The Regulation of Mitochondrial Complex I Biogenesis in Drosophila Flight Muscles

Christian Joel Garcia

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences

Christian Joel Garcia

Abstract
 The Regulation of Mitochondrial Complex I Biogenesis in Drosophila Flight Muscles

Christian Joel Garcia

Mitochondrial Complex I (CI) is composed of 44 distinct subunits that are assembled with eight Fe S clusters and a single flavin mononucleotide. Mitochondria is highly enriched in the flight muscles of Drosophila melanogaster, however the assembly mechanism of Drosophila CI has not been described. We report that the mechanism of CI biogenesis in Drosophila flight muscles proceeds via the formation of ~ 315 , ~ 550-, and $\sim 815 \mathrm{kDa} \mathrm{Cl}$ assembly intermediates. Additionally, we define specific roles for several Cl subunits in the assembly process. In particular, we show that dNDUFS5 is required for converting the ~ 700 kDa transient Cl assembly intermediate into the $\sim 815 \mathrm{kDa}$ assembly intermediate, by stabilizing or promoting the incorporation of dNDUFA10 into the complex. Our findings highlight the potential values of Drosophila as a suitable model organism and resource to study the Cl biogenesis in vivo, and to address questions relevant to Cl biogenesis in humans.

Cl biogenesis is regulated by transient interactors known as Cl assembly factors (CIAFs). To date, about half of Cl disorders are attributed to the mutations in the Cl subunits and the known CIAFs. The cause for the other half remains to be discovered, warranting the investigation for additional regulators of Cl biogenesis such as novel CIAFs. To identify novel regulators, we cataloged interactors of a core subunit, NDUFS3, knocked each one down by RNAi in the Drosophila flight muscle, and analyzed its effect in the stability of CI by blue-native PAGE. We identified the Drosophila Fragile X Mental Retardation protein (dFMRP) to destabilize the holoenzyme of Cl and cause it to misassemble. Therefore, we report dFMRP as a novel regulator of Cl biogenesis, and demonstrate the utilization of Drosophila as an effective model system to uncover the mysteries of CI biogenesis.

Table of Contents

List of Figures and Tables iii
List of Abbreviations V
Acknowledgements vii
Dedication X
Chapter 1: Introduction 1
Overview 2
Mitochondria 2
Bioenergetics and Metabolism 3
Mitochondria Complex I 5
Cl as a Regulator of Mitochondria Function 10
Diseases of Cl 14
Conclusion 15
Figures 17
References 21
Chapter 2: Mitochondrial Complex I Assembly in Drosophila Flight Muscles 28
Introduction 29
Results 31
Discussion 41
Materials and Methods 44
Figures and Tables 49
References 116
Chapter 3: Identifying Novel Regulators of Mitochondrial Complex I Biogenesis 119
Introduction 120
Results 121
Discussion 128
Materials and Methods 132
Figures and Tables 137
References 180
Chapter 4: Conclusions and Future Directions 182
New Roles for Accessory Subunits 183
Using Drosophila to study human Cl diseases 184
Defining the mechanism of discovered regulators of Cl Biogenesis 185
Alternative mechanisms to identifying novel regulators of Cl Biogenesis 186
Elucidating mechanisms of supercomplexes in Drosophila 187
Concluding Remarks 187
Materials and Methods 189
Figures and Tables 191
References 211
Appendix 213

List of Figures and Tables

Chapter 1

Figure 1.1: The electron transport chain

Figure 1.2: Mitochondrial complex I (CI)

Chapter 2

Figure 2.1: Drosophila Flight Muscles Are Suitable For Studying Complex I Assembly

Figure 2.2: 1\% Digitonin Is The Optimum Detergent Concentration For Resolving OXPHOS Complexes In Drosophila Thoraxes

Figure 2.3: Strong Expression Of Dmef2-Gal4 During Development

Figure 2.4: Disruption of Several CI Core And Supernumerary Subunits Impair CI Assembly In Drosophila

Figure 2.5: Proteomic Analyses And Immunoblotting Identify Assembly Intermediates Of Cl
Figure 2.6: Detection Of Smaller Subcomplexes Of CV
Figure 2.7: Specific Subunits Regulate the Biogenesis or Stability of Specific Assembly Intermediates Of Cl

Figure 2.8: Identification Of An ~700 kDa Assembly Intermediate Of CI In Drosophila
Figure 2.9: CI Assembly In Drosophila Involves An Assembly Intermediate Containing Several MembraneAssociated Accessory Subunits.

Figure 2.10: Proposed Model Of CI Assembly In Drosophila Flight Muscle

Figure 2.11: Destabilisation Of CI Is Not Specifically Linked To Stress

Table 2.1 There are at least 42 orthologs of the 44 human complex I subunits in Drosophila.

Table 2.2: Proteins Identified via Mass Spectrometry Of OXPHOS Complexes In Drosophila, Related To Figure 2.1

Table 2.3: Mass Spectrometry Identifying Subcomplexes In Drosophila Flight Muscles, Related To Figure 2.5

Table 2.4: Mass Spectrometry Identifying Constituents Of The 700 kDa Subcomplex In Drosophila Flight Muscles, Related To Figure 2.8

Table 2.5: Mass Spectrometry Identifying Constituents Of The Membrane Arm Subcomplex of CI , Related To Figure 2.9

Chapter 3

Figure 3.1: Drosophila Flight Muscles Are Suitable For Identifying Novel Regulators of Complex I Biogenesis

Figure 3.2: Identifying Interactors of Cl in Drosophila flight muscles

Figure 3.3 Screening interactors of the dNDUFS3 Cl subunit identifies dFMRP as a regulator for Cl biogenesis

Figure 3.4: Alternative methods used to disrupt dFMRP and mammalian orthologues to confirm Cl phenotype.

Figure 3.5 Knockdown of dFMRP destabilizes Cl and reduces lifespan

Figure 3.6 Disruption of dFMRP in flight muscles impairs Cl assembly

Figure 3.7 The PD-module regulator, Foxred1, is downregulated in Mhc<dFMRPRNAi offspring

Table 3.1 Proteins Identified by Mass Spectrometry after Co-IP with dNDUFS3-HA

Table 3.2 Table for Figure 3.3 listing the RNAi's that were screened.

Figure 4.1: Screens performed to Identify Novel Regulators of Complex I Biogenesis.

Figure 4.2: The Potential to use BioID in the Drosophila gut and thorax.

Table 4.1: Table for Figure 4.1 listing the RNAi's that were screened.

List of Abbreviations

Cl	Complex I
CIAF	Complex I assembly factors
dFMRP	Drosophila Fragile X Mental Retardation Protein
OMM	Outer mitochondrial membrane
IMM	Inner mitochondrial membrane
IMS	Intermembrane space
mtDNA	Mitochondria DNA
ETC	Electron transport chain
OXPHOS	Oxidative phosphorylation
TCA	Tri-carboxylic acid cycle
MPC	Mitochondrial pyruvate carriers
PDH	Pyruvate dehydrogenase
CPT1	Carnitine palmitoyltransferase 1
CAT	Carnitine translocase
CPT2	Carnitine palmitoyltransferase 2
N	NADH binding site
Q	Ubiquinone binding site
Pp	Proton pumping proximal
Po	Proton pumping distal
Cryo-EM	Cryo-electron microscopy
RET	Reverse electron transfer flow
PASMCs	Pulmonary artery smooth muscle cells
SIRT3	Sirtuin 3
MCU	Mitochondrial calcium uniporter
MELAS	Mitochondrial encephalomyopathy-lactic acidosis-stroke like episodes
MPTP	1-methyl-4-penyl-1, 2, 3, 6-tetrahydropyridine
FMR1	Fragile X Mental Retardation 1
MCIA	Mitochondrial complex I assembly complex
DIOPT	Drosophila ortholog prediction tool
BN-PAGE	Blue native polyacrylamide gel electrophoresis
CIII	Complex III
CV	Complex V

dNDUFS3	Drosophila NDUFS3
co-IP	Co-immunoprecipitation
RNAi	RNA interference
UAS	Upstream activating sequence
BDSC	Bloomington Drosophila Stock Center
Dmef2	Drosophila Muscle Enhancing Factor 2
Mhc	Myosin heavy chain
CRISPRi	CRISPR interference
dCAS9	Dead CAS9
LAI	Lower Assembly Intermediates
OTEs	Off-target effects
FXR1	Fragile X related protein 1
FXR2	Fragile X related protein 2
Scpx	Sterol carrier protein X-related thiolase
Men-b	Malic enzyme b
MCUC	Mitochondrial calcium uniporter complex
BirA	Biotin ligase enzyme
SCAF1	Super complex assembly factor 1

Acknowledgements

I would like to thank my mentor Dr. Edward Owusu-Ansah for giving me the opportunity to work in his lab. Being in a small lab, I had the chance to work side by side with Edward on the scope to learn everything there is about the fruit fly. It was also in these moments, where we had some of the best scientific conversations during my Ph.D. Working in a new lab, I also had the privilege to learn from Edward how to build a lab from the ground up which is something not every grad student gets to do. I will always appreciate everything Edward has done for me that has led to my success as a scientist.

During my time in the Owusu-Ansah lab, I had the opportunity to work with several people who taught me so much and made lab an enjoyable place to be. First and foremost, I would like to thank the first postdoc in the lab, Dr. Jahan Khajeh, who taught me all of the techniques that I have used for my projects. His efforts laid down the foundational work for the scope of my project. Also, I would to thank Drs. Bibhuti Mishra and Anjaneyulu Murari, two other postdocs, who were not only colleagues I could turn to in the lab, but have also become great friends. Other members in the lab I would like to thank are Emmanuel Coulanges, Dr. Kim Lucero, Arden Darko, Sri Goparaju, Maximino Villanueva, Shauna Kay-Rhoomes, and Dr. Rida Gilani for their friendships and hard work behind the scenes to keep the lab running smoothly.

One of the highlights I had as a graduate student was the opportunity to train students. I would especially like to thank Marjana Tafader, John Varriano, and Cindy Osei for not only contributing to my projects but trusting me as a mentor. I learned so much from each of these students and wish them the best in their future endeavors.

Thank you to my collaborators Drs. Emily Chen, Richard Kitsis, Yun Chen, Laura Johnston, Catarina Quinzii, Marcello Ziosi, Jason Fan, Matthew Ulgherait, Mimi Shirazu, Alexander Galkin, Anna Stepanova, and Delfina Larrea for allowing me the opportunity to work with you. I enjoyed all of the conversations we had and look forward to the scientific contributions that will result from our work.

I would like to thank my dissertation research committee: Drs. Estela Area-Gomez, Martin Picard, Eric Schon, and Stavroula Kousteni. I appreciate the time each of you have spent with me and your advice on projects, careers, and life in general that have helped guided me through this Ph.D. journey.

I would also like to acknowledge the Mitochondria Community here at Columbia University who have been so generous from discussing ideas on projects to sharing reagents and resources. In particular, I would like to thank my friend Rishi Agrawal who co-founded the mitochondria group with me. When we first joined our mitochondria labs, no group existed on campus; but after 4 years the group grew from 15 to well over 100 scientists.

During my Ph.D., I was able to partake in co-directing the Science Matters Research Internship and had the chance to work with over 20 high school students to give them the opportunity to work in a CUIMC lab. This was another highlight of the Ph.D. as I got to witness how these internships shaped the lives of these students. I could not have done this without the help of my co-director Elise Flynn. Thank you for being an amazing director and for allowing me to learn from you on how to efficiently run an organization. Also, I would like to thank Drs. John Smerdon and Katherine Xu for having the confidence in me to follow their footsteps as a co-director.

I would like to thank the Institute of Human Nutrition, especially Debra Wolgemuth and Richard Deckelbaum for accepting me into the program and for supporting my career. In addition, I would also like to thank Alex Sosa, Leslie De Pena, Sara Sternglass, and Zachary Corter for their work behind the scenes. Thank you to Zaia Sivo for your guidance throughout the Ph.D.

Thank you to my best friends Jimin Park and Rishi Agrawal for the memorable moments we have accumulated together over these years. From the boardgame nights, brunch, Fort Lee BYOBs, speakeasy hopping and traveling to other countries, I had so much fun in graduate school because of the two of you! Thank you Greg Weissner for sharing my passion of IPAs and throwing Julian an amazing baby shower. Jeewon and I appreciate all you have done for our family. Thank you Bryan Gonzales for getting me hooked on to triathalons. I will never forget our 6 A.M. swim workouts. Calling New York my second home was easier thanks to Brando, my cousin. Thank you for being one of my best friends, my best man, and the best Tio to my son.

My parents, Imelda and Manuel Garcia, my brothers Manuel Jr. and John (JJ) as well as their families. Thank you for instilling my faith in God, for being my role models, for K.I.S.S., for helping me
make the best of my decisions, and for reminding me what the most important things in life are. Thank you all for now being the most amazing grandparents, tios, tias, and primos to Julian. We love you all.

Out of all the events that have happened throughout my Ph.D. journey, the biggest highlight was meeting my wife Jeewon Garcia-So. From our first conversation about IPA beers at Fat Cat, to running the NYC marathon together, to getting married, and then having a child, these past 6 years have been a blessing. Thank you for all the support, sacrifices, and love that you give to Julian and me. I love you and I look forward to starting our next chapter.

Dedication

I dedicate my thesis to my wife Jeewon Garcia-So and my son Julian Noah Garcia-So.

Chapter 1: Introduction

Overview

This chapter is aimed to provide a thorough overview of mitochondria complex $\mathrm{I}(\mathrm{Cl})$ and the roles it plays inside the cell. First, the localization and the role of Cl in the context of metabolism will be discussed. A comprehensive background on the structure, function, and mechanism of Cl will follow, going into detail on the proteins involved in the biogenesis of the structure. Next, the role of Cl in mitochondria function outside of bioenergetics will be introduced. Finally the known diseases and pathologies that occur due to Cl dysfunction, as well as the notion of Cl as the hidden nexus of cellular metabolism will be discussed.

Mitochondria

Mitochondria Structure

Over a billion years ago, alpha proteobacteria cells survived endocytosis by a prokaryotic cell, later to be termed mitochondria (Boxma et al., 2005; DiMauro and Schon, 2003; Dyall et al., 2004; Martin, 2010). Through this symbiotic relationship, the eukaryotic cell was born and was enabled to create and expend more energy by using oxygen from the air (Lyons et al., 2014; Spinelli and Haigis, 2018). Because mitochondria originated from bacteria, their structures are quite similar. Mitochondria are dual membrane organelles with an outer mitochondrial membrane (OMM) and an inner mitochondrial membrane (IMM) (DiMauro and Schon, 2003). The space between the OMM and IMM is called the intermembrane space (IMS) and the area enclosed by the IMM is called the matrix (DiMauro and Schon, 2003). Similar to bacterial cells, mitochondria contain their own circular DNA (mtDNA) inside the matrix (Meyer et al., 2018). This is a very unique characteristic of mitochondria, as they are the only organelle besides the nucleus that contain their own DNA. Since mitochondria are thought to predate the eukaryotic cell in evolution, they can be found ubiquitously in eukaryotic cells. However, some cells such as the red blood cell lack mitochondria (Zhang et al., 2011).

Mitochondria DNA

The building blocks of the mitochondria are made up of pieces encoded by both the mtDNA and the nuclear DNA (nDNA). Each individual's mtDNA is maternally inherited with each cell containing several copies. MtDNA is a compact circular genome of 16.5 kb that encodes 11 mRNAs (Jeandard et al., 2019). These are translated to 37 gene products: the 12 S and 16 S mitochondria ribosomal RNAs, 22 tRNAs required for mitochondrial protein synthesis, and 13 subunits of the protein complexes in the mitochondrial electron transport chain (Jeandard et al., 2019). Mutations in mtDNA can lead to a diverse population of these molecules (termed mtDNA heteroplasmy) among different cells in the same tissue of a person (Stewart and Chinnery, 2015). Interestingly, a person can live normally with up to 80% of mutations in their mtDNA (Stewart and Chinnery, 2015). Recently, mtDNA has been shown to eject itself from the mitochondria into the cytosol and be free floating outside of the cell, suggesting new roles as a signaling molecule (Ingelsson et al., 2018; Trumpff et al., 2018). The nDNA encodes over 1000 gene products that are localized to the mitochondria (Calvo et al., 2016; Pagliarini et al., 2008). The majority of these genes are important for making up the rest of the mitochondrial electron transport chain, the import machinery, the proteins responsible for mitochondrial dynamics, and the proteins involved with metabolism (Jeandard et al., 2019). Although scientists have reported that several of these gene products are localized to the mitochondria, their roles remain to be characterized (Calvo et al., 2016; Pagliarini et al., 2008). Additionally, several nDNA-encoded genes have been shown to be involved in alternative roles to help the cells adapt during mitochondrial dysfunction; these discoveries have shed light on how the nucleus and mitochondria communicate with one another (Haynes and Ron, 2010).

Bioenergetics and Metabolism

Electron Transport Chain

Mitochondria generate $\sim 90 \%$ of the cell's energy from the Electron Transport Chain (ETC) (Wallace and Chalkia, 2013). The ETC consists of 4 complexes that are located in the folds of the IMM, also referred to as the cristae. Their names are NADH:ubiquinone oxidoreductase (complex I), succinate dehydrogenase (complex II), ubiquinol-cytochrome c oxidoreductase (complex III), and cytochrome c oxidase (complex IV)
(Figure 1.1). The ETC generates ATP through a process known as oxidative phosphorylation (OXPHOS)
(Cogliati et al., 2018; Sazanov, 2015). OXPHOS is the transfer of electrons from high-energy molecules such as NADH or FADH_{2} to oxygen through electron carriers (i.e. ETC) (Perales-Clemente et al., 2008). These high energy molecules donate their electrons to either complex I or II to initiate the transfer of electrons. NADH is oxidized by complex I and FADH_{2} is oxidized by complex II (Cogliati et al., 2018). The electrons are passed along to complex III by the electron carrier ubiquinone. After passing through complex III, the electrons are transferred by the electron carrier cytochrome c to complex IV, where the electrons undergo a reaction with oxygen to make water. This process is coupled tightly to the pumping of hydrogen ions, or protons, across the IMM. Complex I and complex III pump 4 protons each and complex IV pumps 2 protons (Perales-Clemente et al., 2008). This creates a proton gradient for the rotor ATP synthase (complex V) to make ATP from ADP and inorganic phosphate (Jonckheere et al., 2012). This process is the underlying theory to the evolution of higher ordered organisms by allowing the cells to perform intricate processes that require more energy (Lyons et al., 2014).

Tri-Carboxylic Acid Cycle

Inside the mitochondrial matrix, the tri-carboxylic acid cycle (TCA) produces the high energy molecules (NADH and FADH_{2}) needed to initiate the ETC (Sharma et al., 2005). The TCA cycle produces 3 NADH and $1 \mathrm{FADH}_{2}$ from eight reactions and eight intermediates that begins with the oxidization of acetylCoA (Sharma et al., 2005). Acetyl-CoA is generated from the carbohydrates, fats, and proteins we consume. Each of these nutrients enter the matrix via different processes. First, carbohydrates are broken down into glucose where it undergoes glycolysis in the cytoplasm of the cell to make pyruvate. Glycolysis will produce 2 ATP per molecule and is the main contributor of ATP production during anaerobic respiration (Rafikov et al., 2015). Interestingly, cancer cells have been known to favor glycolysis (Liberti and Locasale, 2016). Pyruvate is transported into the mitochondria matrix by the mitochondrial pyruvate carriers 1 and 2 (MPC), which form a dimer in the IMM (McCommis and Finck, 2015). Inside the matrix, pyruvate dehydrogenase (PDH) converts pyruvate into acetyl-CoA to initiate the start of the TCA cycle (Sharma et al., 2005). The process of glucose oxidation yields about 32 moles of ATP per molecule of glucose (Schönfeld and Reiser, 2013). Alternatively, acetyl-CoA can be generated from the breakdown of fats into
fatty acids. This process begins in the cytosol where fatty acids are modified to acylcarnitine by carnitine palmitoyltransferase 1 (CPT1) and transported into the IMM by carnitine translocase (CAT) (Schönfeld and Reiser, 2013). In the IMM, acylcarnitine is converted into acyl-CoA by carnitine palmitoyltransferase 2 (CPT2) and imported into the matrix where beta oxidation occurs (Schönfeld and Reiser, 2013). Betaoxidation produces acetyl-CoA from acyl-CoA for the TCA cycle to use while also making 1 NADH and 1 FADH2. The amount of ATP produced during the oxidation of fatty acids is about 106 moles of ATP per fatty acid (Schönfeld and Reiser, 2013). Finally, the breakdown of proteins into amino acids can be converted into seven different metabolites to power the TCA cycle at various steps. Amino acids that catabolize into acetyl CoA or acetoacetyl coA are known as ketogenic amino acids since they produce ketone bodies or fatty acids (Berg et al., 2002). Other amino acids that are catabolized into pyruvate, alpha ketoglutarate, succinyl CoA, fumarate, or oxaloacetate and are termed glucogenic amino acids (Berg et al., 2002). Alpha ketoglutarate, succinyl CoA, fumarate, and oxaloacetate are all intermediates present in the TCA cycle.

It is important to note that the preference between glucose and fatty acid as precursors of the TCA cycle varies in different tissues. For example, the brain primarily consumes glucose whereas the heart favors the degradation of fatty acids (Schönfeld and Reiser, 2013). Several factors contribute to the reason a certain nutrient is favored over another. First is that since fatty acid oxidation produces more ATP; tissues that require more energy are likely to favor fatty acid oxidation. Another difference is the amount of NADH and FADH_{2} generated ($\mathrm{FADH}_{2} / \mathrm{NADH}$). This ratio is important for dictating whether electrons will be transferred by complex I or complex II. During glucose oxidation a ratio of 0.2 FADHz/NADH will lead to most electrons entering complex I (Schönfeld and Reiser, 2013). Fatty acid oxidation, on the other hand, has a slightly higher ratio of 0.5 , which allows for complex II to compete with complex I and thus produce reactive oxygen species from complex I (Schönfeld and Reiser, 2013).

Mitochondria Complex I

Compositions of Mitochondrial Complex I (CI)

Mitochondrial Complex I (I) is the first and largest complex of the electron transport chain. The size of mammalian complex I is about $\sim 1 \mathrm{mDa}$ and has a distinct boot shape, with a peripheral arm extending into the mitochondrial matrix and a membrane arm embedded in IMM (Fiedorczuk et al., 2016; Hirst, 2013). The structure of Cl can be divided into three functional modules based on their roles during OXPHOS: the N -module (NADH binding site), the Q module (ubiquinone binding site), and the P module (proton pumping site) (Mimaki et al., 2012). At the tip of the peripheral arm, NADH binds to the N-module, donating two electrons. These electrons pass through a series of iron-sulfur clusters and bind to ubiquinone in the Q module. Concurrently, 4 protons are pumped across the membrane arm from the matrix into the IMS, contributing to the proton gradient for ATP to be made (Hirst, 2013).

Single particle cryo-EM was used to solve the first structural models of mammalian Cl (Fiedorczuk et al., 2016; Zhu et al., 2016). These models have provided insights to the positions of each subunit in Cl as well as potential roles in regulating complex I . Mammalian CI is made up of 44 different subunits, encoded by both the mitochondrial and nuclear genomes, 7 and 37 subunits respectively (Figure 1.2) (Hirst, 2013; Zhu et al., 2016). Fourteen of these subunits are known as the core subunits due to their catalytic functions being conserved throughout all species, while the rest are referred to as the accessory subunits. The 14 core subunits are highly similar structurally to bacteria Cl suggesting that the redox mechanism has been evolutionarily conserved across species (Berrisford et al., 2016). The core subunits consist of all 7 mtDNA subunits (ND1-6 and ND4L) and 7 of the nDNA subunits (NDUFS1-3, NDUFS7-NDUFS8, and NDUFV1-2) (Hirst, 2013). The crystal structure of CI from Thermus thermophilus identified the positions of all 14 core subunits and showed that they form the foundational boot-shaped structure of Cl (Baradaran et al., 2013; Berrisford et al., 2011; Sazanov and Hinchliffe, 2006). The mtDNA-encoded subunits are embedded in the membrane arm and the nDNA-encoded subunits extend into the matrix to make the peripheral arm. In addition to the subunits, the peripheral arm includes a flavin mononucleotide at the tip for the binding of NADH and 8 iron-sulfur clusters that are involved in electron transfer (Fiedorczuk et al., 2016; Zhu et al., 2016). The 30 accessory subunits, which are not present in bacteria CI , form a cage-like structure wrapping around the core subunits. In addition, one of the accessory subunits, NDUFAB1, was found to be present at two different locations to make the total number of subunits in the final complex 45
(Fiedorczuk et al., 2016). The role of these accessory subunits and their requirement for the function of Cl is still being explored (Garcia et al., 2017; Stroud et al., 2016).

The roles and the importance of the accessory subunits remain unclear, especially as they seem to have co-evolved with higher-order organisms that demand more energy. One hypothesis is that they play a role in the stabilization of Cl . This hypothesis was tested in HEK293 cells using CRISPR to knock out every accessory subunit of Cl . Results showed that 25 accessory subunits were strictly required for the stabilization of Cl and that NDUFAB1 was required for cell viability (Stroud et al., 2016). Our study performed in Drosophila flight muscle knocked down 28 of the 30 accessory subunits found in mammals using RNAi. All 28 accessory subunits were shown to be required for cell viability and stabilization (Garcia et al., 2017). All together, these results have made a strong case that accessory subunits are critical for the function and stabilization of Cl .

The characterization of the accessory subunits at atomic resolution have provided great insights to their additional role in regulating Cl . In particular, a study of ovine Cl identified specific cofactors that bind to accessory subunits that may be important for regulating redox reactions, oxygen sensing, and fatty acid synthesis (Fiedorczuk et al., 2016). Furthermore, in the hydrophobic membrane arm, several lipids, including cardiolipin, bound to several core and accessory subunits and were important for the stabilization of Cl (Fiedorczuk et al., 2016). The mechanism regulating the coupling between electron transfer and proton translocation is still a mysterious process, however the Cl structure suggests that accessory subunits to play a critical role (Hirst, 2013; Sazanov and Hinchliffe, 2006). The binding site of ubiquinone in CI (Q site) is thought to be the driver of this process, and thus must be tightly regulated. Cl regulates the Q site by undergoing a conformational change to block the Q site and prevent ubiquinone from entering (Sazanov, 2014). This state is known as the deactive state of Cl and occurs in the absence of substrates (Babot et al., 2014; Blaza et al., 2018). Certain accessory subunits are suggested to flank the Q site during the deactive state to prevent the entry of ubiquinone (Fiedorczuk et al., 2016). As future Cl structures increase the atomic resolution of accessory subunits, it will be interesting to see what additional roles are inferred from these structures

Biogenesis of Mitochondrial CI

The assembly of mammalian Cl is a step wise process that occurs inside the mitochondria. First, subunits of Cl bind to each other to form four distinct assembly intermediates. The N -, Q -, and P - modules make up the core assembly intermediates with the P module split into two different intermediates: P proximal (P_{P}) (being closer to the membrane arm), and P distal $\left(\mathrm{P}_{\mathrm{D}}\right)$ (being farther away from the membrane arm) (Formosa et al., 2018; Signes and Fernandez-Vizarra, 2018). Once these assembly intermediates are formed, they integrate in a coordinated sequence to make the final structure. In human 143b osteosarcoma cells, researchers performed a pulse-chase experiment using chloramphenicol to inhibit mitochondria translation. Once the subunits of Cl were not detectable, mitochondria translation was turned back on and the assembly of Cl was tracked by blue-native PAGE followed by proteomics, the whole process termed "complexome profiling" (Guerrero-Castillo et al., 2017). They found that the Q and Pp modules bind together first, followed by the P_{D} module. The N module was the last to bind to the Q module to complete the formation of the Cl holoenzyme (Guerrero-Castillo et al., 2017). Most Cl subunits form one of the assembly intermediates prior to being added to the holoenzyme, but some Cl subunits bind the holoenzyme on their own. Our lab published the use of D. melanogaster to study Cl assembly (Garcia et al., 2017). Using RNAi, 35 of the 37 nuclear encoded subunits were individually knocked down in the flight muscle of D. melanogaster. Mitochondria were isolated, and the assembly intermediates were tracked using blue-native PAGE followed by immunoblot analysis. The study showed the steps at which each of these subunits were incorporated into the intermediates and/or the holoenzyme. These results complemented those of the human studies reporting that several of the nuclear-encoded subunits are critical for the formation of specific assembly intermediates. However, interestingly, specific subunits, such as NDUFS5, came in at a later point and did not belong to any specific assembly intermediate, suggesting that certain subunits get inserted into Cl on their own (Garcia et al., 2017).

Models of Complex I Biogenesis

Research to uncover the mechanisms of how all 44 subunits come together to form Cl has had a setback due to the lack of genetic models as well as the lack of structural knowledge compared to the other
respiratory chain complexes. Saccharomyces cerevisiae, which has been a powerful genetic model throughout many areas of scientific research, does not have CI , but has the other four complexes (Mileykovskaya et al., 2012). Although this model served as a foundation for understanding the assembly of complex II-complex V , a different genetic model is necessary to study that of Cl (Meunier et al., 2013; Rigby et al., 2007). Therefore, the field turned to other less-known genetic models, such as the fungi Neurospora crassa and Yarrowia lipolytica (Guerrero-Castillo et al., 2009; Marques et al., 2005). These models were very useful in investigating the core assembly of CI , but were limited due to the lack of certain accessory subunits when compared to mammalian Cl (Kerscher et al., 1999; Videira, 1998). In the past decade, the Drosophila melanogaster flight muscle has been deemed a relevant model for mitochondria research (Owusu-Ansah et al., 2013; Thomas et al., 2014). In recent years it has been used to understand mammalian Cl , as it contains 42 of the 44 human Cl subunits, the closest of all models thus far (Garcia et al., 2017). Additionally, recent advancements in genetic tools, such as CRISPR/CAS9, led to the creation of knockout cell lines for each Cl subunit (Stroud et al., 2016). These models showed that the accessory subunits are critical for Cl assembly and helped elucidate the process.

Another reason that our knowledge of the Cl subunits and their assembly has lagged compared to other respiratory chain complexes has to do with the delay in solving the crystal structure of Cl . To put things into perspective, the mammalian structures of the other complexes were solved in the late 90 s and early 2000s compared to the first atomic resolution mammalian Cl structure being identified in 2016 (Abrahams et al., 1994; Fiedorczuk et al., 2016; Iwata et al., 1998; Sun et al., 2005; Tsukihara et al., 1995). The large size of Cl is the main reason for this delay, however the development of cyro-electron microscopy (cryo-EM) technology in the past decade contributed to solving the structure of Cl (Baker, 2018).

Regulators of CI Biogenesis

In addition to Cl subunits, several chaperone proteins known as assembly factors are important for regulating the biogenesis of Cl (Formosa et al., 2018). These proteins are involved in the formation and function of Cl ; however, they are not present in the final holoenzyme. Assembly factors have been shown to play specific roles in regulating the assembly of CI , such as stabilization of the assembly intermediates
by binding to specific subunits, posttranslational modifications of subunits, or stabilizing the expression levels of subunits or other assembly factors (Andrews et al., 2013; Rhein et al., 2013; Sugiana et al., 2008). To date, 15 assembly factors have been identified, with 11 of them shown to have mutations in Cl -deficient patients (Formosa et al., 2018). More often than not, patients who are diagnosed with Cl deficiency do not know what the causative gene is after exome sequencing. This can be due to mutations happening de novo, mutations occurring in untranslated regions, and difficulty in identifying the exact variant that is causing the mutation (Fassone and Rahman, 2012). New technologies, such as RNA sequencing, will be important for identifying such mutations (Kremer et al., 2017). Consequently, new Cl assembly factors remain to be discovered (Pagliarini and Rutter, 2013; Taylor et al., 2014).

Supercomplexes

Traditionally, the complexes of the ETC were thought to exist only as discrete enzymes, however the past decade of research has shown evidence that they can exist as supramolecular structures. CryoEM has revealed that mammalian Cl can bind with complexes III and IV to form supercomplexes. This includes CI bound to a complex III dimer ($\mathrm{I}_{1} \mid \mathrm{I}_{2}$) and Cl bound to a complex III dimer and complex IV ($\left.\mathrm{I}_{1} \mid \mathrm{I}_{2} \mathrm{IV}_{1}\right)$ (Letts et al., 2017). Although the function of supercomplexes is not entirely clear, the current hypothesis of these structures is to increase the efficiency of electron transfer during OXPHOS (Letts and Sazanov, 2017; Milenkovic et al., 2017). Researchers also think that complexes III and IV help stabilize CI and prevent it from oxidative stress. Interestingly, the structures of supercomplexes have revealed accessory subunits of Cl to be the main sites where CIII and CIV subunits bind to form supercomplexes (Fiedorczuk et al., 2016; Letts and Sazanov, 2017; Zhu et al., 2016). Such discoveries have proposed an additional role for accessory subunits to be involved in stabilizing and forming supercomplexes.

Cl as a Regulator of Mitochondrial Function

As the "front door" for electrons to pass through the ETC and a huge contributor to the proton gradient, Cl always had the clearly defined role to be the main driver of ATP production. The past two
decades of mitochondria research have advanced the role of Cl beyond bioenergetics, as a central regulator of metabolism. Cl is now also implicated in other cellular processes, such as generating reactive oxygen species (ROS) for signaling, regulating the levels of NADH/NAD+, calcium signaling, and regulating apoptosis (Angell et al., 2000; Robb et al., 2018; Santidrian et al., 2013a; Valsecchi et al., 2009). All of these roles that Cl is involved in are important for maintaining cellular homeostasis. In pathological states of Cl , one or more of these processes in the cell will be the underlying cause (Rodenburg, 2016).

Reactive Oxygen Species Signaling

Mitochondria are key contributors to ROS in the cell (Murphy, 2009). Cl is one of the main sites of ROS production, providing superoxides that get converted to hydrogen peroxide by superoxide dismutase (Kussmaul and Hirst, 2006). Hydrogen peroxide has been shown to be an important signaling molecule, regulating metabolic adaptation, cell proliferation and cell differentiation processes (Hamanaka et al., 2013; Wheaton et al., 2014). Although the mechanism by which Cl produces ROS during electron transfer flow in the membrane arm is not fully understood, Cl can produce ROS via both forward and reverse electron transfer flow (RET) (Hirst et al., 2008; Robb et al., 2018). Forward electron transfer flow is the usual flow of electrons that come from NADH binding to FMN, passing through iron-sulfur clusters and being released to ubiquinone. Studies have shown that most ROS produced this way occurs from the reduction of flavin and an increase of NAD+/NADH ratio (Hirst et al., 2008). Alternatively, RET occurs when there is a high ATP/ADP ratio, reduced ubiquinone pool, and high proton motive force. Instead of electrons being passed onto complex III, ubiquinone will bring the electrons back to complex I where they proceed back through the iron-sulfur clusters and are released to make superoxides due to flavin disassociating from Cl (Robb et al., 2018; Stepanova et al., 2017). RET is a common phenomenon in ischemia-reperfusion (Chouchani et al., 2016; Stepanova et al., 2017). During this process Cl makes a large amount of superoxides, causing a major oxidative damage in the cell, ultimately leading to damage in the tissue (Chouchani et al., 2016). Although RET is generally perceived as pathological, recently it has been shown to be involved in other physiological processes, such as improved lifespan and cellular differentiation (Lee et al., 2011; Scialò et al., 2016, 2017). As one of the largest sites of superoxide production in the mitochondria, Cl may also play
a role in oxygen sensing. NDUFS2, a Cl core subunit, was shown to control hydrogen peroxide generation in the carotid body and pulmonary artery smooth muscle cells (PASMCs) during hypoxic conditions (Dunham-Snary et al., 2019; Fernández-Agüera et al., 2015). The knockdown of other CI, CIII, and IV subunits in this study did not alter the levels of peroxide generation or mimic chronic hypoxic conditions, suggesting that this role is unique to NDUFS2 (Dunham-Snary et al., 2019).

NADH metabolism

NADH is a key player in cellular metabolism as a cofactor for several metabolic pathways, including glycolysis and the TCA cycle (Stein and Imai, 2012). For proper mitochondrial function, it is critical to maintain an optimal NAD+/NADH ratio (Zhu et al., 2015). CI oxidizes electrons from NADH to NAD+, and therefore plays an important role in monitoring this ratio. In most cases of Cl dysfunction, NADH accumulates in the mitochondria matrix and as a result decreases the NAD+/NADH ratio, eliciting various responses by the cell (Lee et al., 2019). For example, in cardiac-specific NDUFS4 (nuclear encoded subunit of CI) knockout mice, a decrease in the NAD+/NADH ratio led to the inhibition of sirtuin 3 (SIRT3) activity and an increase in protein acetylation, ultimately resulting in an increased sensitivity to cardiac stress (Karamanlidis et al., 2013). SIRT3 is a NAD+ dependent deacetylase that localizes primarily to the mitochondria, and is implicated to be critical in controlling the energy demands of the mitochondria during stress (Ansari et al., 2017)(Ahn et al., 2008). Some CI dysfunction and the consequent decrease of NAD+ has been shown to target SIRT3 activation, leading to an increased level of ROS (Desquiret-Dumas et al., 2013). On the other hand, SIRT3 has been shown to interact with the Cl subunit NDUFA9 to regulate its acetylation and thus the CI holoenzyme activity (Ahn et al., 2008). Additionally, while glycolysis favored in cancer cells typically leads to an imbalance of NAD+/NADH ratio, a study showed that increasing Cl activity in breast cancer cells prevented tumor growth and metastasis by rebalancing the NAD+/NADH ratio, suggesting that Cl activity can regulate tumor growth and metastasis via NADH metabolism (Santidrian et al., 2013b).

Calcium Homeostasis

In the mitochondria, calcium has been shown to affect metabolism, OXPHOS, and apoptosis (Finkel et al., 2015). One driving force for calcium uptake by the mitochondria is the membrane potential created by the respiratory electron transport chain (Griffiths and Rutter, 2009). The pumping of protons across the IMM creates a negative charge in the matrix which induces cations such as calcium to enter the matrix (Griffiths and Rutter, 2009). Cl is a critical component to creating this electrochemical proton gradient as it contributes about 40% of the protons being pumped across the IMM (Hirst, 2013). Loss of CI activity leads to decreased ATP production, decreased ATPase activity, lack of calcium uptake by the ER, and finally an accumulation of calcium in the cytoplasm (Valsecchi et al., 2009). The mitochondrial calcium uniporter (MCU), discovered in the past decade, has been suggested to be the main route of entry for calcium into the mitochondria (Giorgi et al., 2018). This protein complex of approximately 480 kDa (Marchi and Pinton, 2014) has been suggested to lead to an accumulation of calcium in the mitochondria in cardiomyopathy mouse models with impaired OXPHOS. In a study done on whole-mitoplast HEK293T cells, chronic inhibition of Cl enhanced the MCU activity, suggesting a relationship between Cl and the MCU (Balderas-Angeles et al., 2018). As future studies focus on the regulation of the MCU, it will be interesting to see if the uniporter or its regulators are directly involved with the activity or assembly of Cl .

Apoptosis

Mitochondria play a key role in activating apoptosis in the cell (Lemarie and Grimm, 2011). Certain subunits of Cl have been shown to be directly involved in regulating apoptosis. NDUFA13, also known as GRIM-19 (gene associated with retinoid-interferon-induced-mortality-19), regulates cell death by binding to STAT3 (signal transducer and activator of transcription 3), and inhibiting its ability to bind to DNA (Angell et al., 2000; Huang et al., 2004; Zhang et al., 2003). When STAT3 is active, it binds several anti-apoptotic genes that are transcribed to promote tumor survival (Zhang et al., 2003). NDUFA6, typically downregulated in apoptotic cells, when overexpressed in HIV-infected cells could rescue cells from undergoing apoptosis.(Ladha et al., 2005). The core subunits NDUFS1 and NDUFS3 have also been shown to be implicated in apoptosis. NDUFS1 is cleaved by caspases which are cysteine proteases that initiate apoptosis signaling (Ricci et al., 2004). Similarly, NDUFS3 is cleaved by the protease granzyme A, a
protease that induces cell death (Martinvalet et al., 2008). In both of these cases, an increase of superoxides and disruption in membrane potential leads to apoptosis. Cl subunits have previously unknown roles in regulating apoptosis and it will be important to identify any other Cl subunits that are involved in these processes.

Diseases of CI

Isolated CI Deficiency

Dysfunction of mitochondria Cl has been shown to be involved in several different diseases (Rodenburg, 2016). The most common of these are primary mitochondrial diseases which is a heterogeneous group of diseases that mostly affects the tissues with the highest energy demands. Mutations inherited in the mitochondria-encoded Cl subunits, nuclear-encoded Cl subunits, or Cl assembly factors lead to isolated Cl deficiency (Distelmaier et al., 2009). Isolated Cl deficiency refers to the severe reduction of Cl while the activities of other respiratory chain complexes are normal. Compared to other respiratory chain complexes, isolated Cl deficiency accounts for nearly one-third of all OXPHOS disorders (Fassone and Rahman, 2012; Ghezzi and Zeviani, 2018). To date, mutations in all 14 core subunits, 13 of the 30 accessory subunits, and 11 of the 15 assembly factors have been described in patients (Frazier et al., 2019). To diagnose Cl deficiency, the Cl redox activity in patient biopsies or fibroblasts are measured to be less than 30% compared to the control (Fassone and Rahman, 2012). Most often symptoms involve neurological dysfunction, but can also affect other organs, such as the heart and skeletal muscle, causing multi-system diseases (Fassone and Rahman, 2012). The most common diseases that result from Cl deficiency are Leigh Syndrome, fatal infantile lactic acidosis, leukoencephalopathy, mitochondrial encephalomyopathy-lactic acidosis-stroke like episodes (MELAS), and hypertrophic cardiomyopathy (Fassone and Rahman, 2012; Rodenburg, 2016). Interestingly, the correlation between the mutations present in specific Cl subunits and their phenotypes did not present any patterns in the clinical outcome (Koene et al., 2012). For example, patients with mutations in NDUFS2, a core subunit of CI found in the Q module, all displayed Leigh Syndrome, but 3 of 5 of the patients also showed hypertrophic cardiomyopathy and the prognosis for these patients varied, with one dying as early as 4 days and another dying at 3 years
old (Ngu et al., 2012). One reason for such heterogenous phenotypes would be that, unlike nuclear DNA mutations which follow the Mendelian laws of inheritance, mtDNA presents heteroplasmy in the various tissues and organs (Alston et al., 2017). These variations have made it difficult for physicians to treat these diseases. Identifying any correlations of phenotypes and prognosis based on the location of Cl subunits in the holoenzyme would be an interesting question to pursue.

Complex I Associated Diseases

Cl dysfunction is present in several chronic- and age-related diseases, including cardiovascular, diabetes, cancer, and neurodegenerative diseases (Boudina et al., 2007; Hroudová et al., 2014; Siasos et al., 2018; Urra et al., 2017). In most of these diseases Cl dysfunction is not due to genetic mutations within Cl . Therefore, whether CI is the primary or secondary cause of the disease remains to be debated. For example, CI has long been thought to be the culprit for Parkinson's disease (Area-Gomez et al., 2019). This hypothesis was first suggested when 1-methyl-4-penyl-1, 2, 3, 6-tetrahydropyridine (MPTP), a CI inhibitor, was found to induce parkinsonian syndrome when injected in mice or humans. The resemblance between the MPTP-induced model and the clinical Parkinson's disease led researchers to investigate Cl activity in patient samples and find deficiencies in the enzyme (Langston, 2017). However, other observations reporting deficiencies of other respiratory chain enzymes in the muscle, lymphocytes, and platelets of Parkinson's disease patients propose an overall dysfunction in mitochondria, rather than specific to Cl (Langston, 2017).

Conclusion

Recent years have unraveled new and foundational components that are required for the function and biogenesis of human Cl . In addition, CI has been shown to be involved in other areas of mitochondrial regulation, making it a multifaceted unit in the mitochondria rather than limited to bioenergetics in scope. In the clinical setting, the diagnosis of Cl mitochondria diseases still remains to be a challenge due to poor
prognosis and polymorphic phenotypes. Furthermore, Cl has been associated with chronic- and agerelated diseases that are traditionally not related to mitochondria, however its role remains a mystery. This thesis will be presented in two parts. The first part will focus on the classic assembly process of Cl in Drosophila and show how the mechanisms are conserved between mammals and flies. The second part will further show how the Drosophila model is a powerful genetic model to identify and examine factors that regulate CI . In particular, I will discuss in detail a novel candidate, Fragile X Mental Retardation 1 (FMR1), and its potential role in regulating Cl biogenesis. Finally, I will conclude with how Drosophila can be used to address future questions of Cl .

Figure 1.1: The electron transport chain
Adapted from Sazanov, 2015. The electron transport chain is located in the inner mitochondrial membrane and consists of four different complexes: complex I, complex II, complex III, and complex IV. These four complexes work together to transfer electrons and establish a proton gradient that complex V uses to generate ATP. Complex I or complex II initiate the transfer of electrons when they oxidize NADH or FADH2 respectively. These electrons are first passed along to complex III by the electron carrier ubiquinone and then are passed to complex IV by the electron carrier cytochrome c . These electrons will undergo a reaction with oxygen to make water. To generate the proton gradient, complex I and complex III pump four protons each across the inner mitochondrial membrane and complex IV pumps 2 protons.

Figure 1.2: Mitochondrial complex I

The function of complex I in the oxidative phosphorylation system can be broken down into three different modules. The N module, Q module and P Module. During OXPHOS, complex I initiates transfer of electrons when NADH binds to a FMN in the N module to donate its electron, these electrons proceeds through 8 iron sulfur clusters where it will then bind to ubiquinone so it can pass the electrons on to Complex III. As this is happening, complex I also contributes to the proton gradient that is important for generating ATP by pumping 4 protons across the inner membrane of the mitochondria at the P modules.

Human complex I has 44 different subunits with some of them located in the membrane and some of the proteins protruding into the matrix. 7 subunits are encoded by the mitochondria and are all found in the inner membrane, while the other 37 subunits are encoded by the nucleus and are found throughout the structure. 14 of the subunits are known as the core proteins and are have been shown to be critical for functions of complex I as they found in all organisms that have complex I. The other 30 accessory subunits found in humans varies between organisms and whether or not they are necessary or required for the assembly and stability of complex I remains to be characterized.

Core Proteins (14)

7 Nuclear-Encoded Core Subunits
7 Mitochondria-Encoded Subunits

Accessory Proteins (Amount Varies)

30 Nuclear-Encoded Accessory Subunits

References

Abrahams, J.P., Leslie, A.G., Lutter, R., and Walker, J.E. (1994). Structure at 2.8 A resolution of F1ATPase from bovine heart mitochondria. Nature 370, 621-628

Ahn, B.-H., Kim, H.-S., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., Deng, C.-X., and Finkel, T. (2008). A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. USA 105, 14447-14452.

Alston, C.L., Rocha, M.C., Lax, N.Z., Turnbull, D.M., and Taylor, R.W. (2017). The genetics and pathology of mitochondrial disease. J. Pathol. 241, 236-250.

Andrews, B., Carroll, J., Ding, S., Fearnley, I.M., and Walker, J.E. (2013). Assembly factors for the membrane arm of human complex I. Proc. NatI. Acad. Sci. USA 110, 18934-18939.

Angell, J.E., Lindner, D.J., Shapiro, P.S., Hofmann, E.R., and Kalvakolanu, D.V. (2000). Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J. Biol. Chem. 275, 33416-33426.

Ansari, A., Rahman, M.S., Saha, S.K., Saikot, F.K., Deep, A., and Kim, K.-H. (2017). Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell 16, 4-16.

Area-Gomez, E., Guardia-Laguarta, C., Schon, E.A., and Przedborski, S. (2019). Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J. Clin. Invest.

Babot, M., Birch, A., Labarbuta, P., and Galkin, A. (2014). Characterisation of the active/de-active transition of mitochondrial complex I. Biochim. Biophys. Acta 1837, 1083-1092.

Baker, M. (2018). Cryo-electron microscopy shapes up. Nature 561, 565-567.
Balderas-Angeles, E., Sommmakia, S., Deane, S., and Chaudhuri, D. (2018). Complex I inhibition enhances mitochondrial calcium uniporter current. Biophys. J. 114, 659a.

Baradaran, R., Berrisford, J.M., Minhas, G.S., and Sazanov, L.A. (2013). Crystal structure of the entire respiratory complex I. Nature 494, 443-448.

Berg, J.M., Tymoczko, J.L., and Stryer, L. (2002). Carbon Atoms of Degraded Amino Acids Emerge as Major Metabolic Intermediates - Biochemistry - NCBI Bookshelf.

Berrisford, J.M., Baradaran, R., and Sazanov, L.A. (2011). Entire Respiratory Complex I from Thermus Thermophilus. In Encyclopedia of inorganic and bioinorganic chemistry, R.A. Scott, ed. (Chichester, UK: John Wiley \& Sons, Ltd), pp. 1-16.

Berrisford, J.M., Baradaran, R., and Sazanov, L.A. (2016). Structure of bacterial respiratory complex I. Biochim. Biophys. Acta 1857, 892-901.

Blaza, J.N., Vinothkumar, K.R., and Hirst, J. (2018). Structure of the deactive state of mammalian respiratory complex I. Structure 26, 312-319.e3.

Boudina, S., Sena, S., Theobald, H., Sheng, X., Wright, J.J., Hu, X.X., Aziz, S., Johnson, J.I., Bugger, H., Zaha, V.G., et al. (2007). Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56, 2457-2466.

Boxma, B., de Graaf, R.M., van der Staay, G.W.M., van Alen, T.A., Ricard, G., Gabaldón, T., van Hoek, A.H.A.M., Moon-van der Staay, S.Y., Koopman, W.J.H., van Hellemond, J.J., et al. (2005). An anaerobic mitochondrion that produces hydrogen. Nature 434, 74-79.

Calvo, S.E., Clauser, K.R., and Mootha, V.K. (2016). MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251-7.

Chouchani, E.T., Pell, V.R., James, A.M., Work, L.M., Saeb-Parsy, K., Frezza, C., Krieg, T., and Murphy, M.P. (2016). A Unifying Mechanism for Mitochondrial Superoxide Production during IschemiaReperfusion Injury. Cell Metab. 23, 254-263.

Cogliati, S., Lorenzi, I., Rigoni, G., Caicci, F., and Soriano, M.E. (2018). Regulation of mitochondrial electron transport chain assembly. J. Mol. Biol. 430, 4849-4873.

Desquiret-Dumas, V., Gueguen, N., Leman, G., Baron, S., Nivet-Antoine, V., Chupin, S., Chevrollier, A., Vessières, E., Ayer, A., Ferré, M., et al. (2013). Resveratrol induces a mitochondrial complex I-dependent increase in NADH oxidation responsible for sirtuin activation in liver cells. J. Biol. Chem. 288, 3666236675.

DiMauro, S., and Schon, E.A. (2003). Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 348, 2656-2668.

Distelmaier, F., Koopman, W.J.H., van den Heuvel, L.P., Rodenburg, R.J., Mayatepek, E., Willems, P.H.G.M., and Smeitink, J.A.M. (2009). Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132, 833-842.

