
A Hierarchical Mixed Membership Model for Multiple-Answer
Multiple-Choice Items with Signal Detection Theory

Abstract
Multiple-answers multiple-choice (MAMC) items are widely used in educa-
tional testing and social research. However, inadequate studies and resources
are allocated to the assessments of MAMC items. In this study, we intro-
duce a new approach to analyze MAMC items using original response data
(which alternatives have been selected) without scoring (correct or wrong).
It has immense potential to provide rich information relevant for tractable
psychological behavior and interpretable educational measurement. We use
the signal detection theory (SDT) to measure the decision-making behavior
across alternatives. Then, the mixed membership model is applied to cap-
ture the grouped data structure in the MAMC item. A simulation study
of the HMM-SDT model is presented with a comparison to the tradition
treatments in Item Response Theory (IRT).

Keywords: Singal Detection Theory, Mixed Membership, Hierarchical
Model, Multiple-answer Multiple-choice Item
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Introduction

Multiple-choice tests are designed to allow the correctness of the response to reflect
the intended ability of interest (?, ?). One item consists of a stem and several alternatives.
Single-answer multiple-choice (SAMC) item is the simplest and most commonly discussed
type of multiple-choice items. A SAMC item has only one correct alternative (key) and at
least one incorrect alternatives (distracters). Multiple-answer multiple-choice (MAMC) is a
generalization of SAMC items in a way that more than one alternative may be the key. An
example of a MAMC item for use in a Graduate Record Examinations (GRE) quantitative
reasoning test is:

Which of the following integers are multiples of both 2 and 3? (Indicate all such integers.)

A.8 B.9 C.12 D.18 E.21 F.36

The correct answer consists of alternatives C (12), D (18), and F (36). The checkbox is often
used for designing a MAMC question. ? (?) summarized three benefits of using MAMC
items: 1) the MAMC format permits a more convenient and natural wording of questions
and alternatives; 2) test construction is simplified; 3) the appearance of distracters like
"none of these" is avoided.

In practical, MAMC items commonly can be scored on an all-or-none basis where the
student is given one point for selecting all the correct alternatives, and none of the incorrect
alternatives, or is given zero points otherwise. Using the all-or-none basis for multiple-choice
items inevitably dichotomizes the original response pattern. Thus, the distinct identity of
the incorrect alternatives is lost (?, ?). For MAMC, this approach is even worse because
extreme response pattern (get all items wrong) are more likely to appear. The probability
of getting a score converges to zero exponentially as the number of alternatives increases.
For example, for a MAMC item that contains five alternatives, if the probability of making
the correct choice is 0.5 for every alternative independently, the probability of getting score
is 0.55 (3.125%). All-or-none basis treat MAMC and SAMC items with no difference.
The most widely used models are item response models for a binary response (e.g., Rasch
Model and the Birnbaum model). To improve testing efficiency in the context of Multiple-
Choice items, extracting additional information from item response data have become highly
desirable (?, ?). It is also appealing to design the methodological strategies for analyzing
these data.

Alternatively, MAMC items can also be scored by giving one point for each correct
alternatives selected and one point for each distracter not selected. However, we need to
ensure that every item has the same number of alternatives. Moreover, it treats MAMC
items with no difference with Likert-type items and ignores the grouped structure of the
item response. Since the items can have more than two possible scores, polytomous item
response models are usually used. For example, Partial Credit Model (PCM; ?, ?), the
Generalized Partial Credit Model (GPCM; ?, ?, ?), the Rating Scale Model (RSM; ?, ?).

Even though MAMC items are frequently used in educational testing, market re-
search, and elections, inadequate attention has been paid in previous research. Increasing
available resources are disproportionately allocated towards assessments of SAMC items.
Moreover, models for the SAME items usually cannot be easily extended for the MAMC
item without the loss of information. Additionally, item response theory (IRT) assessments
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can not exam the psychological behaviors in testing. They are measurement models rather
than psychological models (?, ?).

