variant’s posterior odds exceeding a threshold) given site depth N, VAF, and overdispersion 

parameter θ and (ii) the probability of observing site depth N, given sample-wide average 

coverage DPsample.  

(i) Pr(detect mosaic | N, VAF, θ) was calculated by first identifying the VAF range (and 

by extension, the range of Nalt) over which posterior odds > cutoff, then by integrating the Beta-

Binomial probability mass function over this range, with considerations for the probability of 

strand bias (P(strand bias | N) ~ Binomial(Nalt, N, p=0.5)).  

(ii) Pr(observe N | DPsample) follows an overdispersed Poisson distribution that we 

approximated using a negative binomial model with overdispersion parameter θ {Sampson 

2011}. For each N value, we calculated a vector of weights corresponding to Pr(N | DPsample) for 

N values in the range (1, 1500).  

Finally, we took the sum of the detection probabilities described in (i) multiplied by the 

weights described in (ii) to determine the probability of detecting a mosaic variant given a 

sample average coverage value – Pr(detect mosaic | N). Our estimated detection power curves for 

a range of sample average coverage values typical of exome-sequencing studies are shown in 
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(>Fig. 1.2C). Our CHD cohort was sequenced to sample average depth of 60x, with prior mosaic 

fraction=0.121 and estimated θ=116.  

To estimate the true rate of mosaicism per exome given sample average coverage, we 

first split our set of predicted mosaics into VAF bins of size 0.05. For each bin above VAF 0.1, 

we multiplied the number of mosaics by the inverse of the detection power for that given VAF 

bin to estimate the true count of mosaic variants in that VAF range, assuming full detection 

power. Since EM-mosaic is underpowered to detect mosaics with VAF < 0.1 in the blood and 

since this range is enriched for technical artifacts that potentially affect our counts, we did not 

apply this scaling procedure to these bins to avoid over-inflating our adjusted mosaic rate 

estimate (>Fig. 1.7A). 

  

1.4.14 Filtering of MosaicHunter candidate variants  

MosaicHunter was used to identify candidate mosaic variants from blood exome-

sequencing trio data using default settings {Huang 2014}. Filtering of original MosaicHunter 

candidate variants excluded, in order, any variant present in ExAC (n=46634), G to T mutations 

with fewer than Nalt<10 oxidative indicating DNA damage {Costello 2013} (n=3995), non-

uniquely called sites (n=4719), germline SNVs previously called by GATK HaplotypeCaller 

(n=591), probands with >20 mosaic variants (n=1490 in 10 probands), mosaic log posterior 

likelihood ratio <10 (n=940), variants with >2 parental alternative allele reads (n=244), variants 

with gnomAD population frequency > 1e-4 or located in MUC or HLA genes (n=40). 
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1.4.15 Filtering of MosaicHunter-detected cardiovascular tissue candidate variants 

  We used the MosaicHunter pipeline in trio mode to identify candidate variants in WES 

data from 70 cardiovascular tissue samples (belonging to 66 unique probands). From the list of 

variants initially reported by the pipeline using default settings, we applied the same filtration 

steps listed for MosaicHunter candidate variants in blood samples with the exception of the 

removal of G to T mutations with fewer than 10 alternative allele reads and the mosaic log 

posterior likelihood ratio <10. Finally, we removed variants that were identified in either parent 

or had a total read depth <10 in either parent. 

  

1.4.16 Clinical interpretation of mosaic variants – limitations 

We note that conventional clinical interpretation of mosaic mutations is challenging for 

several reasons: (i) it is unclear in which tissues each mosaic mutation is expressed (ii) several 

study participants were very young at time of clinical assessment and many classical disease 

features may not yet have developed or been noted, and (iii) the absence of additional clinical 

features does not necessarily rule out a mosaic mutation as being for the cause of the CHD. For 

the purposes of this study, we selected these mosaic mutations on the basis of predicted 

pathogenicity and detection in genes involved in biological processes relevant to CHD or 

developmental disorders  
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Chapter 2: Genetic factors associated with clinical outcomes in CHD 

In this section, I discuss the development of an analytical framework to investigate the 

association between rare genetic variation and clinical outcomes in congenital heart disease 

patients (CHD).  Rare de novo, transmitted, and copy number variants were called from a cohort 

of 3966 CHD proband-parent trios.  We show that damaging de novo variants (DNVs) are 

associated with neurodevelopmental disorders (NDD) in CHD patients and that the enrichment is 

stronger when focusing on variants in genes highly expressed in developing hearts (HHE), 

known NDD risk genes, and genes that are both HHE and NDD-risk.  The prevalence of NDD is 

higher in CHD patients carrying likely pathogenic (LP) variants than in cases that do not 

carrying LP variants and the difference increases when focusing on variants in the gene sets of 

interest above.  Despite comprising roughly half of NDD-risk genes and only 5% of HHE genes, 

the genes that are annotated as both HHE and NDD-risk appear to drive the majority of the 

association and suggest that disruptive mutations in these genes have pleiotropic effects that 

likely play a role in the acquisition of NDD in our CHD patients.  We next focused on CHD 

patients diagnosed with single ventricle defects and found that damaging DNVs are enriched in 

patients with abnormal ventricular function phenotypes (decreased systemic ventricular function, 

worsening ventricular function, arrhythmia).  The enrichment is increases when considering 

variants in HHE genes, constrained genes (pLI>0.5), and genes that are both HHE and 



59 

 

constrained.   The prevalence of abnormal phenotypes is higher in CHD patients carrying likely 

pathogenic (LP) variants than in cases that do not carrying LP variants and the difference again 

increases when focusing on variants in the gene sets of interest above.  Genes that are annotated 

as both HHE and constrained comprise 57% of HHE genes and 42% of constrained genes and 

drive the majority of the association, suggesting pleiotropic effects of disruptive mutations in 

these genes.  Finally, we created a proof-of-concept rare variant risk score model to predict NDD 

on a per-patient basis by combining counts of rare de novo, transmitted, and copy number 

variants with weights defined by the strength of association with NDD for each particular gene 

set.  Our risk score achieved a 10-fold cross validated AUPRC of 0.44 when applied to all cases 

and AUPRCs of 0.32, 0.53, 0.46 when applied to cases with Isolated, Complex, and Unknown 

CHD subtypes, respectively.  We found that prevalence of NDD increased as function of risk 

score percentile and that patients with scores in the top 25% were 3.71-fold as likely to have 

NDD than patients in the bottom 25%, demonstrating that our score is able to stratify patients in 

a clinically meaningful way and identify patients at increased risk of NDD. 

 

2.1 Introduction 

Congenital heart disease (CHD) patients often acquire cardiac and non-cardiac 

comorbidities that impact quality of life, such as arrhythmias, myocardial dysfunctions, and 

neurodevelopmental disorders (NDDs) {Marino 2012; Calderon 2014; Miller 2005; Burnham 

2010}.  While these clinical outcomes have been associated with a variety of fetal 

developmental, surgical/post-operative, and genetic factors {Marelli 2016}, thus far none have 

been identified as the primary contributor {Zaidi 2017} and early identification of patients at risk 

for these poor outcomes remains a challenge. 
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CHD patients, especially those with single ventricle defects such as hypoplastic left heart 

syndrome or tricuspid atresia, often experience a range of poor outcomes following surgery that 

last into adulthood, including impaired systemic ventricular function, arrhythmias, and 

neurodevelopmental disorders {Feinstein 2012}.  Arrhythmias in particular may surface later in 

life and in conjunction with co-existing hemodynamic alterations are a common cause of 

mortality in adult congenital heart disease patients {Kairy 2006; Kanter 1997}.  Identification of 

CHD patients most at risk of developing these poor cardiac outcomes creates opportunities for 

improved care strategies and earlier therapeutic intervention.   