Dunham-Snary, K.J., Wu, D., Potus, F., Sykes, E.A., Mewburn, J.D., Charles, R.L., Eaton, P., Sultanian, R.A., and Archer, S.L. (2019). Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Circ. Res. 124, 1727-1746.

Dyall, S.D., Brown, M.T., and Johnson, P.J. (2004). Ancient invasions: from endosymbionts to organelles. Science 304, 253-257.

Fassone, E., and Rahman, S. (2012). Complex I deficiency: clinical features, biochemistry and molecular genetics. J. Med. Genet. 49, 578-590.

Fernández-Agüera, M.C., Gao, L., González-Rodríguez, P., Pintado, C.O., Arias-Mayenco, I., GarcíaFlores, P., García-Pergañeda, A., Pascual, A., Ortega-Sáenz, P., and López-Barneo, J. (2015). Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling. Cell Metab. 22, 825837.

Fiedorczuk, K., Letts, J.A., Degliesposti, G., Kaszuba, K., Skehel, M., and Sazanov, L.A. (2016). Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406-410.

Finkel, T., Menazza, S., Holmström, K.M., Parks, R.J., Liu, J., Sun, J., Liu, J., Pan, X., and Murphy, E. (2015). The ins and outs of mitochondrial calcium. Circ. Res. 116, 1810-1819.

Formosa, L.E., Dibley, M.G., Stroud, D.A., and Ryan, M.T. (2018). Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Semin. Cell Dev. Biol. 76, 154-162.

Frazier, A.E., Thorburn, D.R., and Compton, A.G. (2019). Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J. Biol. Chem. 294, 5386-5395.

Garcia, C.J., Khajeh, J., Coulanges, E., Chen, E.I.-J., and Owusu-Ansah, E. (2017). Regulation of mitochondrial complex I biogenesis in drosophila flight muscles. Cell Rep. 20, 264-278.

Ghezzi, D., and Zeviani, M. (2018). Human diseases associated with defects in assembly of OXPHOS complexes. Essays Biochem 62, 271-286.

Giorgi, C., Marchi, S., and Pinton, P. (2018). The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19, 713-730.

Griffiths, E.J., and Rutter, G.A. (2009). Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim. Biophys. Acta 1787, 1324-1333.

Guerrero-Castillo, S., Vázquez-Acevedo, M., González-Halphen, D., and Uribe-Carvajal, S. (2009). In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway. Biochim. Biophys. Acta 1787, 75-85.

Guerrero-Castillo, S., Baertling, F., Kownatzki, D., Wessels, H.J., Arnold, S., Brandt, U., and Nijtmans, L. (2017). The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab. 25, 128-139.

Hamanaka, R.B., Glasauer, A., Hoover, P., Yang, S., Blatt, H., Mullen, A.R., Getsios, S., Gottardi, C.J., DeBerardinis, R.J., Lavker, R.M., et al. (2013). Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci. Signal. 6, ra8.

Haynes, C.M., and Ron, D. (2010). The mitochondrial UPR - protecting organelle protein homeostasis. J. Cell Sci. 123, 3849-3855.

Hirst, J. (2013). Mitochondrial complex I. Annu. Rev. Biochem. 82, 551-575.
Hirst, J., King, M.S., and Pryde, K.R. (2008). The production of reactive oxygen species by complex I. Biochem. Soc. Trans. 36, 976-980.

Hroudová, J., Singh, N., and Fišar, Z. (2014). Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease. Biomed Res. Int. 2014, 175062.

Huang, G., Lu, H., Hao, A., Ng, D.C.H., Ponniah, S., Guo, K., Lufei, C., Zeng, Q., and Cao, X. (2004). GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol. Cell. Biol. 24, 8447-8456.

Ingelsson, B., Söderberg, D., Strid, T., Söderberg, A., Bergh, A.-C., Loitto, V., Lotfi, K., Segelmark, M., Spyrou, G., and Rosén, A. (2018). Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C. Proc. Natl. Acad. Sci. USA 115, E478-E487.

Iwata, S., Lee, J.W., Okada, K., Lee, J.K., Iwata, M., Rasmussen, B., Link, T.A., Ramaswamy, S., and Jap, B.K. (1998). Complete structure of the 11 -subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 64-71.

Jeandard, D., Smirnova, A., Tarassov, I., Barrey, E., Smirnov, A., and Entelis, N. (2019). Import of NonCoding RNAs into Human Mitochondria: A Critical Review and Emerging Approaches. Cells 8.

Jonckheere, A.I., Smeitink, J.A.M., and Rodenburg, R.J.T. (2012). Mitochondrial ATP synthase: architecture, function and pathology. J. Inherit. Metab. Dis. 35, 211-225.

Karamanlidis, G., Lee, C.F., Garcia-Menendez, L., Kolwicz, S.C., Suthammarak, W., Gong, G., Sedensky, M.M., Morgan, P.G., Wang, W., and Tian, R. (2013). Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 18, 239-250.

Kerscher, S.J., Okun, J.G., and Brandt, U. (1999). A single external enzyme confers alternative NADH:ubiquinone oxidoreductase activity in Yarrowia lipolytica. J. Cell Sci. 112 (Pt 14), 2347-2354.

Koene, S., Rodenburg, R.J., van der Knaap, M.S., Willemsen, M.A.A.P., Sperl, W., Laugel, V., Ostergaard, E., Tarnopolsky, M., Martin, M.A., Nesbitt, V., et al. (2012). Natural disease course and genotype-phenotype correlations in Complex I deficiency caused by nuclear gene defects: what we learned from 130 cases. J. Inherit. Metab. Dis. 35, 737-747.

Kremer, L.S., Bader, D.M., Mertes, C., Kopajtich, R., Pichler, G., Iuso, A., Haack, T.B., Graf, E., Schwarzmayr, T., Terrile, C., et al. (2017). Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat. Commun. 8, 15824.

Kussmaul, L., and Hirst, J. (2006). The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. USA 103, 7607-7612.

Ladha, J.S., Tripathy, M.K., and Mitra, D. (2005). Mitochondrial complex I activity is impaired during HIV-1-induced T-cell apoptosis. Cell Death Differ. 12, 1417-1428.

Langston, J.W. (2017). The MPTP Story. J. Parkinsons. Dis. 7, S11-S19.
Lee, C.F., Caudal, A., Abell, L., Nagana Gowda, G.A., and Tian, R. (2019). Targeting NAD+ metabolism as interventions for mitochondrial disease. Sci. Rep. 9, 3073.

Lee, S., Tak, E., Lee, J., Rashid, M.A., Murphy, M.P., Ha, J., and Kim, S.S. (2011). Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Res. 21, 817834.

Lemarie, A., and Grimm, S. (2011). Mitochondrial respiratory chain complexes: apoptosis sensors mutated in cancer? Oncogene 30, 3985-4003.

Letts, J.A., and Sazanov, L.A. (2017). Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 24, 800-808.

Letts, J.A., Fiedorczuk, K., and Sazanov, L.A. (2017). The architecture of respiratory supercomplexes. Biophys. J. 112, 278a.

Liberti, M.V., and Locasale, J.W. (2016). The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci. 41, 211-218.

Lyons, T.W., Reinhard, C.T., and Planavsky, N.J. (2014). The rise of oxygen in Earth's early ocean and atmosphere. Nature 506, 307-315.

Marchi, S., and Pinton, P. (2014). The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J. Physiol. (Lond.) 592, 829-839.

Marques, I., Duarte, M., Assunção, J., Ushakova, A.V., and Videira, A. (2005). Composition of complex I from Neurospora crassa and disruption of two "accessory" subunits. Biochim. Biophys. Acta 1707, 211220.

Martin, W. (2010). Evolutionary origins of metabolic compartmentalization in eukaryotes. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 365, 847-855.

Martinvalet, D., Dykxhoorn, D.M., Ferrini, R., and Lieberman, J. (2008). Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death. Cell 133, 681-692.

McCommis, K.S., and Finck, B.N. (2015). Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem. J. 466, 443-454.

Meunier, B., Fisher, N., Ransac, S., Mazat, J.P., and Brasseur, G. (2013). Respiratory complex III dysfunction in humans and the use of yeast as a model organism to study mitochondrial myopathy and associated diseases. Biochim. Biophys. Acta 1827, 1346-1361.

Meyer, A., Laverny, G., Bernardi, L., Charles, A.L., Alsaleh, G., Pottecher, J., Sibilia, J., and Geny, B. (2018). Mitochondria: an organelle of bacterial origin controlling inflammation. Front. Immunol. 9, 536.

Milenkovic, D., Blaza, J.N., Larsson, N.-G., and Hirst, J. (2017). The enigma of the respiratory chain supercomplex. Cell Metab. 25, 765-776.

Mileykovskaya, E., Penczek, P.A., Fang, J., Mallampalli, V.K.P.S., Sparagna, G.C., and Dowhan, W. (2012). Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy. J. Biol. Chem. 287, 23095-23103.

Mimaki, M., Wang, X., McKenzie, M., Thorburn, D.R., and Ryan, M.T. (2012). Understanding mitochondrial complex I assembly in health and disease. Biochim. Biophys. Acta 1817, 851-862.

Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417, 1-13.
Ngu, L.H., Nijtmans, L.G., Distelmaier, F., Venselaar, H., van Emst-de Vries, S.E., van den Brand, M.A.M., Stoltenborg, B.J.M., Wintjes, L.T., Willems, P.H., van den Heuvel, L.P., et al. (2012). A catalytic defect in mitochondrial respiratory chain complex I due to a mutation in NDUFS2 in a patient with Leigh syndrome. Biochim. Biophys. Acta 1822, 168-175.

Owusu-Ansah, E., Song, W., and Perrimon, N. (2013). Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699-712.

Pagliarini, D.J., and Rutter, J. (2013). Hallmarks of a new era in mitochondrial biochemistry. Genes Dev. 27, 2615-2627.

Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.-E., Walford, G.A., Sugiana, C., Boneh, A., Chen, W.K., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112-123.

Perales-Clemente, E., Bayona-Bafaluy, M.P., Pérez-Martos, A., Barrientos, A., Fernández-Silva, P., and Enriquez, J.A. (2008). Restoration of electron transport without proton pumping in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 105, 18735-18739.

Rafikov, R., Sun, X., Rafikova, O., Louise Meadows, M., Desai, A.A., Khalpey, Z., Yuan, J.X.-J., Fineman, J.R., and Black, S.M. (2015). Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells. Redox Biol 6, 278-286.

Rhein, V.F., Carroll, J., Ding, S., Fearnley, I.M., and Walker, J.E. (2013). NDUFAF7 methylates arginine 85 in the NDUFS2 subunit of human complex I. J. Biol. Chem. 288, 33016-33026.

Ricci, J.-E., Muñoz-Pinedo, C., Fitzgerald, P., Bailly-Maitre, B., Perkins, G.A., Yadava, N., Scheffler, I.E., Ellisman, M.H., and Green, D.R. (2004). Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117, 773-786.

Rigby, K., Zhang, L., Cobine, P.A., George, G.N., and Winge, D.R. (2007). characterization of the cytochrome c oxidase assembly factor Cox19 of Saccharomyces cerevisiae. J. Biol. Chem. 282, 1023310242.

Robb, E.L., Hall, A.R., Prime, T.A., Eaton, S., Szibor, M., Viscomi, C., James, A.M., and Murphy, M.P. (2018). Control of mitochondrial superoxide production by reverse electron transport at complex I. J. Biol. Chem. 293, 9869-9879.

Rodenburg, R.J. (2016). Mitochondrial complex I-linked disease. Biochim. Biophys. Acta 1857, 938-945.
Santidrian, A.F., Matsuno-Yagi, A., Ritland, M., Seo, B.B., LeBoeuf, S.E., Gay, L.J., Yagi, T., and FeldingHabermann, B. (2013a). Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Invest.

Santidrian, A.F., Matsuno-Yagi, A., Ritland, M., Seo, B.B., LeBoeuf, S.E., Gay, L.J., Yagi, T., and FeldingHabermann, B. (2013b). Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Invest. 123, 1068-1081.

Sazanov, L.A. (2014). The mechanism of coupling between electron transfer and proton translocation in respiratory complex I. J Bioenerg Biomembr 46, 247-253.

Sazanov, L.A. (2015). A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat. Rev. Mol. Cell Biol. 16, 375-388.

Sazanov, L.A., and Hinchliffe, P. (2006). Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311, 1430-1436.

Schönfeld, P., and Reiser, G. (2013). Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain. J. Cereb. Blood Flow Metab. 33, 1493-1499.

Scialò, F., Sriram, A., Fernández-Ayala, D., Gubina, N., Lõhmus, M., Nelson, G., Logan, A., Cooper, H.M., Navas, P., Enríquez, J.A., et al. (2016). Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metab. 23, 725-734.

Scialò, F., Fernández-Ayala, D.J., and Sanz, A. (2017). Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front. Physiol. 8, 428.

Sharma, N., Okere, I.C., Brunengraber, D.Z., McElfresh, T.A., King, K.L., Sterk, J.P., Huang, H., Chandler, M.P., and Stanley, W.C. (2005). Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation. J. Physiol. (Lond.) 562, 593-603.

Siasos, G., Tsigkou, V., Kosmopoulos, M., Theodosiadis, D., Simantiris, S., Tagkou, N.M., Tsimpiktsioglou, A., Stampouloglou, P.K., Oikonomou, E., Mourouzis, K., et al. (2018). Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Ann Transl Med 6, 256.

Signes, A., and Fernandez-Vizarra, E. (2018). Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 62, 255-270.

Spinelli, J.B., and Haigis, M.C. (2018). The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745-754.

Stein, L.R., and Imai, S. (2012). The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol. Metab. 23, 420-428.

Stepanova, A., Kahl, A., Konrad, C., Ten, V., Starkov, A.S., and Galkin, A. (2017). Reverse electron transfer results in a loss of flavin from mitochondrial complex I: Potential mechanism for brain ischemia reperfusion injury. J. Cereb. Blood Flow Metab. 37, 3649-3658.

Stewart, J.B., and Chinnery, P.F. (2015). The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530-542.

Stroud, D.A., Surgenor, E.E., Formosa, L.E., Reljic, B., Frazier, A.E., Dibley, M.G., Osellame, L.D., Stait, T., Beilharz, T.H., Thorburn, D.R., et al. (2016). Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123-126.

Sugiana, C., Pagliarini, D.J., McKenzie, M., Kirby, D.M., Salemi, R., Abu-Amero, K.K., Dahl, H.-H.M., Hutchison, W.M., Vascotto, K.A., Smith, S.M., et al. (2008). Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am. J. Hum. Genet. 83, 468-478.

Sun, F., Huo, X., Zhai, Y., Wang, A., Xu, J., Su, D., Bartlam, M., and Rao, Z. (2005). Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 1043-1057.

Taylor, R.W., Pyle, A., Griffin, H., Blakely, E.L., Duff, J., He, L., Smertenko, T., Alston, C.L., Neeve, V.C., Best, A., et al. (2014). Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312, 68-77.

Thomas, R.E., Andrews, L.A., Burman, J.L., Lin, W.-Y., and Pallanck, L.J. (2014). PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet. 10, e1004279.

Trumpff, C., Marsland, A.L., Basualto-Alarcon, C., Martin, J.L., Carroll, J.E., Sturm, G., Vincent, A.E., Mosharov, E.V., Gu, Z., Kaufman, B.A., et al. (2018). Acute Psychological Stress Triggers Circulating Cell-Free Mitochondrial DNA. BioRxiv.

Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1995). Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 269, 1069-1074.

Urra, F.A., Muñoz, F., Lovy, A., and Cárdenas, C. (2017). The mitochondrial complex(i)ty of cancer. Front. Oncol. 7, 118.

Valsecchi, F., Esseling, J.J., Koopman, W.J.H., and Willems, P.H.G.M. (2009). Calcium and ATP handling in human NADH:ubiquinone oxidoreductase deficiency. Biochim. Biophys. Acta 1792, 1130-1137.

Videira, A. (1998). Complex I from the fungus Neurospora crassa. Biochimica et Biophysica Acta (BBA) Bioenergetics 1364, 89-100.

Wallace, D.C., and Chalkia, D. (2013). Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 5, a021220.

Wheaton, W.W., Weinberg, S.E., Hamanaka, R.B., Soberanes, S., Sullivan, L.B., Anso, E., Glasauer, A., Dufour, E., Mutlu, G.M., Budigner, G.S., et al. (2014). Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3, e02242.

Zhang, J., Yang, J., Roy, S.K., Tininini, S., Hu, J., Bromberg, J.F., Poli, V., Stark, G.R., and Kalvakolanu, D.V. (2003). The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc. Natl. Acad. Sci. USA 100, 9342-9347.

Zhang, Z.-W., Cheng, J., Xu, F., Chen, Y.-E., Du, J.-B., Yuan, M., Zhu, F., Xu, X.-C., and Yuan, S. (2011). Red blood cell extrudes nucleus and mitochondria against oxidative stress. IUBMB Life 63, 560-565.

Zhu, J., Vinothkumar, K.R., and Hirst, J. (2016). Structure of mammalian respiratory complex I. Nature 536, 354-358.

Zhu, X.-H., Lu, M., Lee, B.-Y., Ugurbil, K., and Chen, W. (2015). In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc. Natl. Acad. Sci. USA 112, 2876-2881.

Chapter 2: Mitochondrial Complex I Assembly in Drosophila Flight Muscles.

Adapted from Garcia, C.J., Khajeh, J., Coulanges, E., Chen, E.I.-J., and Owusu-Ansah, E. (2017). Regulation of mitochondrial complex I biogenesis in drosophila flight muscles. Cell Rep. 20, 264278.

Chen E.I-J performed mass spectrometry
Garcia, C.J., Khajeh, J, Coulanges, E., and Owusu-Ansah, E performed the rest of the experiments, analyzed, and discussed results.

Owusu-Ansah, E conceived, designed, secured funding, and wrote the manuscript with feedback from Garcia, C.J. and Khajeh, J.

Introduction

Mitochondrial Cl (NADH: ubiquinone oxidoreductase) is the first and largest of the electron transport chain complexes in the mitochondrion, and has a molecular mass approaching 1 MDa [reviewed in (Hirst, 2013)]. Human CI has 44 distinct subunits (Table 2.1); 14 of which are directly involved in transferring electrons from NADH to ubiquinone, or in generation of the membrane potential. Because these 14 subunits are conserved from bacteria to humans, and form the catalytic centers of the enzyme, they are referred to as the core or central subunits. The 30 remaining subunits are referred to as accessory subunits, because they are not directly involved in catalysis, and are expressed to varying extents among eukaryotes (Table 2.1) [reviewed in (Hirst, 2013)]. A current hypothesis is that the accessory subunits regulate ROS formation, complex assembly or stability, and cellular homeostasis in vivo. Of note, disease-causing mutations in several accessory subunits have been identified (Berger et al., 2008; Budde et al., 2000; Hoefs et al., 2008; Hoefs et al., 2011; Kirby et al., 2004; Ostergaard et al., 2011; Scacco et al., 2003); and genetic disruption of some accessory subunits in cell lines impair CI assembly (Guerrero-Castillo et al., 2017; Stroud et al., 2016). However, a definitive role for many of the accessory subunits in vivo remains to be established.

Cl has two major arms: a hydrophobic membrane arm and a hydrophilic peripheral arm that protrudes into the mitochondrial matrix. The two arms are oriented almost perpendicularly to each other resulting in a characteristic boot or L-shaped structure (Clason et al., 2010; Efremov et al., 2010; Radermacher et al., 2006; Zickermann et al., 2015). Several cryo-electron microscopy density maps and higher resolution atomic structures of CI from various eukaryotes have recently been described (Fiedorczuk et al., 2016; Vinothkumar et al., 2014; Zhu et al., 2016; Zickermann et al., 2015). The accessory subunits were found to form a cage around the core subunits, and were particularly concentrated around the membrane domain. These observations lend further credence to the hypothesis that the accessory subunits are involved in stabilizing the complex during or after biogenesis in vivo.

Surprisingly, despite the outstanding genetic capabilities of Drosophila, a systematic genetic analysis of Cl assembly has not been described in this organism. Instead, previous in vivo genetic analyses of the regulation of eukaryotic Cl assembly have been performed primarily in the aerobic fungus Neurospora crassa (Duarte et al., 1995). Although the N. crassa model of Cl assembly is renowned for being the first
system for which a model of Cl assembly was described, there are notable deviations from the assembly pathway in mammalian systems (Nehls et al., 1992; Tuschen et al., 1990). For instance, several accessory subunits as well as Cl assembly intermediates found in mammalian Cl are not conserved in N. crassa (24). Similarly, CI in Arabidopsis thaliana has a carbonic anhydrase domain and several additional subunits that are not present in the human enzyme (21). Thus, it is important to develop additional genetically tractable Cl assembly model systems that more closely resemble and recapitulate the human system.

Importantly, Drosophila has a comparable number of Cl subunits (similar to the human and bovine enzymes) and over a dozen putative assembly factors, all of which have clear human orthologs, making it a suitable model organism for studying CI assembly. Studying Cl assembly in Drosophila has the added advantage of being in an in vivo context, where the effects of both developmental signals and environmental perturbations can be examined. Accordingly, we have analyzed the role of several nuclear-encoded Cl subunits in Cl assembly in Drosophila muscles.

We describe the mechanism of Cl assembly in Drosophila flight muscles. Specifically, we show that many of the accessory subunits regulate specific stages of Cl biogenesis in vivo, such that, when their level of expression is reduced, Cl activity is diminished due to impaired Cl assembly. We demonstrate that CI biogenesis in Drosophila involves the formation of $\sim 315-, \sim 550-$, and $\sim 815-\mathrm{kDa}$ assembly intermediates, and that RNAi-mediated knockdown of either dNDUFS2 or dNDUFS3 decreases the amount of the ~315kDa assembly intermediate that is formed. Furthermore, we show that a specific accessory subunit dNDUFA5 - is required for the formation and/or stabilization of the $\sim 315-k D a$ assembly intermediate in vivo. Additionally, we define a specific role for another accessory subunit (dNDUFS5); and show that it is required for converting a transient Cl assembly intermediate (an $\sim 700-\mathrm{kDa}$ assembly intermediate) into the $\sim 815-$ kDa assembly intermediate, during one of the terminal steps of Cl assembly. Four components of the Mitochondrial Complex I Assembly (MCIA) complex (dECSIT, dNDUFAF1, dACAD9 and dTIMMDC1) were associated with the $\sim 700-\mathrm{kDa}$ assembly intermediate, further confirming that it is a true assembly intermediate in Cl biogenesis. Importantly, incorporation of dNDUFS5 into Cl is necessary to stabilize or promote incorporation of dNDUFA10 into the complex. We also identify several roles for many of the dNDUFB subunits. Altogether, our analyses reveal how studies of Cl biogenesis in Drosophila can uncover
mechanisms of Cl assembly in vivo, and establish Drosophila as an important genetically pliable model organism for addressing questions relevant to mammalian Cl biogenesis.

Results

Drosophila flight muscles are suitable for studying Cl assembly

Cl consists of a hydrophilic matrix arm and a hydrophobic membrane arm that are oriented almost orthogonally to each other (Figure 2.1A). Subunits with the prefix NDUFA (NDUFA1-3 and NDUFA5-13) were so named as they were originally thought to be part of the matrix arm, whereas the NDUFB subunits (NDUFB1-NDUFB11) are part of the membrane arm. In addition, subunits that are found in the vicinity of the 8 Fe-S clusters (NDUFS) or single Flavoprotein (NDUFV) are also localized in the matrix. All the NDUFA and NDUFB subunits are accessory subunits (Figure 2.1A). We used the Drosophila RNAi Screening Center Integrative Ortholog Prediction Iool (DIOPT) to identify 42 putative orthologs of the 44 human Cl subunits (Figure 2.1B and Table 2.1) (Hu et al., 2011). To facilitate comparison with their human orthologs, in this manuscript we refer to Drosophila orthologs of the human Cl subunits as dNDUFS1, dNDUFS2, etc. Their designated gene nomenclature in Drosophila are shown in Table 2.1.

To confirm whether the putative Cl orthologs identified by DIOPT were bona fide Cl subunits in Drosophila flight muscles, we isolated mitochondria from thoraxes of wild-type flies, solubilized their membranes in 1\% digitonin, and resolved their oxidative phosphorylation (OXPHOS) complexes into various bands using blue native polyacrylamide gel electrophoresis (BN-PAGE) (Rera et al., 2011; Wittig et al., 2006). We solubilized the mitochondrial membranes in 1% digitonin because we found that 1% digitonin was the optimal detergent concentration for isolating and resolving OXPHOS complexes in their native state in Drosophila (Figure 2.2), as has been reported previously (Rera et al., 2011; Wittig et al., 2006). Subsequently, we cut out each of the bands detected by coomassie staining of the gel, and identified their composition by mass spectrometry (Figure 2.1C). We confirmed the existence of 37 of the 42 putative Cl orthologs based on their presence in the band corresponding to the Cl holoenzyme (Band B) and/or supercomplex (Band A) (Figure 2.1C, Tables 2.1 and 2.2). Notably, the Drosophila ortholog of NDUFA4 (ND-MNLL) - a protein that was previously considered a Cl subunit, but has been reassigned as a complex IV (CIV) subunit (Balsa et al., 2012) - co-migrated with the CIV band (Band E) (Figure 2.1C and Table
2.2). In addition, 4 of the subunits we were unable to detect are highly hydrophobic membrane-embedded core subunits encoded in the mitochondrion (ND2, ND3, ND4L and ND6); thus they may have escaped detection due to their highly hydrophobic nature. Interestingly, these subunits were not identified in a previous proteomic analysis of Cl in mouse cell lines (Balsa et al., 2012).

Coomassie- or silver-stained native gels containing mitochondrial protein complexes from flies expressing RNAi to CI , complex III (CIII), CIV, and complex $\mathrm{V}(\mathrm{CV})$ proteins further confirmed the identities of the bands cut for mass spectrometry (Figure 2.1D). Because our mass spectrometry data suggested that a portion of Cl might be co-migrating with CV and possibly CIII , we tested whether this co-migration was the result of supercomplex formation. We were unable to find antibodies that cross-react with any of the Drosophila CIII proteins, but antibodies that cross-react with dNDUFS3 (a Cl protein) and dATPsynß (a CV protein) were commercially available, and were used to examine the identity of "band A" via western blotting. As is evident in the silver staining gel (Figure 2.1D), immunoblotting revealed that "band A" was actually a doublet; and the lower band in the doublet corresponds to a dimer of CV , as has been observed in other contexts (Figure 2.1E) (Rera et al., 2011; Wittig et al., 2006). In addition, Cl in flight muscles was found to exist predominantly as the holoenzyme, with a relatively small portion involved in $\mathrm{Cl}-\mathrm{CIII}$ supercomplex formation, which migrates as an upper band in the doublet (Figure 2.1E). Notably, the observation that Cl in Drosophila flight/skeletal muscles occurs predominantly as the holoenzyme (i.e. free Cl , not involved in supercomplex formation), contrasts markedly with Cl in cardiac or skeletal muscles from mice, where a significant portion of Cl is trapped in supercomplex formation (Figure 2.1F). Thus, in addition to the genetic capabilities of Drosophila and the fact that it has a comparable number of Cl subunits as the human enzyme, it is a suitable model for studying Cl assembly because most of Cl in flight muscles exists as the holoenzyme. Accordingly, a defect in Cl biogenesis can easily be scored and quantified. Consequently, we decided to examine the role of the nuclear-encoded Cl subunits in Cl assembly.

Disruption of several Cl subunits in flight muscles impair Cl assembly

We found that loss-of-function alleles for many Drosophila Cl genes are lethal (not shown). Therefore, to ascertain which Cl subunits are required for Cl biogenesis in Drosophila, we used the Gal4/UAS system to express transgenic RNAi constructs (henceforth referred to as UAS-RNAi lines) to
both core and accessory Cl subunits (Brand and Perrimon, 1993). We examined the effect of knocking down the subunits specifically in muscles (using either Dmef2-Gal4 or mhc-Gal4). Transgenic expression of many of the UAS-RNAi constructs using Dmef2-Gal4 - a muscle-restricted Gal4 driver that is expressed strongly throughout development - caused lethality (not shown). However, a genetic cross between each of the UAS-RNAi lines and mhc-Gal4 produced viable flies, as the $m h c-G a l 4$ driver has a weaker expression relative to Dmef2-Gal4 during the initial larval stages (Figure 2.3). Accordingly, we decided to analyze Cl assembly in mitochondria isolated from thoraxes of mhc-Gal4/UAS-CIRNAi flies (henceforth referred to as $\left.m h c>C l_{R N A i} f l i e s\right)$ using BN-PAGE.

We observed that, in general, both core and accessory subunits produced Cl assembly defects whenever the extent of transcript knockdown was more than 50% (Figure 2.4A). To further assess the extent of the Cl assembly deficit for each subunit, we quantified the amount of Cl relative to the amount of CV in each lane, and normalized it to the corresponding value in the wild-type lane. Interestingly, this revealed that some of the most robust Cl assembly deficits were observed when accessory subunits (such as dNDUFA10-12 and dNDUFB4-6) were genetically impaired (Figures 2.4A and 2.4B). Similar results were obtained with silver staining of the protein complexes in the native gels (Figure 2.4B). Additionally, in-gel Cl enzyme activity assay revealed that the assembly deficits correlated with a reduction in Cl activity (Figure 2.4C). Finally, we found that knockdown of most accessory and core subunits impaired the climbing ability in these flies (Figure 2.4D). Altogether, these results indicate that many of the core and accessory subunits are essential for viability and biogenesis of the Cl holoenzyme or supercomplex in flight muscles. Accordingly, we turned our attention towards elucidating the mechanism of CI assembly in Drosophila flight muscles.

Proteomic analyses and immunoblotting identify assembly intermediates of Cl

Studies from some mammalian cell lines have shown that Cl biogenesis proceeds via a series of assembly intermediates that combine with each other, or other subunits, to form the $\sim 950-k D a b o o t-s h a p e d$ holoenzyme. The assembly intermediates generally correspond to partial or complete domains of the 3 functional modules of CI . The NADH Dehydrogenase module (N module) is located at the tip of the matrix arm, and is the site of NADH oxidation. Situated between the N module and the membrane is the Q module,
which is responsible for Ubiquinone reduction. The proton-conducting P module in the membrane arm can be subdivided into a proximal Pp-module (roughly corresponding to the first half of the P-module that connects with the Q-module) and a distal Pd-module (Figure 2.5A).

The current model posits that Cl assembly in mammalian systems begins with the formation of a small assembly intermediate containing NDUFS2 and NDUFS3, that combines with NDUFS7 and NDUFS8 (Figure 2.5B). This assembly intermediate is the primary component of the Q-module; and ultimately combines with ND1 to form an $\sim 315-k D a$ assembly intermediate that is anchored to the mitochondrial inner membrane. The $\sim 315-k D a$ assembly intermediate combines with an independently-formed $\sim 370-k D a$ assembly intermediate to form an $\sim 550-k D a$ assembly intermediate (Figure 2.5B). The $\sim 550-k D a$ assembly intermediate, which consists of the complete Q-module and a portion of the P-module, grows by the addition of more subunits to form the $\sim 815-k D a$ assembly intermediate, via mechanisms that are very poorly defined. At this point, the $\sim 815-\mathrm{kDa}$ assembly intermediate is generally considered to be composed of the complete Q- and P-modules. Finally, an independently-formed assembly intermediate consisting of NDUFS1, NDUFV1, NDUFV2, NDUFV3, NDUFS4, NDUFS6 and NDUFA12, which together form the N module, is added as a "cap" to the $\sim 815-\mathrm{kDa}$ assembly intermediate to produce the $\sim 950-\mathrm{kDa}$ holoenzyme [Figure 2.5B; the $\sim 315-, \sim 370-, \sim 550-$, and $\sim 815-k D a$ assembly intermediates were previously estimated as ~ 400 , $\sim 460-, \sim 650$ - and $\sim 830-k D a$ subcomplexes respectively (Andrews et al., 2013; Vartak et al., 2014)].

As some flight muscles are formed by 24 hours after pupal formation (Roy and VijayRaghavan, 1999), we decided to ascertain the extent of Cl biogenesis starting at 48 hours (i.e. 2 days) post-pupariation. Specifically, we isolated mitochondria at various time points, and examined Cl assembly via western blotting of the native complexes. Because current models of mammalian Cl assembly postulate that NDUFS3 and ND1 are both part of the $\sim 815-k D a, \sim 550-k D a$, and $\sim 315-k D a$ assembly intermediates, western blot with anti-NDUFS3 or anti-ND1 antibodies will be expected to detect these 3 assembly intermediates, and possibly lower molecular weight assembly intermediates (if the respective epitopes are not masked when the assembly intermediate is formed). In addition, the fully assembled Cl and Cl -containing supercomplexes will be expected to be detected as well. Indeed, immunoblotting with anti-NDUFS3 revealed that a portion of Cl is assembled during pupal development and continues during the first 48 hours after flies eclose (emerge as adults from pupae) (Figure 2.5C). Although we were able to detect the $\sim 315-\mathrm{kDa}$ and $\sim 550-$
kDa assembly intermediates with the anti-ND1 antibody (Figure 2.5C), the higher molecular weight bands were only weakly detectable, conceivably because the epitope to which this antibody was raised for this hydrophobic subunit becomes less exposed to the aqueous environment during the final stages of Cl biogenesis (Figure 2.5C). Moreover, while we were able to detect subcomplexes of CV that migrate with an apparent mass of about 100 kDa at this stage of development (Figure 2.6), we were unable to detect dNDUFS3-containing assembly intermediates with an apparent mass of less than 200 kDa . There are at least two possible explanations for this result: (i) the smaller NDUFS3-containing assembly intermediates may not be present at this stage; or (ii) the epitope of dNDUFS3 in the smaller assembly intermediates was inaccessible to the antibody, perhaps as a result of being masked by bound assembly factors and/or other interactors. Therefore, we used proteomic analyses to distinguish between these two possibilities.

Mitochondria were isolated from thoraxes of wild-type flies that had been aged for 24 hours after eclosure, and subjected to BN-PAGE. Subsequently, the region of the gel between $\sim 50 \mathrm{kDa}$ and $\sim 350 \mathrm{kDa}$, was excised and divided into 14 slices (labeled fraction A1 to A14) for in-gel digestion and subsequent proteomics analyses (Figure 2.5D). We observed that dNDUFS2, dNDUFS3 and dNDUFS7 co-migrated in fractions corresponding to a mass of approximately $280-320 \mathrm{kDa}$ (Figure 2.5D and Table 2.3). Interestingly, the Cl assembly factor, dNDUFAF4, was also found in these fractions (Figure 2.5D and Table 2.3). In addition, dNDUFA5 co-migrated with dNDUFS2, dNDUFS3 and dNDUFS7 (Figure 2.5D), confirming that it is a component of the $\sim 315-\mathrm{kDa}$ assembly intermediate in vivo. Importantly, although several other Cl subunits migrated in fractions corresponding to a mass of approximately $50-250 \mathrm{kDa}$, neither dNDUFS2 nor dNDUFS3 were found in these fractions. Thus, it appears that in an in vivo context, in Drosophila flight muscles, the constituents of the $\sim 315-\mathrm{kDa}$ assembly intermediate are combined almost synchronously.

Specific subunits regulate the biogenesis or stability of specific assembly intermediates of $\mathbf{C l}$

If the assembly intermediates observed are bona fide intermediates in the pathway of Cl assembly in Drosophila, then at least some of these assembly intermediates will stall and accumulate, or they may disintegrate when specific Cl subunits that are required for Cl assembly are disrupted (Figure 2.7A). To test this hypothesis, we analyzed the Cl assembly intermediates from thoraxes of Mhc>CIRNAi flies, 24 hours
after eclosure using an anti-NDUFS3 antibody. As expected, the various subunits that produced Cl assembly deficits in Figure 4 also resulted in a reduction of the level of the holoenzyme or the Cl -containing supercomplex (Figures 2.7B-F).

Disruption of dNDUFS1 and dNDUFV1, which are components of the N module of Cl , and are thus expected to be added as part of the "cap" during the final step in Cl assembly, resulted in a stalling and accumulation of the $\sim 815-k D a$ assembly intermediate (Figures 2.7B and 2.7C). However, unexpectedly, disruption of dNDUFA6 and dNDUFA12, not known to be part of the N module, also stalled the $\sim 815-\mathrm{kDa}$ subcomplex (Figure 2.7C). RNAi-mediated knockdown of dNDUFS2, dNDUFS3, dNDUFS5, dNDUFS7, and dNDUFS8 led to a reduction in the amount of the $\sim 815-k D a$ assembly intermediate (relative to wild type), as they impaired some of the initial steps of Cl biogenesis (Figures 2.7B and 2.7C). In addition, the amount of the $\sim 315-k D a$ assembly intermediate was drastically reduced when the expression of dNDUFS2, dNDUFS3, or dNDUFS7 was impaired (Figure 2.7B); in line with our proteomic results in Figure 2.5D and current mammalian Cl assembly models that show that the first step in Cl biogenesis involves the formation of an assembly intermediate consisting of NDUFS2 and NDUFS3 (Figure 2.5B) [reviewed in (Vartak et al., 2014)]. Notably, we found that RNAi-mediated knockdown of dNDUFA5 depleted the $\sim 315-\mathrm{kDa}$ assembly intermediate (Figure 2.7C). Combining this result, with our proteomic data showing that dNDUFA5 comigrates with dNDUFS2, dNDUFS3 and dNDUFS7 (Figure 2.5D), we conclude that although dNDUFA5 is an accessory subunit, it is a critical component of, and required for formation or stabilization of the ~ 315 kDa assembly intermediate (i.e. the Q module) in vivo.

Disruption of most of the dNDUFB subunits did not markedly alter the stability or extent of accretion of the Cl assembly intermediates 24 hours after eclosion (Figure 2.7D), but by 48 and 72 hours after eclosion some notable and consistent phenotypes between the two time points were observed (Figure 2.7E and 2.7F). For instance, RNAi-mediated disruption of dNDUFB3 decreased the extent of accumulation of all the assembly intermediates; and the 550-kDa assembly intermediate accumulated when dNDUFB1, dNDUFB8 and dNDUFB11 were impaired at both time points (i.e. 48 and 72 hours post-eclosion). Surprisingly, although none of the NDUFB subunits are known to be part of the 315-kDa assembly intermediate, the extent of accumulation of the $315-\mathrm{kDa}$ assembly intermediate was diminished when the expression of dNDUFB1, dNDUFB4, dNDUFB5, dNDUFB6 and dNDUFB10 were reduced (Figure 2.7E
and 2.7F). Taken together, these results indicate that specific subunits regulate the biogenesis or stability of specific Cl assembly intermediates during Cl assembly in Drosophila thoraxes.

Identification of an ~700-kDa assembly intermediate of CI in Drosophila

An assembly intermediate that accumulates between the ~ 550 - and $\sim 815-\mathrm{kDa}$ assembly intermediates was detected on immunoblots of samples from $m h c>d N D U F S 5 R N A i$ and $m h c>d N D U F C 2_{\text {RNAi }}$ thoraxes (Figure 2.7B). We estimate its size to be $\sim 700 \mathrm{kDa}$ because it co-migrates with CV, previously estimated to be $\sim 700 \mathrm{kDa}$ in blue native gels (Figure 2.8A) (Abdrakhmanova et al., 2006). The accumulation of the $\sim 700-\mathrm{kDa}$ assembly intermediate in samples from mhc>dNDUFS5RNAi thoraxes was notable, because it suggested that this could be the point of entry of dNDUFS5 during Cl assembly. NDUFS5 is a membrane-associated accessory subunit that extends into the intermembrane space; it is currently unclear at what point it becomes incorporated into Cl . In contrast to the $\sim 315-, \sim 550-$ and $\sim 815-$ kDa assembly intermediates, the $\sim 700-k D a$ assembly intermediate was not readily perceptible by antiNDUFS3 immunoblotting in the wild-type sample or most of the other mutant samples isolated 24 hours after eclosure (Figure 2.7B). This raised the possibility that it could simply be a degradation product, perhaps derived from the $\sim 815-\mathrm{kDa}$ assembly intermediate.

To determine whether the $\sim 700-k D a$ assembly intermediate is a true assembly intermediate, we decided to look at earlier time points (6 and 12 hours post-eclosion) to ascertain whether it ever appears in wild-type samples. Immunoblotting at these time points revealed that accumulation of the $\sim 700-\mathrm{kDa}$ assembly intermediate in $m h c>d N D U F S 5 R N A i$ thoraxes is present by the 6-hour time point, and gradually tapers off afterwards (Figure 2.8B). Importantly, at the 6-hour time point a faint band corresponding to the ~700-kDa assembly intermediate can be observed in wild-type samples, indicating that the $\sim 700 \mathrm{kDa}-$ assembly intermediate exists in wild-type samples, and rapidly matures to the $\sim 815-\mathrm{kDa}$ assembly intermediate. The stalling of the $\sim 700-\mathrm{kDa}$ assembly intermediate in $m h c>d N D U F S 5$ RNAi thoraxes occurred concurrently with an accumulation of both the $\sim 550-\mathrm{kDa}$ and $\sim 315-\mathrm{kDa}$ assembly intermediates, and a diminution of the $\sim 815-\mathrm{kDa}$ assembly intermediate relative to wild-type levels. Thus, dNDUFS5 may be required for converting the $\sim 700-\mathrm{kDa}$ assembly intermediate into the $\sim 815-\mathrm{kDa}$ assembly intermediate, such that when this fails, there is a backlog of the $\sim 700-, \sim 550-$ and $\sim 315-k D a$ assembly intermediates. To
test this hypothesis, we compared the assembly intermediates that accumulate in $m h c>d N D U F S 5_{R N A i}, d N D U F S 1_{R N A i}$ and $m h c>d N D U F S 5_{R N A i}, d N D U F V 1_{R N A i}$ thoraxes with that in $m h c>d N D U F S 1$ RNai and $m h c>d N D U F V 1_{R N A i}$ thoraxes respectively. We reasoned that because the $\sim 815-$ kDa assembly intermediate accumulates in $m h c>d N D U F S 1_{R N A i}$ and $m h c>d N D U F V 1_{R N A i}$ thoraxes (Figure 2.7B), if dNDUFS5 is required for converting the $\sim 700-\mathrm{kDa}$ assembly intermediate into the $\sim 815-\mathrm{kDa}$ assembly intermediate, then the extent of accumulation of the $\sim 815-\mathrm{kDa}$ assembly intermediate in either $m h c>d N D U F S 5_{R N A i}, d N D U F S 1_{R N A i}$ and/or mhc>dNDUFS5RNai,dNDUFV1RNAi thoraxes should be reduced relative to $m h c>d N D U F S 1_{R N A i}$ and $m h c>d N D U F V 1_{R N A i}$ respectively. In agreement with this proposition, we observed that the accumulation of the $\sim 815-k D a$ assembly intermediate was significantly attenuated in $m h c>d N D U F S 5 R n a i, d N D U F S 1_{r n a i}$ thoraxes relative to $m h c>d N D U F S 1_{R N A i}$ thoraxes (Figure 2.8C). This was also accompanied by an accumulation of the $\sim 700-k D a$ assembly intermediate (Figure 2.8C). Similar results were obtained by comparing mhc>dNDUFS5RNAi,dNDUFV1RNAi and mhc>dNDUFV1RNAi thoraxes (Figure 2.8C). Accordingly, we deduce from these results that when dNDUFS5 expression levels are impaired, the transient $\sim 700-\mathrm{kDa}$ assembly intermediate stalls and accumulates, impeding progression of Cl biogenesis and ultimately resulting in a bottleneck of the $\sim 550-\mathrm{kDa}$ and $\sim 315-\mathrm{kDa}$ assembly intermediates as well.

To gain further insight into the identity of the $\sim 700-\mathrm{kDa}$ assembly intermediate, a single gel slice encompassing the region shown in Figure 2.8A was excised from native gels containing samples from wildtype and $m h c>d N D U F S 5 R n a i$ thoraxes. Proteins from the gel slice were digested and analyzed by LC mass spectrometry; and a label-free spectral counting approach was used to generate a heat map for some of the proteins that showed altered expression levels between the samples. In agreement with our results showing a stalling and accumulation of the $\sim 700-\mathrm{kDa}$ assembly intermediate in this portion of the gel, we observed that several Cl subunits were upregulated in the $m h c>d N D U F S 5_{R N A i}$ sample relative to wildtype (Figure 2.8D). However, in stark contrast to the other Cl subunits, we consistently observed (in 6 biological replicates taken at different time points of the day to control for circadian regulation) that dNDUFA10 was downregulated in the mhc>dNDUFS5RNai sample; indicating that incorporation of dNDUFS5 into Cl is necessary to stabilize or promote incorporation of dNDUFA10 into the complex (Figure 2.8D). In mammalian systems, at least five Cl assembly factors - ECSIT, TMEM126B, NDUFAF1, ACAD9 and

TIMMDC1 - are typically found associated with Cl assembly intermediates, and have been dubbed the Mitochondrial Complex I Assembly (MCIA) complex (Guarani et al., 2014; Heide et al., 2012; Nouws et al., 2010; Vogel et al., 2007). We found four of these assembly factors (dECSIT, dNDUFAF1, dACAD9 and dTIMMDC1), associated with the $700-\mathrm{kDa}$ assembly intermediate that were upregulated in the $m h c>d N D U F S 5 R N A i$ samples, further confirming that it is a true assembly intermediate in Cl biogenesis (Figure 2.8D and Table 2.4).

The distal portion of the membrane arm of Cl is assembled independently of the matrix arm

We noticed that in some instances where Cl assembly was impaired, an additional band accumulated between the CIII and CIV bands in both the coomassie- and silver-stained gels (arrows in Figures 2.4A and 2.4B). A closer examination revealed that the accumulation of this intermediate was more readily evident in samples where subunits localized to the hydrophilic matrix domain were disrupted (i.e. the dNDUFS, dNDUFV and dNDUFA subunits) (Figure 2.1A). In line with our observations described in Figures 2.5, 2.7 and 2.8, we hypothesized that this band was likely another Cl assembly intermediate that had stalled and accumulated as a result of a block in Cl biogenesis. We decided to identify the constituents of this putative assembly intermediate via mass spectrometry.

We cut out the region of the gel corresponding to the stalled assembly intermediate in the wildtype, $m h c>d N D U F S 5_{R N A i}$ and $m h c>d N D U F V 1_{R N A i}$ thoraxes (Figure 2.9A), and used label-free quantification of peptides to ascertain which subunits and possibly assembly factors were altered between the two samples. Several components of the ETC machinery were downregulated; but there was a dramatic increase in Cl subunits that are part of the distal membrane domain (i.e. all the dNDUFB subunits as well as dNDUFAB1, dNDUFC2, ND4 and ND5) (Figures 2.9B and 2.9C; Table 2.5). We note that there was no obvious accumulation of this assembly intermediate in blue native or silver-stained gels when any of these subunits (i.e. the dNDUFB subunits, or NDUFAB1 and NDUFC2 subunits) were disrupted (Figures 2.4A and 2.4B). Notably, many of these membrane-associated subunits were present in the corresponding gel slice from the wild-type samples (although at lower levels). All the components of the MCIA complex (i.e. dECSIT, dNDUFAF1, dACAD9, dTMEM126B and dTIMMDC1) were also found associated with this assembly intermediate. Based on current assignments of the various Cl subunits, this assembly intermediate is clearly
the distal portion of the membrane arm (Fiedorczuk et al., 2016; Vinothkumar et al., 2014; Zhu et al., 2016; Zickermann et al., 2015).

Proposed model of Cl assembly in Drosophila muscle

We propose a model for Cl assembly in Drosophila flight muscles where dNDUFS2, dNDUFS3, dNDUFS7, dNDUFS8 and dNDUFA5 are combined in essentially one step to form the Q module, which is anchored to the membrane by dND1 (Figure 2.10). This assembly intermediate corresponds to the assembly intermediate in mammalian systems that was previously referred to as the $\sim 400-\mathrm{kDa}$ subcomplex, but has recently been re-estimated as the ~315-kDa subcomplex (Andrews et al., 2013; Vartak et al., 2014). This is consistent with the observation that assembly intermediates containing dNDUFS2, dNDUFS3, dNDUFS7, dNDUFS8 and dNDUFA5 co-migrate in blue native gels (Table 2.2), and that immunoblotting with both anti-ND1 and anti-NDUFS3 detect the ~315-kDa assembly intermediate (Figure 2.5C).

Subsequently, another assembly intermediate consisting of some of the subunits in the membrane domain is formed. This assembly intermediate comprises part of the P-module (i.e. Partial P1), and is conjugated to the Q-module to form an assembly intermediate that corresponds to the $\sim 550-\mathrm{kDa}$ (formerly ~650-kDa) assembly intermediate previously described in mammalian systems (Figure 7). Although proteomic analyses of the assembly intermediate that accumulates in mhc>dNDUFS5RNAi and $m h c>d N D U F V 1 R N A i$ thoraxes shows that all the dNDUFB subunits as well as dNDUFC1, dNDUFAB1, ND4 and ND5 subunits are present in the subcomplex (see Table 2.5), it is unlikely that all the membrane subunits are incorporated into the complex at this stage under normal (wild-type) conditions. We hypothesize that the accumulation of the membrane accessory subunits in response to genetic disruption of the matrix subunits may be a compensatory mitochondrial stress signaling mechanism impinging on the nucleus, and resulting in a system that is poised to rapidly resume Cl biogenesis if and when the missing matrix subunit becomes available. The accretion of the Partial P-module under conditions where other components of the Cl assembly machinery are impaired provides further evidence that the various modules of the complex (i.e. the Q-, P - and N -modules) are assembled largely independently of each other in vivo.

The $\sim 550-\mathrm{kDa}$ assembly intermediate grows by the addition of more subunits to form a transient assembly intermediate of $\sim 700-\mathrm{kDa}$ (Figure 7); we postulate that dNDUFS5 is then incorporated at or just
prior to this stage together with possibly dNDUFA10 to rapidly convert the $\sim 700-\mathrm{kDa}$ assembly intermediate to the $\sim 815-\mathrm{kDa}$ assembly intermediate, consisting of the complete P - and Q -modules (Figure 7). Finally, the N -module is added to produce the Cl holoenzyme (Figure 7).

Discussion

We have exploited the genetic capabilities of Drosophila to uncover the mechanism of Cl assembly in vivo, in Drosophila flight muscles. Our immunoblotting and proteomic analyses reveal that during Cl assembly in Drosophila, the first membrane-bound major assembly intermediate that forms contains at least the following six subunits: dND1, dNDUFS2, dNDUFS3, dNDUFS7, dNDUFS8 and dNDUFA5. Based on its constituents and migration pattern in native PAGE, we conclude that this assembly intermediate is the same assembly intermediate traditionally referred to as the $\sim 315-k D a$ assembly intermediate from studies on mammalian Cl assembly; and corresponds to the Q module of Cl (Andrews et al., 2013; Vartak et al., 2014). Consistent with their roles in regulating formation of the Q module, we found that genetic disruption of dNDUFS2, dNDUFS3, dNDUFA5, and dNDUFS7 attenuated the amount of the $\sim 315-\mathrm{kDa}$ assembly intermediate formed.