In this study, we illustrate the use of the Hierarchical Mixed Membership Model with
Signal Detection Theory (HMM-SDT) in MAMC items. The model follows directly from
a conceptualization about examinees’ decision-making behavior based on signal detection
theory (SDT; ?, ?, ?, ?, ?). The model will be introduced here is an extension of what
is proposed by ? (?) for True–False Exams. A generalization of this model for analyzing
other types of selected-response exams (e,g., SAMC) is possible for the future study. We
will present the psychological conceptualization underlying the model and its statistical
characteristics. We also discuss the implications of the HMM-SDT model, test the reliability
of the model design, and compare this model with item response models in the simulation
study.
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Model Theory

In this chapter, we will explain the details of the Hierarchical Mixed Membership
model with Signal Detection Theory (HMM-SDT). Firstly, Signal Detection Theory (SDT)
will be discussed in an alternative selection scenario for a single examinee. Then, the SDT
model will be extended with a Mixed Membership framework to measure the selection
behavior for the whole item for a single examinee. Finally, the model will be extended to
measure multiple examinees’ behaviors.

Single alternative Selection Behavior at Individual Level. Signal Detection
Theory (SDT) is a mathematical framework for the case that reasoning and decision making
takes place in the presence of uncertainty (?, ?). It is widely applied in education, psychol-
ogy, and medical research. In the MAMC scenarios, the examinee’s decision is whether
to select each alternative or not. Since the number of keys is usually unknown, the selec-
tions are independent. The decisions are based on a continuous latent variable of φ, which
represents the examinee’s perception of the presented event. perception is represented by
probability distributions to capture the uncertainty of selection behaviors. ? (?) provided
an innovative interpretation of SDT in testing data. This study follows his interpretation
of SDT.

Figure 1 . An illustration of signal detection theory with two latent classes and two response
categories

Figure 1 illustrates the basic ideas of SDT for the situation where there are two
cognitive conditions (known or unknown) and the two observed responses (select or not
select). The x-axis represents the level of perception φ, and the y-axis represents the
probabilities. "*" indicates the correct answer of the decision. First, examinee compares
its perception to the decision criterion/boundary (c). In Figure 1, if an examinee perceives
the perception above the criterion, then the decision is "select." Otherwise, the decision is
"not select". In the left plot, examine who know is more likely to select (the correct choice).
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The right plot in Figure 1 shows the situation when the correct answer is "not select". The
left side of the decision criterion always represents "not select", and the right side always
represents "select".

Let δ denote the cognitive condition of the examinee as known (δ = 1) and unknown
(δ = 0). Thus, SDT is a latent class model with a categorical latent variable δ. The
center of signal distribution for the examinee who does not know is fixed at zero to avoid
the identification problem. The distance between two signal distributions is d (d > 0),
which reflects how well that alternative can discriminate examinees’ cognitive conditions.
Conceptually, d plays a similar role as discriminating power parameters in IRT models. For
the kth alternative, perception φk can be viewed as:

φk = δkd+ εk (1)

, where ε are assume to be identically and independently distributed (e.g., εk ∼
Normal(0, σ)).

Let Z indicates the observed correct answer as "select" (z = 1) or "not select " (z =
−1). In the left plot of Figure 1 (z = 1), the alternative becomes more difficult since
the probability for all examinees to make the wrong decision is increasing as the decision
boundary (c) increases. In the right plot of Figure 1 (z = −1), the results are the opposite.
Thus, the location of c decision criterion and correct answer status z together represent the
difficulty of the alternative. We can use cz denote the difficulty of the alternative.

For an examinee who does not know, he/she can only randomly guess if the decision
boundary is at the center of signal distribution (c = 0). The difficulty level is zero. When
c and z have different signals, the difficulty level is negative (easy). Even for the one who
does not know, it has a better-than-even chance of making the right decision. Moreover,
the difficulty level keeps decreasing if the absolute value of c is increasing. When c and z
have the same signal, the results are the opposite.