Among non-cardiac comorbidities, neurodevelopmental disorders (NDD) affect a 

disproportionately high number of CHD patients and have the largest impact on quality of life 

{Zaidi 2017}.  Neurodevelopmental disorders describe a spectrum of conditions including but 

not limited to intellectual disability, autism spectrum, and other cognitive, motor, social, and 

language deficits {Homsy 2015}.  Risk of acquiring NDD in CHD patients is a function of CHD 

severity/complexity and prevalence estimates range from 10% to over 50%, compared to 4-6% in 

the general population {Zaidi 2017; Homsy 2015; Marino 2012; Dixon-Salazar 2012}.  Both 

CHD and NDD impair reproductive fitness and tend to occur sporadically in individuals with no 

prior family history, pointing to strong contribution from de novo genetic variation.  Recent 

large-scale genetic studies in CHD {Zaidi 2013; Homsy 2015} and NDD cohorts {De Rubeis 

2014} have implicated disruption of chromatin modifying genes in both conditions, suggesting 

shared genetic etiology.  Further, CHD patients presenting with extracardiac anomalies, NDD, or 

both were found to be more likely to carry damaging de novo variants {Homsy 2015}.  Given 

disease heterogeneity and difficulty in resolving diagnosis criteria in infants, predicting risk of 
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acquiring NDD in CHD patients using genetic information presents an exciting clinical 

opportunity. 

Genetic disease risk is a combination of rare variants of large effect size and common 

variants of small effect sizes (and to varying degrees, environmental factors).  The Common 

Disease/Common Variants hypothesis {Reich 2001} posits that common variants drive risk of 

common disease and, by extension, that rare variants drive risk of rare disease.  Identification of 

individuals at high risk of acquiring specific diseases enables earlier therapeutic intervention and 

changes in patient management {Khera 2018}. Polygenic risk scores (PRS) aim to stratify 

patients and identify individuals at clinically significant increased risk by integrating the 

contribution of a large number of loci genome-wide. Introduced in 2010 {Ripatti 2010}, PRS 

have begun to gain traction as patient study cohorts have dramatically increased in size.  Using 

data from ~500,000 participants recruited as part of the recently released UK Biobank database, 

Khera and Kathiresan et al. developed a PRS that was able to identify 57,115 (19.8%) of 

participants in their testing dataset (n=288,978) at >3-fold risk of coronary artery disease, atrial 

fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer {Khera 2018}.  

Scores have also been developed for a range of other common traits including but not limited to 

height, body mass index, and total cholesterol {Chatterjee 2013}, though the authors note that 

clinical utility of PRS depends on factors such as association study sample size and genetic 

architecture.  Given that rare genetic variation typically contributes larger effect size, the field 

has also seen the development of a genome-wide rare variant risk score for schizophrenia 

{Purcell 2014} and a genome-wide de novo risk score for autism spectrum disorder {An 2018}, 

highlighting considerable interest in patient risk stratification on the basis of genetic variation.  
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Currently no risk score exists for predicting NDD risk in CHD, which we believe is an unmet 

need with significant clinical utility. 

 

2.2 Results  

2.2.1 Complex CHD cases are more likely to acquire NDD than Isolated CHD cases 

 Our cohort of 3966 CHD cases was annotated with information about extracardiac 

anomalies and NDD diagnosis and stratified along these two axes (>Table 2.1). Here, Complex 

cases were defined as having at least one other extracardiac anomaly (e.g. Skeletal, Craniofacial, 

Genitourinary, etc), Isolated cases were defined as having no extracardiac anomalies, with 

Unknown indicating cases where this information was not available.  NDD cases were defined as 

having received services for cognitive, motor, social, or language impairments, non-NDD 

defined as not having received the services above, with Unknown NDD describing patients with 

unclear diagnosis (typically patients <1 year old at evaluation).  Recent genetic and clinical 

studies have established a relationship between increased CHD complexity and increased 

prevalence of NDD {Homsy 2015; Marino 2012}. As a sanity check, we compared the relative 

numbers of NDD and non-NDD cases among our CHD patients with Complex and Isolated 

presentations to see if we could reproduce this finding.  Among 565 patients with Complex CHD 

and a definitive NDD diagnosis, 240 were annotated as having NDD and 325 were non-NDD 

cases.  Among 1175 patients with Isolated CHD, 305 were annotated as having NDD and 870 

were non-NDD cases.  We found that cases with Complex CHD were more likely to acquire 

NDD than those with Isolated CHD (OR=2.1, p=6e-12, Fisher’s Exact Test).   

 

 



63 

 

 

 

 

Table 2.1. Complete CHD cohort.   

NDD=neurodevelopmental disorder. 

 

 

PCGC cases 
All NDD* Non-NDD 

Unknown 

NDD** 

All 3966 652 1588 1726 

Isolated 1803 305 870 628 

Complex 996 240 325 431 

Unknown 1167 107 393 667 

 

2.2.2 Damaging de novo variants are associated with NDD 

 We called a total of 5271 de novo variants (DNVs) from our cohort of 3966 CHD cases.  

We then compared counts of variants per individual across different classes of functional 

consequence (>Table 2.2).  Excluding cases with an unknown NDD diagnosis, we found that 

likely gene-disrupting (LGD) DNVs are enriched in cases with NDD (Relative Risk (RR)=1.59, 

p=3e-05, Binomial Test).  This enrichment is stronger when considering only LGD DNVs 

located in genes highly expressed in developing heart (HHE; RR=2.38, p=8e-08) and genes that 

are known NDD risk genes (RR=8.43, p=3e-14).  Interestingly, the signal further increases when 

focusing on the variants located in genes that are at the intersection of HHE and NDD-risk genes 

(RR=9.26, p=1e-12).  We see a similar trend when grouping LGD and Dmis variants (>Fig. 2.1). 

We observed a depletion of synonymous DNVs in NDD cases (RR=0.87, p=0.12) and we 

believe this to be due to technical differences (average depth and uniformity between batches of 



64 

 

patients sequenced at different times with different capture kits) rather than biological 

differences (>Fig. 2.7). 

 We next compared the prevalence of cases with NDD and the prevalence of cases without 

NDD among patients carrying likely pathogenic (LP; LGD + Dmis) DNVs and those that do not.  

We found that the prevalence of NDD is higher among patients carrying LP DNVs (21% NDDLP 

vs. 14% NDDnonLP) and that the NDD prevalence increases when considering only LP variants in 

HHE genes (26% NDD), NDD risk genes (41% NDD), and genes that are both HHE and NDD-

risk (45%) (>Fig. 2.2, Table 2.3).  The difference in prevalence (NDDLP – NDDnonLP) also 

follows the same trend, with difference values of 7%, 11%, 26%, and 29% for All, HHE, NDD-

risk, and HHE&NDD-risk gene sets, respectively. 

 

Table 2.2. Rates of LGD, Dmis DNVs across different gene groups.   

De novo 
Gene 

Set 

Variant 

class 

Rate in 

NDD 

Rate in 

non-NDD 

PAR 

(Δrate) 

Relative 

Risk 
P-value 

All Cases 

 

#NDD = 652 

#non = 1588 

#unk = 1726  

All 
LGD 0.21 0.14 0.08 1.59 3.1E-05 

Dmis 0.23 0.17 0.06 1.35 0.004 

HHE 
LGD 0.12 0.05 0.07 2.38 7.9E-08 

Dmis 0.11 0.06 0.05 1.73 5.0E-04 

NDD-

risk 

LGD 0.07 0.01 0.06 8.43 3.1E-14 

Dmis 0.04 0.02 0.02 2.34 0.003 

NDD-

risk & 

HHE 

LGD 0.06 0.01 0.05 9.26 1.0E-12 

Dmis 0.03 0.01 0.02 3.37 0.001 

LGD=likely-gene-disrupting, Dmis=deleterious missense, NDD=neurodevelopmental disorder, non=non-NDD, 

unk=unknown NDD, HHE=high heart expression genes, NDD-risk=known NDD risk genes. 
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Figure 20. Damaging (LGD + Dmis) DNVs are enriched across gene sets.   

We observe an enrichment across All genes, HHE, and NDD-risk genes across all CHD subtypes (Isolated, 

Complex, Unknown).  The strongest enrichment is observed in genes that are annotated as both HHE and NDD-risk.  

HHE=high heart expression, NDD=neurodevelopmental disorder, NDD risk=known NDD risk genes, 

CHD=congenital heart disease. 
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Figure 21. Higher prevalence of NDD among cases carrying likely pathogenic DNVs.  