Unexpectedly, we found an $\sim 700-\mathrm{kDa}$ assembly intermediate that is short-lived (at least relative to the $\sim 315-$, $\sim 550-$ and $\sim 815-k D a$ assembly intermediates), as it is rapidly converted into the $\sim 815-\mathrm{kDa}$ assembly intermediate. Importantly, our proteomic analyses revealed that incorporation of dNDUFS5 into Cl around this stage is necessary to stabilize or promote incorporation of dNDUFA10 into the complex. Similar to the $\sim 315-, \sim 550-$, and $\sim 815-\mathrm{kDa}$ assembly intermediates, the $\sim 700-\mathrm{kDa}$ subcomplex is a true assembly intermediate as it can be detected in wild-type muscles as well. Additionally, components of the MCIA complex are associated with the $\sim 700-\mathrm{kDa}$ assembly intermediate, as has been reported for other assembly intermediates observed in mammalian systems. RNAi-mediated disruption of dNDUFS5 led to a stalling and accumulation of this otherwise transient assembly intermediate, to a point where it is readily detectable by western blots; most likely because this is the stage at or around which dNDUFS5 is incorporated into the complex.

It is possible that mutations in some accessory subunits will have both primary and secondary effects. As a case in point, dNDUFS5 disruption may first impair conversion of the $\sim 700-\mathrm{kDa}$ assembly
intermediate to the $\sim 815-\mathrm{kDa}$ assembly intermediate, and consequently, impair Cl assembly (as we have shown); but ultimately, the accumulation of the $\sim 700-\mathrm{kDa}$ assembly intermediate can activate the mitochondrial unfolded protein response as well as other stress signaling cascades with far-reaching consequences (Haynes et al., 2013; Jensen and Jasper, 2014; Owusu-Ansah and Banerjee, 2009; OwusuAnsah et al., 2013; Owusu-Ansah et al., 2008). As another example, when dNDUFB3 was disrupted no specific assembly intermediates were stalled or disintegrated. Instead, there was a general reduction in the level of expression of all assembly intermediates. It is possible that disruption of dNDUFB3 activates stress signaling pathways that induce apoptosis or culminate in a general reduction of protein synthesis, leading to a reduction in Cl assembly.

We find that at least 42 of the 44 distinct human Cl proteins are conserved in Drosophila. The two human Cl proteins for which a clear ortholog was not readily identified in Drosophila by DIOPT are NDUFA3 (9 kDa) and NDUFC1 (6 kDa), which are two of the smallest subunits of the complex. Interestingly, obvious orthologs of NDUFC1 are not found in C. elegans or Yarrowia lipolytica; and the orthologs in vertebrates such as Zebrafish and Xenopus have very weak homology (DIOPT score of 1) to the human protein. Therefore it is possible that this subunit has significant sequence divergence in Drosophila, and although present, was not recognized by DIOPT. For most of the CI subunits where multiple paralogs were identified by DIOPT (i.e. NDUFS2, NDUFS7, NDUFV2, NDUFA7 and NDUFB2), only one of the paralogs was detected as a bona fide Cl subunit in flight muscles. However, as an exception to this general rule, two of the three paralogs of NDUFV1 were detected as part of Cl in skeletal muscles via mass spectrometry. ND51 (CG9140) appears to be the authentic ortholog of human NDUFV1 as it is highly expressed in skeletal muscles relative to ND-51L (CG11423), and is comparable in size to the human ortholog (both are about $51 \mathrm{kDa})$. ND-51L is a 77 kDa protein with a stretch of about 200 amino acids at the N -terminus that is not present in either the Drosophila paralog (ND-51) or human ortholog (NDUFV1). It remains to be determined whether the expression of the subunits with multiple paralogs are regulated in a tissue-specific manner to generate mitochondria with varied Cl activities; or whether they are regulated in the same tissue in response to different environmental conditions to fine-tune the activity of Cl .

In summary, we have described the mechanism of Cl assembly in Drosophila flight muscles, and defined specific roles for some of the accessory subunits in Cl assembly. Importantly, although CI
dysfunction has been implicated in a large number of pathologies, we find that knocking down the expression of various antioxidant enzymes or mitochondrial protein quality control genes does not solely impair Cl assembly, indicating that destabilization of Cl may not be the sole underlying factor in many mitochondrial disorders (Figure 2.11). In addition, our proteomic analyses established that incorporation of dNDUFS5 into Cl is necessary to stabilize or promote incorporation of dNDUFA10 into the complex. We note that our analyses of Cl assembly in an in vivo setting, where Cl biogenesis is subject to both developmental and environmental cues, revealed that many of the accessory subunits are required for both assembly and viability. Moreover, several NDUFB subunits (dNDUFB1, dNDUFB4, dNDUFB5, dNDUFB6 and dNDUFB10) seem to regulate the stability of the 315-kDa assembly intermediate, in apparent deviation from what will be expected from current models of mammalian Cl assembly. However, the mechanism of Cl biogenesis in Drosophila flight muscles is remarkably similar to what has been described in mammalian systems; and the differences observed here may be due to the fact that we have analyzed Cl assembly in an in vivo setting. Accordingly, Drosophila is a suitable organism for addressing questions relevant to mammalian Cl biogenesis. We anticipate that future studies using the full repertoire of genetic tools and resources in Drosophila should foster the discovery of novel paradigms for regulating Cl assembly in humans.

Materials and Methods

Drosophila Strains and Genetics.

The following fly stocks were used: y w; Dmef2-Gal4 and w; mhc-Gal4 were the Gal4 transgenic lines used to express RNAi lines in muscles. w1118/mhc-Gal4 flies were used as wildtype (wt) controls. Other fly stocks used were: y1 sc*v1 ; P\{TRiP.HMS00854\}attP2 (Bloomington, \#33911), y1 v1 ; P\{TRiP.HMS05059\}attP2 (Bloomington, \#28573), y1 v1 ; P\{TRiP.HMC02929\}attP40 (Bloomington, \#44535), y1 v1 ; P\{TRiP.HMC03554\}attP40 (Bloomington, \#53325), y1 sc*v1; P\{TRiP.HMC03861\}attP40 (Bloomington, \#55180), y1 sc*v1 ; P\{TRiP.HM05229\}attP2 (Bloomington, \#30487), y1 sc*v1 ; P\{TRiP.HMS01590\}attP2 (Bloomington, \#36701), y1 v1 ; P\{TRiP.HMC03429\}attP40 (Bloomington, \#51855), y1 sc*v1 ; P\{TRiP.HMC03653\}attP40 (Bloomington, \#52913), y1 sc*v1 ; P\{TRiP.GLC01699\}attP2 (Bloomington, \#50577),y1 sc*v1 ; P\{TRiP.HMC03662\}attP40 (Bloomington, \#52922), y1 sc*v1 ; P\{TRiP.HMS00798\}attP2 (Bloomington, \#32998), y1 sc*v1 ; P\{TRiP.HMS01584\}attP2 (Bloomington, \#36695), y1 sc*v1 ; P\{TRiP.HMC02678\}attP2/ TM3, Sb1 (Bloomington, \#43279), y1 v1 ; P\{TRiP.HM05206\}attP2 (Bloomington, \#29528), y1 v1 ; P\{TRiP.HM22452\}attP40 (Bloomington, \#58322), y1 v1 ; P\{TRiP.GLC01422\}attP2 (Bloomington, \#43235), y1 v1; P\{TRiP.HMJ23156\}attP40 (Bloomington, \#61321), y1 sc*v1 ; P\{TRiP.HM05255\}attP2/TM3, Sb1 (Bloomington, \#30511), y1 sc*v1 ; P\{TRiP.HMC03242\}attP2 (Bloomington, \#51357), y1 v1 ; P\{TRiP.HMJ22367\}attP40 (Bloomington, \#58282), y1 sc*v1 ; P\{TRiP.HMS00815\}attP2 (Bloomington, \#33878), y1 v1 ; P\{TRiP.JF02892\}attP2 (Bloomington, \#28056), y1 v1 ; P\{TRiP.JF02899\}attP2 (Bloomington, \#28062) and y1 sc*v1 ; P\{TRiP.HMS01560\}attP2 (Bloomington, \#36672). Transgenic RNAi stocks for disrupting CG8680 (8680R3), CG9172 (9172R-2), CG6463 (6463R-1), CG9350 (9350R-2), CG9762 (9762R-3), CG13240 (13240R2), CG3283 (3283R-1) and CG3192 (3192R-3) were from the National Institute of Genetics (NIG, Japan) Drosophila Stock Center. RNAi stocks for disrupting CG12400 (v102590), CG7712 (v100616), CG12859 (v8786), CG4169 (v26405) and CG9306 (v23088) were from the Vienna Drosophila Resource Center.

Mitochondrial purification was performed essentially as described by Rera et al 2012 (Rera et al., 2011). Thoraxes were dissected and gently crushed with a pestle homogenizer in 500μ l of pre-chilled mitochondrial isolation buffer containing 250 mM sucrose and 0.15 mM MgCl 2 in 10 mM Tris. $\mathrm{HCl}, \mathrm{pH} 7.4$, on ice. After two rounds of centrifugation at 500 g for 5 minutes at $4^{\circ} \mathrm{C}$ to remove insoluble material, the supernatant was recovered and centrifuged at 5000 g for 5 minutes at $4^{\circ} \mathrm{C}$. The pellet which is enriched for mitochondria was washed twice in the mitochondrial isolation buffer and stored at $-80^{\circ} \mathrm{C}$ until further processing.

Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE).

BN-PAGE was performed using NativePAGE gels from Life Technologies, following the manufacturer's instructions. Essentially, mitochondria were suspended in native PAGE sample buffer (Life Technologies) supplemented with 1% digitonin and protease inhibitors, and incubated on ice for 20 minutes. Following centrifugation at $20,000 \mathrm{~g}$ for 30 minutes, the supernatant was recovered, mixed with the $\mathrm{G}-250$ sample additive (Life Technologies) and Native PAGE Sample Buffer (Life Technologies), and loaded onto 3-12\% pre-cast Bis-Tris Native PAGE gels (Life Technologies). The NativeMark Protein standard (Life Technologies), run together with the samples, was used to estimate the molecular weight of the protein complexes. Electrophoreses was performed using the Native PAGE Running buffer (as anode buffer, from Life technologies) and the Native PAGE Running buffer containing 0.4% Coomassie G-250 (cathode buffer). Gels were stained with the Novex Colloidal Blue staining kit (Life Technologies) to reveal the protein complexes.

Silver Staining.

Silver staining of native gels was performed with the SilverXpress staining kit from Life Technologies, following the manufacturer's protocol.

In-gel Complex I Activity.

Complex I activity in native gels was performed by incubating the native gels in $0.1 \mathrm{mg} / \mathrm{ml}$ NADH, $2.5 \mathrm{mg} / \mathrm{ml}$ Nitrotetrazolium Blue Chloride, 5 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.4)$ overnight at room temperature.

Climbing Assay

20 flies were collected in a vial for each Cl subunit that was knocked down. Flies were tapped lightly to the bottom of the vial and were allowed 15 seconds to past the midway line in the vial (target line). The percentage of flies to cross the target line was calculated.

Immunoblotting

For immunoblotting of samples in native gels, protein complexes from native gels were transferred to PVDF membranes (BIORAD). For immunoblotting of samples in whole tissue lysates, thoraxes were homogenized in RIPA buffer ($150 \mathrm{mM} \mathrm{NaCl}, 1 \%$ Triton X-100, 0.5% Sodium Deoxycholate, 0.1% SDS, 50 mM Tris HCl , pH 8) supplemented with Halt protease inhibitors (Pierce), resolved on mini-PROTEAN TGX stain-free gels from BIO-RAD, and transferred to PVDF membranes. In both instances (native and non-native gels), the membrane was subsequently blocked in 5% (w/v) non-fat dry milk in Tris-buffered saline (TBS) for 30 minutes, and incubated in the appropriate primary antibody dissolved in 2% BSA, 0.1% Tween 20 in TBS (TBST) overnight at $4^{\circ} \mathrm{C}$. Following the overnight incubation, the blot was rinsed 4 X 10 minutes in 0.1% TBST, blocked for 30 minutes in $5 \%(\mathrm{w} / \mathrm{v})$ non-fat dry milk in TBST and incubated for two hours with the appropriate HRP-conjugated secondary antibody dissolved in 2\% BSA, 0.1% Tween 20 in TBS (TBST). After incubation in the secondary antibody, samples were rinsed 4 X 10 minutes in 0.1% TBST. Immunoreactivity was detected by enhanced chemiluminescence (ECL) and analyzed by a ChemiDoc Gel imaging system from BIO-RAD. Antibodies used were anti-NDUFS3 (abcam, ab14711), anti-ND1 (abcam, ab74257), anti ATPsynß (Life technologies, A21351) anti-GFP (Life technologies, A6455) and anti-actin (EMD Millipore, MAB1501).

In-Gel Protein Digestion

The dried gel pieces were rehydrated and digested in $80 \mu \mathrm{~L}$ of $12.5 \mathrm{ng} / \mu \mathrm{L}$ Trypsin Gold/50 mM ammonium bicarbonate at $37^{\circ} \mathrm{C}$ overnight. Following the digestion, condensed evaporated water was collected from tube walls by brief centrifugation using benchtop microcentrifuge (Eppendorf, Hauppauge, NY). The gel pieces and digestion reaction were mixed with $50 \mu \mathrm{~L} 2.5 \%$ Trifluoroacetic acid (TFA) and rigorously mixed for 15 minutes. The solution with extracted peptides was transferred into a fresh tube, and the remaining peptides were extracted with $80 \mu \mathrm{l}$ of 70% Acetonitrile (ACN)/5\% TFA mixture using by rigorously mixing for 15 minutes. The extracts were pooled and dried to completion (1.5-2 hours) in a SpeedVac. The dried peptides were reconstituted in 30μ of 0.1% TFA by mixing for 5 minutes and stored on ice or at $-20^{\circ} \mathrm{C}$ prior to analysis.

LC-MS/MS Analysis

The concentrated peptide mix was reconstituted in a solution of 2 \% ACN, 2 \% Formic acid (FA) for MS analysis. Peptides were eluted from the column using a Dionex Ultimate 3000 Nano LC system with a 10 min gradient from 2% buffer B to 35% buffer B (100 \% ACN, $0.1 \% \mathrm{FA})$. The gradient was switched from 35% to 85% buffer B over 1 min and held constant for 2 min. Finally, the gradient was changed from 85 \% buffer B to 98% buffer A (100\% water, $0.1 \% \mathrm{FA})$ over 1 min , and then held constant at 98% buffer A for 5 more minutes. The application of a 2.0 kV distal voltage electrosprayed the eluting peptides directly into the Thermo Fusion Tribrid mass spectrometer equipped with an EASY-Spray source (Thermo Scientific). Mass spectrometer-scanning functions and HPLC gradients were controlled by the Xcalibur data system (Thermo Finnigan, San Jose, CA).

Database Search And Interpretation Of MS/MS Data

Tandem mass spectra from raw files were searched against a Drosophila protein database using the Proteome Discoverer 1.4 software (Thermo Finnigan, San Jose, CA). The Proteome Discoverer application extracts relevant $M S / M S$ spectra from the .raw file and determines the precursor charge state and the
quality of the fragmentation spectrum. The Proteome Discoverer probability-based scoring system rates the relevance of the best matches found by the SEQUEST algorithm. The Drosophila protein database was downloaded as FASTA-formatted sequences from Uniprot protein database (database released in May, 2015). The peptide mass search tolerance was set to 10 ppm . A minimum sequence length of 7 amino acids residues was required. Only fully tryptic peptides were considered. To calculate confidence levels and false positive rates (FDR), Proteome Discoverer generates a decoy database containing reverse sequences of the non-decoy protein database and performs the search against this concatenated database (non-decoy + decoy). Scaffold (Proteome Software) was used to visualize searched results. The discriminant score was set at less than 1% FDR determined based on the number of accepted decoy database peptides to generate protein lists for this study. Spectral counts were used for estimation of relative protein abundance between samples.

Figure 2.1: Drosophila flight muscles are suitable for studying complex I assembly.
(A) Schematic representation of how the 44 distinct subunits of bovine or ovine Cl are arranged to produce the L-shaped topology; based on recent Cl structures described (Fiedorczuk et al., 2016; Vinothkumar et al., 2014; Zhu et al., 2016; Zickermann et al., 2015). The asterisk denotes subunits for which an ortholog was not identified in Drosophila by DIOPT. NDUFAB1 occurs twice in the complex, giving rise to a total of 45 subunits.
(B) Summary of the experimental procedure for studying Cl assembly in Drosophila. Transgenic RNAi constructs to the nuclear-encoded subunits were expressed specifically in thoracic muscles using the mhcGal4 driver. Mitochondria were isolated from thoraxes of 1 week-old flies, solubilized in 1% digitonin, and analyzed by blue native polyacrylamide gel electrophoresis (BN-PAGE).
(C) The constituents of each of the six major bands observed during BN-PAGE was analyzed by mass spectrometry. 38 subunits of Drosophila Cl were confirmed by mass spectrometry. The 38 subunits correspond to 37 different orthologs of human Cl . Two paralogs of human NDUFV1 were confirmed by mass spectrometry (see Table 2.1). See Table 2.2 for all the peptides identified in the six major bands shown.
(D) BN-PAGE (left panel) and Silver staining (right panel) of samples from thoraxes following RNAimediated knockdown of complex I (CI), complex III (CIII), complex IV (CIV) and complex V(CV) proteins to confirm the identities of the bands. SupCl and CV2 denote a supercomplex of Cl and a dimer of CV respectively. The exact RNAi constructs expressed starting from left to right were to the white gene (wildtype, WT), dNDUFV1 (CI), dNDUFS1 (CI), dUQCRC-2 (CIII), dUQCRC-Q (CIII), dCox5A (CIV), cyclope (CIV), dATPsyn- β (CV), and ATPsyn-b (CV).
(E) Immunoblotting with anti-NDUFS3 and anti-ATPsyn β antibodies of native gels to detect Cl and CV respectively. Note that band A is a doublet consisting predominantly of a dimer of $C V$, and a supercomplex of Cl .
(F) BN-PAGE (top panel) and Cl in-gel enzyme activity (lower panel) indicate that most of Cl exists as the holoenzyme in Drosophila melanogaster (DM) skeletal muscles, in contrast to cardiac, soleus, EDL and tibia muscles from mice where a significant portion of Cl exists as a supercomplex.

Figure 2.2: 1\% digitonin is the optimum detergent concentration for resolving OXPHOS complexes in Drosophila thoraxes.

Related to Figure 2.1.
Mitochondrial protein complexes from wild-type thoraxes were solubilized in various concentrations of detergents as shown
(A) Digitonin at $0.25 \%, 0.5 \%, 1 \%$ and 2%
(B) 1% digitonin, and Triton $\mathrm{X}-100$ concentrations of $0.25 \%, 0.5 \%, 1 \%$ and 2%
(C) 1% digitonin, and n-Dodecyl β-D-maltoside (DDM) concentrations of $0.25 \%, 0.5 \%, 1 \%$ and 2%
(D) NP-40 concentrations of $0.25 \%, 0.5 \%, 1 \%$ and 2%, and
(E) Tween -20 concentrations of $0.25 \%, 0.5 \%, 1 \%$ and 2%

c \quad| | $\stackrel{\circ}{\square}$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \circ | | $\%$ | DDM | | |

E \quad| \% Tween-20 | | | |
| :---: | :---: | :---: | :---: |
| 0.25 | 0.5 | 1 | 2 |

Figure 2.3: Strong expression of dmef2-gal4 during development.
Related to Figure 2
Western blot showing extent of GFP expression in Dmef2-Gal4; UAS-GFP and mhc-Gal4; UAS-GFP larval somatic and adult thoracic muscles respectively. Expression of β-actin serves as a loading control. Note that the mhc-Gal4 driver has a weaker expression during development relative to the Dmef2-Gal4 driver.

Figure 2.4: Disruption of several Cl core and supernumerary subunits impair Cl assembly In Drosophila.

BN-PAGE (A), Silver staining (B), and Cl in-gel enzyme activity (C) of mitochondria isolated from thoraxes following RNAi-mediated knockdown of the Cl proteins indicated (mhc-Gal4>dNDUFX ${ }^{R N A i}$). The values listed below each lane indicate the residual amount of Cl normalized to the amount in the wild-type (mhcGal4> W^{1118}) lane.
(D) Climbing phenotype after the knockdown of Cl subunits. Flies were aged from 0-3 days. Climbing phenotype was calculated by the \% of flies able to climb past the target line (halfway point in a vial) in 15 seconds.

A

B

C

D.

Figure 2.5: Proteomic analyses and immunoblotting identify assembly intermediates of $\mathbf{C l}$.
(A) Schematic of Cl showing the three modules of the enzyme. The NADH Dehydrogenase module (N module) is located at the tip of the matrix arm, and is the site of NADH oxidation. Situated between the N module and the membrane arm, is the Q module, which is responsible for Ubiquinone reduction. The proton-conducting P module is in the membrane arm.
(B) The current model of Cl assembly in mammalian systems (reviewed in (Vartak et al., 2014). The assembly process begins with the formation of an assembly intermediate containing NDUFS2 and NDUFS3, which combines with NDUFS7 and NDUFS8. The subcomplex of NDUFS2, NDUFS3, NDUFS7 and NDUFS8 ultimately combines with ND1 to form the $\sim 315 \mathrm{kDa}$ assembly intermediate that is anchored to the membrane. The $\sim 315 \mathrm{kDa}$ subcomplex (also called the Q module) combines with an independentlyformed $\sim 370 \mathrm{kDa}$ assembly intermediate to form an $\sim 550 \mathrm{kDa}$ assembly intermediate. This assembly intermediate which consists of the Q module and part of the P module grows by the addition of more subunits to form the $\sim 815 \mathrm{kDa}$ assembly intermediate, via mechanisms that are very poorly defined. The $\sim 815 \mathrm{kDa}$ assembly intermediate now consists of the complete Q and P modules. Finally, the N module is added to produce the 950kDa fully-assembled complex. Assembly factors or chaperones that assist in this process, but are not present in the fully assembled complex, have been omitted for clarity.
(C) Western blot of samples obtained from thoraxes from pupae aged between 2 and 4 days after pupariation, and of flies from 0.5 hours to 48 hours post-eclosure to detect the assembly intermediates, fully assembled CI , and a supercomplex containing complex I (supCI) after BN-PAGE. The anti-NDUFS3 antibody strongly detects Cl and supCl; and weakly detects the $\sim 315 \mathrm{kDa}, \sim 550 \mathrm{kDa}$ and $\sim 815 \mathrm{kDa}$ assembly intermediates after a short exposure. However, after a longer exposure, the ~ 315 and $\sim 550 \mathrm{kDa}$ assembly intermediates can clearly be seen. In the right panel, the membrane was stripped and re-probed with anti-NDI. Anti-ND1 detects the $\sim 315 \mathrm{kDa}$ and $\sim 550 \mathrm{kDa}$ assembly intermediates, and a very faint band corresponding to Cl .
(D) Proteomic analyses of assembly intermediates that form in the native gel sized between $\sim 50 \mathrm{kDa}$ and $\sim 350 \mathrm{kDa}$. See Table 2.3 for all the peptides identified.

A

B
Intermembrane Space

D

Fraction (approximate size in kDa)	CI Subunits and Assembly Factors Identified In Each Fraction
A1 (400-450)	dNDUFS3
A2 (350-400)	dNDUFAF4, dNDUFS3, dNDUFA5, dNDUFS7
A3 (300-350)	dNDUFAF4, dNDUFS2, dNDUFS3, dNDUFA5, dNDUFS7
A4 (260-300)	dNDUFAF4, dNDUFS2, dNDUFS3, dNDUFA5, dNDUFS7, dACAD9
A5 (220-260)	dNDUFA7, dNDUFS2, dNDUFS3, dNDUFA5, dNDUFS1, dACAD9
A6 (200-220)	dNDUFA7, dNDUFS1, dACAD9
A7 (180-200)	dNDUFA7, dNDUFS1, dACAD9
A8 (160-180)	dNDUFA7, dNDUFS1, dACAD9
A9 (140-160)	dNDUFA10, dNDUFA7, dNDUFA11, dNDUFS1, dACAD9
A10 (120-140)	dNDUFA10, dNDUFA7, dNDUFA11
A11 (100-120)	dNDUFA10, dNDUFA7, dNDUFA12
A12 (85-100)	dNDUFA10, dNDUFA7, dNDUFA12, dNDUFA11
A13 (70-85)	dNDUFA10, dNDUFA7, dNDUFA12, dNDUFA11
A14 (55-70)	dNDUFA10, dNDUFA7, dNDUFA12, dNDUFA11

Figure 2.6: Detection of smaller subcomplexes of CV.
Related to Figure 2.5
Immunoblots of samples obtained from wildtype, mhc>dNDUFS8RNAi and mhc>dNDUFV1RNAi thoraxes of flies aged for 24 hours after eclosure to detect Cl and CV assembly intermediates. In the left and right panels, anti-ND1 and anti-NDUFS3 antibodies detect the CI holoenzyme and supercomplex, and the ~315 $\mathrm{kDa}, \sim 550 \mathrm{kDa}$ and $\sim 815 \mathrm{kDa}$ Cl assembly intermediates; but no assembly intermediates less than about 300 kDa are detected by these antibodies. However, in the middle panel, anti-ATPsyn β detects the CV monomer and dimer as well as several assembly intermediates some of which are smaller than 300 kDa .

Figure 2.7: Specific subunits regulate the biogenesis or stability of specific assembly intermediates of Cl .
(A) The left panel depicts a schematic of the distribution of assembly intermediates on immunoblots as a result of RNAi-mediated disruption of various Cl subunits. The right panel describes how various results can be interpreted.
(B-D) Distribution of assembly intermediates in thoraxes dissected 24 hours after eclosion with transgenic RNAi expression of the Cl subunits shown. In panels labeled long exposure, the region of the membrane just at or below Cl was cut and imaged.
(B) The ~815 kDa assembly intermediate accumulates in thoraxes expressing transgenic RNAi to dNDUFS1 and dNDUFV1; and the $\sim 315 \mathrm{kDa}$ assembly intermediate is decreased in thoraxes expressing transgenic RNAi of dNDUFS2, dNDUFS3 and dNDUFS7. In addition, another assembly intermediate accumulates in thoraxes expressing RNAi to dNDUFS5 and dNDUFC2 (denoted by *). (C) The ~815 kDa assembly intermediate stalls in thoraxes expressing transgenic RNAi to dNDUFA6 and dNDUFA12; and the $\sim 315 \mathrm{kDa}$ assembly intermediate is attenuated in thoraxes expressing transgenic RNAi of dNDUFA5. (D) There were no overt alterations in assembly intermediates at this time point when the dNDUFB subunits were disrupted.
(E and F) Distribution of assembly intermediates in thoraxes dissected 48 hours (E) and 72 hours (F) after eclosion with transgenic RNAi expression of the NDUFB subunits shown. RNAi-mediated knockdown of the expression of dNDUFB3 decreased the extent of accumulation of all the assembly intermediates; and the 550 kDa assembly intermediate accumulated when the expression of dNDUFB1, dNDUFB8 and dNDUFB11 were reduced. In addition, the extent of accumulation of the 315 kDa assembly intermediate was diminished following RNAi-mediated disruption of dNDUFB1, dNDUFB4, dNDUFB5, dNDUFB6 and dNDUFB10 at both the 48- and 72-hour time points.

Figure 2.8: Identification of an $\sim 700 \mathrm{kDa}$ assembly intermediate of Cl in Drosophila.
(A) Top Panel: Immunoblots of samples obtained from wildtype and mhc>dNDUFS5 RNAi thoraxes of flies aged for 6 hours after eclosure depicting co-migration of the $\sim 700 \mathrm{kDa}$ intermediate and CV . In the left and middle panels, anti-NDUFS3 antibodies detect the fully assembled CI , the $\sim 700 \mathrm{kDa}$ subcomplex, as well as other assembly intermediates in dNDUFS5 ${ }^{\text {RNAi }}$ thoraxes. Note that in the middle panel, the region of the membrane just below Cl was cut and imaged. In the right panel, anti-ATPsyn β detects the CV monomer (700 kDa) and dimer as shown. Lower Panel: Mitochondrial protein complexes from wildtype and $m h c>d N D U F S 5^{R N A i}$ thoraxes were resolved by BN-PAGE and the region corresponding to the $\sim 700 \mathrm{kDa}$ assembly intermediate (i.e. CV, demarcated) was cut out, subjected to tryptic digestion, and analyzed by label-free quantitative LC-MS/MS.
(B) Immunoblots from samples obtained after 6 hours, 12 hours and 24 hours post eclosure from thoraxes where NDUFS1, NDUFS3, NDUFS5 and NDUFV1 were knocked down as a result of transgenic RNAi exression. Note that the ~ 815 kDa assembly intermediate accumulates as a result of disruption of NDUFS1 and NDUFV1, and the ~ 700 kDa assembly intermediate stalls and accumulates in NDUFS5 mutants at all time points. Importantly, upon prolonged exposure of the immunoblot, a band corresponding to the ~ 700 kDa assembly intermediate can also be observed in wild-type samples (denoted with the * in the lower panel), which confirms that it is an authentic, albeit transient assembly intermediate.
(C) The accumulation of the $\sim 815 \mathrm{kDa}$ assembly intermediate was significantly attenuated in $m h c>d N D U F S 5^{R N A i}, d N D U F S 1{ }^{R N A i}$ thoraxes relative to $m h c>d N D U F S 11^{R N A i}$ thoraxes; instead there is an accumulation of the $\sim 700 \mathrm{kDa}$ assembly intermediate. Similar results were obtained when samples from $m h c>d N D U F S 5^{R N A}, d N D U F V 1^{R N A i}$ thoraxes were compared to samples from $m h c>d N D U F V 1 R N A i$ thoraxes. (D) Proteomic changes in the gel slice sample from wildtype and mhc>dNDUFS5 ${ }^{R N A i}$ thoraxes corresponding to the $\sim 700 \mathrm{kDa}$ assembly intermediate. Relative protein abundance among biological samples is expressed by spectral counts on a log scale. Several Cl subunits and CIAFs, most notably components of the MCIA complex are upregulated in the $\sim 700 \mathrm{kDa}$ assembly intermediate. However, the amount of dNDUFA10 (denoted with an asterisk) is reduced in $m h c>d N D U F S 5^{R N A i}$ thoraxes relative to wild type. See Table 2.4 for all the peptides identified.

A

C

B

Anti-NDUFS3 (long exposure)

WT FS5 ${ }^{\text {RNAI }}$

2.0
$-\quad 1.8$
1.6
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
-1.2
-1.4
-1.6
-1.8
-1.8
-2.0

Figure 2.9: CI assembly In Drosophila involves an assembly intermediate containing several membrane-associated accessory subunits.
(A) Mitochondrial protein complexes from wildtype, $m h c>d N D U F S 5^{\text {RNAi }}$ and $m h c>d N D U F V 1{ }^{\text {RNAi }}$ thoraxes were separated by BN-PAGE and the region corresponding to the accumulated assembly intermediate (demarcated) was cut out, subjected to tryptic digestion, and analyzed by label-free quantitative LC-MS/MS. (B) Proteomic changes in the gel slice samples from wildtype, $m h c>d N D U F S 5{ }^{\text {RNAi }}$ and $m h c>d N D U F V 1^{\text {RNAi }}$ thoraxes. Relative protein abundance among biological samples is expressed by spectral counts on a log scale. The color scale bar indicates the range of protein expression levels. See additional information in

Table 2.5 .
(C) Schematic representation highlighting the membrane subunits that are upregulated in the gel slice (shown in red font) from the $m h c>d N D U F S 5^{R N A i}$ and $m h c>d N D U F V 1^{\text {RNA }}$ thoraxes.

Figure 2.10: Proposed model of Cl assembly in Drosophila flight muscle.
An assembly intermediate consisting of dNDUFS2, dNDUS3, dNDUFS7, dNDUFS8 and dNDUFA5 are combined in essentially one step to form the Q module, which is anchored to the membrane by ND1. Subsequently, an independently-formed subcomplex comprising of membrane-associated subunits (Partial P 1) is conjugated to the Q module, and possibly other subunits, to form an assembly intermediate comprised of the Q module and part of the P module (Q + Partial P2). This grows by the addition of more subunits to form a transient assembly intermediate of $\sim 700 \mathrm{kDa}(\mathrm{Q}+$ Partial P3). We propose that dNDUFS5 is then incorporated at this step, to promote incorporation or stabilization of dNDUFA10. Subsequently, the transient $\sim 700 \mathrm{kDa}$ assembly intermediate is rapidly converted to the $\sim 815 \mathrm{kDa}$ assembly intermediate, consisting of the complete P and Q modules $(\mathrm{Q}+\mathrm{P})$. Finally, the N module is added to produce the CI holoenzyme.

Figure 2.11: Destabilization of Cl is not specifically linked to stress.
Related to Figure 2.4A
(A) Silver-stained gels containing OXPHOS complexes isolated from wildtype, Dmef2Gal4>PINK1RNAi, Dmef2Gal4>ParkRNAi, Dmef2Gal4>GSTS1RNAi, Dmef2Gal4>Trxr-1RNAi, Dmef2Gal4>Sod1RNAi, Dmef2Gal4>Sod2RNAi and Dmef2Gal4>catalaseRNAi thoraxes of flies aged for 72 hours after eclosure to determine the integrity of the OXPHOS complexes. Lanes marked with an asterisk denote instances where assembly of several OXPHOS complexes were impaired.
(B) BN-PAGE showing mitochondrial protein complexes from mhc>w1118 (wild-type) thoraxes of flies aged for 24 hours; and starved or maintained at $25 \mathrm{C}, 30 \mathrm{C}$ or 37 C for 18 or 36 hours. Note that there were no overt alterations in assembly of the OXPHOS complexes.

$\boldsymbol{\infty}$

Table 2.1 There are at least 42 orthologs of the 44 human complex I subunits in Drosophila, related to Figure 2.1.
*Shows which protein in a set of paralogs was confirmed by mass spectrometry. Core subunits are shown in bold font.

Human Complex I Protein	Yarrowia lipolytica Complex I Protein	Escherichia coli Complex I Protein	Drosophila Ortholog (DIOPT Score)	Confirmed by Mass Spectrometry
NDUFS1	NUAM	NuoG	CG2286 (11)	+
NDUFS2	NUCM	Nuod	$\begin{aligned} & \text { CG1970* (11) } \\ & \text { CG11913 (6) } \end{aligned}$	+
NDUFS3	NUGM	NuoC	CG12079 (10)	+
NDUFS4	NUYM		CG12203 (10)	+
NDUFS5	NIPM		CG11455 (4)	+
NDUFS6	NUMM		CG8680 (11)	+
NDUFS7	NUKM	Nuob	$\begin{aligned} & \text { CG9172* (9) } \\ & \text { CG2014 (9) } \end{aligned}$	+
NDUFS8	NUIM	Nuol	CG3944 (11)	+
NDUFV1	NUBM	NuoF	$\begin{aligned} & \text { CG9140* (10) } \\ & \text { CG11423* }(7) \\ & \text { CG8102 (6) } \end{aligned}$	$\begin{aligned} & + \\ & + \end{aligned}$
NDUFV2	NUHM	NuoE	$\begin{aligned} & \text { CG5703* (11) } \\ & \text { CG6485 (7) } \end{aligned}$	+
NDUFV3			CG11752 (1)	+
NDUFC1				
NDUFC2			CG12400 (8)	+
NDUFA1	NIMM		CG34439 (4)	+
NDUFA2	NI8M		CG15434 (11)	
NDUFA3	NI9M			
NDUFA5	NUFM		CG6463 (9)	+
NDUFA6	NB4M		CG7712 (11)	+
NDUFA7	NUZM		$\begin{aligned} & \text { CG3621* (9) } \\ & \text { CG6914 (7) } \end{aligned}$	+
NDUFA8	NUPM		CG3683 (10)	+
NDUFA9	NUEM		CG6020 (10)	+
NDUFA10			CG6343 (10)	+
NDUFA11	NUJM		CG9350 (7)	+
NDUFA12	N7BM		CG3214 (11)	+
NDUFA13	NB6M		CG3446 (7)	+
NDUFAB1	ACPM1 ACPM2		CG9160 (7)	+
NDUFB1			CG18624 (5)	+
NDUFB2			$\begin{aligned} & \text { CG40002x }(5) \\ & \text { CG40472 (5) } \end{aligned}$	+
NDUFB3	NB2M		CG10320 (8)	+
NDUFB4	NB5M		CG12859 (3)	+
NDUFB5			CG9762 (11)	+
NDUFB6			CG13240 (1)	+
NDUFB7	NB8M		CG5548 (11)	+
NDUFB8	NIAM		CG3192 (10)	+
NDUFB9	NI2M		CG9306 (11)	+
NDUFB10	NIDM		CG8844 (11)	+
NDUFB11	NESM		CG6008 (8)	+
ND1	NU1M	NuoH	CG34092 (3)	+
ND2	NU2M	NuoN	CG34063 (6)	
ND3	NU3M	NuoA	CG34076 (7)	
ND4	NU4M	NuoM	CG34085 (3)	+
ND4L	NULM	Nuok	CG34086 (7)	
ND5	NU5M	Nuol	CG34083 (5)	+
ND6	NU6M	NuoJ	CG34089 (1)	
	NUXM			
	NEBM			
	NUNM			
	NUUM			
	ST1			

Table 2.2: Proteins Identified via mass spectrometry of OXPHOS complexes in Drosophila, related to Figure 2.1.

The constituents of each of the six major bands observed during BN-PAGE was analyzed by mass spectrometry. Peptides identified in each of bands A to F are shown in the table.

Maltase A1 Mal-A1	MAL1_DROME
Glucose-6-phosphate isomerase Pgi	G6PI_DROME
Cluster of CG6512-PA, isoform A CG6512 (Q874G5_DROME)	Q8T465_DROME [2]
Cluster of Aralar1, isoform F aralar1 (AOAOB4KHW3_DROME)	AOAOB4KHW3_DROME ${ }^{\text {同 }}$
RE74917p tobi	QgVBR6_DROME
CG4600-PA yip2	Q9VL70_DROME
Cluster of V-type proton ATPase catalytic subunit A isoform 2 Vha68-2 (VATA2_DROM	VATA2_DROME [2]
Cluster of Cytochrome b-c1 complex subunit 7 UaCR-14 (Q9VX16_DROME)	Q9VXI6_DROME [2]
Cluster of Terribly reduced optic lobes, isoform All trol (M9NET2_DROME)	M9NET2_DROME [5]
Cluster of LP02262P \| (1)G0255 (Q81RQ5_DROME)	Q81RQ5_DROME [2]
CG3523, isoform C FASN1	BZZO01_DROME (+1)
Cytochrome coxidase subunit 2 mt:Coll	COX2_DROME
Delta-1-Pyrroline-5-carboxylate dehydrogenase 1, isoform A P5CDh1	QQVNX4_DROME
Alcohol dehydrogenase Adh	ADH_DROME
3-PA ND-13B (dNDUFA5	Q9VTB4_DROME
Stretchin-Mlck, isoform R Strn-Mlck	A1ZA73_DROME
ND-ASHI (dNDUFB8)	Q9W3X7_DROME
Neuroglian, isoform D Nrg	E1JJF9_DROME (+2)
Cytochrome c oxidase subunit 5A, mitochondrial COX5A	COX5A_DROME
CG1640, isform A CG1640	Q7KV27_DROME
CG6105-PA ATPsynG	Q9VKM3_DROME
CG7433, isoform A CG7433	Q9VW68_DROME
Cluster of Glyceraldehyde-3-phosphate dehydrogenase 1 Gapdh1 (G3P1_DROME)	G3P1_DROME [2]
GM23292p ND-B17 (dNDUFB6)	Q9V3W2_DROME
GM02062p ND-23 (dNDUF58)	Q9VF27_DROME
Cluster of CG9485, isoform B CG9485 (Q9W2H8_DROME)	Q9W2H8_DROME [2]
V-type proton ATPase subunit B Vhas5	VATB_DROME
Cluster of Shibire, isoform L shi (E11JA4_DROME)	E1JJA4_DROME [3]
Cluster of Z band alternatively spliced PDZ-motif protein 52, isoform W Zasp52 (A0A	AOAOB4LGLO_DROME [2]
CG3446, isoform B ND-B16.6 (dNDUFA13)	Q9W402_DROME
Limpet, isoform K Lmpt	Q7KUQ6_DROME
Cluster of Lethal (2) 01289, isoform F (2)01289 (E1) ${ }^{\text {a }}$ (V6_DROME)	E1IGY6_DROME
LD36265p (Fragment) UGP	A5XCL5_DROME (+1)
Cluster of Bent, isoform I bt (LOMN91_DROME)	LOMN91_DROME [2]
Cluster of Reticulon-like protein Rtn11 (E1)HT6_DROME)	E1HHT6_DROME [4]
Unc-89, isoform E Unc-89	AOAOB4LGI5_DROME + +
Cluster of Myosin heavy chain, isoform P Mhc (E1JHH5_DROME)	E1JHIS_DROME [4]
CG7461, isoform B CG7461	A1ZBI2_DROME
Pyruvate dehydrogenase E1 component subunit alpha \|(1)G0334	Q9W4H6_DROME
Cluster of Paramyosin, long form Prm (MYSP1_DROME)	MYSP1_DROME [2]
CG8036, isoform B CG8036	Q9VHNT_DROME
Cytochrome b -c1 complex subunit 9 ox	QCR9_DROME
Cluster of Tropomyosin 2, isoform E Tm2 (AOAOB4KHJ9_DROME)	AOAOB4KHJ9_DROME [2]
Heat shock 70 kDa protein cognate $3 \mathrm{Hsc} 70-3$	HSP7C_DROME
Cluster of Kazachoc, isoform G kcc (AOAOB4LGD3_DROME)	AOAOB4LGD3_DROME [2
Transferrin 1, isoform A Tsf1	Q9VWV6_DROME
Cluster of Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial Scsalf	SUCA_DROME [2]
NADH dehydrogenase [ubiquinone] 1 subunit C2 ND-B14.5B (dNDUFC2)	Q9VQM2_DROME
CG32230, isoform B ND-MLRQ	Q8SYJ2_DROME
Aldehyde dehydrogenase Aldh	Q9VLC5_DROME
Trehalase Treh	A4UZR3_DROME
CG5903, isoform A CG5903	Q9VEY5_DROME
GH13256p Thiolase	Q9W1H8_DROME
Levy, isoform A levy	Q9W1N3_DROME
V-type proton ATPase subunit H VhasFD	VATH_DROME
Bicoid stability factor bsf	Q9VJ86_DROME

Synaptosomal-associated protein 25 Snap25
CG34120, isoform D CG34120
Clathrin heavy chain Chc
CG2076, isoform A CG2076
CG15011 CG15011
C69754 CG9754
CG32436 CG32436-RA
Probable methylcrotonoyl-CoA carboxylase beta chain, mitochondrial I(2)04524
CG33970, isoform A CG6166
LD30155p lost
F107923p Karybeta3
BcDNA.GH08860 Tps 1
Kinesin heavy chain Khc
Cluster of Heat shock protein 68 Hsp68 (HSP68_DROME)
Cluster of CG3164, isoform B CG3164 (Q9VPJ9_DROME)
Cluster of Like-AP180, isoform I lap (AOAOB4KFE2__DROME)
Extended synaptotagmin-like protein 2 ortholog, isoform B Esyt2
NADH-cytochrome b5 reductase CG5946-RB
Nck 30 C , isoform E Nck 30 C
Dihydroorotate dehydrogenase (quinone), mitochondrial Dhod
CG2254-PA CG2254
BCDNA.GH10614 BCDNA.GH10614
CG18624, isoform B ND-MNLL (dNDUFB1)
CG4587, isoform H CG4587
Multidrug resistance protein homolog 65 Mdr65
CG41128CG41128
Cluster of CG42492, isoform A C611473 (Q9W4A6_DROME)
Cluster of Acyl carrier protein ND-ACP (dNDUFAB1)
Ubiquinone biosynthesis protein COQ9, mitochondrial Coa9
NTPase, isoform F NTPase
C631343 C65839
BCDNA.HH02693 CRMP
CG3999, isoform A CG3999
CG1718, isoform B CG1718
CG9394, isoform A CG9394
Stromal interaction molecule homolog Stim
Fat-body protein 1 Fbp1
L045324p Prx5
Cytochrome b5-related protein Cyt-b5-r
CG32267 CG32267
Semaphorin-2b, isoform D Sema-2b
Cluster of AMP deaminase, isoform EAMPdeam (Q9VY76_DROME)
Ubiquinone biosynthesis protein COQ4 homolog, mitochondrial CG32174
Fasciclin-2 Fas2
Ferrochelatase, mitochondrial FeCh
Adaptor protein complex 2, mu subunit, isoform A AP-2mu
CG4123-PA, isoform A Mipp1
Fl05212p Sodh-1
G protein alpha o subunit Galphao
CDGSH iron-sulfur domain-containing protein 2 homolog Cisd2
UPF0389 protein CG9231 CG9231
Mini spindles, isoform Emsps
CG17360, isoform B CG17360

Cluster of Synaptotagmin 1 Syt1 (SY65_DROME)	SY65_DROME [2]	53 kDa	0	1	0	5	5	2	
Cluster of Non-specific protein-tyrosine kinase Src42A (A1Z619_DROME)	A1Z619_DROME	176 kDa	0	0	0	0	0	5	
Carboxylic ester hydrolase Ace	AOAOB4KGI5_DROME (+1	71 kDa	0	0	0	0	16	0	
Superoxide dismutase Sod2	AOAOB4LGQ1_DROME (+	25 kDa	0	0	0	1	4	6	
Gelsolin, isoform L Gel	AOAOC4DHG6_DROME	83 kDa	0	0	0	0	0	8	
Protein I'm not dead yet Indy	INDY1_DROME	66 kDa	0	0	0	0	14	0	
Proteasome subunit alpha type-6 Prosalpha1	PSA6_DROME	27 kDa	0	0	5	0	0	0	
CG9629 CG9629	Q8SXQ1_DROME	58 kDa	0	1	6	7	0	0	
CG3699-PA EG:BACR7A4.14	Q9U1L2_DROME	26 kDa	0	0	0	0	5	11	
CG5789, isoform A CG5789-RA	Q9VC63_DROME	157 kDa	0	0	0	0	8	0	
CG2107 CG2107	Q9VZW7_DROME	75 kDa	0	0	0	0	0	6	
Fl03690p Gk	Q9W095_DROME	65 kDa	0	2	5	4	0	0	
NADH-ubiquinone oxidoreductase chain 1 mt :ND1	NU1M_DROME (+1)	36 kDa	4	5	0	0	0	0	
CG17734, isoform B CG17734	Q8INK7_DROME (+1)	10 kDa	0	2	1	3	7	2	
RE08173p Tg	Q9VLU2_DROME	87 kDa	0	0	0	0	1	4	
Sodium chloride cotransporter 69, isoform C Ncc69	M9PCA7_DROME (+1)	132 kDa	0	0	2	2	2	0	
Lectin type C (Fragment) lectin-28C	Q9VLW1_DROME	30 kDa	0	0	0	0	5	0	
Facilitated trehalose transporter Tret1-1 Tret1-1	TRE11_DROME	95 kDa	0	1	0	1	3	1	
Cluster of Isocitrate dehydrogenase [NADP] Idh (Q7KUB1_DROME)	Q7KUB1_DROME [2]	53 kDa	0	0	0	0	1	4	
Calpain-A, isoform D CalpA	AOAOB4LG26_DROME (+	96 kDa	0	0	0	2	9	1	
LD18774p OstDelta	Q7K110_DROME	69 kDa	3	0	5	0	0	0	
CG9416, isoform A CG9416	Q8MT48_DROME	98 kDa	0	0	0	0	0	10	
Peroxiredoxin 3 Prx3	Q9VEJO_DROME	26 kDa	0	0	0	0	8	0	
Adenylyl cyclase-associated protein capt	Q9VPX6_DROME	84 kDa	0	0	0	0	2	6	
CG2930, isoform A CG2930-RA	Q9W4P6_DROME (+1)	89 kDa	0	0	0	0	3	6	
CG9634, isoform A goe	Q9XZ14_DROME (+1)	100 kDa	0	0	0	4	0	0	
Cytochrome c oxidase subunit 1 mt :Col	COX1_DROME	56 kDa	0	0	0	2	7	0	
Cluster of Glutathione peroxidase PHGPx (Q8IRD3_DROME)	Q8IRD3_DROME [2]	26 kDa	0	1	0	3	0	2	
AP-2 complex subunit alpha AP-2alpha	AP2A_DROME	106 kDa	1	0	0	4	0	0	
Elongation factor 2 EF 2	EF2_DROME	94 kDa	0	0	0	0	1	4	
LD47736p Sodh-2	O96299_DROME	39 kDa	0	0	0	0	0	14	
Proteasome subunit alpha type-4 Prosalpha3	PSA4_DROME	29 kDa	0	0	10	0	0	0	
CG31030, isoform B CG31030	Q0KHY8_DROME (+1)	47 kDa	0	0	0	8	0	0	
UDP-glucuronosyltransferase BEST:LD25345	Q9VJ45_DROME	58 kDa	0	0	0	0	0	5	
CG3609, isoform B CG3609	Q9VQB4_DROME	37 kDa	0	0	0	0	3	9	
RH64870p Ucp 4A	Q9VX14_DROME	37 kDa	1	0	0	3	1	9	
CG14526 CG14526	Q9Y136_DROME	82 kDa	0	0	0	0	0	9	
High-affinity choline transporter 1 CG7708	SC5A7_DROME	67 kDa	0	0	0	0	0	11	
Uricase Uro	URIC_DROME	40 kDa	0	0	0	0	1	5	
Alpha-mannosidase LManll	Q8IPB7_DROME (+1)	123 kDa	0	0	0	0	3	2	
CG4562, isoform E CG4562	AOAOB4KGIO_DROME	158 kDa	0	0	0	1	5	0	
Holocarboxylase synthetase, isoform B Hcs	AOAOB4KF92_DROME (+)	110 kDa	0	0	0	0	2	1	
Grunge, isoform G Gug	M9NE54_DROME	213 kDa	0	0	0	2	0	0	
Cluster of Serine/threonine-protein phosphatase 2B catalytic subunit 3 CanA-14F (PPa	PP2B3_DROME	64 kDa	0	0	0	0	0	3	
Ubiquinone biosynthesis monooxygenase COQ6, mitochondrial Coq6	COQ6_DROME	52 kDa	7	1	0	0	0	4	
Integrin beta-PS mys	ITBX_DROME (+1)	93 kDa	0	0	0	6	0	0	
CG7834, isoform A CG7834	Q0KHZ6_DROME	27 kDa	0	0	0	0	0	5	
CG1358, isoform A CG1358-RB	Q7K1D7_DROME	52 kDa	0	0	0	0	0	11	
CG17121 CG17121	Q9VCR9_DROME	39 kDa	0	0	0	0	,	6	
CG10639, isoform A CG10639-RA	Q9VJ28_DROME	50 kDa	0	0	0	0	2	5	
CG7752-PA pzg	Q9VP57_DROME	105 kDa	0	0	0	0	3	0	
CG10320, isoform A ND-B12 (dNDUFB3)	Q9W2E8_DROME	12 kDa	3	9	0	0	0	0	
CHOp24, isoform A CHOp24	Q9W4K0_DROME	23 kDa	0	0	0	2	3	6	
Atlastin at	ATLAS_DROME	61 kDa	1	0	0	0	0	5	
CG10097, isoform B CG10097	Q9VG86_DROME	57 kDa	0	0	0	2	3	1	
Evolutionarily conserved signaling intermediate in Toll pathway, mitochondrial ECSIT	ECSIT_DROME	47 kDa	0	0	0	5	0	0	Assembly Fas

Table 2.3: Mass spectrometry identifying subcomplexes in Drosophila flight muscles, related to Figure 2.5.