Guessing and Slipping (see the right plot in Figure 1) can be easily defined in SDT
models. For an examinee who does not know, the probability of making the right choice
is called guessing. The probability of who knows to make the wrong decision is slipping.
Besides, guessing and item difficulty is more consistent In SDT compared with IRT (3PL)
approach. Because more difficult alternatives are harder to guess (lower probabilities of
being right for the one who does not know). We can denote gussing as G, and sliping as
S.

G =
{

1− F (c), if z = 1
F (c), if z = −1 (2)

S =
{

F (c− d), if z = 1
1− F (c+ d), if z = −1 (3)

Finally, let Y denote the observed response as "select" (y = 1) or "not select" (y = 0).
Examinees’ observed response Y for every single alternative in a MAMC item is based on
cognitive condition δ, distance (or discriminating power) parameter d, decision criterion c,
and correct answer z. The probability of observed response in a single alternative is:

Pr(y|z, δ, d, c) = F (c− δdz)1−y(1− F (c− δdz))y (4)
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In summary, SDT is a psychological model for decision-making behaviors. The ap-
pealing interpretations empower this model to measure the alternative properties (e.g.,
difficulty cz, discriminating power d) and examinee properties (e.g., cognitive condition δ).
The latent class and response patterns are generally ordinal. Additionally, the SDT model
can be generalized for the situations where there are more than two latent classes and more
than two response categories. Signal distributions can also be captured by logistic and
extreme value distribution. To simplify, we assume that signal distributions share the same
variance, and the distances between adjacent distributions (d) are fixed. ? (?) discussed
the challenges of using different variances.

Multiple-Answer Multiple-Choice Behavior at Individual Level. In this sec-
tion, we extend the model with the Mixed Membership framework for the whole MAMC
item. Let Yjk (j = 1, 2, ..., J, n = 1, 2, ...,mj) denote the observed response of the kth alter-
native in the jth MAMC item. mj represents the number of alternatives in the jth item
(Usually mj = 4 or 5). Like observed response, parameters (e.g., φjk, cjk, zjk, and δjk)
in last section can be extend in the same way. Similar to the Generalized Partial Credit
Model, we define dj as the item discriminating power parameter, which is shared across all
alternatives. Because item discriminating power is related to the concept of item reliability
index in classical test theory.

MAMC data is grouped data since different alternatives share the same stem and test
the same ability under one item. As we view the MAMC item Yjk as the grouped data, the
SDT model can be straightforwardly extended to a Mixed Membership or Grade of Mem-
bership Model (?, ?, ?). The mixed Membership model assumes a continuous distribution
of latent variables (e.g., φjk) over several categories (e.g., δjk) which reflects the original
idea that individuals can be partial members in more than one class (?, ?). If we force the
latent variable to have exclusive membership in only one category and no membership in
all the other categories, this is the latent class model.

Let λj denote the partial membership score for the "known" latent class (δjk = 1),
and 1 − λj for the "unknown" latent class (δjk = 0). Partial membership score is the
propensity of examinee to know each alternative (E(δjk) = λj) independently. We assume
that every alternative under one item shares the same partial membership score. This
parallel alternative design is analogous to the assumption of parallel item in classical test
theory. We do not derive the model as a process model, although that might be possible.
In this way, a partial membership score captures the grouped structure of MAMC data.

In summary, the alternatives in one MAMC item are exchangeable. The shared λj

across different alternatives capture the grouped structure of MAMC data and avoid treating
each alternative separately in a "True-False" sense. The probability of select for the kth
alternative in j MAMC item is:

Pr(yjk = 1|zjk, δjk, dj , cjk, λj) = Pr(yjk = 1|zjk, δjk, dj , cjk)Pr(δjk|λj)
= λj(1− F (cjk − djzjk)) + (1− λj)(1− F (cjk))

(5)

? (?) did the comparison of Mixed Membership SDT model with IRT model in True/False
items.