(A) DNVs in all genes.  (B) DNVs in HHE genes. (C) DNVs in NDD-risk genes. (D) DNVs in genes annotated as 

both HHE and NDD-risk genes. The difference in NDD prevalence between LP and nonLP cases increases when 

considering DNVs in either HHE or NDD-risk genes, with the largest difference observed when considering DNVs 

in genes at the intersection of HHE and NDD-risk gene sets.  The largest difference is observed in Complex CHD 

cases and is consistent across gene groups.  For Isolated CHD cases, however, the difference is most noticeable in 

NDD-risk genes and genes at the intersection of HHE and NDD-risk. LP=cases carrying likely pathogenic DNVs, 

nonLP=cases that do not carry likely pathogenic DNVs, HHE=high heart expression, NDD=neurodevelopmental 

disorder.  Stars indicate statistical significance: NS=non-significant, ‘*’=p<0.05, ‘**’=p<0.01, ‘***’=p<0.001, 

Fisher’s Exact Test. 

 

Table 2.3. Prevalence of NDD in cases carrying LP DNVs vs. cases that do not carry LP DNVs. 
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Gene set 
CHD 

subtype 

# 

LP, 

NDD 

# LP, 

noNDD 

# 

nonLP, 

NDD 

# 

nonLP, 

nonNDD 

LP 

NDD% 

nonLP 

NDD% 

Delta 

% 
OR P-value sig 

All All 245 904 407 2410 0.21 0.14 0.07 1.60 2.4E-07 *** 

All Isolated 93 387 212 1111 0.19 0.16 0.03 1.26 0.10 NS 

All Complex 112 228 128 528 0.33 0.20 0.13 2.02 3.8E-06 *** 

All Unknown 40 289 67 771 0.12 0.08 0.04 1.59 0.03 * 

HHE All 140 407 512 2907 0.26 0.15 0.11 1.95 3.9E-09 *** 

HHE Isolated 47 170 258 1328 0.22 0.16 0.05 1.42 0.05 NS 

HHE Complex 76 127 164 629 0.37 0.21 0.17 2.29 1.5E-06 *** 

HHE Unknown 17 110 90 950 0.13 0.09 0.05 1.63 0.10 NS 

NDD-risk All 70 101 582 3213 0.41 0.15 0.26 3.82 4.8E-15 *** 

NDD-risk Isolated 18 33 287 1465 0.35 0.16 0.19 2.78 0.001 ** 

NDD-risk Complex 40 41 200 715 0.49 0.22 0.28 3.48 2.3E-07 *** 

NDD-risk Unknown 12 27 95 1033 0.31 0.08 0.22 4.82 9.1E-05 *** 

HHE & 

NDD-risk 
All 56 69 596 3245 0.45 0.16 0.29 4.42 3.2E-14 *** 

HHE & 

NDD-risk 
Isolated 12 22 293 1476 0.35 0.17 0.19 2.75 0.01 ** 

HHE & 

NDD-risk 
Complex 33 32 207 724 0.51 0.22 0.29 3.60 1.5E-06 *** 

HHE & 

NDD-risk 
Unknown 11 15 96 1045 0.42 0.08 0.34 7.95 5.6E-06 *** 

LP=cases carrying likely pathogenic DNVs, nonLP=cases that do not carry likely pathogenic DNVs, HHE=high 

heart expression, NDD=neurodevelopmental disorder, NDD-risk=known NDD risk genes. 

 

2.2.3 Mutations with pleiotropic effects drive the acquisition of NDD in CHD 

There are 4420 genes that are highly expressed in the developing mouse heart (HHE) and 

539 known NDD risk genes.  The 261 genes annotated as both HHE and NDD-risk comprise 

about half of NDD-risk genes and only about 5% of HHE genes (>Fig. 2.3A), yet the LGD 

DNVs located in this subset of genes show the strongest association with NDD in our CHD 

cohort (RR=9.26, p=1e-12) (>Table 2.2).  If we use the difference in rates of DNVs in NDD 

cases and non-NDD cases as a proxy for population attributable risk (PAR), we observe a PAR 

of 8% when we consider LGD DNVs in all genes, a PAR of 7% for LGD DNVs in HHE genes, 

and a PAR of 6% for DNVs in NDD risk genes.  The PAR of 5% for LGD DNVs in genes that 

are both HHE and NDD-risk represents a substantial fraction of the overall PAR and suggests 

again that these genes are most strongly associated with NDD (>Fig. 2.3B).  Though less 
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striking, we observe a similar trend when considering Dmis DNVs (>Fig. 2.3C).  Given the gene 

set size and relative PAR, we hypothesize that mutations disrupting these specific genes have 

pleiotropic effects that play a role in the acquisition of NDD in CHD.   

 

Figure 22. Genes annotated as both HHE & NDD-risk contribute substantial PAR and suggest 

pleiotropic activity.   

Despite comprising roughly half of NDD-risk genes and ~5% of HHE genes, the genes at the intersection show the 

strongest association with NDD and contribute a substantial fraction of the PAR.  The trend is most noticeable when 

considering LGD DNVs but also seen to a lesser degree in Dmis DNVs.  PAR=population attributable risk, 

HHE=high heart expression, NDD=neurodevelopmental disorder, NDD-risk=known NDD risk genes, LGD=likely-

gene-disrupting, Dmis=deleterious missense.   

 

2.2.4 Damaging de novo variants are associated with abnormal ventricular function in 

patients with single ventricle defects   

We next focused on the 114 CHD cases seen at Columbia University Medical Center who 

were diagnosed with single ventricle defects and analyzed the 654 de novo variants belonging to 

this patient subset.  Instead of NDD, we used Decreased Systemic Ventricular Function, 
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Worsening Ventricular Function, and Arrhythmia as our clinical outcome variable and repeated 

the analyses above (>Table 2.4).  We found that damaging DNVs were associated with 

Decreased Systemic Ventricular Function (RR=2.72, p=0.01) and that this association increased 

when focusing on constrained genes (pLI) (RR=3.63, p=0.02), HHE genes (RR=4.49, p=0.01), 

and genes that are annotated as both HHE and pLI (RR=5.18, p=0.02).  We observed a similar 

trend in the association between damaging DNVs and Worsening Ventricular function between 

all genes (RR=2.11, p=0.05), HHE genes (RR=3.78, p=0.02), pLI (RR=4.47, p=0.003), and 

genes that are both HHE and pLI (RR=8.59, p=0.001).  We also see a similar trend in 

Arrhythmia for damaging DNVs in all genes (RR=2.31, p=0.08), HHE genes (RR=2.52, p=0.11), 

pLI genes (RR=3.46, p=0.05), and HHE&pLI genes (RR=3.46, p=0.05).   

We next compared the prevalence of cases with the phenotypes described above among 

patients carrying likely pathogenic DNVs and those that do not (>Fig. 2.4; Table 2.5).  We did 

not stratify CHD cases into Isolated and Complex due to sample size constraints.  We found that 

the Decreased Systemic Ventricular Function phenotype prevalence is higher among patients 

carrying LP DNVs (73% LP vs. 42% nonLP; OR=3.72, p=0.007, Fisher’s Exact Test) and that 

the phenotype prevalence increases when considering only LP variants in constrained (pLI) 

genes (76%), HHE genes (80%), and genes that are both HHE and pLI (82%).  The difference in 

prevalence (% in LP – % in nonLP) also follows the same trend, with difference values of 31%, 

32%, 36%, and 46% for All, pLI (OR=4.05, p=0.02), HHE (OR=4.96, p=0.01), and HHE&pLI 

(OR=5.31, p=0.03) gene sets, respectively.  The findings are similar for the Worsening 

Ventricular Function phenotype – 58% in LP vs. 30% in nonLP cases (OR=3.14, p=0.02) – 

though the trend shows both a higher phenotype prevalence and a larger difference in phenotype 

prevalence between LP and nonLP carriers in the constrained genes (71% LP vs. 30% nonLP; 
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OR=5.41, p=0.002) compared HHE genes (67% LP vs. 32% nonLP; OR=4.2, p=0.02) 

suggesting that the relative contributions of genes in these two gene sets differs by phenotype.  

The HHE&pLI gene set again shows the strongest signal (82% LP vs. 32% nonLP; OR=9.53, 

p=0.002).  The Arrhythmia phenotype did not show as strong evidence of a trend as the others; 

the main difference in phenotype prevalence between LP carriers and nonLP carriers was limited 

to constrained genes (29% LP vs. 10% nonLP; OR=3.87, p=0.04). 