The table shows all the peptides identified in the 14 fractions shown in Figure 2.5D

Babos, isoform A babos	Q9W258_DROME
LD37574p yps	Q95RE4_DROME
Inorganic pyrophosphatase Nurf-38	IPYR_DROME
Fat-body protein 1 Fbp1	FBP1_DROME (+1)
CG5991, isoform A CG5991	Q9VCEO_DROME
Ubiquinone biosynthesis protein CoQ9, mitochondrial Coq9	COQ9_DROME
AT13736p UaCR-Q	Q9VVH5_DROME
C65915 protein Rab7	O76742_DROME
Trehalase Treh	A4UZR3_DROME
40 r ribosomal protein S19a RpS19a	RS19A_DROME
LD46175p sea	Q7KSQ0_DROME
GH10642p hebe	Q7K568_DROME
CG40042 Tim 23	Q8MRW1_DROME
CG7636-PA mRpL2	Q9VTF8_DROME
CG32209-PB serp	Q9VW34_DROME
CCHC-type zinc finger protein CG3800 CG3800	Y3800_DROME
Phosphatidylglycerophosphatase and protein-tyrosine phosphatase 1 Plip	PTPM1_DROME
MICOS complex subunit Mic60 Mitofilin	MIC60_DROME
CG4600-PA yip2	Q9VL70_DROME
Maltase A1 Mal-A1	MAL1_DROME
Mitochondrial transcription factor A, isoform B TFAM	Q86BR8_DROME (+1)
C66287-PA CG6287	Q9VKI8_DROME
Transmembrane protein 14 homolog CG5532	TM14_DROME
Guanine nucleotide-binding protein subunit beta-1 Gbeta 13F	GBB1_DROME
Malate dehydrogenase Mdh1	Q9VKX2_DROME
CG7138-PA r2d2	Q9VLW8_DROME
Deoxyribonuclease II DNasell	Q9VED8_DROME
LD43175p yellow-b	Q9VJII_DROME
Cluster of Ryanodine receptor, isoform J RyR (AOAOB4K715_DROME)	AOAOB4K715_DROME [2]
Eb1, isoform A Eb1	Q7JZD3_DROME (+1)
CG5676-PA CG5676	Q9VL16_DROME
Annexin B11 AnxB11	ANX11_DROME
CG4123-PA, isoform A Mipp1	Q9VV72_DROME
Cluster of Cheerio, isoform M cher (AOAOB4KGT8_DROME)	AOAOB4KGT8_DROME [4]
Cluster of Unc-89, isoform E Unc-89 (AOAOB4LGI5_DROME)	AOAOB4LGI5_DROME [4]
Microtubule-associated protein futsch futsch	FUTSC_DROME
Heme oxygenase Ho	Q9VGJ,_DROME
Peroxisomal multifunctional enzyme type 2 Mfe 2	DHB4_DROME
Pyruvate carboxylase PCB	QOE9E2_DROME (+1)
Cluster of ATP-dependent 6-phosphofructokinase Pfk (AOAOB4K7L1_DROME)	AOAOB4K7L1_DROME [2]
Cluster of Disks large 1 tumor suppressor protein dlg1 (DLG1_DROME)	DLG1_DROME [7]
Laminin subunit alpha LanA	LAMA_DROME
Limpet, isoform K Lmpt	Q7KUQ6_DROME
Cluster of Shibire, is oform L shi (E1JJA4_DROME)	E1]JA4_DROME [2]
Cluster of CG9674, is oform F CG9674 (M9NFH8_DROME)	M9NFH8_DROME [2]
Heat shock protein 83 Hsp83	HSP83_DROME
CG17776, isoform B CG17776	Q9W513_DROME
Cluster of Basigin, isoform G Bsg (Q7kTJ7_DROME)	Q7KTJ]_DROME [3]
Chitinase-like protein Idgf4 Idgf4	IDGF4_DROME
3-hydroxyacyl-CoA dehydrogenase type-2 scu	HCD2_DROME
CG2915, isoform A CG2915-RB	QOE9F9_DROME
Cluster of Syncrip, isoform H Syp (A8JR54_DROME)	A8JR54_DROME [4]
Cluster of CG14526 CG14526 (Q9Y136_DROME)	Q9Y136_DROME
CG9331, isoform B CG9331	Q7KT11_DROME (+2)
CG7461, isoform B CG7461	A17BBI_DROME
Adenylosuccinate synthetase AdSS	PURA_DROME
Alpha-mannosidase LMan!	Q9VKV2_DROME
LP14331p Mdr50	Q5B162_DROME
Cluster of Piezo-type mechanosensitive ion channel component Piezo (E1JHB4_DROM	E1JHB4_DROME
Lamin-C LamC	LAMC_DROME
Cluster of Terribly reduced optic lobes, isoform Al trol (M9NET2_DROME)	M9NET2_DROME [6]
Microsomal triacylglycerol transfer protein Mtp	Q9VIH3_DROME
Cluster of Multiple ankyrin repeats single KH domain, isoform C mask (AOAOB4K725_D	AOAOB4K725_DROME [5]
Cytochrome P450 4g1 Cyp4g1	CP461_DROME
CG11980, isoform C CG11980	Q81NP9_DROME
GH13725p Tcp-12eta	Q9VXQS_DROME
GH01829p Tep2	Q9NFV7_DROME

$\overline{\mathrm{y}} \mathrm{y}$

L047369 Sodh-2	O96299. DROME
Aconitate hydratase lip-1A	QavCV4__ROME
C64019, isoform F C64019	AOAOB4KFZ1__ROME [+3
Malic enzyme Men	Q.9VG31_DROME
Adenosylhomocysteinase C6997-RA	Qavzxo_drome
I'm not dead yet, is oform D Indy	E1119_DROME (+1)
C618374.PB, isoform B Gyk	Q8iR9, DROME
Fi02050p ninad	Q8INY3 DROME
Orithine aminotransferase, mitochondrial Oat	OAT _OROME
Vanin-IIke protein 1 C632754	UNNL1_DROME
C64408, isoform B C64408	Q7VX3_ DROME (+11
M1P04528p path	Q9VTTO_DROME
Catalase Cat	CATA_DROME
Histone H4 His4	H4_OROME
UDP-glucuronosyltransferase (Fragment) Ugt860d	Q9VGT__DROME
C611655 C611655	QavXVI_DROME
C61910, isoform D C61910	Q8011_OROME (+2)
CG2493, isoform A CG2993	QgVIMO__ROME
Cytochrome P450 4d1 Cyp4d	CP401_OROME
Sphingomyelin phosphodiesterase C615533	Q9VA7 \quad DROME
Cluster of Menage a trois, isoform D metro (AOAOB4LF49__RROME)	AOAOB4LF49_DRO
C69119 C69119	Q9WoI__DROME
Lachesin Lac	LACH_RROME
C65126C65126	QSVPY/ OROME
RE07815p Uetspra	Q9W228_OROME
	Qviroonome
	Rostiotome
$\frac{\text { BCONA.GH03016 } 6 \text { R } 50}{}$ Juvenie hormone epoxid hydrolase 3 3 heh3	Q9V3T3_DROME
C64562, isoform E C64562	AOAOB4KGIO_ _ROME [+1
Angiotensin-converting enzy me-related protein Acer	ACER_DROME
C67966 CG7966	QavVFZ_DROME
Methylthioribose-1-phosphate isomerase C611334	MTNA_OROME
Ance-4, isoform A Ance-4	A177M _ _ROME
Eukaryotic translation initiation factor 3 subunit I Trip 1	E\|F31_OROME
CG10924, isoform B CG10924	A80才13_OROME(+1)
Lethal (3) 036701 (3)03670	Q9VA18_LROME
Probable erorxisomal acy-coenzyme A oxidase 1 CG5009	ACOX1_DROME
CG2003, isform ACG2003-RA	Q9V954_DROME
C611208 CG11208	Q73387_DROME
${ }^{\text {GH21316p Ssadh }}$	QVVBP6_OROME
C69921, isoform B CG9921	Q9VXH4_DROME
C61824C61824	Q9VVL5 DROME
C6877, isoform A C68774	QQVFW9_DROME
Fumarlacetoacetase Faa	Q9VZIB_DROME
CG9148.PA, isoform A scf	Q9WOH8_RROME
Signal peptidase complex subunit 3 Spase22-23	SCS3_ DROME
L221102p Uft35a	Q9VGS9 OROME
Multidrus resistance protein 4 Ortholog Mrp	QavgM1_ DROME
CG3164, isoform C C C3164	Q8IPV3_ OROME (+1)
CG10592 CG10592	Q9VRM__DROME
CG9547 CG9547	Q9VMC6_ROMM
Procollagen lysy hydroxllase, isoform A Plod	QSVTHO_OROME
Aldose 1-epimerase C610467-RA	Qavru1_ orome
Chitinase-like protein CG5210 CG5210	C5210_OROME
C64603, isoform B C64603	M9PEDE__ROME (+1)
Delta-aminolevulinic acid dehydratase Pb	Q9VTV__RROME
${ }^{\text {filis212p Sodh-1 }}$	097779 - OROME
C66656C66656	Qovo68 DROME
Sphingomyelin phosphodiesterase C615534	Q9VAT7_DROME
Heat shock 70 kDa protein cognate $2 \mathrm{Hsc} 70-2$	HSP78_DROME
C68239, isoform A C68839	Q9VXO_O_DOME
CG17029, isform A C617029	Q.9UUW2_DROME
C67882, isoform A C67882	QOIGX4_OROME

Table 2.4: Mass spectrometry identifying constituents of the 700 kDa subcomplex in Drosophila flight muscles, related to Figure 2.8.

The table shows the total number and identity of peptides found in the 700 kDa assembly intermediate.

			WT	WT	WT	Mutant	Mutant	Mutant
Identified Proteins	Accession 1	Molecular	MWA	MWB	MWC	F5A	F5B	F5C
ATP synthase subunit alpha, mitochondrial blw	ATPA_DRO	59 kDa	237	224	236	342	290	283
Cluster of ATP synthase subunit beta, mitochondrial ATPsyn-beta (ATPB	ATPB_DRO	54 kDa	207	208	200	375	286	285
ATP synthase subunit gamma, mitochondrial ATPsyngamma	ATPG_DRO	33 kDa	97	93	97	117	103	97
Calcium-transporting ATPase Ca-P60A	AOA0B4LG	109 kDa	55	36	63	82	55	73
Unc-89, isoform E Unc-89	A0A0B4LG	473 kDa	50	22	46	88	47	56
ATP synthase subunit d, mitochondrial ATPsynD	ATP5H_DR	20 kDa	50	47	41	59	50	49
Cluster of Sodium/potassium-transporting ATPase subunit alpha Atpalp	ATNA_DRO	116 kDa	49	26	55	49	39	50
AT02348p UQCR-C2	Q9VV75_D	45 kDa	47	36	35	49	37	42
ATP synthase subunit O, mitochondrial ATPsynO	ATPO_DRO	22 kDa	45	36	47	53	38	40
CG3731, isoform A UQCR-C1	Q9VFF0_DH	52 kDa	45	42	49	51	43	36
ATP synthase subunit b, mitochondrial ATPsynB	AT5F1_DRQ	27 kDa	41	42	47	72	57	52
Fructose-bisphosphate aldolase Ald	ALF_DROM	39 kDa	37	46	42	48	48	56
Probable citrate synthase, mitochondrial kdn	CISY_DROM	52 kDa	34	22	28	39	29	28
Neuroglian, isoform D Nrg	E1JJF9_DR	138 kDa	31	13	25	34	20	22
Lethal (1) G0230, isoform A ATPsyndelta	Q9W2X6_5	17 kDa	30	32	32	37	33	35
Glycerol-3-phosphate dehydrogenase Gpo-1	Q7K569_D	80 kDa	28	14	22	44	36	35
Proteasome subunit alpha type-1 Prosalpha6	PSA1_DRO	31 kDa	28	19	24	28	23	31
Cluster of Proteasome subunit beta type Prosbeta2 (Q9VUJ1_DROME)	Q9VUJ1_D	30 kDa	27	8	14	19	16	21
Fasciclin 1, isoform G Fas1	AOAOB4KH	74 kDa	26	2	27	24	20	33
CG4769, isoform A Cyt-c1	Q9VRLO_D	34 kDa	20	14	18	27	23	18
Stretchin-Mlck, isoform R Strn-Mlck	A1ZA73_D ${ }^{\text {a }}$	215 kDa	20	2	6	11	5	0
Cluster of Actin-42AAct42A (ACT2_DROME)	ACT2_DRO\|	42 kDa	19	24	23	12	12	17
Glucose-6-phosphate isomerase Pgi	G6PI_DROI	62 kDa	18	18	26	28	28	22
Cytochrome b-c1 complex subunit Rieske, mitochondrial RFeSP	Q9VQ29_D	25 kDa	18	9	18	18	9	15
Proteasome subunit alpha type-5 Prosalpha5	PSA5_DRO1	27 kDa	18	8	13	18	13	19
Proteasome subunit beta type-1 Prosbeta6	PSB1_DRO1	26 kDa	17	9	13	16	14	16
Voltage-dependent anion-selective channel porin	VDAC_DRO	31 kDa	16	15	18	22	22	19
Proteasome subunit beta type Prosbeta5	Q7K148_D	31 kDa	16	9	12	14	14	15
Cluster of Arginine kinase, isoform E Argk (A8JNP2_DROME)	A8JNP2_D	42 kDa	15	9	18	27	20	17
Cluster of Proteasome subunit alpha type-4 Prosalpha3 (PSA4_DROME)	PSA4_DRO1	29 kDa	15	7	12	10	12	15
Proteasome subunit beta type-4 Prosbeta7	PSB4_DRO	30 kDa	15	5	9	13	10	11
CG7920, isoform A CG7920	Q9VAC1_D	52 kDa	14	12	13	9	13	8
CG30415, isoform A CG30415	Q0E8X7_D	10 kDa	13	12	12	12	15	8
ADP,ATP carrier protein sesB	ADT_DROM	34 kDa	13	8	21	22	19	20
CG8036, isoform D CG8036	Q7KSU6_D	63 kDa	13	5	11	17	11	10
Cluster of Paramyosin, long form Prm (MYSP1_DROME)	MYSP1_DR	102 kDa	13	4	15	8	3	1
Dipeptidase B, isoform A Dip-B	Q9VFQ9_D	56 kDa	13	3	8	11	7	5
CG11015-PA COX5B	Q9VMB9_L	14 kDa	13	7	11	13	10	14
Putative ATP synthase subunit f, mitochondrial CG4692	ATPK_DRO\|	12 kDa	12	16	14	22	15	17

Cluster of Myosin heavy chain, isoform P Mhc (E1JHJ5_DROME)	E1JHJ5_DR	223 kDa	12	4	9	21	10	5
Innexin inx2 Inx2	INX2_DROI	42 kDa	12	10	14	16	16	12
Cytochrome b-c1 complex subunit 7 UQCR-14	Q9VXI6_DF	14 kDa	12	7	11	21	11	10
CG10664-PA, isoform A COX4	Q9VIQ8_D	21 kDa	12	7	12	13	9	13
Catalase Cat	CATA_DRO	57 kDa	12	7	9	12	7	9
CG31075, isoform B CG31075	A0A0B4K61	55 kDa	12	3	17	13	10	4
Proteasome subunit alpha type-6 Prosalpha1	PSA6_DRO	27 kDa	12	5	10	11	11	14
Proteasome subunit beta type Prosbeta1	AOAQHO_D	24 kDa	12	6	6	7	11	13
Cluster of Heat shock 70 kDa protein cognate 3 Hsc70-3 (HSP7C_DROM	HSP7C_DR	72 kDa	11	4	8	19	13	9
Proteasome subunit alpha type-3 Prosalpha7	PSA3_DRO	28 kDa	11	6	7	10	6	12
Proteasome subunit alpha type-2 Prosalpha2	PSA2_DRO	26 kDa	11	6	7	12	7	8
Proteasome subunit alpha type-7-1 Prosalpha4	PSA71_DR	28 kDa	11	4	6	8	7	9
Proteasome subunit beta type Prosbeta4	Q9VJJ0_DR	22 kDa	10	4	4	6	4	7
AT13736p UQCR-Q	Q9VVH5_D	10 kDa	10	8	7	9	8	7
Heat shock protein 83 Hsp83	HSP83_DR	82 kDa	8	1	3	10	5	4
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mi	NDUAA_DR	47 kDa	8	1	8	1	0	0
Contactin Cont	CONT_DRO	158 kDa	7	2	12	17	11	13
Neurexin-4 Nrx-IV	NRX4_DRO	145 kDa	7	3	9	7	3	10
Nucleoside diphosphate kinase awd	AOAOB4LH)	19 kDa	7	2	4	8	6	6
Levy, isoform Alevy	Q9W1N3_-	12 kDa	7	3	4	6	4	4
Cluster of Terribly reduced optic lobes, isoform Al trol (M9NET2_DROM	M9NET2_D	432 kDa	6	3	16	14	7	6
CG9762-PA ND-SGDH	Q9VTU2_D	22 kDa	6	3	8	11	10	9
Enigma Egm	Q5U117_D	71 kDa	6	5	7	20	14	15
Cluster of Calcium-transporting ATPase PMCA (E6EK15_DROME)	E6EK15_D	132 kDa	6	2	8	12	8	7
CG32230, isoform B ND-MLRQ	Q8SYJ2_DR	9 kDa	6	5	5	12	4	6
CG14028-PA cype	Q9VMS1_D	8 kDa	6	6	5	4	3	7
Proteasome subunit beta type-3 Prosbeta3	PSB3_DRO	23 kDa	6	6	6	6	5	6
Stunted, isoform B sun	Q8IR24_D	6 kDa	6	4	6	6	3	3
IP09655p Mdh2	Q9VEB1_D	35 kDa	6	5	8	14	10	10
CG3446, isoform B ND-B16.6	Q9W402_C	18 kDa	6	4	6	7	5	7
Cluster of Sodium/potassium-transporting ATPase subunit beta-2 nrv2	ATPB2_DR	37 kDa	6	2	6	7	7	4
9 kD basic protein ATPsynE	O77134_D	9 kDa	6	4	4	6	6	6
CG13492 CG13492	Q8MLU9_L	321 kDa	5	0	2	1	0	0
Innexin inx1 ogre	INX1_DROI	43 kDa	5	4	11	15	5	5
Flightin fln	FTN_DROM	21 kDa	5	2	4	2	4	1
Pyruvate carboxylase PCB	Q0E9E2_D	133 kDa	5	0	3	6	3	5
CG1970, isoform B ND-49	Q9V4E0_D	53 kDa	5	3	8	13	12	10
FI04632p nrv3	Q7JS69_D	36 kDa	5	1	3	4	2	5
Cytochrome c oxidase subunit 2 mt :Coll	COX2_DRO	26 kDa	5	6	6	5	6	5
Cluster of Tropomyosin-1, isoforms 33/34 Tm1 (TPM4_DROME)	TPM4_DRO	55 kDa	4	12	16	10	5	6
Albumin	ALBU_RABI	69 kDa	4	0	0	0	0	0

Table 2.5: Mass spectrometry identifying constituents of the membrane arm subcomplex of $\mathbf{C l}$, related to Figure 2.9.

The table shows the Cl subunits and other proteins identified as part of the membrane arm subcomplex

			Mutant	Mutant	Mutant	Mutant	Wild type	Wild type		
			1FS5	1FV1	2FS5	2FV1	1WT	2WT		
Identified Proteins (450/522)	Accession Number	Molecular	tk161118_Osy	tk161118	tk161118	tk161118	tk161118	tk161118_O	Osuwu_2	
Glycerol-3-phosphate dehydrogenase Gpo-1	Q7K569_DROME	80 kDa	130	155	144	143	152	146		
Cluster of Calcium-transporting ATPase Ca-P60A (A0A0B4LGB7_DROM	A0A0B4LGB7_DROM\|	109 kDa	157	162	152	149	146	135		
Probable citrate synthase, mitochondrial kdn	CISY_DROME	52 kDa	126	146	141	138	123	129		
Pyruvate kinase PyK	KPYK_DROME	57 kDa	120	123	138	113	125	129		
Sodium/potassium-transporting ATPase subunit alpha Atpalpha	ATNA_DROME	116 kDa	117	111	120	120	93	124		
Cluster of CG4389-PB, isoform B Mtpalpha (Q8IPE8_DROME)	Q8IPE8_DROME [2]	80 kDa	107	102	91	93	106	100		
Cluster of Calcium-transporting ATPase PMCA (Q9V4C7_DROME)	Q9V4C7_DROME [5]	133 kDa	82	97	90	98	84	83		
ATP synthase subunit beta, mitochondrial ATPsyn-beta	ATPB_DROME (+1)	54 kDa	96	97	98	96	101	103		
Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochond	SDHA_DROME	72 kDa	73	87	70	75	79	80		
Cluster of ADP,ATP carrier protein sesB (ADT_DROME)	ADT_DROME [3]	34 kDa	56	65	59	62	67	70		
Cluster of Neural conserved at 73EF, isoform I Nc73EF (A8JNU6_DROM	A8JNU6_DROME [2]	123 kDa	66	73	70	60	74	64		
Cluster of Arginine kinase, isoform E Argk (A8JNP2_DROME)	A8JNP2_DROME [2]	42 kDa	80	65	68	68	78	67		
Voltage-dependent anion-selective channel porin	VDAC_DROME	31 kDa	64	84	62	72	67	67		
ATP synthase subunit alpha, mitochondrial blw	ATPA_DROME	59 kDa	65	55	67	63	70	66		
Cluster of Glutamate dehydrogenase, mitochondrial Gdh (DHE3_DROM	DHE3_DROME [2]	63 kDa	62	72	61	64	71	60		
Cluster of 60 kDa heat shock protein, mitochondrial Hsp60 (CH60_DRO	CH60_DROME [2]	61 kDa	33	55	74	69	63	57		hsp60
Trehalase Treh	A4UZR3_DROME	64 kDa	58	56	53	40	59	49		
Alpha actinin, isoform D Actn	M9MS06_DROME	104 kDa	68	51	83	57	35	34		
Pyruvate carboxylase PCB	Q0E9E2_DROME (+1)	133 kDa	54	72	46	43	59	37		
Stretchin-Mlck, isoform R Strn-Mlck	A1ZA73_DROME	215 kDa	60	67	43	84	14	48		
Cluster of Tropomyosin-1, isoforms 33/34 Tm1 (TPM4_DROME)	TPM4_DROME [4]	55 kDa	62	49	49	46	41	41		
Cluster of Proline dehydrogenase 1, mitochondrial slgA (PROD_DROME	PROD_DROME [2]	77 kDa	40	39	33	26	39	28		
Cluster of Fructose-bisphosphate aldolase Ald (ALF_DROME)	ALF_DROME [2]	39 kDa	50	57	40	35	40	44		
CG9485, isoform B CG9485	Q9W2H8_DROME	183 kDa	34	29	46	35	41	36		
Glucose-6-phosphate isomerase Pgi	G6PI_DROME	62 kDa	45	56	45	50	48	54		
Cluster of Titin sls (TITIN_DROME)	TITIN_DROME [2]	2066 kDa	24	13	36	22	0	7		
Cluster of Ryanodine receptor, isoform J RyR (A0A0B4K715_DROME)	AOAOB4K715_DROM	580 kDa	33	11	76	47	0	13		Ryr
CG7920, isoform A CG7920	Q9VAC1_DROME	52 kDa	42	41	47	36	41	50		
IP09655p Mdh2	Q9VEB1_DROME	35 kDa	37	48	45	45	41	42		
Cluster of Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, m	SDHB_DROME [2]	34 kDa	31	36	40	34	35	34		
Enolase Eno	ENO_DROME	54 kDa	48	40	37	36	36	31		
Enigma Egm	Q5U117_DROME	71 kDa	49	55	40	41	28	27		Egm
Cluster of Tropomyosin-2 Tm2 (TPM2_DROME)	TPM2_DROME [2]	33 kDa	50	45	34	31	38	35		
Cluster of Aralar1, isoform F aralar1 (A0AOB4KHW3_DROME)	AOAOB4KHW3_DROM	77 kDa	38	37	32	35	43	41		
LETM1 and EF-hand domain-containing protein anon-60Da, mitochond	A60DA_DROME	114 kDa	25	36	21	30	55	29		
CG3731, isoform A UQCR-C1	Q9VFFO_DROME	52 kDa	48	45	44	43	14	42		UQCR-C1
CG10664-PA, isoform A COX4	Q9VIQ8_DROME	21 kDa	28	26	29	35	29	33		Cox4
CG11015-PA COX5B	Q9VMB9_DROME	14 kDa	35	39	42	50	39	48		Cox5B
AT02348p UQCR-C2	Q9VV75_DROME	45 kDa	49	45	46	38	17	33		UQCR-C2
GM23292p ND-B17	Q9V3W2_DROME	19 kDa	55	47	57	40	2	2		FB6
ATP synthase subunit gamma, mitochondrial ATPsyngamma	ATPG_DROME	33 kDa	38	36	42	36	34	39		

Cluster of Myosin heavy chain, isoform O Mhc (E1JHJ3_DROME)	E1JHJ3_DROME [4]	225 kDa	14	3	11	10	5	6	
Bicoid stability factor bsf	Q9VJ86_DROME	157 kDa	10	16	6	14	21	10	
Cytochrome c oxidase subunit 2 mt :Coll	COX2_DROME	26 kDa	12	16	18	18	19	18	
Delta-1-Pyrroline-5-carboxylate dehydrogenase 1, isoform A P5CDh1	Q9VNX4_DROME	64 kDa	13	14	17	8	10	9	
Probable methylmalonate-semialdehyde dehydrogenase [acylating], m	MMSA_DROME	56 kDa	13	8	16	14	16	10	
CG2658, isoform A CG2658	Q9W4W8_DROME	90 kDa	14	10	11	5	16	12	
MICOS complex subunit Mic60 Mitofilin	MIC60_DROME	82 kDa	9	15	6	9	8	7	
ATP synthase subunit d, mitochondrial ATPsynD	ATP5H_DROME	20 kDa	13	7	14	15	13	16	
Acyl-CoA synthetase long-chain, isoform J Acsl	AOAOB4KFE4_DROME	82 kDa	13	12	16	13	14	9	
Cluster of FI04465p hoe1 (Q9VR47_DROME)	Q9VR47_DROME [2]	95 kDa	19	16	17	15	13	9	
Levy, isoform A levy	Q9W1N3_DROME	12 kDa	10	9	8	12	10	14	
Nucleoside diphosphate kinase awd	A0A0B4LHX6_DROM1	19 kDa	15	13	13	15	15	13	
Neprilysin 2, isoform B Nep2	A0A0B4K692_DROME	88 kDa	13	10	9	18	8	8	
AT12494p ND-B22	Q9VJZ4_DROME	17 kDa	17	15	17	14	2	2	FB9
Cluster of 3-hydroxyacyl-CoA dehydrogenase type-2 scu (HCD2_DROM	HCD2_DROME [2]	27 kDa	13	18	13	14	15	11	
Fructose-1,6-bisphosphatase fbp	Q9VIS3_DROME	36 kDa	14	16	15	12	13	11	
CG6439, isoform A CG6439	Q9VD58_DROME	40 kDa	13	14	13	14	13	15	
CG1970, isoform B ND-49	Q9V4E0_DROME	53 kDa	27	4	17	2	9	6	
Serine hydroxymethyltransferase CG3011	Q9W457_DROME	59 kDa	4	11	6	10	8	4	
CG7461, isoform B CG7461	A1ZBJ2_DROME	68 kDa	10	12	14	7	16	11	
CG1824 CG1824	Q9VYL5_DROME	84 kDa	7	14	10	13	10	11	
CG1640, isoform A CG1640	Q7KV27_DROME (+1)	63 kDa	11	11	10	8	8	7	
CG32649 CG4410	Q9VYI6_DROME	74 kDa	10	11	6	4	14	5	
Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial Sc	SUCA_DROME	34 kDa	14	19	13	18	12	13	
Cluster of Glyceraldehyde-3-phosphate dehydrogenase 1 Gapdh1 (G3P)	G3P1_DROME [2]	35 kDa	10	12	10	11	13	11	
CG9634, isoform A goe	Q9XZ14_DROME (+1)	100 kDa	13	12	7	6	8	6	
Heat shock 70 kDa protein cognate 3 Hsc70-3	HSP7C_DROME	72 kDa	13	17	11	10	13	16	
Cluster of Heat shock 70 kDa protein cognate 4 Hsc70-4 (HSP7D_DROM	HSP7D_DROME [2]	71 kDa	18	22	16	17	17	20	
CG5028, isoform C CG5028-RC	A8JRB8_DROME (+2)	43 kDa	12	8	11	6	6	9	
CG7433, isoform A CG7433	Q9VW68_DROME	55 kDa	5	11	6	11	7	4	
V-type proton ATPase subunit d 1 VhaAC39-1	VA0D1_DROME	40 kDa	12	12	12	7	2	9	
NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial ND-7	NDUS1_DROME	79 kDa	23	0	21	0	3	4	
Cluster of Elongation factor 1-alpha 1 Ef1alpha48D (EF1A1_DROME)	EF1A1_DROME [2]	50 kDa	6	7	4	9	6	12	
Putative apoptosis-inducing factor 1, mitochondrial AIF	AIFM1_DROME (+1)	81 kDa	13	16	6	6	13	6	
Amino acid transporter Eaat1	O77062_DROME	52 kDa	7	10	7	8	7	8	
GH21316p Ssadh	Q9VBP6_DROME	55 kDa	6	12	9	8	9	3	
Contactin Cont	CONT_DROME	158 kDa	7	6	6	7	6	4	
Cluster of Stretchin-Mlck, isoform U Strn-MIck (A0AOB4KG35_DROME)	AOAOB4KG35_DROM	924 kDa	8	11	6	9	2	6	
CG3523, isoform C FASN1	B7Z001_DROME	278 kDa	3	6	4	2	4	3	
$\mathrm{Na} / \mathrm{Ca}$-exchange protein, isoform E Calx	AOAOB4K790_DROM1	108 kDa	7	6	9	12	5	6	
BcDNA.GH11322 bdl	Q9U4G1_DROME	81 kDa	12	12	8	7	7	6	
Aldehyde dehydrogenase Aldh	Q9VLC5_DROME	57 kDa	9	16	12	10	5	4	
Glutamate oxaloacetate transaminase 1, isoform B Got1	A1ZAA5_DROME (+1)	49 kDa	5	9	7	12	7	9	
CG6851-PA, isoform A Mtch	Q9V3Y4_DROME	35 kDa	10	12	6	13	7	5	

Cytochrome b-c1 complex subunit Rieske, mitochondrial RFeSP	Q9VQ29_DROME	25 kDa	12	7	11	7	3	2	
Cluster of CG13887, isoform C CG13887 (Q9W0M4_DROME)	Q9W0M4_DROME [2	26 kDa	8	11	8	7	10	8	
Cluster of LP02262p I(1)G0255 (Q8IRQ5_DROME)	Q8IRQ5_DROME [3]	50 kDa	2	10	9	3	10	8	
Peroxiredoxin 1 Jafrac1	PRDX1_DROME	22 kDa	10	5	5	7	3	10	
CG31198 CG31198	Q8IN25_DROME	107 kDa	17	9	4	9	0	11	
CG14028-PA cype	Q9VMS1_DROME	8 kDa	7	7	7	7	8	9	
Succinyl-CoA ligase subunit beta skap	AOAOB4JCW4_DROM	49 kDa	6	18	8	4	6	5	
Catalase Cat	CATA_DROME	57 kDa	6	5	4	7	13	7	
Integrin alpha-PS3 scb	ITA3_DROME	125 kDa	11	9	7	8	3	2	
CG12859 ND-B15	Q6IDF5_DROME	13 kDa	7	12	13	12	4	3	FB4
Cluster of AMP deaminase, isoform E AMPdeam (Q9VY76_DROME)	Q9VY76_DROME [3]	89 kDa	4	6	1	0	11	1	
BcDNA.GH04962 GCS2alpha	Q7KMM4_DROME	106 kDa	7	9	3	4	7	7	
LD31742p whd	Q7JQH9_DROME (+1)) 89 kDa	3	7	7	11	9	5	
CG11771 CG11771	Q9VC06_DROME	81 kDa	5	6	5	3	9	2	
Cluster of CG11700-PA CG11700 (R9PY16_DROME)	R9PY16_DROME [3]	34 kDa	4	4	5	3	4	13	
Cluster of Cytochrome b-c1 complex subunit 7 UQCR-14 (Q9VXI6_DRO)	Q9VXI6_DROME [2]	14 kDa	8	3	9	4	0	6	
RH44771p SdhC	Q9VGS3_DROME	19 kDa	7	8	9	7	9	8	
Paramyosin, long form Prm	MYSP1_DROME	102 kDa	6	3	6	7	1	3	
CG6512-PA, isoform A CG6512	Q8T4G5_DROME	90 kDa	2	7	4	5	6	6	
FI01422p Spn43Ab	A1Z6V5_DROME	43 kDa	7	7	9	8	7	6	
Cluster of Beta-Tubulin at 56D, isoform A betaTub56D (A1ZBLO_DROME	A1ZBLO_DROME [6]	51 kDa	5	2	1	2	2	14	
GH04080p PPO1	Q7K2W6_DROME	79 kDa	7	7	9	5	7	4	
GH05862p NP15.6	Q9V3L7_DROME	17 kDa	11	11	10	8	4	7	FB11
Transporter Gat	Q9V4E7_DROME	72 kDa	5	4	6	4	2	8	
Complex I intermediate-associated protein 30, mitochondrial CIA30	CIA30_DROME	34 kDa	5	9	3	4	1	4	
Neurexin-4 Nrx-IV	NRX4_DROME	145 kDa	5	3	4	5	1	3	
Adenylyl cyclase-associated protein capt	Q9VPX6_DROME	84 kDa	6	4	9	8	8	7	
CG31663, isoform A CG31663	Q9VQ52_DROME	107 kDa	6	4	1	2	5	1	
Glycerol-3-phosphate dehydrogenase [NAD(+)] Gpdh	B5RIM9_DROME (+1)	39 kDa	6	8	7	8	7	4	
Glycoprotein 93 Gp93	Q9VAY2_DROME	90 kDa	6	5	1	3	7	4	
Putative ATP synthase subunit f, mitochondrial CG4692	ATPK_DROME	12 kDa	9	6	7	6	7	5	
Integrin alpha-PS2 if	ITA2_DROME	154 kDa	9	10	6	7	2	5	
Cluster of FIO1544p Rab1 (O18332_DROME)	O18332_DROME [14]	23 kDa	3	2	3	3	1	2	
Malic enzyme Men-b	E1JIZ4_DROME (+2)	69 kDa	6	2	4	9	6	5	
V-type proton ATPase subunit a Vha100-1	Q6NLA3_DROME (+1)	97 kDa	5	8	4	6	0	4	
Cluster of ATP-dependent 6-phosphofructokinase Pfk (A0A0B4K7L1_DP	AOA0B4K7L1_DROME	105 kDa	1	4	6	2	9	2	
AP-2 complex subunit alpha AP-2alpha	AP2A_DROME	106 kDa	8	5	1	0	6	5	
Serine/threonine-protein phosphatase Pgam5, mitochondrial Pgam5	PGAM5_DROME (+1)	33 kDa	4	7	4	5	1	2	
Cluster of Calnexin 14D Cnx14D (Q9VXF6_DROME)	Q9VXF6_DROME [4]	73 kDa	6	5	2	3	3	1	
Flightin fln	FTN_DROME	21 kDa	7	3	6	4	4	6	
Lethal (1) G0230, isoform A ATPsyndelta	Q9W2X6_DROME	17 kDa	5	6	9	9	5	6	
CG11679 CG11679	Q9VXQ8_DROME	48 kDa	1	5	2	2	2	1	
Coracle, isoform F cora	A0A0B4LFX4_DROME	174 kDa	3	3	1	2	1	1	
Heat shock 70 kDa protein cognate 5 Hsc70-5	HSP7E_DROME	74 kDa	1	8	1	5	3	1	

Acyl carrier protein, mitochondrial ND-ACP	ACPM_DROME	17 kDa	3	2	2	1	0	0	FAB1
CG9715 CG9715	Q9VVA9_DROME	197 kDa	0	0	0	0	2	0	
Aromatic-L-amino-acid decarboxylase Ddc	DDC_DROME	57 kDa	0	0	0	2	0	0	
Tetraspanin Tsp5D	M9PDV2_DROME (+1	32 kDa	2	1	0	0	0	0	
Elongation factor 2 EF2	EF2_DROME	94 kDa	1	0	0	0	0	3	
CG3156 EG:171D11.2	Q8SWW9_DROME	76 kDa	0	1	2	0	0	1	
$\mathrm{Na}[+] / \mathrm{H}[+]$ hydrogen antiporter 2, isoform B Nha2	A0A0B4K6G5_DROM	77 kDa	2	2	0	2	2	1	
Adenylyl cyclase 76E, isoform B Ac76E	M9NDD2_DROME	143 kDa	2	1	0	0	2	0	
Cofilin/actin-depolymerizing factor homolog tsr	CADF_DROME	17 kDa	2	3	2	2	3	0	
Delta-aminolevulinic acid dehydratase Pbgs	Q9VTV9_DROME	36 kDa	1	1	0	0	3	0	
Acetylcholinesterase Ace	ACES_DROME (+1)	72 kDa	1	0	0	1	0	3	
Cluster of GH13729p nemy (Q95T77_DROME)	Q95T77_DROME [2]	30 kDa	2	1	2	2	0	3	
Dystroglycan, isoform D Dg	AOAOC4DHF6_DROM	138 kDa	2	1	3	1	0	0	
COQ7 COQ7	Q9W3W4_DROME	24 kDa	0	1	3	1	0	0	
CG1440, isoform A CG1440	Q9W3F6_DROME	55 kDa	0	0	2	0	0	0	
Semaphorin-2b, isoform D Sema-2b	AOAOB4KG38_DROM	94 kDa	2	1	1	1	0	2	
CG10830 Ktl	Q9VDH3_DROME	26 kDa	3	1	0	2	1	0	
CG3446, isoform B ND-B16.6	Q9W402_DROME	18 kDa	2	0	4	0	1	0	
CG13506, isoform A CG13506-RA	Q9W259_DROME	57 kDa	2	1	2	2	2	0	
GM02062p ND-23	Q9VF27_DROME	25 kDa	4	0	1	0	0	0	
CG2930, isoform A CG2930-RA	Q9W4P6_DROME (+1	89 kDa	2	2	0	1	0	3	
Vacuolar protein sorting-associated protein 35 Vps 35	Q7KVL7_DROME (+1)	91 kDa	1	2	0	0	0	0	
LD36265p (Fragment) UGP	A5XCL5_DROME (+3)	58 kDa	0	2	1	1	0	1	
V-type proton ATPase catalytic subunit A isoform 2 Vha68-2	VATA2_DROME	68 kDa	2	3	3	1	2	3	
Histone H3.3 His3.3A	H33_DROME (+1)	15 kDa	0	0	0	0	0	4	
AT09773p Vha68-3	Q9VK47_DROME	82 kDa	2	3	2	1	2	3	
Cluster of Axotactin, isoform D axo (M9NF15_DROME)	M9NF15_DROME [2]	229 kDa	2	0	0	0	0	0	
CG9172, isoform A ND-20	Q9VXK7_DROME	25 kDa	9	1	11	1	3	4	
V-type proton ATPase catalytic subunit A isoform 1 Vha68-1	VATA1_DROME	68 kDa	2	3	3	2	2	3	
Cluster of Histone H2A.v His2Av (H2AV_DROME)	H2AV_DROME [3]	15 kDa	0	0	0	0	0	5	
Glutactin Glt	GLT_DROME	119 kDa	1	0	0	0	4	0	
CG8132 CG8132	Q9VHE4_DROME	32 kDa	2	1	0	1	0	0	
ATP synthase subunit beta ATPsynbetaL	Q8T4C4_DROME	68 kDa	3	4	4	4	5	4	
Juvenile hormone epoxide hydrolase 1 Jheh1	Q7JRC3_DROME	55 kDa	1	3	0	0	0	0	
Alkyldihydroxyacetonephosphate synthase CG10253	ADAS_DROME	71 kDa	0	4	1	0	1	0	
Alkaline phosphatase CG1809	Q7K3X8_DROME	57 kDa	1	1	0	0	0	4	
GTP-binding nuclear protein Ran Ran	RAN_DROME	25 kDa	0	0	0	0	0	2	
Heat shock protein 23 Hsp23	HSP23_DROME	21 kDa	3	0	1	0	0	2	
NTPase, isoform F NTPase	M9PBV2_DROME (+2	58 kDa	0	2	0	1	1	1	
Transport and Golgi organization protein 11 Tango11	TNG11_DROME	32 kDa	0	0	0	0	2	0	
Sodium/potassium-transporting ATPase subunit alpha JYalpha	A8QI34_DROME	112 kDa	9	0	10	0	11	9	
40S ribosomal protein S14 RpS14a	RS14_DROME	16 kDa	0	0	0	0	0	4	
Drab11 Rab11	O18335_DROME	24 kDa	0	0	0	0	1	3	
CG12119, isoform A CG12119	Q9W373_DROME	56 kDa	2	0	0	0	0	0	

CG1092, isoform C CG1092	Q9VMZ9_DROME	47 kDa	0	0	2	0	0	0		
Chitinase-like protein Idgf4 Idgf4	IDGF4_DROME	49 kDa	2	2	0	0	2	0		
CG9577 CG9577	Q9W5W8_DROME	34 kDa	0	0	0	0	2	0		
CG3822 CG3822	Q9VDH5_DROME	96 kDa	0	0	0	2	0	0		
CG5554, isoform B CG5554	A0A0B4LHC9_DROM	37 kDa	0	0	0	0	2	0		
Neuropeptide-like 2 Nplp2	NPLP2_DROME	9 kDa	0	0	0	3	0	0		
40S ribosomal protein S15Ab RpS15Ab	RS15B_DROME	15 kDa	0	0	0	0	0	4		
LP01562p veil	Q7K0L5_DROME	65 kDa	3	0	0	0	0	0		
RE74917p tobi	Q9VBR6_DROME	75 kDa	0	0	0	2	0	0		
CG8607-PA CG8607	Q9VS44_DROME	31 kDa	2	0	0	0	1	0		
CG2014, isoform A ND-20L	Q9VAK5_DROME	24 kDa	5	1	6	0	3	4		
Calmodulin Cam	CALM_DROME (+1)	17 kDa	0	0	0	0	0	2		
Red font denotes proteins shown in heat map										

References

Abdrakhmanova, A., Zwicker, K., Kerscher, S., Zickermann, V., and Brandt, U. (2006). Tight binding of NADPH to the $39-\mathrm{kDa}$ subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex. Biochim Biophys Acta 1757, 1676-1682.

Andrews, B., Carroll, J., Ding, S., Fearnley, I.M., and Walker, J.E. (2013). Assembly factors for the membrane arm of human complex I. Proc Natl Acad Sci U S A 110, 18934-18939.

Balsa, E., Marco, R., Perales-Clemente, E., Szklarczyk, R., Calvo, E., Landazuri, M.O., and Enriquez, J.A. (2012). NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab 16, 378386.

Berger, I., Hershkovitz, E., Shaag, A., Edvardson, S., Saada, A., and Elpeleg, O. (2008). Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation. Ann Neurol 63, 405-408.

Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.

Budde, S.M., van den Heuvel, L.P., Janssen, A.J., Smeets, R.J., Buskens, C.A., DeMeirleir, L., Van Coster, R., Baethmann, M., Voit, T., Trijbels, J.M., et al. (2000). Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene. Biochem Biophys Res Commun 275, 6368.

Clason, T., Ruiz, T., Schagger, H., Peng, G., Zickermann, V., Brandt, U., Michel, H., and Radermacher, M. (2010). The structure of eukaryotic and prokaryotic complex I. J Struct Biol 169, 81-88.

Duarte, M., Sousa, R., and Videira, A. (1995). Inactivation of genes encoding subunits of the peripheral and membrane arms of neurospora mitochondrial complex I and effects on enzyme assembly. Genetics 139, 1211-1221.

Efremov, R.G., Baradaran, R., and Sazanov, L.A. (2010). The architecture of respiratory complex I. Nature 465, 441-445.

Fiedorczuk, K., Letts, J.A., Degliesposti, G., Kaszuba, K., Skehel, M., and Sazanov, L.A. (2016). Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406-410.
Guarani, V., Paulo, J., Zhai, B., Huttlin, E.L., Gygi, S.P., and Harper, J.W. (2014). TIMMDC1/C3orf1 functions as a membrane-embedded mitochondrial complex I assembly factor through association with the MCIA complex. Mol Cell Biol 34, 847-861.

Guerrero-Castillo, S., Baertling, F., Kownatzki, D., Wessels, H.J., Arnold, S., Brandt, U., and Nijtmans, L. (2017). The Assembly Pathway of Mitochondrial Respiratory Chain Complex I. Cell Metab 25, 128-139.

Haynes, C.M., Fiorese, C.J., and Lin, Y.F. (2013). Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol 23, 311-318.

Heide, H., Bleier, L., Steger, M., Ackermann, J., Drose, S., Schwamb, B., Zornig, M., Reichert, A.S., Koch, I., Wittig, I., et al. (2012). Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab 16, 538-549.

Hirst, J. (2013). Mitochondrial complex I. Annu Rev Biochem 82, 551-575.
Hoefs, S.J., Dieteren, C.E., Distelmaier, F., Janssen, R.J., Epplen, A., Swarts, H.G., Forkink, M., Rodenburg, R.J., Nijtmans, L.G., Willems, P.H., et al. (2008). NDUFA2 complex I mutation leads to Leigh disease. American journal of human genetics 82, 1306-1315.

Hoefs, S.J., van Spronsen, F.J., Lenssen, E.W., Nijtmans, L.G., Rodenburg, R.J., Smeitink, J.A., and van den Heuvel, L.P. (2011). NDUFA10 mutations cause complex I deficiency in a patient with Leigh disease. European journal of human genetics : EJHG 19, 270-274.

Hu, Y., Flockhart, I., Vinayagam, A., Bergwitz, C., Berger, B., Perrimon, N., and Mohr, S.E. (2011). An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12, 357.

Jensen, M.B., and Jasper, H. (2014). Mitochondrial proteostasis in the control of aging and longevity. Cell Metab 20, 214-225.

Kirby, D.M., Salemi, R., Sugiana, C., Ohtake, A., Parry, L., Bell, K.M., Kirk, E.P., Boneh, A., Taylor, R.W., Dahl, H.H., et al. (2004). NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. The Journal of clinical investigation 114, 837-845.

Nehls, U., Friedrich, T., Schmiede, A., Ohnishi, T., and Weiss, H. (1992). Characterization of assembly intermediates of NADH:ubiquinone oxidoreductase (complex I) accumulated in Neurospora mitochondria by gene disruption. Journal of molecular biology 227, 1032-1042.

Nouws, J., Nijtmans, L., Houten, S.M., van den Brand, M., Huynen, M., Venselaar, H., Hoefs, S., Gloerich, J., Kronick, J., Hutchin, T., et al. (2010). Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 12, 283-294.

Ostergaard, E., Rodenburg, R.J., van den Brand, M., Thomsen, L.L., Duno, M., Batbayli, M., Wibrand, F., and Nijtmans, L. (2011). Respiratory chain complex I deficiency due to NDUFA12 mutations as a new cause of Leigh syndrome. J Med Genet 48, 737-740.

Owusu-Ansah, E., and Banerjee, U. (2009). Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541.

Owusu-Ansah, E., Song, W., and Perrimon, N. (2013). Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699-712.

Owusu-Ansah, E., Yavari, A., Mandal, S., and Banerjee, U. (2008). Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet 40, 356-361.

Radermacher, M., Ruiz, T., Clason, T., Benjamin, S., Brandt, U., and Zickermann, V. (2006). The threedimensional structure of complex I from Yarrowia lipolytica: a highly dynamic enzyme. J Struct Biol 154, 269-279.

Rera, M., Bahadorani, S., Cho, J., Koehler, C.L., Ulgherait, M., Hur, J.H., Ansari, W.S., Lo, T., Jr., Jones, D.L., and Walker, D.W. (2011). Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab 14, 623-634.

Roy, S., and VijayRaghavan, K. (1999). Muscle pattern diversification in Drosophila: the story of imaginal myogenesis. Bioessays 21, 486-498.

Scacco, S., Petruzzella, V., Budde, S., Vergari, R., Tamborra, R., Panelli, D., van den Heuvel, L.P., Smeitink, J.A., and Papa, S. (2003). Pathological mutations of the human NDUFS4 gene of the $18-\mathrm{kDa}$ (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex. The Journal of biological chemistry 278, 44161-44167.

Stroud, D.A., Surgenor, E.E., Formosa, L.E., Reljic, B., Frazier, A.E., Dibley, M.G., Osellame, L.D., Stait, T., Beilharz, T.H., Thorburn, D.R., et al. (2016). Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123-126.

Tuschen, G., Sackmann, U., Nehls, U., Haiker, H., Buse, G., and Weiss, H. (1990). Assembly of NADH: ubiquinone reductase (complex I) in Neurospora mitochondria. Independent pathways of nuclear-encoded and mitochondrially encoded subunits. Journal of molecular biology 213, 845-857.

Vartak, R.S., Semwal, M.K., and Bai, Y. (2014). An update on complex I assembly: the assembly of players. J Bioenerg Biomembr 46, 323-328.

Vinothkumar, K.R., Zhu, J., and Hirst, J. (2014). Architecture of mammalian respiratory complex I. Nature 515, 80-84.

Vogel, R.O., Janssen, R.J., van den Brand, M.A., Dieteren, C.E., Verkaart, S., Koopman, W.J., Willems, P.H., Pluk, W., van den Heuvel, L.P., Smeitink, J.A., et al. (2007). Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev 21, 615-624.

Wittig, I., Braun, H.P., and Schagger, H. (2006). Blue native PAGE. Nat Protoc 1, 418-428.
Zhu, J., Vinothkumar, K.R., and Hirst, J. (2016). Structure of mammalian respiratory complex I. Nature 536, 354-358.

Zickermann, V., Wirth, C., Nasiri, H., Siegmund, K., Schwalbe, H., Hunte, C., and Brandt, U. (2015). Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347, 44-49.

Chapter 3: Identifying Novel Regulators of Mitochondrial Complex I Biogenesis

Garcia C.J., Khajeh J., Chen E.I.-J., Villanueva M., Rhooms S.K., and Owusu-Ansah E.