As we mentioned above, the Mixed Membership model can be generalized for the
situations where there are more than two latent classes. For example, Latent Dirichlet
Allocation (?, ?) is an application of Mixed Membership where the latent classes are topics,
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which are nominal. However, criticism arises when an ordinal latent class is extended to
be more than two categories in the Mixed Membership model. For example, when the
latent classes are "known," "normal," and "unknown," it is abnormal to interpret that one
examinee is 20 % known, 30 % normal, and 50 % unknown. Because ordinal latent variables
are not exchangeable. In this study, dichotomous memberships (know and unknown) can be
viewed as a nominal or ordinal latent variable without apparent differences. "Known" and
"unknown" are two extreme situations that rarely happen in reality. Thus, λj represents
the distance towards these two extreme situations on a probability scale. Moreover, λj also
indicates examinee is the ability on the jth item.

Multiple-Answer Multiple-Choice Behavior at Group Level. Previous sec-
tions focus on grouped data Yjk for a signal examinee. In this section, we extend the model
to capture multiple examinees’ behaviors with IRT. Let Yijk denote the observed response
of the kth alternative in jth item for i examinee. Similarly, φijk , δijk, and λij can all be
extended for the kth examinee. We do not extend discriminating power dj and decision
criteria cjk since they are used for capturing the alternative properties. The probability of
select for the kth alternative in j MAMC item for the ith examinee is:

Pr(yijk = 1|zjk, δijk, dj , cjk, λij) = Pr(yijk = 1|zjk, δijk, dj , cjk)Pr(δijk|λij)
= λij(1− F (cjk − djzjk)) + (1− λij)(1− F (cjk))

(6)

This formula is the extension of formula (5) in multiple examinee situation.
However, there are some critical features of interest have not been discussed in this

model yet. For example, λij can be interpreted as examinee i’s ability on item j. However,
we can not get the overall ability of an examinee. Similarly, cjkzjk indicates the difficulty of
each alternative. However, the overall difficulty of a MAMC item has not been measured.

A straightforward approach to estimate examinees’ overall ability is to marginalize
the possible membership score of λij . We can take the average score of λij across different
items to measure its ability (θi = 1

J

∑J
j=1 λij). Similarly, item difficulty can be measured

by taking the average score of alternatives difficulty (bj = 1
K

∑K
k=1 zjkcjk). However, this

approach assumes that the examinees’ ability on each item contribute equally towards their
overall ability. The difficulty of each alternative contributes equally to the overall difficulty
of the item.

Given distance parameters dj , criteria parameters cjk and true answer zjk, λij is a
non-linear transformation of the probability examinee i will get score on the item j. For
each alternative, let Pijk the probability of making right decision for the ith examinee on
the kth alternative of jth item:

Pijk =
{

λijF (cjk + dj) + (1− λij)F (cjk) , zjk = −1
λij(1− F (cjk − dj)) + (1− λij)(1− F (cjk)) , zjk = 1 (7)

Given cjk, dj , and zjk, Pijk is a linear transformation of λij . The probabilities for ith
examinee to get score on the jth item (select all alternatives correctly), which is used in
IRT models, can be expressed as:

∏mj

n=1 Pijk. It is a non-linear transformation from λij .
Compared with

∏mj

n=1 Pijk, λij is less likely to be close to zero, and easier to be estimated
in MCMC. Though HMM-SDT needs extra information, it does not need the extra data
process to determine "right" or "wrong" of each decision as in IRT. The initially observed
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responses and accurate answers for each alternative are the input data required for HMM-
SDT.

In summary, decision-making behavior on every single alternative is independently
measured by Signal Detection Theory. Decision boundary cjk is used to capture the alter-
native difficulty Distance parameter dj is used to measure the item discriminating power.
δijk is used to capture the examinees’ cognitive condition on every alternative. The alterna-
tives within the same MAMC item are measured by the Mixed Membership model design.
They share the same partial membership score λij , which measure the ability at item level
independently. The variables in this model and their interpretations can be summarized in
Table 1.