There are 4420 genes that are highly expressed in the developing mouse heart (HHE) and 

6050 constrained genes (pLI).  The 2520 genes annotated as both HHE and pLI comprise 57% of 

HHE genes and 42% of pLI genes (>Fig. 2.5), yet the damaging DNVs located in this subset of 

genes show the strongest association with the three clinical outcomes described above. Given the 

gene set size and relative PAR across the different phenotypes (>Table 2.4), the mutations 

disrupting these specific genes again appear to have pleiotropic effects that play a role in the 

acquisition of abnormal ventricular function phenotypes in CHD patients diagnosed with single 

ventricle defects. While not reaching statistical significance, the results of this results of this 

section provide additional evidence for the pleiotropy hypothesis proposed in the previous 

sections; however, larger sample sizes will be necessary to draw strong conclusions about the 

association between damaging DNVs and abnormal ventricular function outcomes in single 

ventricle patients. 
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Table 2.4. Rates of damaging DNVs among 114 patients with single ventricle defects with 

abnormal phenotypes.   

Damaging DNVs Gene Set Rate Yes Rate No PAR (Δrate) Relative Risk P-value 

Decreased 

Systemic 

Ventricular 

Function 

(n = 112) 

(55 yes, 57 no) 

All 0.38 0.14 0.24 2.72 0.01 

HHE 0.24 0.05 0.18 4.49 0.01 

pLI 0.25 0.07 0.18 3.63 0.02 

HHE & pLI 0.18 0.04 0.15 5.18 0.02 

Worsening 

Ventricular 

Function 

(n = 106) 

(39 yes, 67 no) 

All 0.41 0.19 0.22 2.11 0.05 

HHE 0.28 0.07 0.21 3.78 0.02 

pLI 0.33 0.07 0.26 4.47 0.003 

HHE & pLI 0.26 0.03 0.23 8.59 0.001 

Arrhythmia 

(n = 111) 

(14 yes, 97 no)  

All 0.50 0.22 0.28 2.31 0.08 

HHE 0.29 0.11 0.17 2.52 0.11 

pLI 0.43 0.12 0.30 3.46 0.02 

HHE & pLI 0.29 0.08 0.20 3.46 0.05 

DNV=de novo variant, damaging=LGD and Dmis DNVs, PAR=population attributable risk, HHE=high heart 

expression, pLI=constrained (pLI>0.5). 

 

 

 

Figure 23. Higher abnormal phenotype prevalence among cases carrying likely pathogenic 

DNVs.  

(A) Prevalence of the Decreased Systemic Ventricular Function phenotype. The phenotype prevalence increases 

when considering constrained or HHE genes and is the largest in genes annotated as both. (B) Prevalence of the 

Worsening Ventricular Function phenotype. The phenotype prevalence shows a similar trend, except that 

constrained genes have higher prevalence than HHE genes.  Again, genes that are HHE&pLI show the highest 

phenotype prevalence(C) Prevalence of the Arrhythmia phenotype. LP=cases carrying likely pathogenic DNVs, 

nonLP=cases that do not carry likely pathogenic DNVs, HHE=high heart expression, pLI=constrained (pLI>0.5), 

sys_fx_abnormal=decreased systemic ventricular function, worsen_time=worsening ventricular function. Stars 

indicate statistical significance: NS=non-significant, ‘*’=p<0.05, ‘**’=p<0.01, ‘***’=p<0.001, Fisher’s Exact Test. 
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Table 2.5. Prevalence of NDD in cases carrying LP DNVs vs. cases that do not.   

Phenotype Gene Set 
# LP, 

yesPheno 

# LP, 

noPheno 

# nonLP, 

yesPheno 

# nonLP, 

noPheno 

LP 

Pheno 

% 

nonLP 

Pheno 

% 

Delta 

% 
OR 

P-

value 
sig 

Decreased 

Systemic 

Ventricular 

Function 

All 19 7 36 50 0.73 0.42 0.31 3.72 0.01 ** 

HHE 12 3 43 54 0.80 0.44 0.36 4.96 0.01 * 

pLI 13 4 42 53 0.76 0.44 0.32 4.05 0.02 * 

HHE&pLI 9 2 46 55 0.82 0.46 0.36 5.31 0.03 * 

Worsening 

Ventricular 

Function 

All 15 11 24 56 0.58 0.30 0.28 3.14 0.02 * 

HHE 10 5 29 62 0.67 0.32 0.35 4.21 0.02 * 

pLI 12 5 27 62 0.71 0.30 0.40 5.41 0.002 ** 

HHE&pLI 9 2 30 65 0.82 0.32 0.50 9.53 0.002 ** 

Arrhythmia 

All 6 19 8 78 0.24 0.09 0.15 3.04 0.08 NS 

HHE 3 11 11 86 0.21 0.11 0.10 2.11 0.38 NS 

pLI 5 12 9 85 0.29 0.10 0.20 3.87 0.04 * 

HHE&pLI 3 8 11 89 0.27 0.11 0.16 2.99 0.14 NS 

LP=cases carrying likely pathogenic DNVs, nonLP=cases that do not carry likely pathogenic DNVs, HHE=high 

heart expression genes, pLI=constrained (pLI>0.5) genes. 

 

 

2.2.5 Rare variant risk score predicts NDD in CHD patients 

 We developed a proof-of-concept rare variant risk score model to predict NDD on a per-

patient basis by combining counts of rare de novo, transmitted, and copy number variants with 

weights defined by the strength of association with NDD for each particular gene set.  For each 

variant type (de novo, transmitted, CNV), weights were estimated using the enrichment (RR) in 

NDD cases of each combination of functional class (LGD, Dmis, DEL, DUP) and gene set 

(genes annotated as both HHE and NDD-risk genes, CHD risk genes, genes annotated as HHE 

and/or constrained (pLI), and in all other genes) (>Tables 2.6, 2.7, 2.8).  The per-patient risk 

score was calculated as the sum of the log2-scaled weights across all variant-geneset 

combinations observed in the individual, given all rare variants detected for that individual. 

 We compared the score distribution between NDD cases and non-NDD cases and found 

that while many cases with lower scores overlapped between the two groups, cases with NDD 

tended to have higher risk scores and the mean risk score for NDD cases was higher than the 

mean risk score for non-NDD cases (NDD mean=1.38, non-NDD mean=0.75; p=1.1e-19, 
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Wilcoxon Rank-Sum Test) (>Fig. 2.5).  We observed the greatest separation in Unknown CHD 

cases (NDD mean=1.65, non-NDD mean=0.65; p=2.9e-06) and Complex CHD cases (NDD 

mean=2.29, non-NDD mean=1.68; p=1e-05) whereas we observed the least separation in 

Isolated CHD cases (NDD mean=0.63, non-NDD mean=0.47; p=0.001). We next evaluated the 

ability to discriminate between NDD and non-NDD cases using 10-fold cross validation.  Our 

risk score achieved a mean AUPRC of 0.44 (across folds) when applied to all cases and mean 

AUPRCs of 0.32, 0.53, 0.46 when applied to cases with Isolated, Complex, and Unknown CHD 

subtypes, respectively (>Fig. 2.6).  We believe the observed trends in score performance per 

group reflect the established relationship between CHD complexity and NDD and that our 

Unknown CHD group represent a mixture of Isolated and Complex cases.    

 

Figure 24. Risk score distribution in NDD vs. non-NDD cases, across CHD subtype groups.  

(A) All CHD cases. (B) Isolated cases. (C) Complex cases. (D) Unknown cases.  Higher risk score values showed 

the largest separation between NDD and non-NDD cases. The score distributions showed a larger difference in 

Complex and Unknown cases than in Isolated cases. NDD=neurodevelopmental disorder, wilcox.p=Wilcoxon Rank-

Sum Test p-value 
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Figure 25. Risk score performance, 10-fold cross validated Precision-Recall curves.  

 (A) All CHD cases. (B) Isolated cases. (C) Complex cases. (D) Unknown cases.  The score showed the strongest 

performance in discriminating NDD from non-NDD cases in Complex cases and showed the weakest performance 

in Isolated cases.  The performance in Unknown cases fell in between that in Complex and Isolated groups, likely 

due to the Unknown group containing a mixture of true Complex and Isolated presentations.  Iso=isolated, 

cmp=complex, unk=unknown, AUC=area under (precision-recall) curve. 