Khajeh J performed figures 3.2C and 3.2D and contributed to figure 3.3A-3.3BB
Chen E.L.-J performed mass spectrometry
Villanueva M. and Rhooms S.K. contributed to figure 3.6B-3.6D
Owusu-Ansah, E. performed figure 3.1B and discussed results
Garcia C.J. wrote the chapter and generated the rest of the

Introduction

Mitochondrial Complex I (CI) from bovine heart mitochondria has 44 distinct subunits; 14 are referred to as core subunits, as they are directly required for electron transfer from NADH to ubiquinone, or for generation of the membrane potential (Hirst, 2013). The other 30 nuclear-encoded subunits are referred to as accessory subunits, because they are not directly required for catalysis (Fiedorczuk et al., 2016). Cl consists of a hydrophilic matrix arm and a hydrophobic membrane arm that project into the mitochondrial matrix and inner membrane respectively; and are oriented almost orthogonally to each other, resulting in a boot-shaped structure (Blaza et al., 2018; Zhu et al., 2016). The mechanistic assembly of the 44 distinct subunits occurs via a step-wise process. First, the subunits come together to form four assembly intermediates which then bind to each other to complete the assembly of the holoenzyme (Garcia et al., 2017; Guerrero-Castillo et al., 2017). The four assembly intermediates are named after the functional modules of the enzyme. They are the NADH binding site module (N-module), ubiquinone binding site module (Q -module) and the proton pumping module which is split into two assembly intermediates (P proximal-module (P_{P}) and P distal-module $\left(\mathrm{PD}_{\mathrm{D}}\right)$).

Cl assembly factors (CIAFs) are proteins that assist with the assembly process but are not found in the fully assembled complex (Formosa et al., 2018). Fifteen CIAFs have been described thus far (Formosa et al., 2018). Some CIAFs function as chaperones to stabilize specific Cl assembly intermediates, or assist with the combination of two assembly intermediates to form a larger assembly intermediate (Andrews et al., 2013; Sugiana et al., 2008). Others have more specific roles, such as the posttranslational modifications of subunits (Rhein et al., 2013). The need to identify novel regulators of Cl assembly is underscored by the fact that about half of Cl disorders observed in patients cannot be traced to mutations in any of the 44 human CI subunits or known CIAFs (Pagliarini and Rutter, 2013; Taylor et al., 2014). This may be due to mutations happening de novo, occurring on sites of untranslated regions, and missing the exact variant that causes the disease after sequencing (Fassone and Rahman, 2012; Rodenburg, 2016). New sequencing technologies, such as RNA sequencing, are being used to complement the initial approach of whole exome and whole genome sequencing. One study used RNA sequencing to diagnose a patient's CI deficiency due to a mutation in a known assembly factor TIMMDC1; the expression of TIMMDC1 was
reduced due to a new exon in intron 5 which produced a frameshift introducing a premature stop codon (Kremer et al., 2017). Although RNA sequencing seems like a promising method to identify new regulators of Cl , the challenge lies in the vast amount of data generated, and the dearth of genes of interest known to cause Cl deficiency. As a proof of this challenge, only 10% of cases in the previous study were diagnosed using RNA sequencing. Therefore, identifying more nuclear genes that affect Cl assembly is warranted for a more efficient genetic diagnosis of Cl deficiency.

Here, we have utilized Drosophila melanogaster as a model system to study the CIAFs and their roles in Cl assembly (Figure 3.1). We hypothesized that some of the proteins that interact with NDUFS3, an integral core subunit of the Q-module, may serve as CIAFs. We identified 175 different interacting proteins of NDUFS3 and knocked them down individually in Drosophila using RNAi. Blue-native PAGE was performed to analyze the respiratory chain complexes of the knockdown flight muscle mitochondria. We discovered that knockdown of the Drosophila Fragile X Mental Retardation Protein (dFMRP) destabilized the structure of CI . Accordingly, we further analyzed the lifespan and in-gel activity, and characterized the assembly process, of flies lacking dFMRP. We report here that knockdown of dFMRP leads to a misassembly of Cl . We further demonstrate the stalling of $815-\mathrm{kDa}$ assembly intermediate and the accumulation of lower assembly intermediates. Finally, we conclude that the misassembly of Cl is due to the destabilization of the Pp- or Pd-module.

Results

Complex l-interacting proteins were identified in Drosophila flight muscles

To identify interactors of CI , we genetically tagged the C-terminus of Drosophila NDUFS3 (dNDUFS3) with HA and expressed it in the fly flight muscles using Mhc-Gal4 (Figure 3.2A). The Cterminus was used given that the mitochondria targeting sequence for dNDUFS3 is located at the N terminus (Loeffen et al., 1998). This was achieved in offspring produced from a cross between two transgenic flies: one carrying the dNDUFS3-HA linked to an upstream activating sequence (i.e. UAS-dNDUFS3-HA, the Gal4 protein binds to the UAS sequence and drives expression of the dNDUFS3-HA construct), and the other with the muscle-specific Gal4 driver (e.g. Mhc-Gal4) (Figure 3.2A). We found that

Mhc-Gal4<UAS-dNDUFS3-HA flies are viable and have no overt phenotypic differences from wild-type flies. The expression of dNDUFS3-HA was confirmed by SDS-PAGE and probing with an anti-HA antibody (Figure 3.2C). We also confirmed that dNDUFS3-HA gets incorporated into Cl using blue-native PAGE (BN-PAGE) followed by immunoblot analysis (Figure 3.2D). We probed with an HA antibody and found that dNDUFS3-HA gets incorporated into the holoenzyme of Cl and several assembly intermediates. These results demonstrated successful tagging of dNDUFS3 with HA and that the tagging did not alter the holoenzyme of Cl and its assembly intermediates.

To identify the proteins interacting with dNDUFS3, we first isolated whole thorax lysates by permeabilizing the cellular membranes with buffer containing either 1% NP-40 or Digitonin (4g Digitonin: 1g Protein) from Mhc-Gal4<UAS-dNDUFS3-HA flies aged to 24 hours after eclosing (Figure 3.2A). We chose 24 hours because Cl biogenesis is active in Drosophila during the first 48 hours (Garcia et al., 2017). Samples were placed on ice for 30 minutes and then centrifuged at high speed to clear lysates before proceeding with co-immunoprecipitation (co-IP) (Figure 3.2A). For co-IP, samples were first rotated with control agarose beads for 1 hour to control for any non-specific binding proteins. Next, the supernatant was transferred to agarose beads containing an anti-HA antibody and rotated overnight. Control agarose beads and anti-HA beads were sent for mass spectrometry to identify interacting proteins. We found a total of 385 proteins between the NP-40- and digitonin-permeabilized samples; 60% of the proteins identified were found with both buffers (Figure 3.2A and Table 3.1). We identified known interactors such as dNDUFS2, dNDUFS7 and dNDUFS8 which form the $315-\mathrm{kDa} \mathrm{Cl}$ assembly intermediate (Figure 3.2B). We also identified other Cl subunits such as dNDUFA9, dNDUFA10, dNDUFS1, dNDUFV1, and dNDUFV2 (Figure 3.2B). dNDUFA9 and dNDUFA10 are found in the Q-module of Cl and are known to interact closely with dNDUFS3. While dNDUFS1, dNDUFV1, and dNDUFV2 are not known to interact with dNDUFS3, they were also identified (Figure 3.2B).

dFMRP was identified as a regulator for Cl biogenesis by screening NDUFS3-interacting proteins

We chose to screen 175 of the proteins that interacted with dNDUFS3 after eliminating ribosomal proteins, mitochondria proteins that are known to be involved with the respiratory chain complexes, and
proteins that did not have RNA interference's (RNAi's) readily available at the time (Table 3.1). The RNAi's to target these proteins were ordered from the Bloomington Drosophila Stock Center (BDSC) at http://flystocks.bio.indiana.edu/. If available, more than one RNAi for each protein were ordered. In total, we obtained 292 transgenic UAS-RNAi lines and tested their effect on Cl assembly (Table 3.2). Each UASRNAi line was crossed to the Drosophila muscle enhancing factor (Dmef2) gal4, which is known to express gal4 in flight muscles. Dmef2-Gal4<UAS-RNAi offspring were aged for $5-7$ days at $25^{\circ} \mathrm{C}$. If the flies died before the 5 days, they were re-crossed and dissected at an earlier time point. If offspring did not eclose to adults due to embryonic or pupae lethality, they were re-crossed to the myosin heavy chain (Mhc) gal4 which has been shown to reduce the expression of the RNAi compared to Dmef2-Gal4 (Garcia et al., 2017). In total, 53 of the UAS-RNAi lines were crossed with Mhc-Gal4. For each cross, we isolated mitochondria from 10 thoraxes, solubilized their membranes with 4 g of digitonin to 1 g of protein and performed BN-PAGE to resolve the oxidative phosphorylation (OXPHOS) complexes. The gels were subjected to either coomassie- or silver staining to show the effect of the RNAi on CI (Figure 3.3A-BB). We focused on UASRNAi lines that specifically destabilized Cl rather than generally affecting the other complexes, since knockdown of known CIAFs only reduce CI (Figure 3.1E). After screening 292 UAS-RNAi lines, we identified three hits that destabilized CI: Cora (Figure 3.3M Lane 107), CG10543 (Figure 3.3Q Lane 166), and Drosophila Fragile Mental Retardation 1 Protein (dFMRP) (Figure 3.3AA Lane 279). However, other RNAi's targeting the same proteins did not produce similar phenotypes. We speculate that this could be due to the RNAi's not effectively knocking down the protein levels.

To confirm the knockdown at protein levels, we crossed the three RNAi's that target FMR1 (Bloomington Stock \#'s: 27484, 35200, and 34944) to their respective Gal4's and performed a western blot on whole cell lysates of fly thoraxes (Figure 3.3CC). Before dissecting the flies, we aged them for 72 hours as the offspring of the RNAi that produced the CI phenotype died before 4 days. The RNAi that causes CI deficiency, Bloomington Stock \#34944, showed a 90\% knockdown efficiency in comparison to the other RNAi's which showed a 50% knockdown efficiency (Figure 3.3CC). We also looked at dNDUFS3 protein levels in these flies and found it to be absent in the \#34944 stock (Figure 3.3CC). We were not able to find antibodies that cross-react with Cora or CG10543, therefore from here on we focused on dFMRP.

Because we were not able to confirm the CI phenotype with an alternative RNAi, we decided to try CRISPR interference (CRISPRi) in Drosophila flight muscles to decrease the protein levels of dFMRP. The sgRNA was designed for dead CAS9 (dCAS9) to target the first intron of dFMRP and silence transcription levels. However, protein levels of dFMRP were not significantly reduced and no Cl phenotype was present (Figure 3.4A-3.4D). Additionally, efforts were made to knockdown the mammalian orthologues of dFMRP (FMRP and FXR1) in cell lines, but an efficient knockdown could not be achieved for any of the proteins to observe a Cl deficiency (Figure 3.4E-3.4O). Ongoing collaboration with Dr. Richard Kitsis will test the mouse orthologues in vivo.

To confirm the mass spectrometry results that dFMRP interacts with NDUFS3, we followed the same co-IP protocol that was initially used to identify NDUFS3 interactors. We isolated whole tissue lysates from thoraxes of Mhc-Gal4<UAS-NDUFS3-HA offspring aged to 24 hours and 48 hours after eclosing and performed co-IP. We hypothesized that dFMRP also interacts with dNDUFS3 at 48 hours since early biogenesis of Cl happens from 0 to 48 hours in adult flies (Garcia et al., 2017). Anti-HA-beads were digested with SDS-buffer, subjected to immunoblot analysis and probed with anti-dFMRP. A band between the 75 and 100 kDa marker was identified in both 24 and 48 hour time points (Figure 3.3DD). The size of this band corresponds with the mass spectrometry results which identified a dFMRP isoform whose size is 81 kDa.

Knockdown of dFMRP destabilizes Cl and reduces fly lifespan

MhcGal4<UAS-dFMRPRNAi(BL\#34944) (Henceforth referred to as Mhc<dFMRPRNAi) offspring died within four days when incubated at $25^{\circ} \mathrm{C}$. To track the exact lifespan of these flies, we monitored their survival rates after eclosing into adults. Every 12 hours, we checked the vials and recorded the percentage of flies that were still alive. At 48 hours, we began to see the survival rate decrease. By 60 hours, 50% of the offspring were dead and by 84 hours 100% of the flies had died (Figure 3.5A). To assess the protein expression levels of dFMRP throughout its lifespan, cell lysates from whole thorax tissues aged to 6, 24, and 48 hours were subjected to western blot and probed with anti-dFMRP (Figure 3.5B). At 6 hours, $\sim 25 \%$ of dFMRP was present, followed by $\sim 20 \%$ at 24 hours and $\sim 10 \%$ at 48 hours. Next, we checked if

Mhc<dFMRP $P_{\text {RNAi }}$ offspring have a reduction in the structure of Cl at an earlier timepoint where $\sim 20 \%$ of the protein is still present. We isolated mitochondria from Mhc<dFMRPRNAi thoraxes aged to 24 hours, solubilized their membranes in 4 g of digitonin to 1 g of protein, and performed BN-PAGE. Coomassie- and silver-stained native gels showed a significant reduction in Cl . To further assess the extent of the Cl deficiency, in-gel activity assay was performed, and revealed a reduction in Cl activity in Mhc<dFMRPRNAi flies aged to 6, 24 and 48 hours (Figure 3.5E). Altogether, these results indicate that dFMRP is essential for the viability of the flies and is important for the stability of the Cl holoenzyme. Accordingly, we decided to elucidate the mechanisms of Cl assembly in Mhc<dFMRPRNAi offspring.

Disruption of dFMRP in flight muscles impairs Cl assembly

We have established a Drosophila model system to study the assembly of Cl , where we showed the four assembly intermediates, the $\mathrm{N}-$, $\mathrm{Q}-, \mathrm{P}$ proximal- $\left(\mathrm{P}_{\mathrm{P}}\right)$, and P distal-(P_{D}) modules, come together in a step-by-step procedure (Garcia et al., 2017). We generated individual knockdown strains of Drosophila for each subunit of Cl and determined at which assembly step the subunit is indispensable. An antibody against NDUFS3, an early component of the Q-module, was used to track the Q-module building up from the $315-\mathrm{kDa}$ assembly intermediate (Q-module) to $550-\mathrm{kDa}(\mathrm{Q}+\mathrm{Pr}-$ modules $)$ and then $815-\mathrm{kDa}\left(\mathrm{Q}+\mathrm{P}_{\mathrm{P}}\right.$ + Po -modules) on BN-PAGE. The stalling or accumulation of the assembly process at one of these milestones indicated that the subunit being knocked down is essential to advance to the next step. We also reported a new $700-\mathrm{kDa}$ assembly intermediate in the process between 550 - and $815-\mathrm{kDa}$, where we speculate individual subunits rather than an entire module bound the $550-\mathrm{kDa}$ before the P_{D} was added.

Using this model, we examined whether dFMRP is an assembly factor required for the Cl assembly. To test, we isolated mitochondria from Mhc<dFMRPRNAi offspring at the 24 hour timepoint and examined CI assembly via western blotting of native complexes. We used an antibody to NDUFS3 to track the Qmodule (Figure 3.6A). As expected, the protein levels of both holoenzyme Cl and the $\mathrm{Cl}-\mathrm{Complex} \mathrm{III} \mathrm{(Cl-}$ CIII) supercomplex were reduced in flies when dFMRP was disrupted (Figure 3.6B). At a longer exposure, a reduction in the 815-kDa assembly intermediate and an increase in the 550- and $700-\mathrm{kDa}$ assembly intermediates were observed, suggesting that dFMRP was the key component to achieve the 815 kDa from
the 550- and 700-kDa assembly intermediates (Figure 3.6B). To better understand the misassembly of Cl in dFMRP knockdown flies, we used antibodies to other CI subunits to analyze the other modules. We used an antibody to dND3, a mitochondria-encoded subunit and a part of the Pp-module assembly, to track the Pp-module (Figure 3.6A) (Guerrero-Castillo et al., 2017). Anti-dND3 did not detect the $\mathrm{CI}-\mathrm{CIII}$ supercomplex but showed a strong reduction of the Cl holoenzyme in dFMR1 knockdown flies aged to 24 hours (Figure 3.6C). In a longer exposure, the $815-k D a$ assembly intermediate was reduced but the smaller assembly intermediates including the 700- and 550-kDa were accumulated, in agreement with the observation with anti-NDUFS3 (Figure 3.6C). Additionally, anti-dND3 detected additional bands below the 550-kDa assembly intermediate that also were increased (Figure 3.6C). We believe these bands are assembly intermediates that contain portions of the Pp-module. Because the exact subunits that make up these bands have not been characterized, we termed them as lower assembly intermediates (L.A.I).

The assembly intermediates for the PD_{D} and N -modules have not been well characterized in Drosophila. Therefore, we aged Mhc<dFMRPRNAi offspring to various times (6, 24, and 48 hours) to track bona fide assembly intermediates of these modules. To identify assembly intermediates of the Pd-module we used antibodies against the mitochondria-encoded subunit dND5 and the nuclear-encoded CI subunit dNDUFB5, previously shown to initiate the biogenesis of the PD-module in mammalian system (Figure 3.6A) (Guerrero-Castillo et al., 2017). The holoenzyme Cl and the Cl -CIII supercomplex were reduced in Mhc<dFMRP $P_{\text {RNAi }}$ offsprings when probed with these antibodies (Figure 3.6D and 3.6E). Interestingly, the 48 hour time point showed the strongest reduction of Cl which coincides with the time point at which these flies begin to die. Contrary to the expectation, none of the antibodies detected the 815-kDa assembly intermediate in wild-type (W1118) or dFMRPRNAi samples, although the Pd-module is known to be a part of it. One explanation could be that the epitopes for dND5 and dNDUFB5 were not accessible to the antibodies within the $815-\mathrm{kDa}$ assembly intermediate. Alternatively, the assembly is stalled before the formation of the 815-kDa assembly intermediate due to the disruption of dFMRP. Similar to the immunoblot against dND3, several L.A.I. below the $815-\mathrm{kDa}$ assembly intermediate were observed. It is possible that some or all of the L.A.I are degraded products of a larger assembly intermediate, especially when we don't observe the same size proteins in the wildtype. However, this question remains to be further investigated.

To track assembly intermediates of the N-module, we used an antibody against dNDUFV1, a Cl nuclear-encoded core subunit part of the N -module (Figure 3.6A). As expected, both Cl and $\mathrm{Cl}-\mathrm{CIII}$ supercomplex were reduced in Mhc<dFMRPRnAi offspring (Figure 3.6F). The N-module is the last piece to be added to Cl to form the holoenzyme, therefore we don't expect to detect the 815-kDa assembly intermediate with this antibody. In dFMR1 knockdown flies we observed an L.A.I band at the 6 and 24 hour and faintly at 48 hour time points that were not present in wild-type flies (Figure 3.6F). Again, this L.A.I may indicate that due to dFMRP disruption the N -module assembly is stalled; alternatively, there is a possibility that this L.A.I is also a degradation product, Taken together, these results indicate that dFMR1 regulates the biogenesis of Cl assembly intermediates at the level of Q -, $\mathrm{Pp}-, \mathrm{Pd}$ - and N -modules during Cl assembly in Drosophila flight muscles.

The $P_{D}-$ module regulator, Foxred1, is downregulated in Mhc<dFMRPRNAi offspring

We have previously shown that in Drosophila, the knockdown of Cl subunits that form the N -module leads to an accumulation of the $815-\mathrm{kDa}$ assembly intermediate vs. a reduction which has been shown in both Q- and P-modules (Garcia et al., 2017). Given that information, a reduction of the 815-kDa assembly intermediate suggested that the misregulation of Cl was occurring at the Q - or P -modules in flies as a result of dFMRP disruption rather than the N -module. To identify the module that is being misregulated, we measured the protein expression levels of known Cl assembly factors (CIAFs) that regulate the Q - and P modules (Figure 3.7A). We chose to test CIAFs based on the finding that the knockout of certain CIAFs in mammalian cells led to the downregulation of Cl subunits that belong to the specific modules those CIAFs interact with (Stroud et al., 2016). Therefore, we hypothesized that if any assembly factor is downregulated, then the module it regulates would be affected. We aged Mhc<dFMRPRNAi offspring to 6,24 , and 48 hour time points, collected cell lysates from thoraxes, and performed western blot. We probed for dNDUFAF5, known to regulate the Q-module, and found a slight increase of expression at 48 hours (Figure 3.7B). We also assessed the protein expression of dACAD9, dECSIT, dNDUFAF1, and dTIMMDC1, known to regulate the Pp-module. Minimal changes in protein levels was detected in dACAD9, dECSIT, and dNDUFAF1, however at 48 hours dTIMMDC1 was substantially reduced (Figure 3.7C). Finally, the protein expression
of dFOXRED1, a regulator of the PD-module, was measured. To our surprise, dFoxred1 was reduced at 6 and 24 hours and undetectable at 48 hours (Figure 3.7D). These results indicate that the disruption of dFMRP leads to the misassembly of Cl by the reduction of TIMMDC1 or Foxred1, located in either Pp- or PD-module respectively. However, further confirmation is necessary, especially to rule out the possibility of RNAi off-target effect.

Discussion

In this chapter, we screened the interactors of NDUFS3, a Q module core subunit, to identify novel CIAFs of Cl assembly. The existing models of Cl assembly have considerable weaknesses especially when trying to identify novel regulators of CI biogenesis such as CIAF. For instance, CIAFs and several CI assembly intermediates found in mammalian Cl are not conserved in N . crassa and Arabidopsis thaliana (Duarte et al., 1995) (Clark et al., 2006; Yun et al., 2014) (Park et al., 2006) (Hu et al., 2011).

Here we demonstrate that Drosophila melanogaster is an ideal model to study the regulators of Cl biogenesis. (i) The flight muscles of Drosophila are highly enriched with mitochondria (Figure 3.1B). (ii) The widely available genetic tools, relatively short lifespan and high fertility of Drosophila allow both lossand gain-of function experiments to be performed rather easily (Figure 3.1C and 3.1D). (iii) Cl assembly can be analyzed in vivo in the flight muscles. (iv) Cl assembly in Drosophila is conserved with mammalian Cl assembly and contains 42 of the 44 subunits (Figure 3.1A) and (v) several of the CIAFs are present in Drosophila and have been shown have a conserved function (Figure 3.1E). Thus, we used the Drosophila model system to identify regulators of Cl assembly.

Our approach of identifying interactors of the Cl subunit NDUFS3 in Drosophila involved a screen of 175 proteins via RNAi knockdowns, through which we identified three potential hits that regulate the stability of CI: Cora, CG10543, and dFMRP. We followed up with dFMRP for the fact that all isoforms of dFMRP were knocked down in the Mhc<dFMRPRnai thoraxes, as well as the availability of a cross-reacting antibody.

While the primary method of dFMRP knockdown in our model was RNAi, RNAi methods pose a limitation of off-target effect (OTEs), warranting confirmation of the observed phenotypes using additional RNAi of the same target or alternative knockdown methods (Mohr et al., 2014). While we tested three different RNAi against dFMRP (Bloomington Stock \#'s: 27484, 35200, and 34944), only one (BI\# 34944) showed a robust knockdown. (Figure 3.3CC). To check for OTEs of BI\#34944 RNAi, the following software (https://www.flyrnai.org/up-torr/) from the Harvard Medical School DRSC/TRIP functional genomics resources was used. The $\mathrm{BI} \# 34944$ RNAi is short hairpin with 21 base pairs in length. When we matched for sequences 15 base pairs in length or greater, no OTEs were reported. Alternatively, a query with the RNAi nucleotide sequence in NCBI Nucleotide Blast resulted in 100% match to the Fmr1, whereas any other matches were less than 70% and not assembly subunits.

Unfortunately, our alternative knockdown attempts using CRISPRi and loss-of-function mutation in Drosophila did not reproduce the reduced Cl and the lethal phenotypes we saw in Mhc<dFMRPRNAi offspring. In Drosophila, there are 11 different isoforms of dFMRP with the most cited one to have 10 exons and to be approximately 81 kDa (Mila et al., 2018; Oostra and Willemsen, 2009; Weisz et al., 2018). Some CRISPRi did result in the complete absence of the 81 kDa isoform as detected by western blot, but accumulations of lower bands were observed (Figure 3.4B). Considering that the sgRNA was designed to target only the first exon of dFmr1, it is possible that these lower bands are isoforms of dFMRP without the first exon of $d F m r 1$, and are able to compensate for the lost isoform during Cl assembly. The results from the loss-of-function dFmr1 mutant flies exhibited similar pattern as the CRISPRi flies; no reduction of CI by BN-PAGE and smaller isoforms of dFMRP detected by western blot, which could be the reason they are able to survive as opposed to the Mhc<dFMRPRNAi offsprings that die within three days (Dockendorff et al., 2002). The limitations of the CRISPRi and the mutant fly inherently lies in that the dFMRP has so many isoforms. One way to combat this limitation would be to generate knockout lines using CRISPR-Cas9 or TALENs to ensure that the all isoforms of FMRP are knocked out. However, I expect that these flies would not eclose into adults since a strong knockdown of FMRP results in lethality shortly after hatching. Alternatively, advances in CRISPRi technology have allowed for multiple sgRNA's to be used concurrently (up to 5) to target different nucleotide sequences on a gene. In the case where the knockout results in lethality, this method could prove to be a better option given that CRISPRi can be inducible in flies. On the
other hand, exogenous Drosophila FMRP or its respective mammalian orthologues can be overexpressed in Mhc<dFMRP ${ }_{\text {RNAi }}$ offspring to see if it rescues the Cl deficit. This could also help predict which mammalian orthologue is important for CI function.

In addition, we used shRNA in mammalian cell culture to test the effect of knockdown in mammalian Cl assembly. dFMRP has three mammalian orthologues: fragile X mental retardation 1 protein (FMRP) and the fragile X-related proteins 1 and 2 (FXR1 and FXR2) (Oostra and Willemsen, 2009). We did not observe a Cl reduction phenotype, which could be due to the fact that a strong enough knockdown could not be achieved in any of the orthologs. An alternate method would be to assess the Cl assembly in mice, as whole body knockout mice are readily available for FMRP and FXR2 (Spencer et al., 2006). Additionally, creating a double knockout of FMRP and FXR2 might be necessary if a Cl phenotype is not seen in the single knockout mice, since compensation mechanisms between these two proteins have been characterized (Spencer et al., 2006). For FXR1, another mammalian orthologue of dFMRP, the whole body knockout mouse is embryonic lethal; however, mice with loxP sites targeting FXR1 are available and can be crossed to Cre mice to create tissue specific knockouts (Mientjes et al., 2004). Since FXR1 is highly expressed in the muscle and heart, FXR1 should be knocked out in these tissues and CI should be analyzed by BN-PAGE (Mientjes et al., 2004). Overall, these future experiments will be crucial for confirming whether FMRP regulates Cl function.

The observation of Foxred1 being absent from 6 to 48 hours was unexpected. Foxred1, an assembly factor, has been hypothesized to regulate the PD_{D}-module as revealed by complexome profiling (Guerrero-Castillo et al., 2017). The subunits that Foxred1 interacts with are NDUFB6, NDUFB5, NDUFB10, NDUFB11, NDUFB1 and the mitochondria-encoded subunit ND4. Interestingly, knockdown of each of these subunits by RNAi in flies revealed a similar pattern of assembly intermediates compared to that of Mhc<dFMRPRNAi offspring when tracking the Cl assembly via NDUFS3. In Mhc<dFMRPRNai offspring, BN-PAGE followed by immunoblot analysis with anti-NDUFS3 showed a stalling at the $815-\mathrm{kDa}$ assembly intermediate which led to the accumulation of the $700-$, 550 -, and $315-\mathrm{kDa}$ assembly intermediates (Garcia et al., 2017). In addition, in patients mutations in Foxred1, a decrease in the $815-\mathrm{kDa}$ assembly intermediate and an accumulation of L.A.I has been shown, similar to the pattern of

Mhc<dFMRPrnai offspring (Formosa et al., 2015). These results overall have suggested that the destabilization of Cl in Mhc<dFMRPRnai offspring is due to the mis-assembly of the PD_{D}-module. To further characterize this, it would be interesting to see if dFMRP interacts with Foxred1 or any other subunits that Foxred1 makes an assembly intermediate with. If it does, one could hypothesize that dFMRP forms an assembly intermediate with Foxred1 and the subunits that interact with Foxred1. This could be tested by performing complexome profiling to check if dFMRP co-migrates with the Pd-module. Alternatively, it would be interesting to test if FMRP binds to and regulates the transcripts of the Po-module subunits, given that FMRP is an RNA binding protein.

In summary, we have identified three potential new regulators of Cl assembly in Drosophila flight muscles, and described the mis-assembly process for dFMRP. To fully characterize the role of dFMRP, it will be important to analyze whether it directly interacts with Cl in the mitochondria or it regulates its subunits from the outside of the mitochondria. In conclusion, it will be important to confirm that each of these hits are true regulators for Cl before claiming them to be a bona fide assembly factor.

Materials and Methods

Drosophila Strains and Genetics.

The following fly stocks were used: y w; Dmef2-Gal4 and w; mhc-Gal4 were the Gal4 transgenic lines used to express RNAi lines in muscles. w1118/mhc-Gal4 flies were used as wildtype (wt) controls. To test Cl assembly factors, the following fly stocks were ordered from the Bloomington Drosophila Stock Center (https://bdsc.indiana.edu/): 55660 (dNDUFAF1RNAi), 31160 (dNDUFAF2RNAi), 51894 (dNDUFAF3RNAi), 51879 (dNDUFAF4 ${ }^{\text {RNA }}$), 55332 (dNDUFAF6 ${ }^{\text {RNAi }}$), 51873 (dNUBPL ${ }^{\text {RNAi }), ~ a n d ~} 42608$ (dFoxred1RNAi). Other assembly factors were ordered from the National Institute of Genetics (NIG, Japan) Drosophila Stock Center https://shigen.nig.ac.jp/fly/nigfly/: 17726R-3 (dNDUFAF5RNAi), 9852R-1 (dTIMMDC1 ${ }^{\text {RNAi }}$). The UAS-NDUFS3-HA stock was ordered from FLYORF at https://www.flyorf.ch/imlskonakart/SelectProd.do;jsessionid=43121D3655A6E110BCEAE6AC49E7C416? prodld=4620\&manufacturer=IMLS\&category=all\&name=F003000\&model=Fruitfly. Stocks that were screened were ordered from the Bloomington Drosophila Stock Center (https://bdsc.indiana.edu/). The Bloomington stock number can be found in table 3.2 for each respective protein.

Mitochondria Purification.

Mitochondrial purification was performed essentially as described by Rera et al 2012 (Rera et al., 2011). Thoraxes were dissected and gently crushed with a pestle homogenizer in 500μ of pre-chilled mitochondrial isolation buffer containing 250 mM sucrose and 0.15 mM MgCl 2 in 10 mM Tris. $\mathrm{HCl}, \mathrm{pH} 7.4$, on ice. After two rounds of centrifugation at 500 g for 5 minutes at $4^{\circ} \mathrm{C}$ to remove insoluble material, the supernatant was recovered and centrifuged at 5000 g for 5 minutes at $4^{\circ} \mathrm{C}$. The pellet which is enriched for mitochondria was washed twice in the mitochondrial isolation buffer and stored at $-80^{\circ} \mathrm{C}$ until further processing.

BN-PAGE was performed using NativePAGE gels from Life Technologies, following the manufacturer's instructions. Essentially, mitochondria were suspended in native PAGE sample buffer (Life Technologies) supplemented with 1% digitonin and protease inhibitors, and incubated on ice for 20 minutes. Following centrifugation at $20,000 \mathrm{~g}$ for 30 minutes, the supernatant was recovered, mixed with the G-250 sample additive (Life Technologies) and Native PAGE Sample Buffer (Life Technologies), and loaded onto 3-12\% pre-cast Bis-Tris Native PAGE gels (Life Technologies). The NativeMark Protein standard (Life Technologies), run together with the samples, was used to estimate the molecular weight of the protein complexes. Electrophoreses was performed using the Native PAGE Running buffer (as anode buffer, from Life technologies) and the Native PAGE Running buffer containing 0.4% Coomassie G-250 (cathode buffer). Gels were stained with the Novex Colloidal Blue staining kit (Life Technologies) to reveal the protein complexes.

Silver Staining.

Silver staining of native gels was performed with the SilverXpress staining kit from Life Technologies, following the manufacturer's protocol.

In-gel Complex I Activity.

Complex I activity in native gels was performed by incubating the native gels in $0.1 \mathrm{mg} / \mathrm{ml}$ NADH, $2.5 \mathrm{mg} / \mathrm{ml}$ Nitrotetrazolium Blue Chloride, 5 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.4)$ overnight at room temperature.

In-gel Complex II Activity.
Complex II activity in native gels was performed by incubating the native gels in 50 mM sodium phosphate $\mathrm{pH} 7.2,0.05 \% \mathrm{DAB}, 50 \mathrm{uM}$ mouse heart cytochrome C .

Immunoblotting

For immunoblotting of samples in native gels, protein complexes from native gels were transferred to PVDF membranes (BIORAD). For immunoblotting of samples in whole tissue lysates, thoraxes were homogenized in RIPA buffer (150 mM NaCl, 1\% Triton X-100, 0.5\% Sodium Deoxycholate, 0.1% SDS, 50 mM Tris HCl , pH 8) supplemented with Halt protease inhibitors (Pierce), resolved on mini-PROTEAN TGX stain-free gels from BIO-RAD, and transferred to PVDF membranes. In both instances (native and non-native gels), the membrane was subsequently blocked in $5 \%(\mathrm{w} / \mathrm{v})$ non-fat dry milk in Tris-buffered saline (TBS) for 30minutes, and incubated in the appropriate primary antibody dissolved in 2% BSA, 0.1% Tween 20 in TBS (TBST) overnight at $4^{\circ} \mathrm{C}$. Following the overnight incubation, the blot was rinsed 4×10 minutes in 0.1% TBST, blocked for 30 minutes in $5 \%(w / v)$ non-fat dry milk in TBST and incubated for two hours with the appropriate HRP-conjugated secondary antibody dissolved in 2% BSA, 0.1% Tween 20 in TBS (TBST). After incubation in the secondary antibody, samples were rinsed 4×10 minutes in 0.1% TBST. Immunoreactivity was detected by enhanced chemiluminescence (ECL) and analyzed by a ChemiDoc Gel imaging system from BIO-RAD. Antibodies used were anti-NDUFS3 (abcam, ab14711), anti-ND1 (abcam, ab74257), anti-HA (Thermofisher PA1-985), anti-dFMRP (abcam, ab10299), and anti-actin (EMD Millipore, MAB1501). Additional antibodies used were anti-dSDHA, anti-dND5, anti-dNDUFB5, anti-dNDUFV1, antidTIMMDC1, anti-dNDUFAF1, anti-dECSIT, anti-dACAD9, anti-dNDUFAF5, and anti-dFoxred1 which were generated by the Edward Owusu-Ansah lab.

LC-MS/MS Analysis

The concentrated peptide mix was reconstituted in a solution of 2 \% ACN, 2 \% Formic acid (FA) for MS analysis. Peptides were eluted from the column using a Dionex Ultimate 3000 Nano LC system with a 10 min gradient from 2\% buffer B to 35 \% buffer B (100 \% ACN, 0.1 \% FA). The gradient was switched from 35% to 85% buffer B over 1 min and held constant for 2 min. Finally, the gradient was changed from 85 \% buffer B to 98 \% buffer A (100\% water, $0.1 \% \mathrm{FA})$ over 1 min , and then held constant at 98% buffer A for 5 more minutes. The application of a 2.0 kV distal voltage electrosprayed the eluting peptides directly into the Thermo Fusion Tribrid mass spectrometer equipped with an EASY-Spray source (Thermo Scientific).

Mass spectrometer-scanning functions and HPLC gradients were controlled by the Xcalibur data system (Thermo Finnigan, San Jose, CA).

Database Search And Interpretation Of MS/MS Data

Tandem mass spectra from raw files were searched against a Drosophila protein database using the Proteome Discoverer 1.4 software (Thermo Finnigan, San Jose, CA). The Proteome Discoverer application extracts relevant MS/MS spectra from the .raw file and determines the precursor charge state and the quality of the fragmentation spectrum. The Proteome Discoverer probability-based scoring system rates the relevance of the best matches found by the SEQUEST algorithm. The Drosophila protein database was downloaded as FASTA-formatted sequences from Uniprot protein database (database released in May, 2015). The peptide mass search tolerance was set to 10 ppm . A minimum sequence length of 7 amino acids residues was required. Only fully tryptic peptides were considered. To calculate confidence levels and false positive rates (FDR), Proteome Discoverer generates a decoy database containing reverse sequences of the non-decoy protein database and performs the search against this concatenated database (non-decoy + decoy). Scaffold (Proteome Software) was used to visualize searched results. The discriminant score was set at less than 1% FDR determined based on the number of accepted decoy database peptides to generate protein lists for this study. Spectral counts were used for estimation of relative protein abundance between samples.

Survival Assay

60 flies per genotype were collected and placed in 3 vials of food with approximately 20 flies each. The amount of flies alive was recorded for in each vial every 12 hours. The survival rate was calculated by (the amount of flies alive in each vial / 20 (initial amount of flies in the vial)). The average was taken from the 3 vials at each time point for each genotype and was plotted using GraphPad Prism software.

Co-Immunoprecipitation (co-IP) Analysis

20 whole fly thoraxes were blended in 200 ul of NP-40 lysis buffer (25 mM Tris-HCL [pH 7.5], 150 mM $\mathrm{NaCl}, 5 \mathrm{mM}$ EDTA, $1 \%(\mathrm{v} / \mathrm{v}) \mathrm{NP}-40,5 \%(\mathrm{v} / \mathrm{v})$ Glycerol, 1 mM DTT supplemented with protease inhibitors [Thermofisher]) or 200 ul of digitonin lysis buffer (50 mM Tris-HCl [pH 7.5], $150 \mathrm{mM} \mathrm{NaCl}, 4 \mathrm{~g}: 1 \mathrm{~g}$ (digitonin : protein ratio) supplemented with protease inhibitors [Thermofisher]). Tubes were placed on ice for 30 minutes. Cell lysate was centrifuged at $20,000 \mathrm{xg}$ for 10 min at $4^{\circ} \mathrm{C}$. The supernatant was transferred to a a new tube and 300 ul of dilution buffer ([NP-40: 25 mM Tris-HCL [pH 7.5], $150 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM}$ EDTA, 5% (v/v) Glycerol, 1 mM DTT]; [Digitonin 50 mM Tris- HCl [pH 7.5], 150 mM NaCl$]$) was added to the supernatant. 50 ul of control agarose beads were added and rotated for 1 hour at $4^{\circ} \mathrm{C}$. Samples were centrifuged at 2500 g for 2 minutes to collect control agarose beads. Lysates were pipetted into 50 ul of antiHA beads and rotated overnight in the $4^{\circ} \mathrm{C}$. The beads were washed three times with 1000 ul of lysis buffer at $4^{\circ} \mathrm{C}$. Control and anti-HA agarose beads were sent for mass spectrometry to identify interactors of NDUFS3-HA. To check the binding of dFMRP, samples were eluted using 60 ul of 1X SDS-loading sample buffer and heated to $95^{\circ} \mathrm{C}$ for 10 minutes. Samples were then subjected to immunoblot analysis and probed with anti-dFMRP.

Transfection of shRNA plasmids

shRNA plasmids were ordered from Origene (FMR1 sRNA plasmid \# 312955; FXR1 shRNA plasmid \#312890). Origene transfection protocol was followed step-by-step. To check transfection efficiency, cells were looked under a fluorescent microscope to analyze GFP expression.

Figure 3.1: Drosophila flight muscles are suitable for identifying novel regulators of complex I biogenesis.
(A) Drosophila complex I is comparable to mammalian complex as it contains 42 of the 44 subunits. Schematic representation of how the 44 distinct subunits of bovine or ovine Cl are arranged to produce the L-shaped topology; based on recent Cl structures described (Fiedorczuk et al., 2016; Vinothkumar et al., 2014; Zhu et al., 2016; Zickermann et al., 2015). The asterisk denotes subunits for which an ortholog was not identified in Drosophila by DIOPT. NDUFAB1 occurs twice in the complex, giving rise to a total of 45 subunits.
(B) Drosophila flight muscles are rich in mitochondria. Drosophila flight muscles from wildtype flies stained with phalloidin (red) to mark the sarcomeres, and expressing GFP tagged with a nuclear localization signal in (A) or GFP with a mitochondrial targeting signal in (B). (C) Adult fly showing position of flight muscles (thorax) in region demarcated.
(C) Drosophila have a short life cycle. Schematic representation showing the life cycle of flies. Flies take 10 days from egg to eclose into adult flies. The survival span of flies is approximately 3 months.
(D) Several advanced genetic tools have been established by the Drosophila community. This includes access to 1000s of RNAi's available from stock centers around the world, easy manipulation of genes using the Gal4/UAS system, as well as cost efficiency compared to mammalian models.
(E) Several assembly factors in mammalian systems are functionally conserved in Drosophila. BN-PAGE (left panel) and Silver staining (right panel) of samples from thoraxes following RNAi-mediated knockdown of assembly factor proteins, dNDUFAF1, dNDUFAF2, dNDUFAF3, dNDUFAF4, dNDUFAF5, dNDUFAF6, dNUBPL, dTIMMDC1, dFoxred1. CI-CIII denotes the complex I-complex III supecomplex, CV2 denotes a dimer of complex V respectively, CI denotes complex I , CV denotes complex V , CIII denotes complex III, CIV denotes complex IV, and CII denotes complex II.

A

1. Comparable to Mammalian Cl

B

2. Rich in Mitochondria

C
3. Short Life Cycle

D
4. Advanced Genetic Tools
a) 1000s of RNAi's available from Stock Center
b) Gal4/UAS system
a) Knockdown, overexpression, temporal
c) Cost efficient

E

5. Several Assembly Factors Are Conserved

Figure 3.2: Identifying interactors of Cl in Drosophila flight muscles.
(A) Summary of the experimental procedure for identifying interactors of the Cl nuclear-encoded subunit dNDUFS3. (1) dNDUFS3-HA flies were generated using the Gal4-UAS system. (2) dNDUFS3-HA was expressed in the Drosophila thoraxes and dissected for co-immunoprecipitation (Co-IP). (3) Co-IP was performed with anti-HA agarose beads to identify interactors to NDUFS3. (4) Two different lysis buffers (NP-40 and digitonin) identified a total of 385 putative interactors. 237 were identified in both buffers, 68 were found in NP-40 buffer and 80 were present in the digitonin buffer. (5) Of these 385,175 proteins were selected to be screened. (6) In total 292 RNAi's were ordered from the Bloomington Drosophila Stock Center. More than 1 RNAi was ordered for each protein if available.
(B) Schematic representation of mammalian Cl representing the Cl subunits that interacted with NDUFS3 after mass spectrometry analysis. The subunits in red indicate that they interacted with NDUFS3. They are NDUFV1, NDUFV2, NDUFS1, NDUFA9, NDUFS7, NDUFS2, NDUFS8, and NDUFA10. NDUFS3 is encoded in yellow.
(C) To check the expression of HA in Mhc-Gal4<UAS-dNDUFS3-HA flies aged to 24 hours, 10 thoraxes were lysed in SDS-PAGE buffer and subjected to western blot and probed with an HA antibody.
(D) To check to see if NDUFS3-HA gets incorporated into the holoenzyme of Cl during Cl biogenesis, we isolated mitochondria from 10 Mhc-Gal4<UAS-dNDUFS3-HA thoraxes aged to 6 or 24 hours, permeabilized their membranes in 1% digitonin and performed a BN-PAGE. To track the assembly of Cl we performed a western blot and probed with anti-ND1 (middle panel) and anti-NDUFS3 (right panel) to track the Cl -CIII supercomplex, $\mathrm{Cl}, 815 \mathrm{kDa}-, 550 \mathrm{kDa}$ - and 315 kDa assembly intermediates respectively. To see if NDUFS3-HA gets incorporated into the complex, we probed with anti-HA (left panel) and compared it to the western blots of anti-ND1 and anti-NDUFS3.

A 1. Generating dNDUFS3-HA Flies

2. Expressing dNDUFS3-HA in thoraxes

3. Co-Immunoprecipitation

4. Interactors of dNDUFS3

Figure 3.3: Screening interactors of the dNDUFS3 Cl subunit identifies dFMRP as a regulator for Cl biogenesis.
(A-BB) 292 RNAi's to interacting proteins of dNDUFS3 were expressed in flight thoraxes using either the Dmef2- or Mhc- Gal4 and aged for 5-7 days. We isolated mitochondria from 10 thoraxes, permeabilized their membranes in 1% digitonin and performed BN-PAGE. The complexes were resolved by either coomassie- or silver staining. Each lane is numbered and corresponds to the RNAi's ordered from the Bloomington Stock Center found in Table 3.2. CI-CIII denotes the complex I-complex III supecomplex, CV2 denotes a dimer of complex V respectively, CI denotes complex I , CV denotes complex V , CIII denotes complex III, CIV denotes complex IV, and CII denotes complex II.
(CC) Western blot showing the protein levels of FMRP in flies expressing RNAi's that target FMRP in the flight muscles. All flies were aged for 72 hours. The protein expression levels of dNDUFS3 and the complex Il subunit dSDHA were also analyzed in these flies.
(DD) The interaction between dNDUFS3-HA and dFMRP was confirmed via western blot analysis. Co-IP was performed using anti-HA agarose beads in NP-40 lysis buffer on thoraxes from Mhc-Gal4<UAS-dNDUFS3-HA aged to 24 hours and 48 hours. Beads were lysed in SDS-PAGE buffer, subjected to immunoblot analysis and probed with anti-dFMRP.

A $\mathbf{w t} \begin{array}{llll}1 & 2 & 3 & 4\end{array}$

$$
\text { D } \begin{array}{llllllllllllll}
27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40
\end{array}
$$

$\begin{array}{llllllllllllll}\boldsymbol{A} \boldsymbol{A} & 271 & 272 & 273 & 274 & 275 & 276 & 277 & 278 & 279 & 280 & 281 & 282 & 283\end{array}$

BB

 $\begin{array}{llllllllllllll}284 & 285 & 286 & 287 & 288 & 289 & 290 & 291 & 292 & 293 & 294 & 295 & 296 & 297\end{array}$

DD

Figure 3.4: Alternative methods used to disrupt dFMRP and mammalian orthologues to confirm Cl phenotype.
(A) Table of the lane number of each genotype to be used as reference for Figures 3.7B-3.7D. MhcGal4<UAS-cas9 was used as control.
(B) SDS-PAGE of whole lysates to check FMRP expression. Note lane 4 shows a reduction in the 81 kDa isoform of dFMRP that causes an increase in lower isoforms. Actin was used as a loading control.
(C) Natve PAGE followed by silver-staining of mitochondria isolated from thoraxes in $4 \mathrm{~g}: 1 \mathrm{~g}$ protein to digitonin ratio (protein:digitonin) to analyze respiratory chain complexes
(D) Native PAGE followed by western blot probed with anti-NDUFS3 to analyze holoenzyme Cl and assembly intermediates. Anti-SDHA (CII) is used as a loading control
(E-F) Knockdown of FXR1 after a transfection of 48 and 72 hours in HeLa cell lines. $\mathrm{SC}=$ scrambled shRNA; $A, B, C, D=$ different shRNA plasmids targeting FXR1; Mix $=1: 1: 1: 1$ ratio of $A-D$ shRNAs; NT $=$ cells not treated with any shRNA. Actin was used as a loading control.
(G-H) Knockdown of FXR1 after a transfection of 48 and 72 hours in C2C12 cell lines. SC=scrambled shRNA; $A, B, C, D=$ different shRNA plasmids targeting FXR1; NT = cells not treated with any shRNA. Actin was used as a loading control.
(I-K) Knockdown of FMR1 after a transfection of 24,48 , and 72 hours hours in C2C12 Cell lines. $S C=$ scrambled shRNA; $A, B, C, D=$ different shRNA plasmids targeting FXR1; Mix $=1: 1: 1: 1$ ratio of $A-D$ shRNAs; NT = cells not treated with any shRNA. Actin was used as a loading control.
(L-M) Knockdown of FMR1 after a transfection of 48 and 72 hours in HeLa cell lines. $\mathrm{SC}=$ scrambled shRNA; $A, B, C, D=$ different shRNA plasmids targeting FXR1; Mix $=1: 1: 1: 1$ ratio of $A-D$ shRNAs; NT $=$ cells not treated with any shRNA. Actin was used as a loading control.
(N-O) Knockdown of FMR1 after a transfection of 48 and 72 hours in C2C12 cell lines. SC=scrambled shRNA; A,B,C,D= different shRNA plasmids targeting FXR1; NT = cells not treated with any shRNA. Actin was used as a loading control.

A

Lane

1. MhcGal4<UAS-cas9 (aged 10 days)
2. MhcGal4<UAS-Cas9; UAS-sgFMR1 RNA (aged 10 days)
3. MhcGal4<UAS-cas9 (aged 10 days)
4. MhcGal4<UAS-Cas9; UAS-sgFMR1 RNA (aged 10 days)
5. MhcGal4<UAS-cas9 (aged 10 days)
6. MhcGal4<UAS-Cas9; UAS-sgFMR1 RNA (aged 10 days)

C

D

L

N
48 Hours Anti-FMR1 C2C12 Cell Line

0

72 Hours Anti-FMR1 C2C12 Cell Line
FMR1 ${ }^{\text {shRNA }}$
SC A B \quad C D Mix NT
71 kDa
42 kDa

Figure 3.5: Knockdown of dFMRP destabilizes CI and reduces lifespan.
(A) Survival curve showing the percentage of flies surviving per hours. The blue bar indicates Mhc<dFMRPRNai and the green bar indicates Mhc<W1118.
(B) Western blot showing the protein levels of Mhc<dFMRPrnai flies aged to 6, 24, and 48 hours compared to Mhc<W1118. Anti-dFMRP was used to detect dFMRP. Anti-actin was used as a loading control.
(C) BN-PAGE of Mhc<W1118 and Mhc<dFMRPRNai flies aged to 24 hours. CI-CIII denotes the complex Icomplex III supecomplex, CV2 denotes a dimer of complex V respectively, CI denotes complex I, CV denotes complex V , CIII denotes complex III, CIV denotes complex IV, and CII denotes complex II.
(D) Silver Stainining of $\mathrm{Mhc}<\mathrm{W} 1118$ and $\mathrm{Mhc}<\mathrm{dFMRP}$ rnai flies aged to 24 hours. $\mathrm{Cl}-\mathrm{ClII}$ denotes the complex I-complex III supecomplex, CV2 denotes a dimer of complex V respectively, CI denotes complex I, CV denotes complex V, CIII denotes complex III, CIV denotes complex IV, and CII denotes complex II. (E) Cl in-gel activity of $\mathrm{Mhc}<\mathrm{W} 1118$ and $\mathrm{Mhc}<\mathrm{dFMRP}$ RNAi aged to 6,24 , and 48 hours. CII in-gel activity was also detected for loading control. CI-CIII denotes the complex I-complex III supecomplex, , CI denotes complex I, and CII denotes complex II.