Table 1: Parameter and interpretation
Level Parameter Interpretation Scale

alternative Level

cjk Decision Boundary (−∞,∞)
δijk Membership Assignment (Cognitive

Situation: Known & Unknown)
{0,1}

z∗
jk True Answer (Select & Not Select) {-1,1}

Y ∗
ijk Response (Select & Not Select) {0,1}

Item Level dj Item discriminating power (0,∞)
λij Partial Membership Score (Item Ability) [0,1]

* observed variable
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From Theory to Model

In this article, we would take a Bayesian approach to design the model. There are
three levels of independence based on the framework of Mixed Membership model: 1) the
conditional independence among the membership assignment parameters δijk given the par-
tial membership scores λij ; 2) the conditional independence among the observed response
Yijk given the membership assignment parameters δijk. Besides, there are two levels of
independence based on SDT model: 1) the independence among distance parameters dj ; 2)
the independence among the criterion parameters cjk.

We select the week priors based on the suggestions from ? (?). See the appendix to
get more detail about the Stan code. Latent class δijk are marginalized in the model to
apply the no-U-turn sampler (NUTS, ?, ?) in stan. The generative process and the setting
of hyperparameter are:

1. Draw components, for each examinee i:
(a) For each pair of item j and alternative k:

draw the decision criterion cjk: cjk ∼ Normal(1
2djzjk, 1).

(b) Calculate the conditional probabilities of making right decision ρijk:
ρijk = Pr(Yijk = 1|λij , zjk, cjk, dj)

2. For each item j:
(a) Draw a difficulty parameter dj : dj ∼ Lognormal(0, 0.5)
(b) Draw proportions λij : λij = beta(1, 1)
(c) For each observed response Yijk scored by rater j:

Draw the data point Yijk: Yijk ∼ Bernoulli(ρijk).
Theoretically, the best decision boundary c location is the intersection point of two

signal distribution. This decision boundary ensures that people who know always have a
higher probability of making the correct choice. Given the variance of two signal distribu-
tions are fixed, the intersection point is alway locate at 1

2djzjk.
The total number of the possible pattern is 2IJK . The number of parameter under

HMM-SDT model would be: J×K decision criterion cjk parameters, J distance parameters
dj , and I × J mixture assignment parameters λijk. As long as:

IJ + JK + J < 2IJK (8)

satisfied, we will not have an identification problem. If we apply all independence scenarios
we assume before, the log-likelihood function would be:

log p(·) =
∑

i

∑
j

∑
n

(log p(Yijk|ρijk) + log p(ρijk|δijk, zjk, cjk, dj) + log p(δijk|λij))

+
∑

j

∑
n

log p(cjn|dj) +
∑

i

∑
j

log p(λij)
(9)
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Simulation Study

In this section, we will use R (?, ?) to simulate the fake data. Stan (?, ?) is
used for model estimation. Since MCMC generally requires complex computation, NUTS
sampler in Stan takes a long time to estimate. Variational inference can provide a rough
approximation of the posterior distributions and takes much shorter estimation time with
an acceptable loss of estimation accuracy. In terms of finial inference, the NUTS sampler is
generally recommended. In this section, we use mean-field variational inference to measure
the tendency of parameter recovery under different usage situations.

We take the Expected A-Posterior (EAP) as the estimated value since this usually
gives a more robust estimation. We use Root Mean Square Error (RMSE) and average
posterior standard deviation (PSD) as the measurements for parameter recovery. Three
examinee sample size (500 and 1000) and two exam item sample size (20 and 40) are tested.
Every item is assumed to contain four alternatives.

Table 2: Summary of parameter recovery
Measurements

I J RMSE(c) PSD(c) RMSE(d) PSD(d) RMSE(λ) PSD(λ)
500 20 0.308 0.062 0.891 0.050 0.150 0.235

40 0.290 0.058 0.792 0.045 0.159 0.235
1000 20 0.291 0.040 0.895 0.032 0.159 0.235

40 0.267 0.040 0.809 0.031 0.164 0.235

As we can see from Table 2, the parameter generally recovers to the real value well.
Generally, increasing the sample size of items and examinees will improve the estimation
accuracy of decision boundary and item discriminating power.