 

 

We next considered the prevalence and enrichment of NDD as a function of patient risk 

score percentile.  We found that the prevalence of NDD increased among patients with higher 

risk score percentiles (>Fig 2.7).  The increase in prevalence was greatest in cases with Complex 

CHD and least in cases with Isolated CHD, with Unknown CHD in the middle.  We also found 

that patients with risk scores in the top 25% were >3-fold as likely to have NDD (OR=3.71, 

p=8.1E-17, Fisher’s Exact Test) compared to patients in the bottom 25% (>Fig 2.8).  Again, the 

enrichment was greatest in Complex (OR=3.43, p=0.00003) and Unknown (OR=3.43, p=0.0005) 

CHD cases and least in Isolated CHD (OR=1.90, p=0.006).   

 

 

Figure 26. Prevalence of NDD as a function of risk score percentile  

(A) All CHD cases. (B) Isolated cases. (C) Complex cases. (D) Unknown cases.  The score increases most 

dramatically for Complex CHD cases, least dramatically for Isolated CHD cases.  Unknown CHD cases show 

an increase in between Complex and Isolated cases.   
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Figure 27. Enrichment of NDD by risk score quartile, compared to bottom quartile 

(B) All CHD cases. (B) Isolated cases. (C) Complex cases. (D) Unknown cases.  Patients with risk scores in the top 

25% were >3-fold as likely to have NDD (OR=3.71, p=8.1E-17) compared to patients in the bottom 25%. 

Complex (OR=3.43, p=0.00003) and Unknown (OR=3.43, p=0.0005) CHD cases showed the largest 

enrichment while Isolated CHD (OR=1.90, p=0.006) cases showed the least. 

 

2.3 Discussion  

In this study, we conducted an association analysis between rare variants and clinical 

outcomes in 3966 CHD patients.  We found that damaging de novo variants are associated with 

NDD cases and that the association is stronger for variants in HHE genes or in NDD-risk genes, 

and strongest for variants in genes annotated as both HHE&NDD-risk.  We see a similar trend 

when comparing the relative prevalence of NDD in cases carrying likely pathogenic DNVs in 

each of the gene sets above.  The genes annotated as HHE&NDD-risk comprise roughly half of 

NDD-risk genes and ~5% of HHE genes yet appear to drive the association with NDD.  We 

believe this to suggests that disruptive mutations in these critical genes have pleiotropic effects 

that play a role in the acquisition of NDD in CHD patients. While we did not observe the same 

strength or significance of association with rare transmitted variants, we found that transmitted 

LGD variants in HHE genes had a PAR of 8% -- comparable with that observed in de novo 

variants and suggestive of an underlying association missed by the limited sample size in this 

analysis (>Table 2.7). CNVs overall were enriched in NDD cases (RR=2.09, p=7e-06), with 

deletion events appearing to drive the association (RR=3.00, p=1e-07) (>Table 2.8). However, 
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given the small number of CNVs detected, the generalizability of this association remains to be 

determined.   

Focusing on the 114 CHD patients diagnosed with single ventricle defects, we found a 

similar association between damaging DNVs and abnormal ventricular function phenotypes 

(Decreased Systemic Ventricular Function, Worsening Ventricular Function, Arrhythmia).  The 

association is stronger when considering damaging DNVs in HHE genes or in constrained genes 

and is strongest for damaging DNVs in genes annotated as both HHE and constrained, providing 

additional support for the pleiotropy hypothesis.  Damaging DNVs in HHE genes appear to be 

more strongly associated with the Decreased Systemic Ventricular Function phenotype whereas 

damaging DNVs in constrained genes show stronger association with Worsening Ventricular 

Function, potentially hinting at different mechanisms driving these respective phenotypes.   

Finally, we combined information from rare de novo, transmitted, and copy number 

variants into a proof-of-concept per-patient rare variant risk score.  The score distributions 

between NDD and non-NDD cases were more distinct for higher score values and for cases with 

Complex and Unknown CHD presentations.  Using 10-fold cross validation to evaluate the 

performance of our score in distinguishing NDD from non-NDD cases, we achieved an AUPRC 

of 0.44 for all cases and auPRC values of 0.32, 0.53, and 0.46 for Isolated, Complex, and 

Unknown cases, respectively.  Here, weights were derived by comparing NDD vs. non-NDD 

cases within our CHD cohort; estimates from a comparison of CHD-NDD cases vs. non-CHD 

non-NDD age and sex matched controls would likely provide more information and improve the 

overall discriminatory performance of our method, particularly in Isolated CHD cases.  

In conclusion, we found that genes annotated as both HHE and NDD-risk are most 

strongly associated with NDD in CHD and that disruptive de novo variants in these genes likely 
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have pleiotropic effects.  We also found that genes annotated as both HHE and constrained are 

most strongly associated with abnormal ventricular function phenotypes in CHD patients with 

single ventricle defects and that the disruptive de novo variants in these genes provide additional 

evidence of pleiotropy.  Our rare variant risk score shows potential in distinguishing CHD cases 

with NDD from non-NDD cases and represents a proof-of-concept application of genomic 

information in predicting clinical outcomes.  As study cohorts increase in size, we will soon be 

able to more accurately and robustly quantify the association between different classes of genetic 

variation and phenotypes of interest using the methods described here.  With improved measures 

and further development, we believe that genetic risk scores have the potential to provide 

clinically actionable information and guide the refinement of existing disease diagnosis and 

management strategies.  

 

2.4 Materials and Methods 

2.4.1 Sequencing data, variant calling, and quality control  

We analyzed data from 3966 congenital heart disease (CHD) proband-parent trios 

recruited as part of the Pediatric Cardiac Genomics Consortium (PCGC) study {Homsy 2015; Jin 

2017}. Genomic DNA from venous blood or saliva was captured using Nimblegen v.2 exome 

capture reagent (Roche) or Nimblegen SeqCap EZ MedExome Target Enrichment Kit (Roche) 

(for whole-exome sequencing datasets) followed by Illumina DNA sequencing (paired-end, 

2x75bp) {Jin 2017, Zaidi 2013}. Sequence reads were mapped to the hg19 human reference 

genome with BWA-MEM and BAM files were further processed following GATK Best 

Practices, which included duplication marking, indel realignment, and base quality recalibration 

steps.  
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Candidate de novo variants were defined as sites present in the offspring with 

homozygous reference genotypes in both parents.  Candidates satisfying any of the following 

criteria were filtered out and excluded from subsequent analysis: (1) failing VQSR filter (2) 

Fisher Strand (FS)>25 (2) Quality by Depth (QD)<2 (3) <5 reads supporting the alternate allele 

in proband (4) <20% alternate allele fraction in proband (5) Phred-scaled genotype likelihood 

(GQ) <60 (6) ExAC population allele frequency >0.1% (7) <10 reference reads in either parent 

(8) >5% alternate allele fraction in either parent or (9) GQ<30 in either parent.  There were in 

total 5271 de novo variants passing filters belonging to 3966 patients.  

Transmitted variants were extracted from the joint-genotype VCFs and defined as sites 

present in the offspring with at least one parent having a non-homozygous reference genotype.  

Candidates satisfying any of the following criteria were filtered out and excluded from 

subsequent analysis: (1) GQ<30 (2) average depth across interval (IDP) <=9 (3) <25% alternate 

allele fraction (4) gnomAD exome/genome population allele frequency >0.001% (5) Phred-

scaled p-value for exact test of excess heterozygosity (ExcessHet) >55 (6) DP<10 in proband (7) 

DP<10 in either parent or (8) non-European ethnicity.  There were in total 166100 rare 

transmitted variants passing filters belonging to 2618 patients of European (EUR) ethnicity. 

Copy number variants were called using PennCNV.  Samples with total # CNV calls >4 

standard deviations (SD) from the cohort mean were considered outliers and removed from 

subsequent analysis.  Candidates satisfying any of the following criteria were filtered out and 

excluded: (1) Log R Ratio (LRR) >0.35 SD from sample mean (2) B Allele Frequency (BAF) >4 

SD from sample mean (3) BAF drift >4 SD from mean (4) Wave factor <-0.03 or >0.03 (5) # 

SNPs <10 (6) CNV size <100kb (7) Confidence score <30 (8) >80% overlap with repetitive 

regions (9) AC in parents >2 (10) gnomAD population frequency >0.1% (11) >5 de novo large 
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CNVs per individual (13) not annotated as overlapping genes.  There were in total 237 CNVs 

passing filters belonging to 1794 patients for which array data was available. 