Figure 3.6: Disruption of dFMRP in flight muscles impairs Cl assembly.
(A) Schematic representation of mammalian Cl representing the antibodies to Cl subunits (depicted in red) used to track the assembly of the modules of Cl . dNDUFV1 was used to detect the N -module, dNDUFS3 was used to detect the Q-module, dND3 was used to detect the Pp-module, and dNDUFB5 and dND5 were used to detect the PD-module.
(B) Immunoblots probed with anti-NDUFS3 of samples obtained from wildtype and mhc>dFMRPRNAi thoraxes of flies aged for 24 hours after eclosure. Left panel shows short exposure timepoint. Note a decrease in the $\mathrm{Cl}-\mathrm{CIII}$ supercomplex and holoenzyme of Cl in mhc>dFMRPRNAi thoraxes. Right panel shows long exposure timepoint to reveal assembly intermediates. 815-, 700-, 550-, and 315 kDa assembly intermediates were detected. Note a decrease in the 815 kDa assembly intermediate and increase in the 700- and 550 kDa assembly intermediates in mhc>dFMRPRNAi thoraxes. Anti-SDHA was used as a loading control.
(C) Immunoblots probed with anti-dND3 of samples obtained from wildtype and mhc $>d F M R P_{R N A i}$ thoraxes of flies aged for 24 hours after eclosure. Left panel shows short exposure time point. Note a decrease in the holoenzyme of Cl in mhc>dFMRPRNAi thoraxes. Right panel shows long exposure time point to reveal assembly intermediates. 815-, 700-, and 550 kDa assembly intermediates were detected. Note a decrease in the 815 kDa assembly intermediate and increase in the 700 - and 550 kDa assembly intermediates in $m h c>d F M R P_{\text {RNAi }}$ thoraxes. Also, additional assembly intermediates were detected and termed lower assembly intermediates (L.A.I.). Anti-SDHA was used as a loading control.
(D) Immunoblots probed with anti-dND5 of samples obtained from wildtype and mhc $>$ dFMRPRNAi thoraxes of flies aged for 6,24 , and 48 hours after eclosure. Left panel shows short exposure time point. Note a decrease in the holoenzyme of Cl and $\mathrm{Cl}-\mathrm{CIII}$ supercomplex in mhc>dFMRPRNAi thoraxes. Right panel shows long exposure time point to reveal lower assembly intermediates (L.A.I.). Note an overall increase in L.A.I. along with additional bands that may be degradation products from L.A.I. Anti-SDHA was used as a loading control.
(E) Immunoblots probed with anti-dNDUFB5 of samples obtained from wildtype and mhc>dFMRPRNAi thoraxes of flies aged for 6,24 , and 48 hours after eclosure. Left panel shows short exposure time point. Note a decrease in the holoenzyme of Cl and $\mathrm{Cl}-\mathrm{ClII}$ supercomplex in mhc>dFMRPRNAi thoraxes. Right
panel shows long exposure time point to reveal lower assembly intermediates (L.A.I.). Note an overall increase in L.A.I. along with additional bands that may be degradation products from L.A.I. Anti-SDHA was used as a loading control.
(F) Immunoblots probed with anti-dNDUFV1 of samples obtained from wildtype and mhc>dFMRPRNai thoraxes of flies aged for 6,24 , and 48 hours after eclosure. Left panel shows short exposure time point. Note a decrease in the holoenzyme of Cl and Cl -CIII supercomplex in mhc>dFMRPrnai thoraxes. Right panel shows long exposure time point to reveal lower assembly intermediates (L.A.I.). Note an overall increase in L.A.I. Anti-SDHA was used as a loading control.

Figure 3.7: The Pd-module regulator, Foxred1, is downregulated in Mhc<dFMRPRnAi offspring.
(A) Schematic representation of the assembly of mammalian CI . The Q module binds to the Pp-module followed by the addition of the Po-module. Finally, the N -module binds to the $\mathrm{Q}+\mathrm{P}$ module to form the fully assembled holoenzyme of CI . Red dots depict the modules that known CIAFs are predicted to bind and regulate.
(B) SDS-PAGE Immunoblots probed with known CIAFs that bind to the Pp-module (anti-dTIMMDC1, antidNDUFAF1, anti-dECSIT, and anti-dACAD9) of samples obtained from wildtype and mhc>dFMRPRNAi thoraxes of flies aged for 6,24 , and 48 hours after eclosure. Note a slight decrease in dTIMMDC1 at 48 hours.
(C) SDS-PAGE Immunoblots probed with known CIAFs that bind to the Q-module (anti-dNDUFAF5) of samples obtained from wildtype and mhc>dFMRPRNAi thoraxes of flies aged for 6,24 , and 48 hours after eclosure.
(D) SDS-PAGE Immunoblots probed with known CIAFs that bind to the Pd-module (anti-dFoxred1) of samples obtained from wildtype and mhc>dFMRPRNAi thoraxes of flies aged for 6,24 , and 48 hours after eclosure. Note a decrease in dFoxred1 at every time point.

A

B

C

Table 3.1: Proteins identified by mass spectrometry after co-IP with dNDUFS3-HA.
The table shows all the peptides identified after co-IP with dNDUFS3-HA. Peptides highlighted in blue are Cl subunits. Peptides highlighted in green are proteins we ordered Bloomington stocks for.

Cluster of Aconitate hydratase, mitochondrial Acon (Q9VIE8_DROME)	Q9VIE8_DROME [2]	85 kDa	49	28					
Cluster of Actin, larval muscle Act79B (ACT4_DROME)	ACT4_DROME [4]	42 kDa	160	122					
Cluster of ADP,ATP carrier protein sesB (ADT_DROME)	ADT_DROME [3]	34 kDa	30	36					
Cluster of Bent, isoform I bt (LOMN91_DROME)	LOMN91_DROME [2]	993 kDa	188	222					
Cluster of Calcium-transporting ATPase PMCA (Q9V4C7_DROME)	Q9V4C7_DROME [2]	133 kDa	12	1		31572			
Cluster of Calcium/calmodulin-dependent protein kinase type II alpha chain CaMKII (KCC2A	KCC2A_DROME [4]	60 kDa	2	1					
Cluster of CAP, isoform B CAP (A12871_DROME)	A1z871_DROME [4]	197 kDa	6	0		30506	36613	36663	
Cluster of CG11321, isoform I CG11321 (M9PCSO_DROME)	M9PCSO_DROME [2]	315 kDa	7	0					
Cluster of CG11876, isoform A CG11876 (Q7K5K3_DROME)	Q7K5K3_DROME	39 kDa	12	10		55619			
Cluster of CG14995, isoform I CG14995-RC (FOJAM2_DROME)	FOJAM2_DROME [3]	48 kDa	0	16					
Cluster of CG1674, isoform K CG1674 (H9XVM8_DROME)	H9XVM8_DROME [3]	96 kDa	82	16					
Cluster of CG17597, isoform B CG17597 (Q9VJ44_DROME)	Q9VJ44_DROME [2]	44 kDa	5	0		52886			
Cluster of CG18304, isoform B CG18304 (M9NCS3_DROME)	M9NCS3_DROME [4]	205 kDa	2	2					
Cluster of CG42492, isoform A CG11473 (Q9W4A6_DROME)	Q9W4A6_DROME	99 kDa	2	0					
Cluster of CG42540, isoform F CG42540 (Q9VZA5_DROME)	Q9VZA5_DROME [3]	57 kDa	1	2					
Cluster of CG43078, isoform G CG43078 (M9NE59_DROME)	M9NE59_DROME [4]	275 kDa	56	8					
Cluster of CG43143, isoform I CG43143 (A0AOB4KFP5_DROME)	AOAOB4KFP5_DROM	277 kDa	8	0		35194	31885		
Cluster of CG43897, isoform M CG43897 (M9PF57_DROME)	M9PF57_DROME [4]	155 kDa	18	10		31560			
Cluster of CG44085, isoform O CG44085 (M9PDE7_DROME)	M9PDE7_DROME [3]	267 kDa	1	47					
Cluster of CG6455, isoform E Mitofilin (AOAOB4KGN2_DROME)	AOAOB4KGN2_DROM	83 kDa	56	6		63994	43245		
Cluster of CG6512-PA, isoform A CG6512 (Q874G5_DROME)	Q8T4G5_DROME [2]	90 kDa	6	9		34343	50524		
Cluster of CG7766, isoform D CG7766 (B72134_DROME)	B7Z134_DROME [3]	138 kDa	3	0		42890	42510		
Cluster of CG8086, isoform G CG8086 (M9NCS7_DROME)	M9NCS7_DROME [5]	171 kDa	26	8					
Cluster of CG9172, isoform A ND-20 (Q9VXK7_DROME)	Q9VXK7_DROME [2]	25 kDa	0	6	NDUFS7				
Cluster of Cheerio, isoform M cher (AOAOB4KGT8_DROME)	AOAOB4KGT8_DROM	263 kDa	3	3					
Cluster of Darkener of apricot, isoform P Doa (Q86B73_DROME)	Q86B73_DROME [4]	227 kDa	9	3		50903	55908		
Cluster of Disks large 1 tumor suppressor protein dlg1 (DLG1_DROME)	DLG1_DROME [2]	107 kDa	1	2					
Cluster of Elongation factor 1-alpha 2 Ef1alpha100E (EF1A2_DROME)	EF1A2_DROME [2]	51 kDa	20	35					
Cluster of Eukaryotic initiation factor 4A elF-4a (IF4A_DROME)	IF4A_DROME	46 kDa	13	10					
Cluster of FI21236p1 rump (Q9VHC7_DROME)	Q9VHC7_DROME	67 kDa	3	5					
Cluster of Flotillin 2, isoform G Flo2 (E1)JL2_DROME)	E1JJL2_DROME [6]	38 kDa	4	5		55212	40833		
Cluster of GH17761p Ubi-p5E (Q9W418_DROME)	Q9W418_DROME [5]	60 kDa	21	15		38967			
Cluster of GH19182p Zasp66 (Q95TZ7_DROME)	Q95TZ7_DROME [3]	44 kDa	18	10					
Cluster of Glyceraldehyde-3-phosphate dehydrogenase 1 Gapdh1 (G3P1_DROME)	G3P1_DROME [2]	35 kDa	34	29					
Cluster of Heat shock 70 kDa protein cognate 4 Hsc70-4 (HSP7D_DROME)	HSP7D_DROME [2]	71 kDa	38	41		35684	34836		
Cluster of Heat shock protein 68 Hsp68 (HSP68_DROME)	HSP68_DROME [4]	70 kDa	5	6		50637			
Cluster of Hu litai shao, isoform P hts (A8DYJ2_DROME)	A8DYJ2_DROME [2]	205 kDa	7	4		38283			
Cluster of Isocitrate dehydrogenase [NADP] Idh (Q7KUB1_DROME)	Q7KUB1_DROME [2]	53 kDa	7	4		41708			
Cluster of Lethal (2) 01289, isoform M 1 (2)01289 (AOAOB4K7H1_DROME)	AOAOB4K7H1_DROM	137 kDa	12	34					
Cluster of Lingerer, isoform H lig (AOAOB4K7U5_DROME)	AOAOB4K7U5_DROM	134 kDa	28	49		61857			
Cluster of Mf4 protein Mf (Q70V11_DROME)	Q70VII_DROME [3]	42 kDa	38	20					
Cluster of Muscle LIM protein Mlp84B Mlp 84 B (MLP2_DROME)	MLP2_DROME	54 kDa	0	15		31558			
Cluster of Myosin heavy chain-like, isoform G Mhcl (Qoki67_DROME)	QOKI67_DROME	242 kDa	2	0					
Cluster of Myosin heavy chain, isoform T Mhc (M9NEP1_DROME)	M9NEP1_DROME [4]	224 kDa	3190	520					
Cluster of Neural conserved at 73EF, isoform I Nc73EF (A8JNU6_DROME)	A8JNU6_DROME [2]	123 kDa	145	31		33686			
Cluster of Paramyosin, long form Prm (MYSP1_DROME)	MYSP1_DROME [3]	102 kDa	213	100					
Cluster of PDZ and LIM domain protein Zasp Zasp52 (ZASP_DROME)	ZASP_DROME [4]	238 kDa	135	126					
Cluster of Polychaetoid, is oform J pyd (Q9VHK1_DROME)	Q9VHK1_DROME [4]	188 kDa	0	7		28920	33386		
Cluster of Protein 4.1 homolog cora (41_DROME)	41_DROME [2]	184 kDa	7	8		28933	35003	51845	
Cluster of Protein anoxia up-regulated fau (FAU_DROME)	FAU_DROME [2]	69 kDa	48	13					

														$\begin{array}{\|l} \hline 0 \\ \hline 0 \\ 0 \\ i \end{array}$																																		
			$\begin{gathered} \infty \\ 0 \\ 0 \\ \end{gathered}$											$\begin{array}{\|c\|c} \hline 0 \\ 0 \\ 0 \\ m \end{array}$													$\begin{array}{\|l\|} \underset{\sim}{\mathrm{N}} \\ \hline \end{array}$		$$	$\begin{array}{\|l\|} \hline \underset{\sim}{n} \\ \underset{m}{n} \end{array}$																¢		
		$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{n} \\ & i \end{aligned}$								$\begin{aligned} & \mathbf{N} \\ & \mathbf{0} \\ & \mathbf{~} \end{aligned}$				$\begin{array}{\|l} \hline \begin{array}{l} n \\ n \\ i n \end{array} \end{array}$		$$										$\begin{aligned} & \underset{\sim}{N} \\ & \stackrel{N}{N} \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 0 \\ \underset{N}{n} \\ \mathbf{m} \end{array} \right\rvert\,$		$\begin{array}{\|l\|} \hline \stackrel{\leftrightarrow}{2} \\ \stackrel{\rightharpoonup}{m} \\ \hline \end{array}$	$\left.\begin{array}{\|c} \stackrel{n}{\stackrel{N}{\underset{m}{j}}} \end{array} \right\rvert\,$				$\left\|\begin{array}{l} \infty \\ \infty \\ \infty \\ \infty \\ \infty \end{array}\right\|$												\cdots		
	$\left\|\begin{array}{c} \underset{\infty}{\infty} \\ \underset{\sim}{\sim} \end{array}\right\|$	$\stackrel{\rightharpoonup}{\tilde{m}}$	\mathfrak{n}			$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	Bn			$\begin{aligned} & \hat{N} \\ & \hat{N} \\ & 0 \end{aligned}$					$\begin{gathered} n \\ 0 \\ 0 \\ 0 \\ n \end{gathered}$	$\begin{gathered} n \\ n \\ n \\ n \\ n \\ m \end{gathered}$		$\left\|\begin{array}{l} \infty \\ -1 \\ -1 \end{array}\right\|$								$\left\lvert\, \begin{gathered} \hat{N} \\ \underset{\sim}{n} \\ \hline \end{gathered}\right.$	$\left. \right\rvert\,$		$\left\lvert\, \begin{aligned} & \sim \\ & \stackrel{\sim}{n} \\ & \sim \\ & \infty \\ & \hline \end{aligned}\right.$	$\left.\begin{array}{\|l\|} \hline \stackrel{\circ}{\infty} \\ \underset{\sim}{2} \end{array} \right\rvert\,$	$\begin{aligned} & \sim \\ & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{-}{c}$	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \\ \underset{m}{2} \end{gathered}$	$\begin{array}{\|l\|} \hline \hat{y} \\ \underset{\sim}{2} \end{array}$			$\left.\begin{array}{\|c\|} \hline \infty \\ \infty \\ \infty \\ \underset{\sim}{2} \end{array} \right\rvert\,$										－	
																									－																							
\bigcirc		の	σ	\bigcirc	0	7	0	－	0	∞	－+	\bigcirc	\sim	\sim	m	－	－ 0	－	－	\bigcirc	－	N	\bigcirc	9	\％	－	m	－	\bigcirc	－	\％	\bigcirc	\sim	$\stackrel{-}{7}$	m	m	－	n	$\stackrel{\infty}{\circ}$	－		\％	\bigcirc			\sim	\cdots	－
$\underset{7}{7}$		の	$-$	＋	\bigcirc	－	N	m	\sim	－	－	0	－	－	0	－	－${ }^{-1}$	\vec{m}	に	N	\sim	O－1	U	σ	A	－	0	－	ぃ	\bigcirc	\bigcirc	\％	－	0	－	～	\sim	7	¢	－		ก	7			の m	O	\rightarrow
$\begin{aligned} & 0 \\ & \underset{\sim}{2} \\ & \text { n } \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{c}{0}$				$0 \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \\ \hline \end{gathered}$		0								$$	$\begin{array}{\|l\|l} 0 & \begin{array}{c} 0 \\ 2 \\ \\ \\ \hline \end{array} \\ \hline \end{array}$		$\begin{array}{\|c} 0 \\ 0 \\ 2 \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{array}{\|l\|} \hline 0 \\ \underset{\delta}{2} \\ \hline \end{array}$	$\begin{array}{\|c\|} \pi \\ 0 \\ 9 \\ \\ \hline \end{array}$	$\begin{aligned} & \tilde{0} \\ & \stackrel{0}{2} \\ & \\ & \end{aligned}$	$\left\|\begin{array}{c} \tilde{0} \\ \stackrel{\rightharpoonup}{7} \\ \underset{\sim}{7} \end{array}\right\|$	$\begin{array}{\|l\|} \hline 0 \\ \underset{\sim}{2} \\ \infty \\ \hline \end{array}$			$\left\lvert\, \begin{gathered} \tilde{0} \\ \underset{\sim}{2} \\ \sim \\ \sim \\ \hline \end{gathered}\right.$	ご		$\begin{array}{\|c} \tilde{0} \\ \stackrel{2}{0} \\ \underset{0}{2} \\ \underset{\sim}{2} \end{array}$	－	－		¢	－	O		¢	200				－	－
									Q9W060＿DROME							\sum_{0}^{∞}	$\begin{array}{\|l\|} \hline \text { MED25_DROME } \\ \hline \text { Q9VDZ7_DROME (+1 } \\ \hline \end{array}$											\square							Q9VTR6_DROME			－	害	¢			边				\pm	¢
				Lethal（3） 03670 I（3）03670					Mauve mv											Muscle－specific protein 300 kDa ，isoform D Msp300		Myosin light chain alkali Mlc1	Myosin regulatory light chain 2 Mlc2	NADH dehydrogenase［ubiquinone］ 1 alpha subcomplex subunit 10，mitochondrial ND－42																								

Table 3.2: Table for figure 3.3 listing the RNAi's that were screened.
Column 1: The number that corresponds with the lane numbered in figure 3.3.
Column 2: The Bloomington Stock ordered
Column 3: The Drosophila gene that is being knocked down by RNAi
Column 4: The Gal4 used to express the UAS-RNAi lines in Drosophila flight muscles.

Number	Bloomington Stock \#	Drosophila Gene	Gal4
1	28071	Laminin subunit alpha	Dmef2
2	28542	Trailer Hitch	Dmef2
3	28790	Limpet	Dmef2
4	28895	Nocte	Dmef2
5	28920	Polychaetoid	Dmef2
6	28930	FASN1	Dmef2
7	30506	isoform B CAP	Dmef2
8	31078	Bicoid Stability Factor	Dmef2
9	31148	Mical	Dmef2
10	31558	Muscle LIM protein Mlp84B	Dmef2
11	31560	CG43897	Dmef2
12	31683	LD35640p Psi	Dmef2
13	31712	ATP-dependent helicase brm	Dmef2
14	32388	CG10077	Dmef2
15	32503	Brahma-associated protein 60 kDa	Dmef2
16	32884	CG8036	Dmef2
17	32981	CG10077	Dmef2
18	33386	Polychaetoid	Dmef2
19	33392	AT27578p rin	Dmef2
20	33668	AT27789p glo	Dmef2
21	35003	Cora	Dmef2
22	34825	LD35640p Psi	Dmef2
23	34550	Bicoid Stability Factor	Dmef2
24	35630	Brahma associated protein 155 kDa mor	Dmef2
25	35684	Heat schock 70 kDa protein cognate 4 Hsc70-4	Dmef2
26	36066	AT27789p glo	Dmef2
27	38967	GH17761p Ubi-p5E	Dmef2
28	40922	CG5261	Dmef2
29	41697	Arginine Kinase	Dmef2
30	41708	Isocitrate Dehydrogenase	Dmef2
31	42783	Terribly reduced obtic lobes	Dmef2
32	42826	Thin	Dmef2
33	43172	Proline Dehydrogenase 1, mitochondrial slgA	Dmef2
34	44012	Ataxin-2 homolog	Dmef2
35	44475	CG6439	Dmef2
36	34546	Thiolase	Dmef2
37	34520	ATP-dependent helicase brm	Dmef2
38	33727	Argonaute-1	Dmef2
39	35185	Belle	Dmef2
40	35211	ATP-dependent helicase brm	Dmef2
41	35221	Arginine Kinase	Dmef2
42	35302	Belle	Dmef2
43	35447	Osa	Dmef2
44	35775	FASN1	Dmef2
45	38285	Osa	Dmef2

46	38283	Hts	Dmef2
47	38198	Guanine nucleotide-binding protein subunit beta-like pr	Dmef2
48	36663	isoform B CAP	Dmef2
49	43245	CG6455	Dmef2
50	38909	Trailer Hitch	Dmef2
51	50524	CG6512	Dmef2
52	50650	CG5214	Dmef2
53	51811	Proline Dehydrogenase 1, mitochondrial slgA	Dmef2
54	51845	Cora	Dmef2
55	52933	nonA	Dmef2
56	52937	Hrb87F	Dmef2
57	53293	Ago1	Dmef2
58	53917	Sec16	Dmef2
59	53961	Trailer Hitch	Dmef2
60	53971	Amphiphysin	Dmef2
61	55908	Darkener of Apricot	Dmef2
62	55929	Glutactin	Dmef2
63	56883	Pyruvate Carboxylase PCB	Dmef2
64	56944	Protein no-on-transient A nonA	Dmef2
65	57820	CG30069	Dmef2
66	58201	CG11505	Dmef2
67	58278	CG34417	Dmef2
68	58313	CG9485	Dmef2
69	42509	CG11504	Dmef2
70	60371	CG8036	Dmef2
71	61279	Protein no-on-transient A nonA	Dmef2
72	61857	Lingerer	Dmef2
73	61925	CG30069	Dmef2
74	62002	Laminin subunit gamma-1	Dmef2
75	62945	CG34417	Dmef2
76	63994	CG6455	Dmef2
77	32872	Dodeca-satellite-binding protein 1	Dmef2
78	55201	LD30155p lost	Dmef2
79	55168	Succinyl-CoA ligase subunit beta skap	Dmef2
80	55388	Laminin subunit gamma-1	Dmef2
81	55619	CG11876	Dmef2
82	42774	RpS19a	Dmef2
83	42888	Vha68-1	Dmef2
84	43965	Ank	Dmef2
85	44100	Rbp1-like	Dmef2
86	44533	CG8520	Dmef2
87	50553	GatA	Dmef2
88	50574	Rbp1-like	Dmef2
89	50610	RpL8	Dmef2
90	29422	Gat	Dmef2
91	30810	yps	Dmef2

92	31115	Ank	Dmef2
93	57464	smr	Dmef2
94	56970	med23	Dmef2
95	62167	ssdp	Dmef2
96	8390	ebi	Dmef2
97	24760	DCTN1	Dmef2
98	24761	DCTN1	Dmef2
99	26037	cyp4d2	Dmef2
100	26305	lasp	Dmef2
101	27484	FMR1	Dmef2
102	27565	Eukaryotic translation inititation factor 3 subunit A	Dmef2
103	27721	DCTN1	Dmef2
104	27729	AcsI	Dmef2
105	28885	Gsts1	Dmef2
106	28896	GYF	Dmef2
107	28933	Cora	Dmef2
108	31049	Chi	Dmef2
109	31244	Hrb87F	Dmef2
110	31247	stau	Dmef2
111	31301	LD35640p Psi	Dmef2
112	31472	Hrb87F	Dmef2
113	31570	Tig	Dmef2
114	31700	Argonaute-1	Dmef2
115	31708	bap55	Dmef2
116	31728	nej	Dmef2
117	31957	scp1	Dmef2
118	31964	CG10543	Dmef2
119	32402	Hsc70-3	Dmef2
120	32990	caz	Dmef2
121	33417	AliX	Dmef2
122	33996	shep	Dmef2
123	34333	CG9485	Dmef2
124	34528	smr	Dmef2
125	34571	mask	Dmef2
126	34630	Skuld	Dmef2
127	34658	med23	Dmef2
128	34662	Med1	Dmef2
129	34694	Guanine nucleotide-binding protein subunit beta-like pr	Dmef2
130	34729	HSP60	Dmef2
131	34839	caz	Dmef2
132	35200	FMR1	Dmef2
133	25225	Chi	Dmef2
134	35435	Chi	Dmef2
135	35690	Stau	Dmef2
136	36613	isoform B CAP	Dmef2
137	36682	Nej	Dmef2

138	36721	Klar	Dmef2
139	36897	Nrg	Dmef2
140	38215	Nrg	Dmef2
141	38218	Shep	Dmef2
142	40833	Flo2	Dmef2
143	40903	Neurochondrin	Dmef2
144	41833	P5CDh1	Dmef2
145	41854	Fas1	Dmef2
146	42510	CG7766	Dmef2
147	42616	lanB1	Dmef2
148	42797	enc	Dmef2
149	42887	Fas1	Dmef2
150	42890	cg7766	Dmef2
151	43146	tcp-1zeta	Dmef2
152	43187	Stau	Dmef2
153	43268	AcsI	Dmef2
154	43545	Shep	Dmef2
155	44439	CG5261	Dmef2
156	44443	Ebi	Dmef2
157	44495	CG9090	Dmef2
158	50525	Med1	Dmef2
159	50904	AliX	Dmef2
160	51153	Med23	Dmef2
161	51406	Scp1	Dmef2
162	51433	CG7409	Dmef2
163	51911	CG7470	Dmef2
164	52871	Med23	Dmef2
165	53238	GstS1	Dmef2
166	54816	CG10543	Dmef2
167	55146	FeCh	Dmef2
168	55209	CG30122	Dmef2
169	55212	Flo2	Dmef2
170	34039	Zormin	Dmef2
171	38298	Terribly reduced obtic lobes	Dmef2
172	38931	LD30155p lost	Dmef2
173	40924	Koi	Dmef2
174	27286	A2bp1	Dmef2
175	27302	NAT1	Dmef2
176	28327	14-3-3zeta	Dmef2
177	27487	Stam	Dmef2
178	28026	Hrs	Dmef2
179	29422	Gat	Dmef2
180	30810	yps	Dmef2
181	31115	Ank	Dmef2
182	31498	14-3-3zeta	Dmef2
183	31713	cact	Dmef2

184	31756	CG8963	Dmef2
185	31917	CG11504	Dmef2
186	32357	NAT1	Dmef2
187	32422	Rpt5	Dmef2
188	32476	A2bp1	Dmef2
189	32496	sod2	Dmef2
190	32930	CG8108	Dmef2
191	33007	hsp27	Dmef2
192	33010	capt	Dmef2
193	33741	betaCOP	Dmef2
194	33755	med24	Dmef2
195	33900	hrs	Dmef2
196	33922	hsp27	Dmef2
197	34086	hrs	Dmef2
198	34592	lilli	Dmef2
199	34664	Med17	Dmef2
200	34670	Rab1	Dmef2
201	34775	cact	Dmef2
202	34978	elf3i	Dmef2
203	35016	Stam	Dmef2
204	36076	Rpl28	Dmef2
205	26304	Tpi	Dmef2
206	26314	lilli	Dmef2
207	33742	HSC70Cb	Dmef2
208	34586	Lon	Dmef2
209	37484	cact	Dmef2
210	37519	B52	Dmef2
211	42888	Vha68-1	Dmef2
212	42881	Ssx	Dmef2
213	42501	MED25	Dmef2
214	43310	CG1544	Dmef2
215	50637	Hsp68	Dmef2
216	50726	Vha68-1	Dmef2
217	51157	Cht5	Dmef2
218	51749	CG8520	Dmef2
219	51785	CG10932	Dmef2
220	51820	Aldh-III	Dmef2
221	51829	Tpi	Dmef2
222	52886	CG17597	Dmef2
223	53298	CG4461	Dmef2
224	53728	HSC70Cb	Dmef2
225	54048	RpL17	Dmef2
226	55323	CG17896	Dmef2
227	55362	Rbp1-like	Dmef2
228	56880	CG3902	Dmef2
229	57845	CPR100A	Dmef2

230	58150	Rm62	Dmef2
231	58340	CG9572	Dmef2
232	55381	Idgf4	Dmef2
233	56497	HSC70Cb	Dmef2
234	23236	Rab1	Dmef2
235	28923	cont	Dmef2
236	32468	Sec13	Dmef2
237	33595	MED25	Dmef2
238	34867	cont	Dmef2
239	36871	sod2	Dmef2
240	38250	yps	Dmef2
241	38984	Cht5	Dmef2
242	42774	RpS19a	Dmef2
243	42656	RpS17	Dmef2
244	31588	Thin	Mhc
245	32351	Hrb98DE	Mhc
246	34919	Brahma associated protein 155 kDa mor	Mhc
247	33686	Nc73EF	Mhc
248	34353	Eukaryotic translation inititation factor 3 subunit A	Mhc
249	34836	Heat schock 70 kDa protein cognate $4 \mathrm{Hsc} 70-4$	Mhc
250	34343	CG6512	Mhc
251	36921	Shibire	Mhc
252	26218	dalao	Mhc
253	27068	smr	Mhc
254	27724	nej	Mhc
255	31337	Brahma-associated protein 60 kDa	Mhc
256	31885	CG43143	Mhc
257	32358	Opa1	Mhc
258	32866	AP-2alpha	Mhc
259	33954	Brahma-associated protein 60 kDa	Mhc
260	34087	smr	Mhc
261	34575	Med14	Mhc
262	34981	ebi	Mhc
263	35194	CG43143	Mhc
264	35242	dalao	Mhc
265	35662	Brahma associated protein 155 kDa mor	Mhc
266	41885	Acsl	Mhc
267	50895	Viking	Mhc
268	9757	rab1	Mhc
269	25969	sod2	Mhc
270	31572	Calcium-Transporting ATPase PMCA	Mhc
271	32999	Rhea	Mhc
272	32912	I(2)37Cc	Mhc
273	39015	Amphiphysin	Mhc
274	41983	bcl9	Mhc
275	51746	RpL32	Mhc

276	53300	RpL23	Mhc
277	53886	Rpt5	Mhc
278	57503	pglym78	Mhc
279	34944	FMR1	Mhc
280	28513	Shibire	Mhc
281	33913	Rhea	Mhc
282	34588	kto	Mhc
283	37496	Nrg	Mhc
284	26303	Pglym78	Mhc
285	27299	Rab1	Mhc
286	27562	CG8108	Mhc
287	28594	I(2)tid	Mhc
288	29385	Rpn6	Mhc
289	31395	Rm62	Mhc
290	31709	betaCOP	Mhc
291	32983	sod2	Mhc
292	33930	rpt1	Mhc
293	34348	rpn1	Mhc
294	34710	nup358	Mhc
295	34712	Rpt6	Mhc
296	34829	Rm62	Mhc
297	50903	Doa	Mhc

References

Andrews, B., Carroll, J., Ding, S., Fearnley, I.M., and Walker, J.E. (2013). Assembly factors for the membrane arm of human complex I. Proc. NatI. Acad. Sci. USA 110, 18934-18939.

Blaza, J.N., Vinothkumar, K.R., and Hirst, J. (2018). Structure of the deactive state of mammalian respiratory complex I. Structure 26, 312-319.e3.

Clark, I.E., Dodson, M.W., Jiang, C., Cao, J.H., Huh, J.R., Seol, J.H., Yoo, S.J., Hay, B.A., and Guo, M. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166.

Dockendorff, T.C., Su, H.S., McBride, S.M.J., Yang, Z., Choi, C.H., Siwicki, K.K., Sehgal, A., and Jongens, T.A. (2002). Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34, 973-984

Duarte, M., Sousa, R., and Videira, A. (1995). Inactivation of genes encoding subunits of the peripheral and membrane arms of neurospora mitochondrial complex I and effects on enzyme assembly. Genetics 139, 1211-1221.

Fassone, E., and Rahman, S. (2012). Complex I deficiency: clinical features, biochemistry and molecular genetics. J. Med. Genet. 49, 578-590.

Fiedorczuk, K., Letts, J.A., Degliesposti, G., Kaszuba, K., Skehel, M., and Sazanov, L.A. (2016). Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406-410.

Formosa, L.E., Mimaki, M., Frazier, A.E., McKenzie, M., Stait, T.L., Thorburn, D.R., Stroud, D.A., and Ryan, M.T. (2015). Characterization of mitochondrial FOXRED1 in the assembly of respiratory chain complex I. Hum. Mol. Genet. 24, 2952-2965.

Formosa, L.E., Dibley, M.G., Stroud, D.A., and Ryan, M.T. (2018). Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Semin. Cell Dev. Biol. 76, 154-162.

Garcia, C.J., Khajeh, J., Coulanges, E., Chen, E.I.-J., and Owusu-Ansah, E. (2017). Regulation of mitochondrial complex I biogenesis in drosophila flight muscles. Cell Rep. 20, 264-278.

Guerrero-Castillo, S., Baertling, F., Kownatzki, D., Wessels, H.J., Arnold, S., Brandt, U., and Nijtmans, L. (2017). The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab. 25, 128-139.

Hirst, J. (2013). Mitochondrial complex I. Annu. Rev. Biochem. 82, 551-575.
Hu, Y., Flockhart, I., Vinayagam, A., Bergwitz, C., Berger, B., Perrimon, N., and Mohr, S.E. (2011). An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12, 357.

Kremer, L.S., Bader, D.M., Mertes, C., Kopajtich, R., Pichler, G., Iuso, A., Haack, T.B., Graf, E., Schwarzmayr, T., Terrile, C., et al. (2017). Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat. Commun. 8, 15824.

Loeffen, J., van den Heuvel, L., Smeets, R., Triepels, R., Sengers, R., Trijbels, F., and Smeitink, J. (1998). cDNA sequence and chromosomal localization of the remaining three human nuclear encoded iron sulphur protein (IP) subunits of complex I: the human IP fraction is completed. Biochem. Biophys. Res. Commun. 247, 751-758.

Mientjes, E.J., Willemsen, R., Kirkpatrick, L.L., Nieuwenhuizen, I.M., Hoogeveen-Westerveld, M., Verweij, M., Reis, S., Bardoni, B., Hoogeveen, A.T., Oostra, B.A., et al. (2004). Fxr1 knockout mice show a striated muscle phenotype: implications for Fxr1p function in vivo. Hum. Mol. Genet. 13, 1291-1302.

Mila, M., Alvarez-Mora, M.I., Madrigal, I., and Rodriguez-Revenga, L. (2018). Fragile X syndrome: An overview and update of the FMR1 gene. Clin. Genet. 93, 197-205.

Mohr, S.E., Smith, J.A., Shamu, C.E., Neumüller, R.A., and Perrimon, N. (2014). RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15, 591-600.

Oostra, B.A., and Willemsen, R. (2009). FMR1: a gene with three faces. Biochim. Biophys. Acta 1790, 467-477.

Pagliarini, D.J., and Rutter, J. (2013). Hallmarks of a new era in mitochondrial biochemistry. Genes Dev. 27, 2615-2627.

Park, J., Lee, S.B., Lee, S., Kim, Y., Song, S., Kim, S., Bae, E., Kim, J., Shong, M., Kim, J.-M., et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161.

Rhein, V.F., Carroll, J., Ding, S., Fearnley, I.M., and Walker, J.E. (2013). NDUFAF7 methylates arginine 85 in the NDUFS2 subunit of human complex I. J. Biol. Chem. 288, 33016-33026.

Rodenburg, R.J. (2016). Mitochondrial complex I-linked disease. Biochim. Biophys. Acta 1857, 938-945.
Spencer, C.M., Serysheva, E., Yuva-Paylor, L.A., Oostra, B.A., Nelson, D.L., and Paylor, R. (2006). Exaggerated behavioral phenotypes in Fmr1/Fxr2 double knockout mice reveal a functional genetic interaction between Fragile X-related proteins. Hum. Mol. Genet. 15, 1984-1994.

Stroud, D.A., Surgenor, E.E., Formosa, L.E., Reljic, B., Frazier, A.E., Dibley, M.G., Osellame, L.D., Stait, T., Beilharz, T.H., Thorburn, D.R., et al. (2016). Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123-126.

Sugiana, C., Pagliarini, D.J., McKenzie, M., Kirby, D.M., Salemi, R., Abu-Amero, K.K., Dahl, H.-H.M., Hutchison, W.M., Vascotto, K.A., Smith, S.M., et al. (2008). Mutation of C20orf7 disrupts complex I assembly and causes lethal neonatal mitochondrial disease. Am. J. Hum. Genet. 83, 468-478.

Taylor, R.W., Pyle, A., Griffin, H., Blakely, E.L., Duff, J., He, L., Smertenko, T., Alston, C.L., Neeve, V.C., Best, A., et al. (2014). Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312, 68-77.

Weisz, E.D., Towheed, A., Monyak, R.E., Toth, M.S., Wallace, D.C., and Jongens, T.A. (2018). Loss of Drosophila FMRP leads to alterations in energy metabolism and mitochondrial function. Hum. Mol. Genet. 27, 95-106.

Yun, J., Puri, R., Yang, H., Lizzio, M.A., Wu, C., Sheng, Z.-H., and Guo, M. (2014). MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. Elife 3, e01958.

Zhu, J., Vinothkumar, K.R., and Hirst, J. (2016). Structure of mammalian respiratory complex I. Nature 536, 354-358.

Chapter 4: Conclusions and Future Directions

Garcia C.J., Varriano J., Tafader M., Gilani R. and Owusu-Ansah E.

Varriano J., Tafader M., and Gilani R. contributed to figure 4.1
Owusu-Ansah E. designed experiments
Garcia C.J. performed rest of figures and wrote the chapter

The Drosophila model has proven to be valuable for understanding the regulation of Cl biogenesis. In this body of work, we have established the mechanism of Cl assembly in Drosophila to help delineate the assembly process of Cl in mammals. We also utilized our model to identify new regulators of Cl biogenesis that led to the identification of dFMRP playing a role in the stabilization and activity of Cl . In this chapter, I will summarize our findings and discuss the results collectively, as well as suggest future directions.

New roles for accessory subunits

From our studies, we were able to address a big question in the Cl field: whether the accessory subunits are required for the biogenesis of Cl . We demonstrated that the knockdown of each Cl accessory subunit in the fly by RNAi resulted in CI misassembly and loss of activity (Garcia et al., 2017). Additionally, when these RNAi lines targeting the accessory subunits were crossed to a Gal4 that increases the expression of the RNAi during the pupae stage none of the flies' eclosed to adults suggesting that these accessory subunits are critical for Cl activity and subsequently the survival of the flies. Our results were in agreement with those of studies in mammalian cells that have also shown that knockout of these subunits resulted in dysfunctional Cl (Stroud et al., 2016). All together, these findings provided strong evidence that these accessory subunits are indispensable for Cl biogenesis and activity. Given the importance of the accessory subunits, it is worth questioning why these subunits are not a part of the core subunits, and the evolutionary purpose to understand their roles. One hypothesis could be that they evolved to act as sensors for Cl in higher-order organisms to respond to the changes in environment. Recent cyro-EM structures have uncovered cofactor binding sites on accessory subunits, which enable direct regulation of redox reactions, fatty acid synthesis and oxygen sensing. it would be interesting to investigate how these sites are regulated during different environmental stresses such as high fat diet, hypoxia, or aging (Dunham-Snary et al., 2019; Fiedorczuk et al., 2016; Letts et al., 2017; Zhu et al., 2016). In other words, understanding these binding sites may link how Cl and the accessory subunits adjust to environmental pressures. Another hypothesis is that the accessory subunits tightly regulate the catalytic core subunits. Cryo-EM structures in the ovine model have revealed that the coupling between electron transfer and proton translocation is tightly
controlled by accessory subunits, by regulating ubiquinone entry to the Q site (Fiedorczuk et al., 2016). Whether the accessory subunits play a role in regulation of NADH binding to FMN, proton pumping across the IMM, or the transition between active and inactive state of Cl , are all questions of interest. Although the mechanism of Cl activity has been studied for several decades, the accessory subunits have remained largely elusive. New technologies such as cryo-EM allow us to define the accessory subunits at the atomic resolution, and combining the new tools with a strong genetic model such as Drosophila we will be able to address these questions and further elucidate our understanding of the accessory subunits. To do this, the structure of Cl in the fly would need to be solved. Given the abundance of mitochondria in fly thoraxes and the availability of mammalian structures for reference this would be a simple but vital task to be resolved in the near future. Undoubtedly, the Drosophila model will shed light on the roles of the accessory subunits.

Using Drosophila to study human Cl diseases

Cl in Drosophila is an attractive model to understand human Cl diseases as it contains 42 of the 44 human Cl subunits and the assembly mechanism is very similar (Garcia et al., 2017). In vivo models that recapitulate the phenotypes of patients with mitochondria Cl deficiency are scarce due to the lethality in many Cl subunit knockout mice (Lee et al., 2019; Mimaki et al., 2012). Recently, models of Cl deficiency in the Drosophila were generated using the Gal4-UAS system to knockdown specific Cl proteins ubiquitously (Foriel et al., 2019). A broad range of phenotypes in the flies were scored, similar to the polymorphic phenotypes found in Cl deficiency patients (Foriel et al., 2019). This work is the first to arise from our foundational work from 2017 and would be the first of many Drosophila models to study the Cl deficiency in humans. The available genetic information and the advancing gene editing technology such as CRISPR/Cas9 will allow researchers to replicate the mutations found in patients and to simulate the phenotypes in Drosophila. Moreover, Drosophila models can be used to screen candidate drug molecules in a time- and cost-effective manner. While patient samples can be scarce, these models could foster our insight of the mitochondrial functions such as ATP production, oxygen consumption, OXPHOS activity assays, mitochondria morphology, and assembly of Cl .

Defining the mechanisms of discovered regulators of Cl biogenesis

Finding novel regulators of Cl or novel Cl -regulating roles of known proteins are important tasks to improve diagnosis of Cl deficiency in patients. To identify target proteins, we have developed a strategy to screen those that interact with the NDUFS3 subunit of CI . In addition, I also screened proteins that interacted with other subunits of Cl or assembly factors. These screens identified the fly proteins Sterol Carrier Protein X-related thiolase (Scpx) and Malic Enzyme b (Men-b) as potential regulators of CI (Figure 4.1L Lane 98 and Figure 4.1I Lane 56). Scpx is localized in the peroxisome and is important for peroxisomal beta oxidation by converting 3-ketoacyl-CoA into acyl-CoA, which can then be made into acylcarnitine for the mitochondria to use (Faust et al., 2012; Ruiz-Ramírez et al., 2015). One hypothesis linking Scpx to Cl is through the alterations in the NAD+/NADH ratio. NAD+ is required for converting 3-hydroxyacyl-CoA into 3-ketocyl-CoA. Therefore, if Scpx is absent, an accumulation of 3-ketoacyl-CoA would stall several reactions before the conversion of 3-hydroxyacyl-CoA into 3-ketocyl-CoA. The increased NAD+ would then lead to the mitochondria shutting down Cl . On another note, to my knowledge, this is the first time a link has been made between peroxisomal beta oxidation and CI (Fransen et al., 2017). Thus, it would be interesting to follow up what other parts along the pathway are involved with Cl deficiency. Menb is a protein localized in the mitochondria matrix that converts malate into pyruvate using the cofactor NAD+ (Hasan et al., 2015; Weeda, 1981). Similar to Scpx, the CI deficiency phenotype we see in flies without men-b is presumably due to a change in the NAD+/NADH ratio, and possibly its downstream effects on the TCA cycle.

Another screen I took part of in the lab was to test proteins found in the MitoCarta list to see if they regulate CI . The Mitocarta is a list of proteins that have been identified to localize to the mitochondria (Calvo et al., 2016; Pagliarini et al., 2008). In our screen, I identified that disrupting the NFU1 gene by RNAi causes a destabilization of the holoenzyme Cl (Figure 4.1A Lane 5). NFU1 is an iron-sulfur cluster scaffold protein for Cl , and this result suggests that iron-sulfur cluster may also contribute to the regulation of Cl biogenesis (Navarro-Sastre et al., 2011). Future studies analyzing other iron sulfur cluster scaffold proteins may help to us to elucidate the mechanism of when and how iron sulfur cluster affects the Cl biogenesis.

Calcium accumulation in the mitochondria is an essential part of cell activity. We tested if proteins known to regulate calcium signaling in the cell have any effect on Cl . Mitochondrial calcium uptake 1 (Micu1), a protein that regulates the calcium uptake into the matrix and a part of the mitochondria calcium uniporter complex (MCUC), caused Cl deficiency when knocked down by RNAi (Figure 4.1S Lane 98) (Antony et al., 2016; Marchi and Pinton, 2014). Interestingly, knocking down other subunits that are part of the MCUC did not result in a reduction or loss of activity of Cl . Future studies will be necessary to analyze the relationship of MICU1 and the regulation of CI .

Overall, I screened over ~500 different proteins to analyze their effects on Cl biogenesis. These included knocking down or overexpressing proteins that interact with Cl subunits or CIAFs, proteins from the MitoCarta, and calcium signaling proteins (Figure 4.1). As more and more proteins are identified to regulate Cl in the fly system, it will be important to test if the mammalian orthologues produce the same phenotype. All in all, these findings have allowed us to broaden our perspective on how the regulation of Cl is not confined to Cl , let alone the mitochondria, in terms of the genes involved (mtDNA and nDNA) and the space it takes place in (mitochondria and cytoplasm).

Alternative methods to identifying novel regulators of Cl biogenesis

Assembly factors are transient interactors to Cl subunits and assembly intermediates that assist with the assembly of the holoenzyme. As a first approach, we tagged the Cl subunits or CIAFs and cataloged their interacting proteins to test if they are potential assembly factors. Although this method provided a decent list of proteins to screen, transient interactors are overlooked. In the past decade, a method known as BiolD has proven to be reliable for the identification of transient protein-protein interactions (Roux et al., 2013). This method works by tagging a protein of interest to a biotin ligase, that when expressed in cells biotinylate any proteins in close proximity. In flies, this method is applied in the Gal4-UAS system by expressing the biotin ligase (BirA) enzyme from E. Coli with the protein of interest (Ramirez et al., 2015) (Figure 4.2). Another method to identify transient interactors with the Cl subunits and assembly intermediates would be to trap the assembly intermediates themselves and analyze the proteins bound to it. We have shown that disrupting the subunits of Cl can result in the accumulation of
assembly intermediates (Garcia et al., 2017). It would be interesting to isolate these accumulating assembly intermediate and visualize it by cryo-EM to grasp the bound and interacting proteins, and to test their potentials as regulators of Cl biogenesis.

Elucidating mechanisms of supercomplexes in Drosophila

. A growing body of literature in supercomplexes reflect the interest and the importance to elucidate the physiological function of these massive complexes as well as their regulation (Greggio et al., 2017; Letts and Sazanov, 2017; Letts et al., 2017, 2019; Signes and Fernandez-Vizarra, 2018). Several studies have suggested that they are involved in stabilizing the individual complexes, providing a more efficient transfer of electrons between the complexes, and preventing ROS formation (Milenkovic et al., 2017). Mammalian CI is primarily found in supercomplexes with either complex III (CIII) or CIII-complex IV. In flies, we have shown that the $\mathrm{CI}-\mathrm{ClII}$ supercomplex is present and can be analyzed by BN-PAGE. We have also confirmed that NDUFA11 is important for the stabilization of the CI-CIII supercomplex, as reported in mammalian models (Letts and Sazanov, 2017; Letts et al., 2017). Future studies should test the different components of CI and CIII under different physiological conditions in the context of supercomplex stabilization. Thus far, only one regulator of supercomplexes, super complex assembly factor 1 (SCAF1), has been discovered (Cogliati et al., 2016). From our screens, we identified that knockdown of CP1 causes a reduction in the CI-CIII supercomplex (Figure 4.1L Lane 103). CP1 is a cysteine proteinase that is involved in the degradation of proteins. Future studies to elucidate how CP 1 regulates the $\mathrm{Cl}-\mathrm{ClII}$ supercomplex will be needed. Lastly, studies have revealed that changes in physiological conditions such as exercise can alter supercomplex formation in in human skeletal muscle (Greggio et al., 2017). Drosophila model is suitable for testing various conditions (i.e. diet, aging) and would be useful in understanding the physiological roles of supercomplexes.

Concluding Remarks

In conclusion, recent advancements in technology and the addition of new models will help further our knowledge of Cl . As the field moves forward in understanding the formation and function of the holoenzyme, it is now an exciting time to start exploring the possibility of Cl beyond the main contributor of OXPHOS but as a central mediator of the metabolic processes in general, happening inside and outside the mitochondria. This not only includes advancing our knowledge of Cl as one enzyme, but also as a structure that is made up 44 different pieces, with each piece potentially serving as a signaling molecule. Additionally, it will be important to increase our understanding of the transient interactors of Cl and address how Cl is regulated under different environmental pressures. In closing, as we begin to shed light on the role of Cl as a regulator of metabolism in the mitochondria, this will hopefully help to delineate the role of mitochondria in several chronic diseases.

Materials and Methods

Drosophila Strains and Genetics.

The following fly stocks were used: y w; Dmef2-Gal4 ; w; mhc-Gal4 ; w; Ubi-Gal4 and w; myo1a-Gal4. W1118 were used as wildtype (wt) controls. Stocks that were screened were ordered from the Bloomington Drosophila Stock Center (https://bdsc.indiana.edu/). The Bloomington stock number can be found in table 4.1 for each respective protein. UAS-BirA and UAS-Ubi6-BirA were ordered from the Bloomington Drosophila Stock Center (https://bdsc.indiana.edu/.

Mitochondria Purification.

Mitochondrial purification was performed essentially as described by Rera et al 2012 (Rera et al., 2011). Thoraxes were dissected and gently crushed with a pestle homogenizer in $500 \mu \mathrm{l}$ of pre-chilled mitochondrial isolation buffer containing 250 mM sucrose and 0.15 mM MgCl 2 in 10 mM Tris. HCl , pH 7.4 , on ice. After two rounds of centrifugation at 500 g for 5 minutes at $4^{\circ} \mathrm{C}$ to remove insoluble material, the supernatant was recovered and centrifuged at 5000 g for 5 minutes at $4^{\circ} \mathrm{C}$. The pellet which is enriched for mitochondria was washed twice in the mitochondrial isolation buffer and stored at $-80^{\circ} \mathrm{C}$ until further processing.

Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE).

BN-PAGE was performed using NativePAGE gels from Life Technologies, following the manufacturer's instructions. Essentially, mitochondria were suspended in native PAGE sample buffer (Life Technologies) supplemented with 1% digitonin and protease inhibitors, and incubated on ice for 20 minutes. Following centrifugation at $20,000 \mathrm{~g}$ for 30 minutes, the supernatant was recovered, mixed with the G-250 sample additive (Life Technologies) and Native PAGE Sample Buffer (Life Technologies), and loaded onto 3-12\% pre-cast Bis-Tris Native PAGE gels (Life Technologies). The NativeMark Protein standard (Life Technologies), run together with the samples, was used to estimate the molecular weight of the protein complexes. Electrophoreses was performed using the Native PAGE Running buffer (as anode buffer, from

Life technologies) and the Native PAGE Running buffer containing 0.4% Coomassie G-250 (cathode buffer). Gels were stained with the Novex Colloidal Blue staining kit (Life Technologies) to reveal the protein complexes.

Silver Staining.