Model Implications

Data are simulated for 500 examinees, 20 MAMC items, and four alternatives in
each item. We need to note that: each item can have a different number of alternatives
to use HMM-SDT. The signal distributions are assumed to follow the standard normal
distribution. In total, there are 500 × 20 × 4 = 400000 decision-making behaviors. Four
parallel chains were simulated out to 2000 iterations with the estimates calculated from
the last 1000 iterations. For the fake data we get, 40 alternatives should be selected, and
40 should not be selected based on the correct answers (zjk). According to the observed
response from examinees, there are 51.58 % alternatives have been selected.

To measure the estimation convergence, we pick the standard criteria: R-hat statistic
by ? (?). The R-hat statistic measures the degree of multiple parallel Markov Chain, which
is run with starting values that are over-dispersed relative to the posterior distribution. If
the chains have converged, R-hat is close to one, and estimates are unbiased. R-hat sub-
stantially above one indicates a lack of convergence. The R-hat statistics for all parameters
are equal to one, which indicates the convergence of estimation.

The relative location of the decision boundary and two centers of signal distributions
provide evidence about the quality of alternatives. When the decision boundary is between
two centers of signal distributions, the alternative difficult is at a reasonable range. In this
range, guessing and slipping are smaller than 50%. If the decision boundary goes beyond
the center of the signal distribution of the examinee who does not know, the alternative is
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"too easy." Slipping is converge to zero, and guessing is more significant than random guess
(50%). In contrast, if the decision boundary goes beyond the center of signal distribution
of the examinees who know, the alternative is "too hard." Figure 2 shows the visualization
of the difficulty analysis with our estimates from HMM-SDT. The dashed line separates the
alternatives into different items (four alternatives in one item). When c is close to zero, the
difficulty is less likely to be "too hard" since the examinees have a random chance to get it
correct.

Figure 2 . Difficulty Analysis

When there is at least one alternative "too hard" in the item, all-or-none basis scoring
tends to underestimate examinee’ ability. When there is at least one alternative "too easy"
in the item, Likert-type basis scoring will have less discriminating power. For example, the
10th item (alternative index from 36 to 40) needs to be improved (three alternatives are
"too easy").

SDT guarantee that 1 − s > g, which means people who know always have a higher
probability of making the right decision than those who do not know. To abstain from the
personalized "Guessing" and "1 - Slipping", partial membership score λij is required.

Gijk = (1− λij)(1− F (cjk))
Sijk = λij(1− F (cjk−djzjk

))
(10)

Figure 3 shows the "Guessing" and "1 - Slipping" for the examinee with the high
overall ability (above) and low ability (below). When "1 - Slipping" is smaller than 0.5, the
corresponding alternative is "too difficult," even if the examinee knows this alternative. The
probability of whether the examinee knows or does not know the alternative is captured
by λij . When "Guessing" is smaller than 0.5, the corresponding alternative is harder than
random guess if the examinee does not know this alternative. For the examinee with high
overall ability, the estimated "Guessing" (most below 0.5) and "1-Slipping" (most above
0.5) are evenly distributed. When λij is high, "Guessing" and "1-Slipping" are more clearly
separated. For the examinee with low overall ability, most "Guessing" and "1-Slipping" are
below 0.5 and mixed.
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Figure 3 . Guessing and Slipping Analysis
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Model Comparison

In this section, we will compare the HMM-SDT with the IRT models with the sim-
ulated data in the last section. For the most common approach of handling the MAMC
item, we take the 3PL model with an all-or-none basis. In the 3PL model, the probability
of ith examinee to get the score on the jth item is:

Pr(xij = 1|θi, aj , bj , cj) = cj + (1− cj) exp[aj(θi − bj)]
1 + exp[aj(θi − bj)] (11)

, where a are the discriminating power parameters, b are the item difficulty parameters, c
are the pseudo-guessing parameters, and θ are the examinee ability parameters.