 

2.4.2 Depth of coverage and D15 for NDD and non-NDD samples across batches 

CHD samples were collected in 9 batches.  For quality control purposes, we calculated 

sample average depth (DP) and D15 values for each sample BAM file using the GATK 

DepthOfCoverage tool.  We then compared NDD cases and non-NDD cases to identify potential 

technical sources of bias in our downstream analysis.  We found that overall mean DP and D15 

were comparable between NDD and non-NDD cases (DPNDD=58.08, DPnonNDD=58.5, 

D15NDD=87.47, D15nonNDD=88.39).  However, we note that were fewer NDD cases with high 

D15 than non-NDD cases (>Fig. 2.9).   

 

Figure 28. Comparison of DP and D15 in NDD and non-NDD samples. 

Per-sample summary statistics were generated using the GATK DepthOfCoverage tool. (A) Sample average depth. 

(B) D15 (% of bases covered by >15 reads). (C) Sample average depth vs. D15. 

 

2.4.3 Annotations and gene sets 

Variants were annotated using both Ensembl Variant Effect Predictor (VEP) (release 96) 

and ANNOVAR (v2017-07-17) to include information from the dbNSFP version 4.0a database, 

as well as pathogenicity predictions from a variety of established methods (CADD, MCAP, 
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REVEL, MPC, MVP, MVP2, spliceAI).  We used defined likely-gene-disrupting (LGD) variants 

as stopgain, stoploss, frameshift, startloss, or spliceAI >0.5.  We defined deleterious missense 

(Dmis) variants as nonsynonymous sites with REVEL score >=0.5 and probably-deleterious-

missense (PDmis) variants as nonsynonymous sites with REVEL score <0.5 and CADD >=20.  

Splice-likely-pathogenic (spliceLP) variants were defined as variants with a spliceAI score 

between 0.2 and 0.5.  Benign missense (Bmis) variants were defined as nonsynonymous sites not 

in the groups above.  For synonymous variants and inframe-indels, we excluded sites with 

spliceAI score >0.2.  We considered sites predicted to be LGD or Dmis as damaging (likely 

pathogenic). Non-likely pathogenic sites include all variants not in the damaging group. 

Gene sets were defined as follows.  High Heart Expression (HHE) genes (n=4420) 

include those ranked in the top 25% by cardiac expression data in mouse at E14.5 {Zaidi 2013; 

Homsy 2015}.  CHD-risk genes (n=156) were defined as known candidate CHD genes with 

autosomal dominant mode of inheritance {Jin 2017}.  NDD-risk genes (n=539) were defined as 

the union of genes with SFARI score 1 or 2 (n=86), genes discovered by the Autism Sequencing 

Consortium (ASC) with FDR<0.1 (n=102) {Satterstrom 2019}, and genes in the Developmental 

Disorders Genotype-Phenotype (DDG2P) database with indicated organ ‘brain’ and with human 

phenotype ontology (HPO) terms ‘abnormal brain morphology’ (HP: 0012443) or ‘cognitive 

impairment’ (HP:0100543) (n=454).  Constrained/pLI genes (n=6050) were defined as genes 

with gnomAD pLI>0.5 {Lek 2016}.   

 

2.4.4 Association analysis  

 We used a Binomial Test and a Fisher’s Exact Test to investigate the association between 

genetic variation and clinical outcomes of interest. Patients were first divided into groups based 
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on phenotype (e.g. NDD, non-NDD, Decreased Systemic Ventricular Function, no Decreased 

Systemic Ventricular Function, etc).  Then, for each variant functional class (e.g. LGD, Dmis, 

Bmis, DEL, DUP, etc), we counted the number of variants detected in patients belonging to each 

phenotype group and calculated a per-group rate.  The enrichment (relative risk) was calculated 

as the ratio of the rates in the positive phenotype and corresponding negative phenotype groups.  

We also calculated the difference in rates between positive and negative phenotype groups as a 

proxy for population attributable risk (PAR).  To assess significance, we used a Binomial Test 

with the total number of variants detected across both groups as our number of trials (N), the 

proportion of cases with the positive phenotype among all patients in both groups as our null 

probability of success (p), and the number of variants detected in cases with the positive as our 

number of successes (x).  Since the number of variant counts varied between functional classes, 

we also used a Fisher’s Exact Test to improve association accuracy for classes with low counts.  

Patients were further divided into 4 subsets – cases with positive phenotype and carrying the 

variant, cases with negative phenotype and carrying the variant, cases with positive phenotype 

and not carrying the variant, and cases with negative phenotype and not carrying the variant.  We 

then tested for nonrandom association between phenotype and variant functional class variables.  

This analysis was repeated for each CHD subtype (All, Isolated, Complex, Unknown CHD), 

CHD category (conotruncal defect (CTD), heterotaxy (HTX), hypoplastic left heart syndrome 

(HLHS), left ventricular outflow (LVO), other), and gene set (All genes, HHE, constrained, 

CHD-risk, NDD-risk, and combinations of these).  
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2.4.5 Prevalence analysis 

 We used a Fisher’s Exact Test to investigate whether patients carrying likely pathogenic 

(LP; LGD + Dmis) variants were more likely to also have the clinical outcome of interest. 

Patients were first divided into two groups – cases carrying LP variants and cases that do not 

carry an LP variant.  We then counted the number of patients with the positive phenotype and the 

negative phenotype within each LP group and calculated a per-group phenotype prevalence and a 

prevalence difference value.  Using the number of cases carrying LP variants with the positive 

phenotype, cases carrying LP Variants with the negative phenotype, cases without LP variants 

with the positive phenotype, and cases without LP variants with the negative phenotype, we used 

a Fisher’s Exact Test to test for significance and strength of nonrandom association between 

phenotype and LP variant variables.  This analysis was repeated for each CHD subtype (All, 

Isolated, Complex, Unknown CHD), CHD category (conotruncal defect (CTD), heterotaxy 

(HTX), hypoplastic left heart syndrome (HLHS), left ventricular outflow (LVO), other), and 

gene set (All genes, HHE, constrained, CHD-risk, NDD-risk, and combinations of these).   

 

2.4.6 NDD rare variant risk score  

 We developed a simple framework for predicting clinical outcomes of interest (e.g. 

NDD) by combining information from rare de novo, transmitted, and copy number variants into a 

per-patient rare variant risk score.  Each patient was represented as a vector of de novo, 

transmitted, and copy number variant counts for all combinations of relevant variant functional 

classes (LGD, Dmis, DEL, DUP) and gene sets (HHE&NDD-risk, CHD-risk, HHE&pLI, HHE 

or pLI, other).  We used the association analysis described above to identify the gene groups 

most relevant to NDD and used the Fisher’s Exact Test enrichment values (odds ratio) as the 
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weights in our score.  Weights from the association analysis in specific CHD subtypes (Isolated, 

Complex, Unknown) were used where available.  Final weights can be found in Tables 2.6, 2.7, 

2.8.  For each patient, a rare variant risk score was calculated by taking the sum of the log2-

scaled product of the variants vector and the weights vector (𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑙𝑜𝑔2𝑅𝑅𝑖, 𝑣,𝑔 ∗ 1𝑖,𝑣,𝑔
𝑛
𝑖  for 

each variant type v in {LGD, Dmis, DEL, DUP} and gene set g in {HHE&NDD-risk, CHD-risk, 

HHE&pLI, HHE or pLI, other}).  We generated per-patient risk scores within each variant class 

(de novo, transmitted, CNV) as well as a composite score combining information across the 

variant classes.  Given that transmitted variants were only available for the 2618 EUR cases, we 

limited subsequent analysis involving this composite rare variant risk score to these 2618 cases.   