Silver staining of native gels was performed with the SilverXpress staining kit from Life Technologies, following the manufacturer's protocol.

Immunoblotting
For immunoblotting of samples in native gels, protein complexes from native gels were transferred to PVDF membranes (BIORAD). For immunoblotting of samples in whole tissue lysates, thoraxes were homogenized in RIPA buffer ($150 \mathrm{mM} \mathrm{NaCl}, 1 \%$ Triton X-100, 0.5% Sodium Deoxycholate, 0.1% SDS, 50 mM Tris HCl , pH 8) supplemented with Halt protease inhibitors (Pierce), resolved on mini-PROTEAN TGX stain-free gels from BIO-RAD, and transferred to PVDF membranes. In both instances (native and non-native gels), the membrane was subsequently blocked in 5% (w/v) non-fat dry milk in Tris-buffered saline (TBS) for 30 minutes, and incubated in the appropriate primary antibody dissolved in 2% BSA, 0.1% Tween 20 in TBS (TBST) overnight at $4^{\circ} \mathrm{C}$. Following the overnight incubation, the blot was rinsed 4 X 10 minutes in 0.1% TBST, blocked for 30 minutes in $5 \%(\mathrm{w} / \mathrm{v})$ non-fat dry milk in TBST and incubated for two hours with the appropriate HRP-conjugated secondary antibody dissolved in 2\% BSA, 0.1% Tween 20 in TBS (TBST). After incubation in the secondary antibody, samples were rinsed 4 X 10 minutes in 0.1% TBST. Immunoreactivity was detected by enhanced chemiluminescence (ECL) and analyzed by a ChemiDoc Gel imaging system from BIO-RAD. Antibodies used were anti-streptavidin to detect biotinylated proteins.

Figure 4.1: Screens performed to Identify Novel Regulators of Complex I Biogenesis
(A-E) RNAi Knockdown of MitoCarta Proteins Screen; (F-L) RNAi Knockdown of Proteins that interacted with dNDUFS3, dFoxred1, and dNDUFAF7 after knockdown of dNDUFS5 and lon protease Screen; (M-U) RNAi knockdown of Calcium Signaling Proteins Screen; (V-GG) UAS-Protein Overexpression Screen. We isolated mitochondria from 10 thoraxes, permeabilized their membranes in 1% digitonin and performed BNPAGE. The complexes were resolved by either coomassie- or silver staining. Each lane is numbered and corresponds to the RNAi's ordered from the Bloomington Stock Center found in Table 4.1. CI-CIII denotes the complex l-complex III supecomplex, CV2 denotes a dimer of complex V respectively, CI denotes complex I, CV denotes complex V, CIII denotes complex III, CIV denotes complex IV, and CII denotes complex II.

RNAi Knockdown - MitoCarta Protein Screen

RNAi Knockdown of Proteins that interacted with dNDUFS3, dFoxred1, and dDUFAF7 after knockdown of dNDUFS5 and lon protease

F

J

G

K

RNAi Knockdown of Proteins that interacted with dNDUFS3, dFoxred1, and dNDUFAF7 after knockdown of dNDUFS5 and lon protease

RNAi Knockdown of Calcium Signaling Proteins

RNAi Knockdown of Calcium Signaling Proteins

S

T

UAS-Protein Overexpression

W
$\begin{array}{llllllllllll}16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 \\ 28 & 29 & 30\end{array}$

$c \mathrm{cv2}$
$c \mathrm{c}$
cv
c

cv
cIII
civ
aI

Y

AA

UAS-Protein Overexpression

FF

EE

CC

Figure 4.2: The potential to use BioID in the Drosophila gut and thorax.
(A) SDS-PAGE of Drosophila gut samples to measure the amount of biotinylated proteins. Myo1aGal4<W1118 was used as a control. Two different UAS-BirA lines were used to control expressed under the gut driver Myo1aGal4 for non-specific proteins that BirA may biotinylate. Myo1aGal4<UAS-Ubi6BirA is used to identify proteins that were biotinylated by BirA since they came in close proximity to Ubi6.
(B) SDS-PAGE of Drosophila flight thoraxes to measure the amount of biotinylated proteins. Myo1aGal4<W1118 was used as a control. Two different UAS-BirA lines were used to control expressed under the gut driver Myo1aGal4 for non-specific proteins that BirA may biotinylate. Myo1aGal4<UAS-Ubi6BirA is used to identify proteins that were biotinylated by BirA since they came in close proximity to Ubi6.

A

Anti-Streptavidin

B

Anti-Streptavidin

Table 4.1: Table for Figure 4.1 listing the RNAi's that were screened
Column 1: The screen type for each RNAi
Column 2: The number that corresponds with the lane numbered in figure 3.3.
Column 3: The Bloomington Stock ordered.
Column 4: The Gal4 used to express the UAS-RNAi lines in Drosophila flight muscles.
Column 5: X denotes if it is a hit
Column 6: Protein name is listed if identified as a hit.

Screen Type	Lane Number	Bloomington Stock \#	Gal4	Hit	Protein
MitoCarta	1	42595	Dmef2		
MitoCarta	2	43155	Dmef2		
MitoCarta	3	52922	Dmef2		
MitoCarta	4	42591	Dmef2		
MitoCarta	5	52907	Dmef2	X	NFU1
MitoCarta	6	52920	Dmef2		
MitoCarta	7	64025	Dmef2		
MitoCarta	8	57572	Dmef2		
MitoCarta	9	43245	Dmef2		
MitoCarta	10	36671	Dmef2		
MitoCarta	11	64489	Dmef2		
MitoCarta	12	64564	Dmef2		
MitoCarta	13	67030	Dmef2		
MitoCarta	14	57557	Dmef2		
MitoCarta	15	67425	Dmef2		
MitoCarta	16	67585	Dmef2		
MitoCarta	17	43297	Dmef2		
MitoCarta	18	43278	Dmef2		
MitoCarta	19	60133	Dmef2		
MitoCarta	20	60360	Dmef2		
MitoCarta	21	60404	Dmef2		
MitoCarta	22	60475	Dmef2		
MitoCarta	23	60873	Dmef2	X	NDUFV2 (internal control)
MitoCarta	24	62272	Dmef2		
MitoCarta	25	62373	Dmef2		
MitoCarta	26	62455	Dmef2		
MitoCarta	27	56864	Dmef2		
MitoCarta	28	63035	Dmef2	X	NDUFV2
MitoCarta	29	56880	Dmef2		
MitoCarta	30	56885	Dmef2		
MitoCarta	31	34971	Dmef2	X	PRDX2
MitoCarta	32	44037	Dmef2	X	NFS1
MitoCarta	33	44429	Dmef2		
MitoCarta	34	34974	Dmef2		
MitoCarta	35	26007	Dmef2		
MitoCarta	36	41857	Dmef2		
MitoCarta	37	26007	Dmef2		
MitoCarta	38	40936	Dmef2		
MitoCarta	39	44475	Dmef2		
MitoCarta	40	36871	Dmef2		
MitoCarta	41	36740	Dmef2		
MitoCarta	42	36911	Dmef2	X	COQ10A
MitoCarta	43	34588	Dmef2	X	MED12L
MitoCarta	44	25886	Dmef2		
MitoCarta	45	28664	Dmef2		
MitoCarta	46	34028	Dmef2		
MitoCarta	47	31157	Dmef2	X	MFN2
MitoCarta	48	31074	Dmef2	X	BCS1L
MitoCarta	49	38332	Dmef2		
MitoCarta	50	31075	Dmef2	X	BCS1L
MitoCarta	51	29573	Dmef2		
MitoCarta	52	52917	Dmef2		
MitoCarta	53	30500	Dmef2		

MitoCarta	54	31077	Dmef2		
MitoCarta	55	58074	Dmef2		
MitoCarta	56	28294	Dmef2	X	MTCH2
MitoCarta	57	58148	Dmef2		
MitoCarta	58	60107	Dmef2		
MitoCarta	59	58084	Dmef2		
MitoCarta	60	28635	Dmef2		
MitoCarta	61	56043	Dmef2		
MitoCarta	62	27725	Dmef2		
MitoCarta	63	31076	Dmef2		
MitoCarta	64	51900	Dmef2		
MitoCarta	65	52989	Dmef2		
MitoCarta	66	44512	Dmef2		
MitoCarta	67	51876	Dmef2		
MitoCarta	68	55146	Dmef2	X	FECH
MitoCarta	69	51798	Dmef2		
MitoCarta	70	53355	Dmef2		
MitoCarta	71	53287	Dmef2		
MitoCarta	72	50939	Dmef2	X	SUCLG2
MitoCarta	73	53325	Dmef2		
MitoCarta	74	54465	Dmef2		
MitoCarta	75	56858	Dmef2	X	ACAT2
FS5/Lon KD Interactors	1	52913	Dmef2		
FS5/Lon KD Interactors	2	55168	Dmef2		
FS5/Lon KD Interactors	3	18121	Dmef2		
FS5/Lon KD Interactors	4	40874	Dmef2		
FS5/Lon KD Interactors	5	38926	Dmef2		
FS5/Lon KD Interactors	6	35608	Dmef2		
FS5/Lon KD Interactors	7	36071	Dmef2		
FS5/Lon KD Interactors	8	35348	Dmef2		
FS5/Lon KD Interactors	9	35486	Dmef2		
FS5/Lon KD Interactors	10	33765	Dmef2		
FS5/Lon KD Interactors	11	33696	Dmef2		
FS5/Lon KD Interactors	12	33950	Dmef2		
FS5/Lon KD Interactors	13	31100	Dmef2		
FS5/Lon KD Interactors	14	34936	Dmef2		
FS5/Lon KD Interactors	15	52907	Dmef2	X	NFU1
FS5/Lon KD Interactors	16	31237	Dmef2		
FS5/Lon KD Interactors	17	31223	Dmef2		
FS5/Lon KD Interactors	18	36775	Dmef2		
FS5/Lon KD Interactors	19	36072	Dmef2		
FS5/Lon KD Interactors	20	38256	Dmef2		
FS5/Lon KD Interactors	21	36820	Dmef2		
FS5/Lon KD Interactors	22	34729	Dmef2		
FS5/Lon KD Interactors	23	34554	Dmef2		
FS5/Lon KD Interactors	24	33976	Dmef2		
FS5/Lon KD Interactors	25	31240	Dmef2	X	NDUFAF5
FS5/Lon KD Interactors	26	32405	Dmef2		
FS5/Lon KD Interactors	27	31222	Dmef2		
FS5/Lon KD Interactors	28	31102	Dmef2	X	NDUFAF5
FS5/Lon KD Interactors	29	33001	Dmef2		
FS5/Lon KD Interactors	30	35034	Dmef2		
FS5/Lon KD Interactors	31	51807	Dmef2		

FS5/Lon KD Interactors	32	51797	Dmef2		
FS5/Lon KD Interactors	33	51785	Dmef2		
FS5/Lon KD Interactors	34	51783	Dmef2		
FS5/Lon KD Interactors	35	51749	Dmef2		
FS5/Lon KD Interactors	36	51714	Dmef2		
FS5/Lon KD Interactors	37	51359	Dmef2		
FS5/Lon KD Interactors	38	44512	Dmef2		
FS5/Lon KD Interactors	39	44475	Dmef2		
FS5/Lon KD Interactors	40	51899	Dmef2		
FS5/Lon KD Interactors	41	53894	Dmef2		
FS5/Lon KD Interactors	42	53334	Dmef2		
FS5/Lon KD Interactors	43	51879	Dmef2	X	NDUFAF5
FS5/Lon KD Interactors	44	50555	Dmef2		
FS5/Lon KD Interactors	45	51157	Dmef2	X	CHCHD3
FS5/Lon KD Interactors	46	57843	Dmef2		
FS5/Lon KD Interactors	47	55323	Dmef2		
FS5/Lon KD Interactors	48	38332	Dmef2		
FS5/Lon KD Interactors	49	40874	Dmef2		
FS5/Lon KD Interactors	50	41625	Dmef2		
FS5/Lon KD Interactors	51	57252	Dmef2		
FS5/Lon KD Interactors	52	55347	Dmef2		
FS5/Lon KD Interactors	53	41698	Dmef2		
FS5/Lon KD Interactors	54	42007	Dmef2		
FS5/Lon KD Interactors	55	57407	Dmef2		
FS5/Lon KD Interactors	56	57489	Dmef2	X	Men-b
FS5/Lon KD Interactors	57	42005	Dmef2		
FS5/Lon KD Interactors	58	43172	Dmef2		
FS5/Lon KD Interactors	59	35142	Dmef2		
FS5/Lon KD Interactors	60	57736	Dmef2		
FS5/Lon KD Interactors	61	61183	Dmef2		
FS5/Lon KD Interactors	62	62362	Dmef2	X	MARS2
FS5/Lon KD Interactors	63	64489	Dmef2		
FS5/Lon KD Interactors	64	64614	Dmef2		
FS5/Lon KD Interactors	65	64919	Dmef2		
FS5/Lon KD Interactors	66	65243	Dmef2		
FS5/Lon KD Interactors	67	66328	Dmef2		
FS5/Lon KD Interactors	68	65215	Dmef2		
FS5/Lon KD Interactors	69	66929	Dmef2		
FS5/Lon KD Interactors	70	28968	Dmef2		
FS5/Lon KD Interactors	71	28930	Dmef2		
FS5/Lon KD Interactors	72	28749	Dmef2		
FS5/Lon KD Interactors	73	28317	Dmef2		
FS5/Lon KD Interactors	74	27682	Dmef2		
FS5/Lon KD Interactors	75	27650	Dmef2		
FS5/Lon KD Interactors	76	25953	Dmef2		
FS5/Lon KD Interactors	77	67601	Dmef2		
FS5/Lon KD Interactors	78	67003	Dmef2		
FS5/Lon KD Interactors	79	29399	Dmef2		
FS5/Lon KD Interactors	80	31150	Dmef2		
FS5/Lon KD Interactors	81	31205	Dmef2		
FS5/Lon KD Interactors	82	31660	Dmef2		
FS5/Lon KD Interactors	83	31470	Dmef2		
FS5/Lon KD Interactors	84	31666	Dmef2		
FS5/Lon KD Interactors	85	31661	Dmef2		

FS5/Lon KD Interactors	86	32934	Dmef2	x	RELA
FS5/Lon KD Interactors	87	31966	Dmef2		
FS5/Lon KD Interactors	88	34347	Dmef2	X	ADSL
FS5/Lon KD Interactors	89	34346	Dmef2		
FS5/Lon KD Interactors	90	34913	Dmef2		
FS5/Lon KD Interactors	91	53894	Dmef2		
FS5/Lon KD Interactors	92	31660	Dmef2		
FS5/Lon KD Interactors	93	51479	Dmef2	X	ScpX
FS5/Lon KD Interactors	94	31205	Dmef2		
FS5/Lon KD Interactors	95	28317	Dmef2		
FS5/Lon KD Interactors	96	43172	Dmef2		
FS5/Lon KD Interactors	97	38332	Dmef2		
FS5/Lon KD Interactors	98	36691	Dmef2	X	Dumpy
FS5/Lon KD Interactors	99	51899	Dmef2		
FS5/Lon KD Interactors	100	31100	Dmef2		
FS5/Lon KD Interactors	101	52913	Dmef2		
FS5/Lon KD Interactors	102	31666	Dmef2		
FS5/Lon KD Interactors	103	41939	Dmef2	X	Cp1
Calcium Signaling Proteins	1	W1118	Mhc		
Calcium Signaling Proteins	2	25830	Mhc		
Calcium Signaling Proteins	3	25928	Mhc		
Calcium Signaling Proteins	4	26012	Mhc		
Calcium Signaling Proteins	5	26172	Mhc		
Calcium Signaling Proteins	6	26251	Mhc		
Calcium Signaling Proteins	7	27053	Mhc		
Calcium Signaling Proteins	8	58971	Mhc		
Calcium Signaling Proteins	9	27244	Mhc		
Calcium Signaling Proteins	10	35362	Mhc		
Calcium Signaling Proteins	11	37502	Mhc		
Calcium Signaling Proteins	12	39029	Mhc		
Calcium Signaling Proteins	13	28919	Mhc		
Calcium Signaling Proteins	14	29401	Mhc		
Calcium Signaling Proteins	15	29445	Mhc		
Calcium Signaling Proteins	16	W1118	Mhc		
Calcium Signaling Proteins	17	29662	Mhc		
Calcium Signaling Proteins	18	29663	Mhc		
Calcium Signaling Proteins	19	29665	Mhc		
Calcium Signaling Proteins	20	29666	Mhc		
Calcium Signaling Proteins	21	58972	Mhc		
Calcium Signaling Proteins	22	31540	Mhc		
Calcium Signaling Proteins	23	58973	Mhc		
Calcium Signaling Proteins	24	31695	Mhc		
Calcium Signaling Proteins	25	44581	Mhc		
Calcium Signaling Proteins	26	64003	Mhc		
Calcium Signaling Proteins	27	58974	Mhc		
Calcium Signaling Proteins	28	34609	Mhc		
Calcium Signaling Proteins	29	35330	Mhc		
Calcium Signaling Proteins	30	41900	Mhc		
Calcium Signaling Proteins	31	W1118	Mhc		
Calcium Signaling Proteins	32	25830	Mhc		
Calcium Signaling Proteins	33	25928	Mhc		
Calcium Signaling Proteins	34	26012	Mhc		
Calcium Signaling Proteins	35	26172	Mhc		

Calcium Signaling Proteins	90	27053	Dmef2		
Calcium Signaling Proteins	91	27244	Dmef2		
Calcium Signaling Proteins	92	35362	Dmef2		
Calcium Signaling Proteins	93	29666	Dmef2		
Calcium Signaling Proteins	94	58972	Dmef2		
Calcium Signaling Proteins	95	58973	Dmef2		
Calcium Signaling Proteins	96	63025	Dmef2		
Calcium Signaling Proteins	97	53893	Dmef2		
Calcium Signaling Proteins	98	41909	Dmef2	X	Micu1
Calcium Signaling Proteins	99	W1118	Daughterless		
Calcium Signaling Proteins	100	29665	Daughterless		
Calcium Signaling Proteins	101	25839	Daughterless		
Calcium Signaling Proteins	102	28919	Daughterless		
Calcium Signaling Proteins	103	25928	Daughterless		
Calcium Signaling Proteins	104	33413	Daughterless		
Calcium Signaling Proteins	105	31549	Daughterless		
Calcium Signaling Proteins	106	31695	Daughterless		
Calcium Signaling Proteins	107	29445	Daughterless		
Calcium Signaling Proteins	108	W1118	Dmef2;tub80		
Calcium Signaling Proteins	109	38919	Dmef2;tub80		
Calcium Signaling Proteins	110	W1118	Dmef2		
Calcium Signaling Proteins	111	41909	Dmef2	X	Micu1
Calcium Signaling Proteins	112	CG4495	Dmef2		
Calcium Signaling Proteins	113	W1118	Dmef2;tub80		
Calcium Signaling Proteins	114	31540	Dmef2;tub80		
Calcium Signaling Proteins	115	31695	Dmef2;tub80		
Calcium Signaling Proteins	116	29445	Dmef2;tub80		
Calcium Signaling Proteins	117	25928	Dmef2;tub80		
Calcium Signaling Proteins	118	58971	Dmef2;tub80		
Calcium Signaling Proteins	119	28919	Dmef2;tub80		
Calcium Signaling Proteins	120	44581	Dmef2;tub80		
Calcium Signaling Proteins	121	25830	Dmef2;tub80		
Calcium Signaling Proteins	122	64003	Dmef2;tub80		
Calcium Signaling Proteins	123	34609	Dmef2;tub80		
Calcium Signaling Proteins	124	32404	Dmef2;tub80		
Calcium Signaling Proteins	125	33923	Dmef2;tub80		
Calcium Signaling Proteins	126	33413	Dmef2;tub80		
Calcium Signaling Proteins	127	29664	Dmef2;tub80		
UAS-Protein Overexpression	1	W1118	Mhc		
UAS-Protein Overexpression	2	63079	Mhc		
UAS-Protein Overexpression	3	53753	Mhc		
UAS-Protein Overexpression	4	55073	Mhc		
UAS-Protein Overexpression	5	56495	Mhc		
UAS-Protein Overexpression	6	56752	Mhc		
UAS-Protein Overexpression	7	51636	Mhc		
UAS-Protein Overexpression	8	58460	Mhc		
UAS-Protein Overexpression	9	57355	Mhc		
UAS-Protein Overexpression	10	59085	Mhc		
UAS-Protein Overexpression	11	59055	Mhc		
UAS-Protein Overexpression	12	32330	Mhc		
UAS-Protein Overexpression	13	32110	Mhc		
UAS-Protein Overexpression	14	51380	Mhc	X	br
UAS-Protein Overexpression	15	53716	Mhc		

UAS-Protein Overexpression	16	W1118	Mhc		
UAS-Protein Overexpression	17	58723	Mhc		
UAS-Protein Overexpression	18	63058	Mhc		
UAS-Protein Overexpression	19	59843	Mhc		
UAS-Protein Overexpression	20	63229	Mhc		
UAS-Protein Overexpression	21	51671	Mhc		
UAS-Protein Overexpression	22	53758	Mhc		
UAS-Protein Overexpression	23	58357	Mhc	X	debcl
UAS-Protein Overexpression	24	59844	Mhc		
UAS-Protein Overexpression	25	63050	Mhc		
UAS-Protein Overexpression	26	51668	Mhc		
UAS-Protein Overexpression	27	34048	Mhc		
UAS-Protein Overexpression	28	56826	Mhc	X	dbx
UAS-Protein Overexpression	29	59053	Mhc		
UAS-Protein Overexpression	30	57336	Mhc		
UAS-Protein Overexpression	31	W1118	Mhc		
UAS-Protein Overexpression	32	63150	Mhc		
UAS-Protein Overexpression	33	53756	Mhc		
UAS-Protein Overexpression	34	63216	Mhc		
UAS-Protein Overexpression	35	58877	Mhc		
UAS-Protein Overexpression	36	63059	Mhc		
UAS-Protein Overexpression	37	44386	Mhc		
UAS-Protein Overexpression	38	44597	Mhc		
UAS-Protein Overexpression	39	43645	Mhc		
UAS-Protein Overexpression	40	53760	Mhc		
UAS-Protein Overexpression	41	44224	Mhc	X	dsx
UAS-Protein Overexpression	42	44609	Mhc		
UAS-Protein Overexpression	43	44600	Mhc		
UAS-Protein Overexpression	44	56197	Mhc	X	dronc
UAS-Protein Overexpression	45	W1118	Mhc		
UAS-Protein Overexpression	46	39741	Mhc		
UAS-Protein Overexpression	47	39749	Mhc		
UAS-Protein Overexpression	48	39706	Mhc		
UAS-Protein Overexpression	49	59048	Mhc		
UAS-Protein Overexpression	50	58992	Mhc		
UAS-Protein Overexpression	51	42222	Mhc		
UAS-Protein Overexpression	52	44237	Mhc		
UAS-Protein Overexpression	53	41802	Mhc		
UAS-Protein Overexpression	54	9582	Mhc	X	sima
UAS-Protein Overexpression	55	39713	Mhc		
UAS-Protein Overexpression	56	51190	Mhc	X	br
UAS-Protein Overexpression	57	39743	Mhc		
UAS-Protein Overexpression	58	impL2	Mhc		
UAS-Protein Overexpression	59	wimp	Mhc		
UAS-Protein Overexpression	60	W1118	Mhc		
UAS-Protein Overexpression	61	42227	Mhc		
UAS-Protein Overexpression	62	50891	Mhc		
UAS-Protein Overexpression	63	44234	Mhc		
UAS-Protein Overexpression	64	39703	Mhc		
UAS-Protein Overexpression	65	41791	Mhc		
UAS-Protein Overexpression	66	63077	Mhc		
UAS-Protein Overexpression	67	63052	Mhc		
UAS-Protein Overexpression	68	56766	Mhc		
UAS-Protein Overexpression	69	55067	Mhc		

UAS-Protein Overexpression	70	51645	Mhc		
UAS-Protein Overexpression	71	63078	Mhc		
UAS-Protein Overexpression	72	58787	Mhc		
UAS-Protein Overexpression	73	55046	Mhc		
UAS-Protein Overexpression	74	53750	Mhc		
UAS-Protein Overexpression	75	W1118	Mhc		
UAS-Protein Overexpression	76	58359	Mhc		
UAS-Protein Overexpression	77	59050	Mhc		
UAS-Protein Overexpression	78	56769	Mhc		
UAS-Protein Overexpression	79	32570	Mhc		
UAS-Protein Overexpression	80	58712	Mhc		
UAS-Protein Overexpression	81	38410	Mhc		
UAS-Protein Overexpression	82	34490	Mhc		
UAS-Protein Overexpression	83	37291	Mhc	X	da
UAS-Protein Overexpression	84	36496	Mhc	X	FRT
UAS-Protein Overexpression	85	33911	Mhc	X	ND-75 RNAi (internal control)
UAS-Protein Overexpression	86	37540	Mhc		
UAS-Protein Overexpression	87	32572	Mhc	X	crebA
UAS-Protein Overexpression	88	33603	Mhc		
UAS-Protein Overexpression	89	W1118	Mhc		
UAS-Protein Overexpression	90	9453	Mhc		
UAS-Protein Overexpression	91	8710	Mhc		
UAS-Protein Overexpression	92	8711	Mhc		
UAS-Protein Overexpression	93	27324	Mhc		
UAS-Protein Overexpression	94	23639	Mhc	X	ab
UAS-Protein Overexpression	95	23878	Mhc		
UAS-Protein Overexpression	96	26681	Mhc		
UAS-Protein Overexpression	97	9895	Mhc		
UAS-Protein Overexpression	98	26698	Mhc		
UAS-Protein Overexpression	99	9233	Mhc		
UAS-Protein Overexpression	100	9929	Mhc	X	exex
UAS-Protein Overexpression	101	9522	Mhc		
UAS-Protein Overexpression	102	W1118	Mhc		
UAS-Protein Overexpression	103	28810	Mhc		
UAS-Protein Overexpression	104	23143	Mhc	X	gr63a
UAS-Protein Overexpression	105	9160	Mhc		
UAS-Protein Overexpression	106	9533	Mhc	X	egfr
UAS-Protein Overexpression	107	9764	Mhc		
UAS-Protein Overexpression	108	26675	Mhc		
UAS-Protein Overexpression	109	8377	Mhc		
UAS-Protein Overexpression	110	8784	Mhc	X	DCTN2
UAS-Protein Overexpression	111	6931	Mhc	X	FMR1
UAS-Protein Overexpression	112	5790	Mhc	X	aop
UAS-Protein Overexpression	113	8384	Mhc		
UAS-Protein Overexpression	114	8380	Mhc		
UAS-Protein Overexpression	115	W1118	Mhc		
UAS-Protein Overexpression	116	8202	Mhc		
UAS-Protein Overexpression	117	24465	Mhc		
UAS-Protein Overexpression	118	913	Mhc	X	Abd-B
UAS-Protein Overexpression	119	9417	Mhc		
UAS-Protein Overexpression	120	6631	Mhc		
UAS-Protein Overexpression	121	4774	Mhc	X	E2f1
UAS-Protein Overexpression	122	26269	Mhc		
UAS-Protein Overexpression	123	36318	Mhc		

UAS-Protein Overexpression	124	24504	Mhc		
UAS-Protein Overexpression	125	9524	Mhc		
UAS-Protein Overexpression	126	26881	Mhc		
UAS-Protein Overexpression	127	9534	Mhc		
UAS-Protein Overexpression	128	7073	Mhc		
UAS-Protein Overexpression	129	26679	Mhc		
UAS-Protein Overexpression	130	W1118	Mhc		
UAS-Protein Overexpression	131	7086	Mhc		
UAS-Protein Overexpression	132	6492	Mhc		
UAS-Protein Overexpression	133	7221	Mhc	X	cbz
UAS-Protein Overexpression	134	5364	Mhc	X	egfr
UAS-Protein Overexpression	135	6846	Mhc	X	disco
UAS-Protein Overexpression	136	6705	Mhc		
UAS-Protein Overexpression	137	29962	Mhc		
UAS-Protein Overexpression	138	7107	Mhc		
UAS-Protein Overexpression	139	7220	Mhc		
UAS-Protein Overexpression	140	29663	Mhc		
UAS-Protein Overexpression	141	30553	Mhc		
UAS-Protein Overexpression	142	25102	Mhc		
UAS-Protein Overexpression	143	5368	Mhc		
UAS-Protein Overexpression	144	W1118	Mhc		
UAS-Protein Overexpression	145	8553	Mhc		
UAS-Protein Overexpression	146	29008	Mhc		
UAS-Protein Overexpression	147	8861	Mhc		
UAS-Protein Overexpression	148	39679	Mhc		
UAS-Protein Overexpression	149	26878	Mhc		
UAS-Protein Overexpression	150	8566	Mhc		
UAS-Protein Overexpression	151	6489	Mhc		
UAS-Protein Overexpression	152	6847	Mhc		
UAS-Protein Overexpression	153	32105	Mhc		
UAS-Protein Overexpression	154	6490	Mhc		
UAS-Protein Overexpression	155	26649	Mhc		
UAS-Protein Overexpression	156	6809	Mhc		
UAS-Protein Overexpression	157	7219	Mhc	X	crebB
UAS-Protein Overexpression	158	W1118	Mhc		
UAS-Protein Overexpression	159	6468	Mhc		
UAS-Protein Overexpression	160	9319	Mhc	X	d
UAS-Protein Overexpression	161	59052	Mhc	X	CG33156
UAS-Protein Overexpression	162	36325	Mhc		
UAS-Protein Overexpression	163	56821	Mhc	X	fd59A
UAS-Protein Overexpression	164	8187	Mhc		
UAS-Protein Overexpression	165	27647	Mhc		
UAS-Protein Overexpression	166	5397	Mhc		
UAS-Protein Overexpression	167	25080	Mhc	X	Gr64a

References

Antony, A.N., Paillard, M., Moffat, C., Juskeviciute, E., Correnti, J., Bolon, B., Rubin, E., Csordás, G., Seifert, E.L., Hoek, J.B., et al. (2016). MICU1 regulation of mitochondrial $\mathrm{Ca}(2+)$ uptake dictates survival and tissue regeneration. Nat. Commun. 7, 10955.

Calvo, S.E., Clauser, K.R., and Mootha, V.K. (2016). MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251-7.

Cogliati, S., Calvo, E., Loureiro, M., Guaras, A.M., Nieto-Arellano, R., Garcia-Poyatos, C., Ezkurdia, I., Mercader, N., Vázquez, J., and Enriquez, J.A. (2016). Mechanism of super-assembly of respiratory complexes III and IV. Nature 539, 579-582.

Dunham-Snary, K.J., Wu, D., Potus, F., Sykes, E.A., Mewburn, J.D., Charles, R.L., Eaton, P., Sultanian, R.A., and Archer, S.L. (2019). Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Circ. Res. 124, 1727-1746.

Faust, J.E., Verma, A., Peng, C., and McNew, J.A. (2012). An inventory of peroxisomal proteins and pathways in Drosophila melanogaster. Traffic 13, 1378-1392.

Fiedorczuk, K., Letts, J.A., Degliesposti, G., Kaszuba, K., Skehel, M., and Sazanov, L.A. (2016). Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406-410.

Foriel, S., Renkema, G.H., Lasarzewski, Y., Berkhout, J., Rodenburg, R.J., Smeitink, J.A.M., Beyrath, J., and Schenck, A. (2019). A drosophila mitochondrial complex I deficiency phenotype array. Front. Genet. 10, 245.

Fransen, M., Lismont, C., and Walton, P. (2017). The Peroxisome-Mitochondria Connection: How and Why? Int. J. Mol. Sci. 18.

Garcia, C.J., Khajeh, J., Coulanges, E., Chen, E.I.-J., and Owusu-Ansah, E. (2017). Regulation of mitochondrial complex I biogenesis in drosophila flight muscles. Cell Rep. 20, 264-278.

Greggio, C., Jha, P., Kulkarni, S.S., Lagarrigue, S., Broskey, N.T., Boutant, M., Wang, X., Conde Alonso, S., Ofori, E., Auwerx, J., et al. (2017). Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab. 25, 301-311.

Hasan, N.M., Longacre, M.J., Stoker, S.W., Kendrick, M.A., and MacDonald, M.J. (2015). Mitochondrial malic enzyme 3 is important for insulin secretion in pancreatic β-cells. Mol. Endocrinol. 29, 396-410.

Lee, C.F., Caudal, A., Abell, L., Nagana Gowda, G.A., and Tian, R. (2019). Targeting NAD+ metabolism as interventions for mitochondrial disease. Sci. Rep. 9, 3073.

Letts, J.A., and Sazanov, L.A. (2017). Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 24, 800-808.

Letts, J.A., Fiedorczuk, K., and Sazanov, L.A. (2017). The architecture of respiratory supercomplexes. Biophys. J. 112, 278a.

Letts, J.A., Fiedorczuk, K., Degliesposti, G., Skehel, M., and Sazanov, L.A. (2019). Structures of respiratory supercomplex I+III2 reveal functional and conformational crosstalk. Mol. Cell.

Marchi, S., and Pinton, P. (2014). The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J. Physiol. (Lond.) 592, 829-839.

Milenkovic, D., Blaza, J.N., Larsson, N.-G., and Hirst, J. (2017). The enigma of the respiratory chain supercomplex. Cell Metab. 25, 765-776.

Mimaki, M., Wang, X., McKenzie, M., Thorburn, D.R., and Ryan, M.T. (2012). Understanding mitochondrial complex I assembly in health and disease. Biochim. Biophys. Acta 1817, 851-862.

Navarro-Sastre, A., Tort, F., Stehling, O., Uzarska, M.A., Arranz, J.A., Del Toro, M., Labayru, M.T., Landa, J., Font, A., Garcia-Villoria, J., et al. (2011). A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am. J. Hum. Genet. 89, 656-667.

Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.-E., Walford, G.A., Sugiana, C., Boneh, A., Chen, W.K., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112-123.

Ramirez, J., Martinez, A., Lectez, B., Lee, S.Y., Franco, M., Barrio, R., Dittmar, G., and Mayor, U. (2015). Proteomic analysis of the ubiquitin landscape in the drosophila embryonic nervous system and the adult photoreceptor cells. PLoS One 10, e0139083.

Roux, K.J., Kim, D.I., and Burke, B. (2013). BioID: a screen for protein-protein interactions. Curr Protoc Protein Sci 74, Unit 19.23.

Ruiz-Ramírez, A., Barrios-Maya, M.-A., López-Acosta, O., Molina-Ortiz, D., and El-Hafidi, M. (2015). Cytochrome c release from rat liver mitochondria is compromised by increased saturated cardiolipin species induced by sucrose feeding. Am. J. Physiol. Endocrinol. Metab. 309, E777-86.

Signes, A., and Fernandez-Vizarra, E. (2018). Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem 62, 255-270.

Stroud, D.A., Surgenor, E.E., Formosa, L.E., Reljic, B., Frazier, A.E., Dibley, M.G., Osellame, L.D., Stait, T., Beilharz, T.H., Thorburn, D.R., et al. (2016). Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123-126.

Weeda, E. (1981). Some properties of mitochondrial NAD+ linked malic enzyme and malate dehydrogenase from the flight muscles of Leptinotarsa decemlineata. Insect Biochemistry 11, 679-684.

Zhu, J., Vinothkumar, K.R., and Hirst, J. (2016). Structure of mammalian respiratory complex I. Nature 536, 354-358.

Cell Reports

Regulation of Mitochondrial Complex I Biogenesis in Drosophila Flight Muscles

Graphical Abstract

Highlights

- Mitochondrial complex I (CI) biogenesis can be studied in Drosophila flight muscles
- Subcomplexes of $\sim 315, \sim 550$, and $\sim 815 \mathrm{kDa}$ are formed during Cl assembly in Drosophila
- dNDUFS5 is required for converting an $\sim 700 \mathrm{kDa}$ subcomplex into the $\sim 815 \mathrm{kDa}$ subcomplex
- dNDUFS5 is required to stabilize or promote incorporation of dNDUFA10 into the complex

Authors

Christian Joel Garcia, Jahan Khajeh, Emmanuel Coulanges, Emily I-ju Chen, Edward Owusu-Ansah

Correspondence
eo2364@cumc.columbia.edu

In Brief

Garcia et al. establish Drosophila as a suitable resource for studying mitochondrial complex I biogenesis. They find that at least 42 of the 44 distinct human complex I subunits are conserved in Drosophila, and many of these subunits have specific roles in complex I assembly in vivo.

Regulation of Mitochondrial Complex I Biogenesis in Drosophila Flight Muscles

Christian Joel Garcia, ${ }^{1,4}$ Jahan Khajeh, ${ }^{1,4}$ Emmanuel Coulanges, ${ }^{1}$ Emily I-ju Chen, ${ }^{2}$ and Edward Owusu-Ansah ${ }^{1,3,5,{ }^{*}}$
${ }^{1}$ Department of Physiology and Cellular Biophysics
${ }^{2}$ Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center and Department of Pharmacology
${ }^{3}$ The Robert N. Butler Columbia Aging Center
Columbia University Medical Center, New York, NY 10032, USA
${ }^{4}$ These authors contributed equally
${ }^{5}$ Lead Contact
*Correspondence: eo2364@cumc.columbia.edu
http://dx.doi.org/10.1016/j.celrep.2017.06.015

SUMMARY

The flight muscles of Drosophila are highly enriched with mitochondria, but the mechanism by which mitochondrial complex $\mathrm{I}(\mathrm{Cl})$ is assembled in this tissue has not been described. We report the mechanism of Cl biogenesis in Drosophila flight muscles and show that it proceeds via the formation of $\sim 315, \sim 550$, and $\sim 815 \mathrm{kDa} \mathrm{Cl}$ assembly intermediates. Additionally, we define specific roles for several Cl subunits in the assembly process. In particular, we show that dNDUFS5 is required for converting an $\sim 700 \mathrm{kDa}$ transient Cl assembly intermediate into the $\sim 815 \mathrm{kDa}$ assembly intermediate. Importantly, incorporation of dNDUFS 5 into Cl is necessary to stabilize or promote incorporation of dNDUFA10 into the complex. Our findings highlight the potential of studies of Cl biogenesis in Drosophila to uncover the mechanism of Cl assembly in vivo and establish Drosophila as a suitable model organism and resource for addressing questions relevant to Cl biogenesis in humans.

INTRODUCTION

Mitochondrial complex I (CI) (NADH: ubiquinone oxidoreductase) is the first and largest of the electron transport chain complexes in the mitochondrion and has a molecular mass approaching 1 MDa (reviewed in Hirst, 2013). Human CI has 44 distinct subunits (Table S1), 14 of which are directly involved in transferring electrons from NADH to ubiquinone or in generation of the membrane potential. Because these 14 subunits are conserved from bacteria to humans and form the catalytic centers of the enzyme, they are referred to as the core or central subunits. The 30 remaining subunits are referred to as accessory or supernumerary subunits because they are not directly involved in catalysis and are expressed to varying extents among eukaryotes (Table S1) (reviewed in Hirst, 2013). A current hypothesis is that the accessory subunits may regulate reactive oxygen species (ROS) formation, complex assembly or stability, and cellul 1414 and
homeostasis in vivo. Of note, disease-causing mutations in several accessory subunits have been identified (Berger et al., 2008; Budde et al., 2000; Hoefs et al., 2008, 2011; Kirby et al., 2004; Ostergaard et al., 2011; Scacco et al., 2003), and genetic disruption of some accessory subunits in cell lines impairs Cl assembly (Guerrero-Castillo et al., 2017; Stroud et al., 2016). However, a definitive role for many of the accessory subunits in vivo remains to be established.

Cl has two major arms: a hydrophobic membrane arm and a hydrophilic peripheral arm that juts into the mitochondrial matrix. The two arms are oriented almost perpendicularly to each other, resulting in a characteristic boot or L-shaped structure (Clason et al., 2010; Efremov et al., 2010; Radermacher et al., 2006; Zickermann et al., 2015). Several cryoelectron microscopy density maps and higher resolution atomic structures of Cl from various eukaryotes have recently been described (Fiedorczuk et al., 2016; Vinothkumar et al., 2014; Zhu et al., 2016; Zickermann et al., 2015). The accessory subunits were found to form a cage around the core subunits and were particularly concentrated around the membrane domain. These observations lend further credence to the hypothesis that the accessory subunits may be involved in stabilizing the complex during or after biogenesis in vivo.

Surprisingly, despite the outstanding genetic capabilities of Drosophila, a systematic genetic analysis of Cl assembly has not been described in this organism. Instead, previous in vivo genetic analyses of the regulation of eukaryotic Cl assembly have been performed, primarily in the aerobic fungus Neurospora crassa (Duarte et al., 1995). Although the N. crassa model of Cl assembly is renowned for being the first system for which a model of Cl assembly was described, there are notable deviations from the assembly pathway in mammalian systems (Nehls et al., 1992; Tuschen et al., 1990). Thus, it is important to develop additional genetically tractable Cl assembly model systems that more closely resemble and recapitulate the human system. Importantly, Drosophila has a comparable number of Cl subunits (similar to the human and bovine enzymes) and more than a dozen putative assembly factors, all of which have clear human orthologs, making it a suitable model organism for studying Cl assembly. Studying CI assembly in Drosophila has the added advantage of being in an in vivo context, in which the effects of both developmental signals 4 and environmental perturbations can be examined. Accordingly,
we have analyzed the role of several nuclear-encoded Cl subunits in Cl assembly in Drosophila muscles.

We describe the mechanism of Cl assembly in Drosophila flight muscles. Specifically, we show that many of the accessory subunits regulate specific stages of Cl biogenesis in vivo, such that when their levels of expression are reduced, Cl activity is diminished because of impaired Cl assembly. We demonstrate that Cl biogenesis in Drosophila involves the formation of ~ 315, ~ 550, and $\sim 815 \mathrm{kDa}$ assembly intermediates, and that RNAi-mediated knockdown of either dNDUFS2 or dNDUFS3 decreases the amount of the $\sim 315 \mathrm{kDa}$ assembly intermediate that is formed. Furthermore, we show that a specific accessory subunit, dNDUFA5, is required for the formation and/or stabilization of the $\sim 315 \mathrm{kDa}$ assembly intermediate in vivo. Additionally, we define a specific role for another accessory subunit (dNDUFS5) and show that it is required for converting a transient Cl assembly intermediate (an $\sim 700 \mathrm{kDa}$ assembly intermediate) into the $\sim 815 \mathrm{kDa}$ assembly intermediate, during one of the terminal steps of Cl assembly. Four components of the mitochondrial Cl assembly (MCIA) complex (dECSIT, dNDUFAF1, dACAD9, and dTIMMDC1) are associated with the $\sim 700 \mathrm{kDa}$ assembly intermediate, further confirming that it is a true assembly intermediate in Cl biogenesis. Importantly, incorporation of dNDUFS5 into Cl is necessary to stabilize or promote incorporation of dNDUFA10 into the complex. We also identify several roles for many of the dNDUFB subunits. Altogether, our analyses reveal how studies of Cl biogenesis in Drosophila can uncover mechanisms of Cl assembly in vivo and establish Drosophila as an important genetically pliable model organism for addressing questions relevant to mammalian Cl biogenesis.

RESULTS

Drosophila Flight Muscles Are Suitable for Studying CI Assembly

Cl consists of a hydrophilic matrix arm and a hydrophobic membrane arm that are oriented almost orthogonally to each other (Figure 1A). Subunits with the prefix NDUFA (NDUFA1-3 and NDUFA5-13) were so named as they were originally thought to be part of the matrix arm, whereas the NDUFB subunits (NDUFB1-NDUFB11) are part of the membrane arm. In addition, subunits that are found in the vicinity of the eight Fe-S clusters (NDUFS) or single flavoprotein (NDUFV) are also localized in the matrix. All the NDUFA and NDUFB subunits are accessory subunits (Figure 1A). We used the Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool (DIOPT) to identify 42 putative orthologs of the 44 human Cl subunits (Figure 1B; Table S1) (Hu et al., 2011). To facilitate comparison with their human orthologs, in this paper we refer to Drosophila orthologs of the human CI subunits as dNDUFS1, dNDUFS2, and so on. Their designated gene nomenclature in Drosophila is shown in Table S1.

To confirm whether the putative Cl orthologs identified by DIOPT were bona fide CI subunits in Drosophila flight muscles, we isolated mitochondria from thoraxes of wild-type flies, solubilized their membranes in 1% digitonin, and resolved their oxidative phosphorylation (OXPHOS) complexes into various bands using blue native PAGE (BN-PAGE) (Rera et al., 2011; Wittig et al., 2006). We solubilized the mitochondrial membranes in 21

1\% digitonin because we found that 1% digitonin was the optimal detergent concentration for isolating and resolving OXPHOS complexes in their native state in Drosophila (Figure S1), as has been reported previously (Rera et al., 2011; Wittig et al., 2006). Subsequently, we cut out each of the bands detected by Coomassie staining of the gel and identified their composition by mass spectrometry (Figure 1C). We confirmed the existence of 37 of the 42 putative Cl orthologs on the basis of their presence in the band corresponding to the Cl holoenzyme (band B) and/or supercomplex (band A) (Figure 1C; Tables S1 and S2). Notably, the Drosophila ortholog of NDUFA4 (NDMNLL), a protein that was previously considered a Cl subunit but has been reassigned as a complex IV (CIV) subunit (Balsa et al., 2012), co-migrated with the CIV band (band E) (Figure 1C; Table S2). In addition, four of the subunits we were unable to detect are highly hydrophobic membrane-embedded core subunits encoded in the mitochondrion (ND2, ND3, ND4L, and ND6); thus they may have escaped detection because of their highly hydrophobic nature. Interestingly, these subunits were not identified in a previous proteomic analysis of Cl in mouse cell lines (Balsa et al., 2012).

Coomassie- or silver-stained native gels containing mitochondrial protein complexes from flies expressing RNAi to CI , complex III (CIII), CIV, and complex V (CV) proteins further confirmed the identities of the bands cut for mass spectrometry (Figure 1D). Because our mass spectrometry data suggested that a portion of Cl might be co-migrating with CV and possibly CIII, we tested whether this co-migration was the result of supercomplex formation. We were unable to find antibodies that cross-react with any of the Drosophila CIII proteins, but antibodies that cross-react with dNDUFS3 (a Cl protein) and dATPsyn β (a CV protein) were commercially available and were used to examine the identity of "band A" via western blotting. As is evident in the silver staining gel (Figure 1D), immunoblotting revealed that "band A" was actually a doublet, and the lower band in the doublet corresponds to a dimer of CV, as has been observed in other contexts (Figure 1E) (Rera et al., 2011; Wittig et al., 2006). In addition, Cl in flight muscles was found to exist predominantly as the holoenzyme, with a relatively small portion involved in CI-CIII supercomplex formation, which migrates as an upper band in the doublet (Figure 1E). Notably, the observation that Cl in Drosophila flight and skeletal muscles occurs predominantly as the holoenzyme (i.e., free Cl , not involved in supercomplex formation) contrasts markedly with Cl in cardiac or skeletal muscles from mice, in which a significant portion of Cl is trapped in supercomplex formation (Figure 1F). Thus, in addition to the genetic capabilities of Drosophila, and the fact that it has a comparable number of Cl subunits as the human enzyme, it is a suitable model for studying Cl assembly because most CI in flight muscles exists as the holoenzyme. Accordingly, a defect in Cl biogenesis can easily be scored and quantified. Consequently, we decided to examine the role of the nuclear-encoded Cl subunits in Cl assembly

Disruption of Several CI Subunits in Flight Muscles Impairs CI Assembly

We found that loss-of-function alleles for many Drosophila CI 1 Genes are lethal (not shown). Therefore, to ascertain which Cl

Figure 1. Drosophila Flight Muscles Are Suitable for Studying Complex I Assembly
(A) Schematic representation of how the 44 distinct subunits of bovine or ovine Cl are arranged to produce the L-shaped topology; based on recent Cl structures described (Fiedorczuk et al., 2016; Vinothkumar et al., 2014; Zhu et al., 2016; Zickermann et al., 2015). The asterisk denotes subunits for which an ortholog was not identified in Drosophila by DIOPT. NDUFAB1 occurs twice in the complex, giving rise to a total of 45 subunits.
(B) Summary of the experimental procedure for studying CI assembly in Drosophila. Transgenic RNAi constructs to the nuclear-encoded subunits were expressed specifically in thoracic muscles using the mhc-Gal4 driver. Mitochondria were isolated from thoraxes of 1 -week-old flies, solubilized in 1% digitonin, and analyzed by blue native PAGE (BN-PAGE).
(C) The constituents of each of the six major bands observed during BN-PAGE was analyzed by MS. Thirty-eight subunits of Drosophila CI were confirmed by MS. The 38 subunits correspond to 37 different orthologs of human CI. Two paralogs of human NDUFV1 were confirmed by MS (see Table S1). See Table S2 for all the peptides identified in the six major bands shown.
(D) BN-PAGE (left) and silver staining (right) of samples from thoraxes following RNAi-mediated knockdown of complex I (CI), complex III (CIII), complex IV (CIV), and complex $V(C V)$ proteins to confirm the identities of the bands. SupCl and CV2 denote a supercomplex of Cl and a dimer of CV, respectively. The exact RNAi constructs expressed starting from left to right were to the white gene (wild-type [WT]), dNDUFV1 (CI), dNDUFS1 (CI), dUQCRC-2 (CIII), dUQCRC-Q (CIII), dCox5A (CIV), cyclope (CIV), dATPsyn- β (CV), and ATPsyn-b (CV).
(E) Immunoblotting with anti-NDUFS3 and anti-ATPsyn β antibodies of native gels to detect Cl and CV, respectively. Note that band A is a doublet consisting predominantly of a dimer of CV and a supercomplex of CI .
(F) BN-PAGE (top) and Cl in-gel enzyme activity (bottom) indicate that most of Cl exists as the holoenzyme in Drosophila melanogaster (DM) skeletal muscles, in contrast to cardiac, soleus, extensor digitorum longus (EDL), and tibia muscles from mice where a significant portion of Cl exists as a supercomplex.

216

A

B

C

Figure 2. Disruption of Several Cl Core and Supernumerary Subunits Impairs Cl Assembly in Drosophila
(A) BN-PAGE, (B) silver staining, and (C) Cl in-gel enzyme activity of mitochondria isolated from thoraxes following RNAi-mediated knockdown of the CI proteins indicated ($m h c-G a l 4>d N D U F X^{R N A i}$). The values listed below each lane indicate the residual amount of Cl normalized to the amount in the wild-type ($m h c-G a 14>w^{1118}$) lane.
subunits are required for Cl biogenesis in Drosophila, we used the Gal4/UAS system to express transgenic RNAi constructs (henceforth referred to as UAS-RNAi lines) to both core and accessory CI subunits (Brand and Perrimon, 1993). We examined the effect of knocking down the subunits specifically in muscles (using either Dmef2-Gal4 or mhc-Gal4). Transgenic expression of many of the UAS-RNAi constructs using Dmef2-Gal4, a muscle-restricted Gal4 driver that is expressed strongly throughout development, caused lethality (not shown). However, a genetic cross between each of the UAS-RNAi lines and $m h c-G a l 4$ produced viable flies, as the mhc-Gal4 driver has a weaker expression relative to Dmef2-Gal4 during the initial larval stages (Figure S2). Accordingly, we decided to analyze Cl assembly in mitochondria isolated from thoraxes of mhc-Gal4/ $U A S-C I^{R N A i}$ flies (henceforth referred to as $m h c>C l^{R N A i}$ flies) using BN-PAGE.