 We next evaluated the utility of our score in discriminating between patients with and 

without the clinical outcome of interest (NDD).  We first compared the mean score values in 

NDD and non-NDD to assess the magnitude of difference.  We used a two-sided Wilcoxon 

Rank-Sum Test to test the null hypothesis that it is equally likely that a randomly selected score 

value from our NDD group will be greater/less than a randomly selected score from our non-

NDD group.  To identify optimal score thresholds for our rare variant risk score, we iterated over 

score values by percentile (0 to 100) and calculated the Matthews correlation coefficient (MCC = 

[TPxTN–FPxFN]/sqrt[(TP+FP)(TP+FN)(TN+FP)(TN+FN)]) to quantify the correlation between 

that particular score value threshold and NDD status while accounting for imbalanced class sizes 

(>Fig. 2.10).  We next used a 10-fold cross validation approach to evaluate our score’s predictive 

ability.  Patients were first randomly divided into 10 folds.  For each fold k, we split our dataset 

into testing (fold k) and training (remaining 9 folds) sets.  We then estimated weights using the 

cases in the training set and calculated risk scores for each patient in the held-out testing set.  To 

calculate per-fold area under precision-recall curve (AUPRC), we iterated over score values by 
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percentile (0 to 100) and calculated Precision (TP/(TP+FP)) and Recall (TP/(TP+FN)) for each 

score threshold.  We used R package DescTools (v.0.99.30) to estimate AUPRC.  We then 

calculated mean AUPRC across folds as our final risk score performance metric.  This analysis 

was repeated for each CHD subtype (Isolated, Complex, Unknown).    

 To calculate prevalence of NDD as a function of risk score percentile, we iterated over 

score values by percentile (0 to 100) and calculated the fraction of NDD patients with scores 

above the percentile cutoff (prevalence = # NDD patients / # total patients).  To calculate 

enrichment by quartile, we compared the number of NDD and non-NDD cases in each quartile 

against the number of NDD and non-NDD cases in the bottom quartile and performed a Fisher’s 

Exact Test. 

 

 

Figure 29. Matthews Correlation Coefficient (MCC) for composite score thresholds, by 

percentile.  

(A) All cases. (B) Isolated cases. (C) Complex cases. (D) Unknown cases.  High risk score values have the strongest 

correlation in Unknown CHD cases. 
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Table 2.6. Risk score weights for de novo variants. 

Weights 

de novos 

Variant 

class 

# 

DNV 

in 

NDD 

cases 

Rate 

in 

NDD 

# 

DNV 

in 

non-

NDD 

cases 

Rate 

in 

non-

NDD 

Delta RR 
P-

value 
OR 

P-

value 

All cases 

N_NDD = 

652 

N_non = 

1588 

NDDrisk 

& HHE 

LGD 38 0.06 10 0.01 0.05 9.26 
1.0E-

12 
9.48 

1.5E-

12 

Dmis 18 0.03 13 0.01 0.02 3.37 0.001 3.44 0.001 

CHD 

Risk 

Genes 

LGD 6 0.01 15 0.01 0.00 0.97 1 0.97 1 

Dmis 17 0.03 24 0.02 0.01 1.73 0.09 1.74 0.08 

HHE & 

pLI 

LGD 25 0.04 32 0.02 0.02 1.90 0.02 2.00 0.02 

Dmis 18 0.03 38 0.02 0.00 1.15 0.66 1.16 0.66 

HHE or 

pLI 

LGD 26 0.04 63 0.04 0.00 1.01 1 1.02 0.91 

Dmis 58 0.09 83 0.05 0.04 1.70 0.002 1.74 0.003 

Other 

Genes 

LGD 45 0.07 95 0.06 0.01 1.15 0.46 1.19 0.38 

Dmis 38 0.06 111 0.07 -0.01 0.83 0.37 0.87 0.51 

Isolated 

N_NDD = 

412 

N_non = 

1263 

NDDrisk 

& HHE 

LGD 14 0.03 8 0.01 0.03 5.36 0.0001 5.51 0.0001 

Dmis 8 0.02 8 0.01 0.01 3.07 0.04 3.10 0.04 

CHD 

Risk 

Genes 

LGD 5 0.01 10 0.01 0.00 1.53 0.39 1.54 0.38 

Dmis 7 0.02 16 0.01 0.00 1.34 0.48 1.35 0.47 

HHE & 

pLI 

LGD 10 0.02 24 0.02 0.01 1.28 0.55 1.34 0.42 

Dmis 9 0.02 28 0.02 0.00 0.99 1 0.99 1 

HHE or 

pLI 

LGD 14 0.03 53 0.04 -0.01 0.81 0.57 0.82 0.56 

Dmis 33 0.08 72 0.06 0.02 1.41 0.11 1.46 0.10 

Other 

Genes 

LGD 31 0.08 67 0.05 0.02 1.42 0.13 1.45 0.11 

Dmis 24 0.06 84 0.07 -0.01 0.88 0.66 0.91 0.81 

Complex 

N_NDD = 

240 

N_non = 

325 

NDDrisk 

& HHE 

LGD 24 0.10 2 0.01 0.09 16.25 
1.4E-

07 
17.05 

1.7E-

07 

Dmis 10 0.04 5 0.02 0.03 2.71 0.07 2.78 0.07 

CHD 

Risk 

Genes 

LGD 1 0.00 5 0.02 -0.01 0.27 0.25 0.27 0.25 

Dmis 10 0.04 8 0.02 0.02 1.69 0.34 1.72 0.33 

HHE & 

pLI 

LGD 15 0.06 8 0.02 0.04 2.54 0.03 2.64 0.03 

Dmis 9 0.04 10 0.03 0.01 1.22 0.66 1.23 0.81 

HHE or 

pLI 

LGD 12 0.05 10 0.03 0.02 1.63 0.28 1.66 0.28 

Dmis 25 0.10 11 0.03 0.07 3.08 0.001 3.02 0.004 

Other 

Genes 

LGD 14 0.06 28 0.09 -0.03 0.68 0.28 0.71 0.41 

Dmis 14 0.06 27 0.08 -0.02 0.70 0.34 0.71 0.41 

N_NDD=number of NDD cases, N_non=number of non-NDD cases, DNV=de novo variant, Delta=difference in 

rates, RR=relative risk (Binomial Test), OR=Odds Ratio (Fisher’s Exact Test), HHE=high heart expression genes, 

pLI=constrained genes, NDDrisk=known NDD risk genes, Other Genes=genes not in above categories 
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Table 2.7. Risk score weights for rare transmitted variants. 

Weights 

Transmitted (1e-

5) 

Variant 

class 

 # var 

in 

NDD 

cases  

Rate 

in 

NDD 

# var 

in 

non-

NDD 

cases  

Rate 

in 

non-

NDD 

Delta RR 
P-

value 
OR 

P-

value 

All cases 

N_NDD = 

454 

N_non = 

1122 

HHE 
LGD 394 0.87 887 0.79 0.08 1.10 0.12 1.14 0.24 

Dmis 743 1.64 2016 1.80 -0.16 0.91 0.03 0.87 0.33 

Other 

Genes 

LGD 1482 3.26 3869 3.45 -0.18 0.95 0.07 0.88 0.58 

Dmis 1994 4.39 5218 4.65 -0.26 0.94 0.03 0.87 0.60 

Isolated 

N_NDD = 

295 

N_non = 

901 

HHE 
LGD 246 0.83 708 0.79 0.05 1.06 0.43 1.07 0.64 

Dmis 483 1.64 1626 1.80 -0.17 0.91 0.06 0.85 0.35 

Other 

Genes 

LGD 967 3.28 3102 3.44 -0.16 0.95 0.18 0.75 0.25 

Dmis 1254 4.25 4227 4.69 -0.44 0.91 0.002 0.80 0.51 

Complex 

N_NDD = 

159 

N_non = 

221 

HHE 
LGD 148 0.93 179 0.81 0.12 1.15 0.22 1.21 0.40 

Dmis 260 1.64 390 1.76 -0.13 0.93 0.36 0.98 1 

Other 

Genes 

LGD 515 3.24 767 3.47 -0.23 0.93 0.23 1.28 0.66 

Dmis 740 4.65 991 4.48 0.17 1.04 0.45 1.18 0.82 

N_NDD=number of NDD cases, N_non=number of non-NDD cases, DNV=de novo variant, Delta=difference in 

rates, RR=relative risk (Binomial Test), OR=Odds Ratio (Fisher’s Exact Test), HHE=high heart expression genes, 

Other Genes=genes not in above categories 
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Table 2.8. Risk score weights for copy number variants. 

Weights 

CNV 

Variant 

class 

 #var 

in 

NDD 

cases  

Rate 

in 

NDD 

# var 

in 

non-

NDD 

cases  

Rate 

in 

non-

NDD 

Delta RR 
P-

value 
OR 

P-

value 

All cases 

N_NDD 

= 315 

N_non = 

748 

NDDrisk 

& HHE 

DEL 31 0.10 11 0.01 0.08 6.69 
4.4E-

09 
7.04 

5.3E-

09 

DUP 7 0.02 3 0.00 0.02 5.54 0.01 5.63 0.01 

CHD 

Risk 

Genes 

DEL 5 0.02 4 0.01 0.01 2.97 0.14 3.00 0.14 

DUP 1 0.00 1 0.00 0.00 2.37 0.50 2.38 0.51 

HHE & 

pLI 

DEL 3 0.01 3 0.00 0.01 2.37 0.37 2.39 0.37 

DUP 3 0.01 11 0.01 -0.01 0.65 0.77 0.64 0.77 

HHE or 

pLI 

DEL 4 0.01 10 0.01 0.00 0.95 1 0.95 1 

DUP 4 0.01 10 0.01 0.00 0.95 1 1.06 1 

Other 

Genes 

DEL 10 0.03 14 0.02 0.01 1.70 0.26 1.72 0.26 

DUP 6 0.02 17 0.02 0.00 0.84 0.82 0.69 0.64 

Isolated 

cases 

N_NDD 

= 220 
N_non = 

680 

NDDrisk 

& HHE 

DEL 27 0.12 9 0.01 0.11 8.29 
1.9E-

09 
8.89 

2.2E-

09 

DUP 4 0.02 3 0.00 0.01 3.68 0.09 3.73 0.09 

CHD 

Risk 

Genes 

DEL 5 0.02 4 0.01 0.02 3.45 0.06 3.51 0.06 

DUP 1 0.00 1 0.00 0.00 2.76 0.46 2.77 0.46 

HHE & 
pLI 

DEL 1 0.00 2 0.00 0.00 1.38 1 1.38 1 

DUP 2 0.01 9 0.01 -0.01 0.61 0.74 0.61 0.74 

HHE or 

pLI 

DEL 3 0.01 9 0.01 0.00 0.92 1 0.92 1 

DUP 3 0.01 9 0.01 0.00 0.92 1 1.04 1 

Other 

Genes 

DEL 7 0.03 13 0.02 0.01 1.49 0.45 1.50 0.44 

DUP 5 0.02 14 0.02 0.00 0.99 1 0.79 0.79 

Complex 

cases 

N_NDD 

= 95 

N_non = 

140 

NDDrisk 

& HHE 

DEL 4 0.04 2 0.01 0.03 2.95 0.23 3.02 0.22 

DUP 3 0.03 0 0.00 0.03 Inf 0.07 Inf 0.06 

CHD 

Risk 

Genes 

DEL 0 0.00 0 0.00 0.00 NA 0 0 1 

DUP 0 0.00 0 0.00 0.00 NA 0 0 1 

HHE & 

pLI 

DEL 2 0.02 1 0.01 0.01 2.95 0.57 2.98 0.57 

DUP 1 0.01 2 0.01 0.00 0.74 1 0.73 1 

HHE or 

pLI 

DEL 1 0.01 1 0.01 0.00 1.47 1 1.48 1 

DUP 1 0.01 1 0.01 0.00 1.47 1 1.48 1 

Other 

Genes 

DEL 3 0.03 1 0.01 0.02 4.42 0.31 4.50 0.31 

DUP 1 0.01 3 0.02 -0.01 0.49 0.65 0.49 0.65 

N_NDD=number of NDD cases, N_non=number of non-NDD cases, var=variant, DEL=deletion, 

DUP=duplication, Delta=difference in rates, RR=relative risk (Binomial Test), OR=Odds Ratio (Fisher’s Exact 

Test), HHE=high heart expression genes, pLI=constrained genes, NDDrisk=known NDD risk genes, Other 

Genes=genes not in above categories 
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Conclusion 

 In this dissertation, I have discussed the contribution of mosaicism and other types of 

variation to the genetic architecture of congenital heart disease.  In the first chapter, I presented 

the development of a novel computational method for detecting mosaic single-nucleotide 

variants in exome-sequencing data, EM-mosaic.  Recent publications have reported discordant 

validation rates and mosaic fraction/rate estimates due to differences in sequencing depth, variant 

calling, and mosaic detection approach.  Further, distinguishing mosaic from germline 

heterozygous mutations remains a challenge for current methods.  We addressed these gaps by 

developing an approach that combines heuristic variant filters, error modeling, and data-driven 

parameter estimation.  EM-mosaic achieved a 90% validation rate, among the highest in recent 

publications.  Simulation experiments demonstrated that our estimated prior mosaic fraction and 

posterior-odds based false discovery rate (FDR) estimate were consistent with the truth.  We 

found that 1% of CHD patients carries a mosaic likely contributing to their heart malformation 

and that roughly 1 in 8 individuals carries a mosaic event detectable in blood exome sequencing 

data.  Analysis of subjects with matched blood and heart tissue demonstrated that mutations in 

blood with relatively high allele fraction were more likely to also be found in the heart, 

supporting the notion of allele fraction as a proxy of cellular percentage and that mutations 

occurring earlier in development are more likely to be found across multiple tissues.  In the 

second chapter, to disentangle the biological mechanisms governing differences in genetic 

etiology across CHD complexities (Isolated, Complex, Unknown), I presented a statistical 
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approach to characterizing the association between genetic variation and clinical outcomes in 

CHD patients.  I found that damaging de novo variants are enriched in CHD patients with 

neurodevelopmental disorders (NDD) or with ventricular dysfunction phenotypes and that 

variants in high heart expression (HHE) genes, known NDD-risk genes, and constrained genes 

are most strongly associated. I then showed that pleiotropic de novo variants in HHE&NDD-risk 

genes and HHE&constrained genes contribute a disproportionately large fraction of the risk of 

acquiring comorbid neurodevelopmental disorder or ventricular dysfunction, respectively.  

Finally, using the association analysis results, I developed a proof-of-concept rare variant risk 

score to predict NDD in CHD patients on the basis of their genetic profile (detected de novo, rare 

inherited, and copy number variants) and the relative contributions of these variants across a 

variety of gene sets.  I show that this risk score can stratify patients in our CHD cohort in a 

clinically meaningful way and identify patients at increased risk of NDD. 

 Future directions for this work including expanding EM-mosaic to detect post-zygotic 

small insertions/deletion (indels) and developing a method of in silico variant validation at scale.  

Modeling indels is challenging since indel calling in general is less refined than SNV calling and 

many additional factors influence their deviation in allele fraction from expectation under 

germline conditions.  These factors include the type of event (insertion vs deletion), the size of 

the event, and the local sequence content (particularly GC%), all of which would need to be 

considered in, for example, a regression-based approach.  Currently, in silico variant validation 

remains a bottleneck for large-scale genetic studies.  In this work, we manually reviewed variant 

read pileup screenshots generated in IGV, which would be intractable for larger datasets 

containing an order of magnitude more variants.  Automated orthogonal validation approaches 

present an attractive alternative to manual review. DeepVariant {Poplin 2018}, for example, is 
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the current state-of-the-art for germline variant quality control.  However, extending its 

framework to mosaic variant validation would require training data that does not currently exist.  

However, it would be feasible to develop a synthetic training dataset by, for example, using 

transmitted germline variants with subsampled alternate allele read depth as “positives” and 

using mendelian error events with comparable variant allele fractions as “negatives”.   

As study cohorts increase in size and our ability to detect different classes of variants 

improve, we will soon be able to accurately determine the association between the full spectrum 

of genetic variation and clinical phenotypes of interest.  With improved measures and further 

development, the genetic risk score and other methods discussed here have the potential to 

provide clinically actionable information and to improve current disease diagnosis and 

management strategies, both for CHD and for other rare developmental disorders.  
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For Tables S1 to S12, please refer to the Supplementary Material in our bioRxiv preprint 

(https://www.biorxiv.org/content/10.1101/733105v1) 

For all code used in this dissertation, please refer to our GitHub repositories: 

(https://github.com/ShenLab/mosaicism) 
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