We observed that in general, both core and accessory subunits produced Cl assembly defects whenever the extent of transcript knockdown was more than 50\% (Figure 2A). To further assess the extent of the Cl assembly deficit for each subunit, we quantified the amount of Cl relative to the amount of CV in each lane and normalized it to the corresponding value in the wild-type lane. Interestingly, this revealed that some of the most robust Cl assembly deficits were observed when accessory or supernumerary subunits (such as dNDUFA10-12 and dNDUFB4-6) were genetically impaired (Figures 2 A and 2B). Similar results were obtained with silver staining of the protein complexes in the native gels (Figure 2B). Finally, in-gel Cl enzyme activity assay revealed that the assembly deficits correlated with a reduction in Cl activity (Figure 2C). Altogether, these results indicate that many of the core and accessory subunits are 21 essential for viability and biogenesis of the Cl holoenzyme or
supercomplex in flight muscles. Accordingly, we turned our attention toward elucidating the mechanism of Cl assembly in Drosophila flight muscles.

Proteomic Analyses and Immunoblotting Identify Assembly Intermediates of $\mathbf{C l}$

Studies from some mammalian cell lines have shown that Cl biogenesis proceeds via a series of assembly intermediates that combine with each other, or other subunits, to form the $\sim 950 \mathrm{kDa}$ boot-shaped holoenzyme. The assembly intermediates generally correspond to partial or complete domains of the three functional modules of Cl . The NADH dehydrogenase module (N module) is located at the tip of the matrix arm and is the site of NADH oxidation. Situated between the N module and the membrane is the Q module, which is responsible for ubiquinone reduction. The proton-conducting P module in the membrane arm can be subdivided into a proximal P_{P} module (roughly corresponding to the first half of the P module that connects with the Q module) and a distal P_{D} module (Figure 3A).

The current model posits that Cl assembly in mammalian systems begins with the formation of a small assembly intermediate containing NDUFS2 and NDUFS3, which combines with NDUFS7 and NDUFS8 (Figure 3B). This assembly intermediate is the primary component of the Q module and ultimately combines with ND1 to form an $\sim 315 \mathrm{kDa}$ assembly intermediate that is anchored to the mitochondrial inner membrane. The $\sim 315 \mathrm{kDa}$ assembly intermediate combines with an independently formed $\sim 370 \mathrm{kDa}$ assembly intermediate to form an $\sim 550 \mathrm{kDa}$ assembly intermediate (Figure 3B). The $\sim 550 \mathrm{kDa}$ assembly intermediate, which consists of the complete Q module and a portion of the P module, grows by the addition of more subunits to form the $\sim 815 \mathrm{kDa}$ assembly intermediate, via mechanisms that are very poorly defined. At this point, the $\sim 815 \mathrm{kDa}$ assembly intermediate is generally considered to be composed of the complete Q and P modules. Finally, an independently formed assembly intermediate consisting of NDUFS1, NDUFV1, NDUFV2, NDUFV3, NDUFS4, NDUFS6, and NDUFA12, which together form the N module, is added as a "cap" to the $\sim 815 \mathrm{kDa}$ assembly intermediate to produce the $\sim 950 \mathrm{kDa}$ holoenzyme (Figure 3B; the $\sim 315, \sim 370, \sim 550$, and $\sim 815 \mathrm{kDa}$ assembly intermediates were previously estimated as ~ 400, ~ 460, ~ 650, and $\sim 830 \mathrm{kDa}$ subcomplexes, respectively; Andrews et al., 2013; Vartak et al., 2014).

Because some flight muscles are formed by 24 hr after pupal formation (Roy and VijayRaghavan, 1999), we decided to ascertain the extent of Cl biogenesis starting at 48 hr (i.e., 2 days) postpupariation. Specifically, we isolated mitochondria at various time points and examined Cl assembly via western blotting of the native complexes. Because current models of mammalian Cl assembly postulate that NDUFS3 and ND1 are both part of the $\sim 815, \sim 550$, and $\sim 315 \mathrm{kDa}$ assembly intermediates, western blot with anti-NDUFS3 or anti-ND1 antibodies will be expected to detect these three assembly intermediates and possibly lower molecular weight assembly intermediates (if the respective epitopes are not masked when the assembly intermediate is formed). In addition, the fully assembled Cl and $\mathrm{Cl}-$ containing supercomplexes will be expected to be detected as we $\$ 1$

Indeed, immunoblotting with anti-NDUFS3 revealed that a portion of Cl is assembled during pupal development and continues during the first 48 hr after flies eclose (emerge as adults from pupae) (Figure 3C). Although we were able to detect the ~ 315 and $\sim 550 \mathrm{kDa}$ assembly intermediates with the anti-ND1 antibody (Figure 3C), the higher molecular weight bands were only weakly detectable, conceivably because the epitope to which this antibody was raised for this hydrophobic subunit becomes less exposed to the aqueous environment during the final stages of Cl biogenesis (Figure 3C). Moreover, although we were able to detect subcomplexes of CV that migrate with an apparent mass of about 100 kDa at this stage of development (Figure S3), we were unable to detect dNDUFS3-containing assembly intermediates with an apparent mass of less than 200 kDa . There are at least two possible explanations for this result: (1) the smaller NDUFS3-containing assembly intermediates may not be present at this stage, or (2) the epitope of dNDUFS3 in the smaller assembly intermediates was inaccessible to the antibody, perhaps as a result of being masked by bound assembly factors and/or other interactors. Therefore, we used proteomic analyses to distinguish between these two possibilities.

Mitochondria were isolated from thoraxes of wild-type flies that had been aged for 24 hr after eclosure and subjected to BN-PAGE. Subsequently, the region of the gel between ~50 and ~ 350 kDa was excised and divided into 14 slices (labeled fractions A1-A14) for in-gel digestion and subsequent proteomics analyses (Figure 3D). We observed that dNDUFS2, dNDUFS3, and dNDUFS7 co-migrated in fractions corresponding to a mass of approximately 280-320 kDa (Figure 3D; Table S3). Interestingly, the Cl assembly factor, dNDUFAF4, was also found in these fractions (Figure 3D; Table S3). In addition, dNDUFA5 co-migrated with dNDUFS2, dNDUFS3, and dNDUFS7 (Figure 3D), confirming that it is a component of the $\sim 315 \mathrm{kDa}$ assembly intermediate in vivo. Importantly, although several other Cl subunits migrated in fractions corresponding to a mass of approximately $50-250 \mathrm{kDa}$, neither dNDUFS2 nor dNDUFS3 was found in these fractions. Thus, it appears that in an in vivo context, in Drosophila flight muscles, the constituents of the $\sim 315 \mathrm{kDa}$ assembly intermediate are combined almost synchronously.

Specific Subunits Regulate the Biogenesis or Stability of Specific Assembly Intermediates of CI

If the assembly intermediates observed are bona fide intermediates in the pathway of Cl assembly in Drosophila, then at least some of these assembly intermediates will stall and accumulate, or they may disintegrate when specific Cl subunits that are required for Cl assembly are disrupted (Figure 4A). To test this hypothesis, we analyzed the Cl assembly intermediates from thoraxes of $M h c>C I^{P N A i}$ flies 24 hr after eclosure using an anti-NDUFS3 antibody. As expected, the various subunits that produced Cl assembly deficits in Figure 2 also resulted in a reduction of the level of the holoenzyme or the Cl -containing supercomplex (Figures 4B-4F).

Disruption of dNDUFS1 and dNDUFV1, which are components of the N module of Cl and are thus expected to be added as part of the "cap" during the final step in Cl assembly, resulted in a stalling and accumulation of the $\sim 815 \mathrm{kDa}$ assembly

C

D

Fraction (approximate size in kDa)	Cl Subunits and Assembly Factors Identified In Each Fraction
A1 (340-360)	dNDUFS3
A2 (320-340)	dNDUFAF4, dNDUFS3, dNDUFA5, dNDUFS7
A3 (300-320)	dNDUFAF4, dNDUFS2, dNDUFS3, dNDUFA5, dNDUFS7
A4 (280-300)	dNDUFAF4, dNDUFS2, dNDUFS3, dNDUFA5, dNDUFS7, dACAD9
A5 (260-280)	dNDUFA7, dNDUFS2, dNDUFS3, dNDUFA5, dNDUFS1, dACAD9
A6 (240-260)	dNDUFA7, dNDUFS1, dACAD9
A7 (210-240)	dNDUFA7, dNDUFS1, dACAD9
A8 (180-210)	dNDUFA7, dNDUFS1, dACAD9
A9 (150-180)	dNDUFA10, dNDUFA7, dNDUFA11, dNDUFS1, dACAD9
A10 (120-150)	dNDUFA10, dNDUFA7, dNDUFA11
A11 (100-120)	dNDUFA10, dNDUFA7, dNDUFA12
A12 (85-100)	dNDUFA10, dNDUFA7, dNDUFA12, dNDUFA11
A13 (70-85)	dNDUFA10, dNDUFA7, dNDUFA12, dNDUFA11
A14 (55-70)	dNDUFA10, dNDUFA7, dNDUFA12, dNDUFA11

Figure 3. Proteomic Analyses and Immunoblotting Identify Assembly Intermediates of CI
(A) Schematic of Cl showing the three modules of the enzyme. The NADH dehydrogenase module (N module) is located at the tip of the matrix arm and is the site of NADH oxidation. Situated between the N module and the membrane arm is the Q module, which is responsible for ubiquinone reduction. The proton-conducting P module is in the membrane arm.
(B) The current model of Cl assembly in mammalian systems (reviewed in Vartak et al., 2014). The assembly process begins with the formation of an assembly intermediate containing NDUFS2 and NDUFS3, which combines with NDUFS7 and NDUFS8. The subcomplex of NDUFS2, NDUFS3, NDUFS7, and NDUFS8 ultimately combines with ND1 to form the $\sim 315 \mathrm{kDa}$ assembly intermediate that is anchored to the membrane. The $\sim 315 \mathrm{kDa}$ subcomplex (also called the Q module) combines with an independently formed $\sim 370 \mathrm{kDa}$ assembly intermediate to form an $\sim 550 \mathrm{kDa}$ assembly intermediate. This assembly intermediate that consists of the Q module and part of the P module grows by the addition of more subunits to form the $\sim 815 \mathrm{kDa}$ assembly intermediate, via mechanisms that are very poorly defined. The $\sim 815 \mathrm{kDa}$ assembly intermediate now consists of the complete Q and P modules. Finally, the N module is added to produce the 950 kDa
intermediate (Figure 4B). However, unexpectedly, disruption of dNDUFA6 and dNDUFA12 also stalled the $\sim 815 \mathrm{kDa}$ subcomplex (Figure 4C). RNAi-mediated knockdown of dNDUFS2, dNDUFS3, dNDUFS5, dNDUFS7, and dNDUFS8 led to a reduction in the amount of the $\sim 815 \mathrm{kDa}$ assembly intermediate (relative to wild-type), as they impaired some of the initial steps of Cl biogenesis (Figure 4B). In addition, the amount of the $\sim 315 \mathrm{kDa}$ assembly intermediate was drastically reduced when the expression of dNDUFS2, dNDUFS3, or dNDUFS7 was impaired (Figure 4B), in line with our proteomic results in Figure 3D and current mammalian Cl assembly models that show that the first step in Cl biogenesis involves the formation of an assembly intermediate consisting of NDUFS2 and NDUFS3 (Figure 3B) (reviewed in Vartak et al., 2014). Notably, we found that RNAimediated knockdown of dNDUFA5 depleted the $\sim 315 \mathrm{kDa}$ assembly intermediate (Figure 4C). Combining this result, with our proteomic data showing that dNDUFA5 co-migrates with dNDUFS2, dNDUFS3, and dNDUFS7 (Figure 3D), we conclude that although dNDUFA5 is an accessory subunit, it is a critical component of, and required for formation or stabilization of the $\sim 315 \mathrm{kDa}$ assembly intermediate (i.e., the Q module) in vivo.

Disruption of most of the dNDUFB subunits did not markedly alter the stability or extent of accretion of the Cl assembly intermediates 24 hr after eclosion (Figure 4D), but by 48 and 72 hr after eclosion some notable and consistent phenotypes between the two time points were observed (Figures 4E and $4 F)$. For instance, RNAi-mediated disruption of dNDUFB3 decreased the extent of accumulation of all the assembly intermediates, and the 550 kDa assembly intermediate accumulated when dNDUFB1, dNDUFB8, and dNDUFB11 were impaired at both time points (i.e., 48 and 72 hr post-eclosion). Surprisingly, although none of the NDUFB subunits are known to be part of the 315 kDa assembly intermediate, the extent of accumulation of the 315 kDa assembly intermediate was diminished when the expression of dNDUFB1, dNDUFB4, dNDUFB5, dNDUFB6, and dNDUFB10 were reduced (Figures 4 E and 4 F). Taken together, these results indicate that specific subunits regulate the biogenesis or stability of specific Cl assembly intermediates during Cl assembly in Drosophila thoraxes.

Identification of an $\sim 700 \mathrm{kDa}$ Assembly Intermediate of CI in Drosophila

An assembly intermediate that accumulates between the ~ 550 and $\sim 815 \mathrm{kDa}$ assembly intermediates was detected on immunoblots of samples from mhc>dNDUFS5 ${ }^{R N A i}$ and $m h c>d N D U F C 22^{R N A i}$ thoraxes (Figure 4B). We estimate its size to be $\sim 700 \mathrm{kDa}$ because it co-migrates with CV, previously
estimated to be $\sim 700 \mathrm{kDa}$ in blue native gels (Figure 5A) (Abdrakhmanova et al., 2006). The accumulation of the $\sim 700 \mathrm{kDa}$ assembly intermediate in samples from mhc>dNDUFS5 ${ }^{\text {RNAi }}$ thoraxes was notable, because it suggested that this could be the point of entry of dNDUFS5 during Cl assembly. NDUFS5 is a membrane-associated accessory subunit that extends into the intermembrane space; it is currently unclear at what point it becomes incorporated into CI. In contrast to the $\sim 315, \sim 550$, and $\sim 815 \mathrm{kDa}$ assembly intermediates, the $\sim 700 \mathrm{kDa}$ assembly intermediate was not readily perceptible by anti-NDUFS3 immunoblotting in the wild-type sample or most of the other mutant samples isolated 24 hr after eclosure (Figure 4B). This raised the possibility that it could simply be a degradation product, perhaps emanating from the $\sim 815 \mathrm{kDa}$ assembly intermediate.
To determine whether the $\sim 700 \mathrm{kDa}$ assembly intermediate is a true assembly intermediate, we decided to look at earlier time points (6 and 12 hr post-eclosion) to ascertain whether it ever appears in wild-type samples. Immunoblotting at these time points revealed that accumulation of the $\sim 700 \mathrm{kDa}$ assembly intermediate in mhc>dNDUFS5 ${ }^{R N A i}$ thoraxes is present by the 6 hr time point and gradually tapers off afterward (Figure 5B). Importantly, at the 6 hr time point, a faint band corresponding to the $\sim 700 \mathrm{kDa}$ assembly intermediate can be observed in wild-type samples, indicating that the $\sim 700 \mathrm{kDa}$ assembly intermediate exists in wild-type samples and rapidly matures to the $\sim 815 \mathrm{kDa}$ assembly intermediate. The stalling of the $\sim 700 \mathrm{kDa}$ assembly intermediate in mhc>dNDUFS5 ${ }^{R N A i}$ thoraxes occurred concurrently with an accumulation of both the ~ 550 and $\sim 315 \mathrm{kDa}$ assembly intermediates, and a diminution of the $\sim 815 \mathrm{kDa}$ assembly intermediate relative to wild-type levels. Thus, dNDUFS5 may be required for converting the $\sim 700 \mathrm{kDa}$ assembly intermediate into the $\sim 815 \mathrm{kDa}$ assembly intermediate, such that when this fails, there is a backlog of the $\sim 700, \sim 550$, and $\sim 315 \mathrm{kDa}$ assembly intermediates. To test this hypothesis, we compared the assembly intermediates that accumulate in mhc>dNDUFS5 ${ }^{\text {RNA }}$, dNDUFS1 ${ }^{R N A i}$ and $m h c>d N D U F S 5^{R N A i}$, dNDUFV1 ${ }^{R N A i}$ thoraxes with that in $m h c>d N D U F S 1^{R N A i}$ and $m h c>d N D U F V 1^{R N A i}$ thoraxes, respectively. We reasoned that because the $\sim 815 \mathrm{kDa}$ assembly intermediate accumulates in mhc>dNDUFS1 ${ }^{\text {RNAi }}$ and $m h c>d N D U F V 1^{R N A i}$ thoraxes (Figure 4B), if dNDUFS5 is required for converting the $\sim 700 \mathrm{kDa}$ assembly intermediate into the $\sim 815 \mathrm{kDa}$ assembly intermediate, then the extent of accumulation of the $\sim 815 \mathrm{kDa}$ assembly intermediate in either $m h c>d N D U F S 5^{R N A i}, d N D U F S 1^{R N A i}$ and/or mhc>dNDUFS5 ${ }^{R N A i}$, dNDUFV1 ${ }^{\text {RNA } i}$ thoraxes should be reduced relative to $m h c>d N D U F S 1^{R N A i}$ and $m h c>d N D U F V 1^{R N A i}$, respectively. In agreement with this proposition, we observed that the accumulation of the $\sim 815 \mathrm{kDa}$ assembly intermediate was significantly

[^0]

Figure 4. Specific Subunits Regulate the Biogenesis or Stability of Specific Assembly Intermediates of CI
(A) Left: schematic of the distribution of assembly intermediates on immunoblots as a result of RNAi-mediated disruption of various CI subunits. Right: description of how various results can be interpreted.
(B-D) Distribution of assembly intermediates in thoraxes dissected 24 hr after eclosion with transgenic RNAi expression of the Cl subunits shown. In panels labeled "long exposure," the region of the membrane just at or below Cl was cut and imaged.
(B) The $\sim 815 \mathrm{kDa}$ assembly intermediate accumulates in thoraxes expressing transgenic RNAi to dNDUFS1 and dNDUFV1; and the ~315 kDa assembly intermediate is decreased in thoraxes expressing transgenic RNAi of dNDUFS2, dNDUFS3, and dNDUFS7. In addition, another assembly intermediate accumulates in thoraxes expressing RNAi to dNDUFS5 and dNDUFC2 (denoted by an asterisk).
(C) The $\sim 815 \mathrm{kDa}$ assembly intermediate stalls in thoraxes expressing transgenic RNAi to dNDUFA6 and dNDUFA12; and the $\sim 315 \mathrm{kDa}$ assembly intermediate is attenuated in thoraxes expressing transgenic RNAi of dNDUFA5.
(D) There were no overt alterations in assembly intermediates at this time point when the dNDUFB subunits were disrupted.
(E and F) Distribution of assembly intermediates in thoraxes dissected 48 hr (E) and 72 hr (F) after eclosion with transgenic RNAi expression of the NDUFB subunits shown. RNAi-mediated knockdown of the expression of dNDUFB3 decreased the extent of accumulation of all the assembly intermediates, and the 550 kDa assembly intermediate accumulated when the expression of dNDUFB1, dNDUFB8 and dNDUFB11 were reduced. In addition, the extent of accumulation of the 315 kDa assembly intermediate was diminished following RNAi-mediated disruption of dNDUFB1, dNDUFB4, dNDUFB5, dNDUFB6, and dNDUFB10 at both the 48 and 72 hr time points.

221

attenuated in mhc>dNDUFS5 ${ }^{\text {RNA }}$, dNDUFS1 ${ }^{\text {RNAi }}$ thoraxes relative to mhc>dNDUFS1 ${ }^{R N A i}$ thoraxes (Figure 5C). This was also accompanied by an accumulation of the $\sim 700 \mathrm{kDa}$ assembly intermediate (Figure 5C). Similar results were obtained by comparing mhc>dNDUFS5 ${ }^{R N A i}, d N D U F V 1^{R N A i}$ and $m h c>d N D U F V 1^{R N A i}$ thoraxes (Figure 5C). Accordingly, we deduce from these results that when dNDUFS5 expression levels are impaired, the transient $\sim 700 \mathrm{kDa}$ assembly intermediate stalls and accumulates, impeding progression of Cl biogenesis and ultimately resulting in a bottleneck of the ~ 550 and $\sim 315 \mathrm{kDa}$ assembly intermediates as well.

To gain further insight into the identity of the $\sim 700 \mathrm{kDa}$ assembly intermediate, a single gel slice encompassing the region shown in Figure 5A was excised from native gels containing samples from wild-type and $m h c>d N D U F S 5^{R N A i}$ thoraxes. Proteins from the gel slice were digested and analyzed by liquid chromatography (LC) mass spectrometry (MS), and a labelfree spectral counting approach was used to generate a heatmap for some of the proteins that showed altered expression levels between the samples. In agreement with our results showing a stalling and accumulation of the $\sim 700 \mathrm{kDa}$ assembly intermediate in this portion of the gel, we observed that several Cl subunits were upregulated in the $m h c>d N D U F S 5^{R N A i}$ sample relative to wild-type (Figure 5D). However, in stark contrast to the other Cl subunits, we consistently observed (in six biological replicates taken at different time points of the day to control for circadian regulation) that dNDUFA10 was downregulated in the mhc>dNDUFS5 ${ }^{R N A i}$ sample, indicating that incorporation of dNDUFS5 into CI is necessary to stabilize or promote incorporation of dNDUFA10 into the complex (Figure 5D). In mammalian systems, at least five Cl assembly factors-ECSIT, TMEM126B, NDUFAF1, ACAD9, and TIMMDC1 - are typically found associated with Cl assembly intermediates and have been dubbed the mitochondrial complex I assembly (MCIA) complex (Guarani et al., 2014; Heide et al., 2012; Nouws et al., 2010; Vogel et al., 2007). We found four of these assembly factors (dECSIT, dNDUFAF1, dACAD9, and dTIMMDC1) associated with the 700 kDa assembly intermediate that were upregulated in the mhc>dNDUFS5 ${ }^{R N A i}$ samples, further
confirming that it is a true assembly intermediate in Cl biogenesis (Figure 5D; Table S4).

The Distal Portion of the Membrane Arm of CI Is Assembled Independently of the Matrix Arm

We noticed that in some instances in which Cl assembly was impaired, an additional band accumulated between the CIII and CIV bands in both the Coomassie- and silver-stained gels (arrows in Figures 2 A and 2 B). A closer examination revealed that the accumulation of this intermediate was more readily evident in samples in which subunits localized to the hydrophilic matrix domain were disrupted (i.e., the dNDUFS, dNDUFV, and dNDUFA subunits) (Figure 1A). In line with our observations described in Figures 3, 4, and 5, we hypothesized that this band was likely another Cl assembly intermediate that had stalled and accumulated as a result of a block in Cl biogenesis. We decided to identify the constituents of this putative assembly intermediate via MS.

We cut out the region of the gel corresponding to the stalled assembly intermediate in the wild-type, mhc>dNDUFS5 ${ }^{R N A i}$, and $m h c>d N D U F V 1^{R N A i}$ thoraxes (Figure 6A) and used labelfree quantification of peptides to ascertain which subunits and possibly assembly factors were altered between the two samples. Several components of the ETC machinery were downregulated, but there was a dramatic increase in Cl subunits that are part of the distal membrane domain (i.e., all the dNDUFB subunits as well as dNDUFAB1, dNDUFC2, ND4, and ND5) (Figures 6B and 6C; Table S5). We note that there was no obvious accumulation of this assembly intermediate in blue native or sil-ver-stained gels when any of these subunits (i.e., the dNDUFB subunits or NDUFAB1 and NDUFC2 subunits) were disrupted (Figures 2A and 2B). Notably, many of these membrane-associated subunits were present in the corresponding gel slice from the wild-type samples (although at lower levels). All the components of the MCIA complex (i.e., dECSIT, dNDUFAF1, dACAD9, dTMEM126B, and dTIMMDC1) were also found associated with this assembly intermediate. Based on current assignments of the various Cl subunits, this assembly intermediate is clearly the distal portion of the membrane arm (Fiedorczuk et al., 2016; Vinothkumar et al., 2014; Zhu et al., 2016; Zickermann et al., 2015).

Figure 5. Identification of an $\sim 700 \mathrm{kDa}$ Assembly Intermediate of CI in Drosophila
(A) Top: immunoblots of samples obtained from wild-type and mhc>dNDUFS5 ${ }^{\text {RNAi }}$ thoraxes of flies aged for 6 hr after eclosure depicting co-migration of the $\sim 700 \mathrm{kDa}$ intermediate and CV. Left and middle: anti-NDUFS3 antibodies detect the fully assembled CI, the $\sim 700 \mathrm{kDa}$ subcomplex, and other assembly intermediates in dNDUFS5 ${ }^{\text {RNAi }}$ thoraxes. Note that in the middle, the region of the membrane just below Cl was cut and imaged. Right: anti-ATPsyn β detects the CV monomer (700 kDa) and dimer as shown. Bottom: mitochondrial protein complexes from wild-type and $m h c>d N D U F S 5^{R N A i}$ thoraxes were resolved by BN-PAGE, and the region corresponding to the $\sim 700 \mathrm{kDa}$ assembly intermediate (i.e., CV, demarcated) was cut out, subjected to tryptic digestion, and analyzed by labelfree quantitative LC-MS/MS.
(B) Immunoblots from samples obtained after 6, 12, and 24 hr post-eclosure from thoraxes in which NDUFS1, NDUFS3, NDUFS5, and NDUFV1 were knocked down as a result of transgenic RNAi expression. Note that the $\sim 815 \mathrm{kDa}$ assembly intermediate accumulates as a result of disruption of NDUFS1 and NDUFV1, and the $\sim 700 \mathrm{kDa}$ assembly intermediate stalls and accumulates in NDUFS5 mutants at all time points. Importantly, upon prolonged exposure of the immunoblot, a band corresponding to the $\sim 700 \mathrm{kDa}$ assembly intermediate can also be observed in wild-type samples (denoted with the asterisk in the bottom panel), which confirms that it is an authentic, albeit transient assembly intermediate.
(C) The accumulation of the $\sim 815 \mathrm{kDa}$ assembly intermediate was significantly attenuated in mhc>dNDUFS5 ${ }^{R N A i}$, dNDUFS1 ${ }^{R N A i}$ thoraxes relative to $m h c>d N D U F S 1^{R N A i}$ thoraxes; instead there is an accumulation of the $\sim 700 \mathrm{kDa}$ assembly intermediate. Similar results were obtained when samples from $m h c>d N D U F S 5^{R N A i}, d N D U F V 1^{R N A i}$ thoraxes were compared with samples from $m h c>d N D U F V 1^{R N A i}$ thoraxes.
(D) Proteomic changes in the gel slice sample from wild-type and $m h c>d N D U F S 5^{R N A i}$ thoraxes corresponding to the $\sim 700 \mathrm{kDa}$ assembly intermediate. Relative protein abundance among biological samples is expressed by spectral counts on a log scale. Several CI subunits and CIAFs, most notably components of the MCIA complex, are upregulated in the $\sim 700 \mathrm{kDa}$ assembly intermediate. However, the amount of dNDUFA10 (denoted with an asterisk) is reduced in $m h c>d N D U F S 5^{R N A i}$ thoraxes relative to wild-type. See Table $S 4$ for all the peptabs identified.

Figure 6. Cl Assembly in Drosophila Involves an Assembly Intermediate Containing Several Membrane-Associated Accessory Subunits (A) Mitochondrial protein complexes from wild-type, mhc>dNDUFS5 ${ }^{R N A i}$, and $m h c>d N D U F V 1^{R N A i}$ thoraxes were separated by BN-PAGE, and the region corresponding to the accumulated assembly intermediate (demarcated) was cut out, subjected to tryptic digestion, and analyzed by label-free quantitative LCMS/MS.
(B) Proteomic changes in the gel slice samples from wild-type, $m h c>d N D U F S 5^{R N A i}$, and $m h c>d N D U F V 1^{R N A i}$ thoraxes. Relative protein abundance among biological samples is expressed by spectral counts on a log scale. The color scale bar indicates the range of protein expression levels. See additional information in Table S5.
(C) Schematic representation highlighting the membrane subunits that are upregulated in the gel slice (shown in red font) from the mhc>dNDUFS5 ${ }^{\text {RNAi }}$ and $m h c>d N D U F V 1^{R N A i}$ thoraxes.

Proposed Model of CI Assembly in Drosophila Muscle
We propose a model for Cl assembly in Drosophila flight muscles in which dNDUFS2, dNDUFS3, dNDUFS7, dNDUFS8, and INDUFA5 sembly intermediate in mammalian systems that was previously and dNDUFA5 are combined in essentially one step to form 24 referred to as the $\sim 400 \mathrm{kDa}$ subcomplex but has recently been

Figure 7. Proposed Model of Cl Assembly in Drosophila Flight Muscle
An assembly intermediate consisting of dNDUFS2, dNDUS3, dNDUFS7, dNDUFS8, and dNDUFA5 combined in essentially one step to form the Q module, which is anchored to the membrane by ND1. Subsequently, an independently formed subcomplex comprising membrane-associated subunits (partial P1) is conjugated to the Q module, and possibly other subunits, to form an assembly intermediate comprised of the Q module and part of the P module ($\mathrm{Q}+$ partial P 2). This grows by the addition of more subunits to form a transient assembly intermediate of $\sim 700 \mathrm{kDa}(\mathrm{Q}+$ partial P3). We propose that dNDUFS5 is then incorporated at this step, to promote incorporation or stabilization of dNDUFA10. Subsequently, the transient $\sim 700 \mathrm{kDa}$ assembly intermediate is rapidly converted to the $\sim 815 \mathrm{kDa}$ assembly intermediate, consisting of the complete P and Q modules $(Q+P)$. Finally, the N module is added to produce the Cl holoenzyme.
re-estimated as the $\sim 315 \mathrm{kDa}$ subcomplex (Andrews et al., 2013; Vartak et al., 2014). This is consistent with the observation that assembly intermediates containing dNDUFS2, dNDUFS3, dNDUFS7, dNDUFS8, and dNDUFA5 co-migrate in blue native gels (Table S2) and that immunoblotting with both anti-ND1 and anti-NDUFS3 detects the $\sim 315 \mathrm{kDa}$ assembly intermediate (Figure 3C).

Subsequently, another assembly intermediate consisting of some of the subunits in the membrane domain is formed. This assembly intermediate comprises part of the P module (i.e., partial P 1) and is conjugated to the Q module to form an assembly intermediate that corresponds to the $\sim 550 \mathrm{kDa}$ (formerly $\sim 650 \mathrm{kDa}$) assembly intermediate previously described in mammalian systems (Figure 7). Although proteomic analyses of the assembly intermediate that accumulates in $m h c>d N D U F S 5^{R N A i}$ and $m h c>d N D U F V 11^{R N A i}$ thoraxes shows that all the dNDUFB subunits as well as dNDUFC1, dNDUFAB1, ND4, and ND5 subunits are present in the subcomplex (see Table S5), it is unlikely that all the membrane subunits are incorporated into the complex at this stage under normal (wild-type) conditions. We hypothesize that the accumulation of the membrane accessory subunits in response to genetic disruption of the matrix subunits may be a compensatory mitochondrial stress signaling mechanism impinging on the nucleus and resulting in a system that is poised to rapidly resume Cl biogenesis if and when the missing matrix subunit becomes available. The accretion of the partial P module under conditions in which other components of the Cl assembly machinery are impaired provides further evidence that the various modules of the complex (i.e., the Q, P, and N modules) are assembled largely independently of each other in vivo.

The $\sim 550 \mathrm{kDa}$ assembly intermediate grows by the addition of more subunits to form a transient assembly intermediate of $\sim 700 \mathrm{kDa}$ (Figure 7); we postulate that dNDUFS5 is then incorporated at or just prior to this stage together with possibly dNDUFA10 to rapidly convert the $\sim 700 \mathrm{kDa}$ assembly intermediate to the $\sim 815 \mathrm{kDa}$ assembly intermediate, consisting of the complete P and Q modules (Figure 7). Finally, the N module is added to produce the Cl holoenzyme (Figure 7).

DISCUSSION

We have exploited the genetic capabilities of Drosophila to un226over the mechanism of Cl assembly in vivo in Drosophila flight
muscles. Our immunoblotting and proteomic analyses reveal that during CI assembly in Drosophila, the first membrane-bound major assembly intermediate that forms contains at least the following six subunits: dND1, dNDUFS2, dNDUFS3, dNDUFS7, dNDUFS8, and dNDUFA5. On the basis of its constituents and migration pattern in native PAGE, we conclude that this assembly intermediate is the same assembly intermediate traditionally referred to as the $\sim 315 \mathrm{kDa}$ assembly intermediate from studies on mammalian Cl assembly and corresponds to the Q module of Cl (Andrews et al., 2013; Vartak et al., 2014). Consistent with their roles in regulating formation of the Q module, we found that genetic disruption of dNDUFS2, dNDUFS3, dNDUFA5, and dNDUFS7 attenuated the amount of the $\sim 315 \mathrm{kDa}$ assembly intermediate formed.

Unexpectedly, we found an $\sim 700 \mathrm{kDa}$ assembly intermediate that is short-lived (at least relative to the $\sim 315, \sim 550$, and $\sim 815 \mathrm{kDa}$ assembly intermediates), as it is rapidly converted into the $\sim 815 \mathrm{kDa}$ assembly intermediate. Importantly, our proteomic analyses revealed that incorporation of dNDUFS5 into CI around this stage is necessary to stabilize or promote incorporation of dNDUFA10 into the complex. Similar to the ~315, ~550, and $\sim 815 \mathrm{kDa}$ assembly intermediates, the $\sim 700 \mathrm{kDa}$ subcomplex is a true assembly intermediate, as it can be detected in wild-type muscles as well. Additionally, components of the MCIA complex are associated with the $\sim 700 \mathrm{kDa}$ assembly intermediate, as has been reported for other assembly intermediates observed in mammalian systems. RNAi-mediated disruption of dNDUFS5 led to a stalling and accumulation of this otherwise transient assembly intermediate, to a point at which it is readily detectable by western blots, most likely because this is the stage at or around which dNDUFS5 is incorporated into the complex.

It is possible that mutations in some accessory subunits will have both primary and secondary effects. As a case in point, dNDUFS5 disruption may first impair conversion of the $\sim 700 \mathrm{kDa}$ assembly intermediate to the $\sim 815 \mathrm{kDa}$ assembly intermediate and consequently impair Cl assembly (as we have shown), but ultimately, the accumulation of the $\sim 700 \mathrm{kDa}$ assembly intermediate can activate the mitochondrial unfolded protein response as well as other stress signaling cascades, with far-reaching consequences (Haynes et al., 2013; Jensen and Jasper, 2014; Owusu-Ansah and Banerjee, 2009; Owusu-Ansah et al., 2008, 2013). As another example, when dNDUFB3 was disrupted, no specific assembly intermediates were stalled or disintegrated. Instead, there was a general reduction in the level of expression of all assembly intermediates. It is possible that disruption of dNDUFB3 activates stress signaling pathways that induce apoptosis or culminate in a general reduction of protein synthesis, leading to a reduction in Cl assembly.

We find that at least 42 of the 44 distinct human Cl proteins are conserved in Drosophila. The two human Cl proteins for which a clear ortholog was not readily identified in Drosophila by DIOPT are NDUFA3 (9 kDa) and NDUFC1 (6 kDa), which are two of the smallest subunits of the complex. Interestingly, obvious orthologs of NDUFC1 are not found in C. elegans or Yarrowia lipolytica, and the orthologs in vertebrates such as zebrafish and Xenopus have very weak homology (DIOPT score of 1) to the humaß2
protein. Therefore it is possible that this subunit has significant sequence diversion in Drosophila and although present was not recognized by DIOPT. For most of the Cl subunits in which multiple paralogs were identified by DIOPT (i.e., NDUFS2, NDUFS7, NDUFV2, NDUFA7, and NDUFB2), only one of the paralogs was detected as a bona fide Cl subunit in flight muscles. However, as an exception to this general rule, two of the three paralogs of NDUFV1 were detected as part of Cl in skeletal muscles via MS. ND-51 (CG9140) appears to be the authentic ortholog of human NDUFV1, as it is highly expressed in skeletal muscles relative to ND-51L (CG11423) and is comparable in size to the human ortholog (both are about 51 kDa). ND-51L is a 77 kDa protein with a stretch of about 200 amino acids at the N terminus that is not present in either the Drosophila paralog (ND-51) or human ortholog (NDUFV1). It remains to be determined whether the expression of the subunits with multiple paralogs are regulated in a tissue-specific manner to generate mitochondria with varied Cl activities or whether they are regulated in the same tissue in response to different environmental conditions to fine-tune the activity of Cl .

In summary, we have described the mechanism of Cl assembly in Drosophila flight muscles and defined specific roles for some of the accessory subunits in Cl assembly. Importantly, although Cl dysfunction has been implicated in a large number of pathologies, we find that knocking down the expression of various antioxidant enzymes or mitochondrial protein quality control genes does not solely impair Cl assembly, indicating that destabilization of Cl may not be the sole underlying factor in many mitochondrial disorders (Figure S4). In addition, our proteomic analyses established that incorporation of dNDUFS5 into Cl is necessary to stabilize or promote incorporation of dNDUFA10 into the complex. We note that our analyses of Cl assembly in an in vivo setting, in which Cl biogenesis is subject to both developmental and environmental cues, revealed that many of the accessory subunits are required for both assembly and viability. Moreover, several NDUFB subunits (dNDUFB1, dNDUFB4, dNDUFB5, dNDUFB6, and dNDUFB10) seem to regulate the stability of the 315 kDa assembly intermediate, in apparent deviation from what will be expected from current models of mammalian Cl assembly. However, the mechanism of Cl biogenesis in Drosophila flight muscles is remarkably similar to what has been described in mammalian systems, and the differences observed here may be due to the fact that we have analyzed Cl assembly in an in vivo setting. Accordingly, Drosophila is a suitable organism for addressing questions relevant to mammalian Cl biogenesis. We anticipate that future studies using the full repertoire of genetic tools and resources in Drosophila should foster the discovery of paradigms for regulating Cl assembly in humans.

EXPERIMENTAL PROCEDURES

Drosophila Strains and Genetics
For a list of stocks used and detailed experimental procedures, see Supplemental Experimental Procedures.

BN-PAGE
BN-PAGE was performed using NativePAGE gels from Life Technologies, following the manufacturer's instructions.

Silver Staining

Silver staining of native gels was performed with the SilverXpress staining kit from Life Technologies, following the manufacturer's protocol.

In-Gel CI Activity

Cl activity in native gels was assayed by incubating the native gels in $0.1 \mathrm{mg} / \mathrm{ml}$ NADH, $2.5 \mathrm{mg} / \mathrm{ml}$ nitrotetrazolium blue chloride, and 5 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.4)$ at room temperature.

Immunoblotting

For immunoblotting of samples in native gels, protein complexes from native gels were transferred to polyvinylidene fluoride (PVDF) membranes (Bio-Rad) and probed with the relevant antibodies using standard procedures.

MS Analyses

After MS with a Thermo Fusion Tribrid mass spectrometer, tandem mass spectra from raw files were searched against a Drosophila protein database using the Proteome Discoverer 1.4 software (Thermo Finnigan). The Proteome Discoverer application extracts relevant MS/MS spectra from the .raw file and determines the precursor charge state and the quality of the fragmentation spectrum. The Proteome Discoverer probability-based scoring system rates the relevance of the best matches found by the SEQUEST algorithm. The Drosophila protein database was downloaded as FASTA-formatted sequences from Uniprot protein database (database released in May 2015). The peptide mass search tolerance was set to 10 ppm . A minimum sequence length of seven amino acids residues was required. Only fully tryptic peptides were considered. To calculate confidence levels and false discovery rates (FDR), Proteome Discoverer generates a decoy database containing reverse sequences of the non-decoy protein database and performs the search against this concatenated database (non-decoy + decoy). Scaffold (Proteome Software) was used to visualize searched results. The discriminant score was set at less than 1\% FDR determined on the basis of the number of accepted decoy database peptides to generate protein lists for this study. Spectral counts were used for estimation of relative protein abundance between samples.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, four figures, and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2017.06.015.

AUTHOR CONTRIBUTIONS

E.O.-A. conceived the project, designed experiments, and secured funding for the work. C.J.G., J.K., E.C., and E.O.-A. performed all experiments, except mass spectrometry. E.I.C. performed mass spectrometry. E.O.-A., C.J.G., J.K., and E.I.C. analyzed and discussed results. E.O.-A. wrote the manuscript with feedback from E.I.C. C.J.G., and J.K.

ACKNOWLEDGMENTS

We thank members of the Owusu-Ansah lab for general discussions; Eric Schon, Estela Area-Gomez, Henry Colecraft, Barbara Corneo, Wes Grueber, Laura Johnston, Richard Kitsis, Andrew Marks, Martin Picard, Liza Pon, Mimi Shirasu-Hiza, and David Walker for fly stocks, reagents, and critical discussions; and Stavroula Kousteni for critical discussions and for providing skeletal and cardiac muscle samples from mice. We acknowledge the Bloomington Drosophila Stock Center, the National Institute of Genetics (Japan), and the Vienna Drosophila Resource Center for various fly strains. We appreciate Steven Shikhel's technical assistance in dissecting cardiac and skeletal muscles from mice and the technical assistance obtained from the Proteomics Shared Resource at the Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center. This work was supported by an Institutional Cardiovascular Research Training Grant (T32 HL120826) to C.J.G. and J.K. and a NIH R21 grant (DK112074), a pilot grant from the Robert N. Butler

Columbia Aging Center, and institutional startup funds from the Department of Physiology and Cellular Biophysics, Columbia University Medical Center, to E.O.-A.

Received: December 19, 2016
Revised: May 18, 2017
Accepted: June 1, 2017
Published: July 5, 2017

REFERENCES

Abdrakhmanova, A., Zwicker, K., Kerscher, S., Zickermann, V., and Brandt, U. (2006). Tight binding of NADPH to the 39-kDa subunit of complex I is not required for catalytic activity but stabilizes the multiprotein complex. Biochim. Biophys. Acta 1757, 1676-1682.

Andrews, B., Carroll, J., Ding, S., Fearnley, I.M., and Walker, J.E. (2013). Assembly factors for the membrane arm of human complex I. Proc. Natl. Acad. Sci. U S A 110, 18934-18939.

Balsa, E., Marco, R., Perales-Clemente, E., Szklarczyk, R., Calvo, E., Landázuri, M.O., and Enríquez, J.A. (2012). NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. Cell Metab. 16, 378-386.

Berger, I., Hershkovitz, E., Shaag, A., Edvardson, S., Saada, A., and Elpeleg, O. (2008). Mitochondrial complex I deficiency caused by a deleterious NDUFA11 mutation. Ann. Neurol. 63, 405-408.

Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.

Budde, S.M., van den Heuvel, L.P., Janssen, A.J., Smeets, R.J., Buskens, C.A., DeMeirleir, L., Van Coster, R., Baethmann, M., Voit, T., Trijbels, J.M., and Smeitink, J.A. (2000). Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene. Biochem. Biophys. Res. Commun. 275, 63-68.
Clason, T., Ruiz, T., Schägger, H., Peng, G., Zickermann, V., Brandt, U., Michel, H., and Radermacher, M. (2010). The structure of eukaryotic and prokaryotic complex I. J. Struct. Biol. 169, 81-88.
Duarte, M., Sousa, R., and Videira, A. (1995). Inactivation of genes encoding subunits of the peripheral and membrane arms of neurospora mitochondrial complex I and effects on enzyme assembly. Genetics 139, 1211-1221.
Efremov, R.G., Baradaran, R., and Sazanov, L.A. (2010). The architecture of respiratory complex I. Nature 465, 441-445.

Fiedorczuk, K., Letts, J.A., Degliesposti, G., Kaszuba, K., Skehel, M., and Sazanov, L.A. (2016). Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406-410.

Guarani, V., Paulo, J., Zhai, B., Huttlin, E.L., Gygi, S.P., and Harper, J.W. (2014). TIMMDC1/C3orf1 functions as a membrane-embedded mitochondrial complex I assembly factor through association with the MCIA complex. Mol. Cell. Biol. 34, 847-861.

Guerrero-Castillo, S., Baertling, F., Kownatzki, D., Wessels, H.J., Arnold, S., Brandt, U., and Nijtmans, L. (2017). The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab. 25, 128-139.
Haynes, C.M., Fiorese, C.J., and Lin, Y.F. (2013). Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol. 23, 311-318.

Heide, H., Bleier, L., Steger, M., Ackermann, J., Dröse, S., Schwamb, B., Zörnig, M., Reichert, A.S., Koch, I., Wittig, I., and Brandt, U. (2012). Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab. 16, 538-549.
Hirst, J. (2013). Mitochondrial complex I. Annu. Rev. Biochem. 82, 551-575.
Hoefs, S.J., Dieteren, C.E., Distelmaier, F., Janssen, R.J., Epplen, A., Swarts, H.G., Forkink, M., Rodenburg, R.J., Niitmans, L.G., Willems, P.H., et al. (2008). NDUFA2 complex I mutation leads to Leigh disease. Am. J. Hum. Genet. 82, NDUFA2.1315.

Hoefs, S.J., van Spronsen, F.J., Lenssen, E.W., Nijtmans, L.G., Rodenburg, R.J., Smeitink, J.A., and van den Heuvel, L.P. (2011). NDUFA10 mutations cause complex I deficiency in a patient with Leigh disease. Eur. J. Hum. Genet. 19, 270-274.
Hu, Y., Flockhart, I., Vinayagam, A., Bergwitz, C., Berger, B., Perrimon, N., and Mohr, S.E. (2011). An integrative approach to ortholog prediction for diseasefocused and other functional studies. BMC Bioinformatics 12, 357.
Jensen, M.B., and Jasper, H. (2014). Mitochondrial proteostasis in the control of aging and longevity. Cell Metab. 20, 214-225.
Kirby, D.M., Salemi, R., Sugiana, C., Ohtake, A., Parry, L., Bell, K.M., Kirk, E.P., Boneh, A., Taylor, R.W., Dahl, H.H., et al. (2004). NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. J. Clin. Invest. 114, 837-845.
Nehls, U., Friedrich, T., Schmiede, A., Ohnishi, T., and Weiss, H. (1992). Characterization of assembly intermediates of NADH:ubiquinone oxidoreductase (complex I) accumulated in Neurospora mitochondria by gene disruption. J. Mol. Biol. 227, 1032-1042.

Nouws, J., Nijtmans, L., Houten, S.M., van den Brand, M., Huynen, M., Venselaar, H., Hoefs, S., Gloerich, J., Kronick, J., Hutchin, T., et al. (2010). Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab. 12, 283-294.
Ostergaard, E., Rodenburg, R.J., van den Brand, M., Thomsen, L.L., Duno, M., Batbayli, M., Wibrand, F., and Nijtmans, L. (2011). Respiratory chain complex I deficiency due to NDUFA12 mutations as a new cause of Leigh syndrome. J. Med. Genet. 48, 737-740.

Owusu-Ansah, E., and Banerjee, U. (2009). Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541.
Owusu-Ansah, E., Yavari, A., Mandal, S., and Banerjee, U. (2008). Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat. Genet. 40, 356-361.
Owusu-Ansah, E., Song, W., and Perrimon, N. (2013). Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155, 699-712.

Radermacher, M., Ruiz, T., Clason, T., Benjamin, S., Brandt, U., and Zickermann, V. (2006). The three-dimensional structure of complex I from Yarrowia lipolytica: a highly dynamic enzyme. J. Struct. Biol. 154, 269-279.

Rera, M., Bahadorani, S., Cho, J., Koehler, C.L., Ulgherait, M., Hur, J.H., Ansari, W.S., Lo, T., Jr., Jones, D.L., and Walker, D.W. (2011). Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 14, 623-634.

Roy, S., and VijayRaghavan, K. (1999). Muscle pattern diversification in Drosophila: the story of imaginal myogenesis. BioEssays 21, 486-498.

Scacco, S., Petruzzella, V., Budde, S., Vergari, R., Tamborra, R., Panelli, D., van den Heuvel, L.P., Smeitink, J.A., and Papa, S. (2003). Pathological mutations of the human NDUFS4 gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex. J. Biol. Chem. 278, 44161-44167.
Stroud, D.A., Surgenor, E.E., Formosa, L.E., Reljic, B., Frazier, A.E., Dibley, M.G., Osellame, L.D., Stait, T., Beilharz, T.H., Thorburn, D.R., et al. (2016). Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538, 123-126.

Tuschen, G., Sackmann, U., Nehls, U., Haiker, H., Buse, G., and Weiss, H. (1990). Assembly of NADH: ubiquinone reductase (complex I) in Neurospora mitochondria. Independent pathways of nuclear-encoded and mitochondrially encoded subunits. J. Mol. Biol. 213, 845-857.

Vartak, R.S., Semwal, M.K., and Bai, Y. (2014). An update on complex I assembly: the assembly of players. J. Bioenerg. Biomembr. 46, 323-328.
Vinothkumar, K.R., Zhu, J., and Hirst, J. (2014). Architecture of mammalian respiratory complex I. Nature 515, 80-84.
Vogel, R.O., Janssen, R.J., van den Brand, M.A., Dieteren, C.E., Verkaart, S., Koopman, W.J., Willems, P.H., Pluk, W., van den Heuvel, L.P., Smeitink, J.A., and Nijtmans, L.G. (2007). Cytosolic signaling protein Ecsit also localizes to mitochondria where it interacts with chaperone NDUFAF1 and functions in complex I assembly. Genes Dev. 21, 615-624.
Wittig, I., Braun, H.P., and Schägger, H. (2006). Blue native PAGE. Nat. Protoc. 1, 418-428.

Zhu, J., Vinothkumar, K.R., and Hirst, J. (2016). Structure of mammalian respiratory complex I. Nature 536, 354-358.

Zickermann, V., Wirth, C., Nasiri, H., Siegmund, K., Schwalbe, H., Hunte, C., and Brandt, U. (2015). Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347, 44-49.

[^0]: fully assembled complex. Assembly factors or chaperones that assist in this process but are not present in the fully assembled complex have been omitted for clarity.
 (C) Western blot of samples obtained from thoraxes from pupae aged between 2 and 4 days after pupariation and of flies from 0.5 to 48 hr post-eclosure to detect the assembly intermediates, fully assembled Cl , and a supercomplex containing complex I (supCl) after $\mathrm{BN}-\mathrm{PAGE}$. The anti-NDUFS3 antibody strongly detects Cl and supCl and weakly detects the $\sim 315, \sim 550$, and $\sim 815 \mathrm{kDa}$ assembly intermediates after a short exposure. However, after a longer exposure, the ~ 315 and ~ 550 kDa assembly intermediates can clearly be seen. At right, the membrane was stripped and re-probed with anti-NDI. Anti-ND1 detects the ~ 315 and $\sim 550 \mathrm{kDa}$ assembly intermediates and a very faint band corresponding to Cl . (D) Proteomic analyses of assembly intermediates that form in the native gel sized between ~ 50 and ~ 350 kDa. See Table S3 for all the peptides identified. 220