Alternatively, we also use a Likert-type basis and take the Generalized Partial Credit
Model (GPCM).

Pr(xij = k|θi, aj ,bj) = exp[
∑k

v=1 aj(θi − bj + dv)]∑N
c=1 exp[

∑c
v=1 aj(θi − bj + dv)]

(12)

, where b are item location parameters and d are the threshold parameter. We assume that
d1 = 0 to avoid identification issue. Item location parameters and threshold parameters
together capture the probabilities of how many numbers of choices the examinee would
make right across different alternatives in a MAMC item. However, they cannot tell the
difficulty of each alternative individually.

If we take the all-or-none basis, 32 examinees get the 0 out of 20 (lowest), and six
examinee gets 7 out of 20 (highest). The average score is 2.46, the mode score is 2, and
the median score is 2. The standard deviation of the score is 1.45. If we take the Likert-
type basis, the possible score for every item can be 0 to 5, and the overall highest score
is 40 × 5 = 200. One examinee gets the 25 (lowest), and two examinee gets 58 (highest).
The average score is 40.14, the mode score is 36, and the median score is 40. The standard
deviation of the score is 6.32. As we can see from Figure 3, the distribution of the score
is more symmetric and dispersed using a Likert-type basis. The score distribution of an
all-or-none basis is right-skewed. An extreme lower score is more likely to appear on an all-
or-none basis. Thus, a Likert-type basis is more reliable. To some extent, HMM-SDT utilizes
a similar basis as Likert-type scoring, which incorporates the decision-making observations
on each alternative. However, HMM-SDT does not require to score the alternative or items
at all. Since the observed response Y in SDT is the original decision (select or not select)
examinee made on each alternative. Thus, more information can be kept from the original
data without going through the scoring process.

All of these models can be used to measure: item difficulty, item discriminating
power, and examinee overall ability. However, GPCM cannot measure alternative difficulty,
guessing and slipping, and examinee ability on an item. 3PL measure the guessing and
slipping on item level, and can not measure alternative difficulty and examinee ability on
an item. An increasing number of parameters benefits much more measurement power in
HMM-SDT.

As we can see from Table 3, the 3PL model does not perform well in terms of corre-
lation with the actual parameter value. For average Posterior Standard Deviations (PSD),
all three models have a similar level performance. All-or-none scoring basis wastes much
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Figure 4 . Histogram for all-or-none score and Likert-type score

useful information. In particular, we cannot distinguish the ability of nine examinees who
get zero scores. Meanwhile, extreme cases of one get the item correct are more likely to
happen.

Table 3: Model Comparison
parameter model Correlation average PSD

Ability
MHH-SDT 91.85% 0.009

3PL 29.93% 0.014
GPCM 53.9% 0.003

Difficulty
MHH-SDT 93.68% 0.086

3PL 71.87% 0.020
GPCM 81.97% 0.004

Discriminating power
MHH-SDT 85.90% 0.011

3PL 15.48% 0.014
GPCM 42.8% 0.003
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Summary & Discussion

In this study, we have designed a hierarchical mixed membership model with a signal
detection theory for the MAMC item. Signal detection theory is a psychology model and
captures the decision-making behavior for every alternative. The mixed membership model
captures the grouped data structure in the MAMC item. Different alternatives share the
same partial membership scores, which measure the examinee’s ability on different items.

Same as the IRT models, there are two underlying assumptions for HMM-SDT model:
1) Monotonicity: as the overall ability is increasing or the item difficulty is decreasing, the
item level ability is increasing. 2) Local independence: The response of separate alternatives
in an item is mutually independent, given a certain level of ability, and the ability of separate
items are mutually independent, given a certain level of overall ability.

HMM-SDT provides a flexible framework for handling almost all kinds of multiple-
choice items without requiring every item to has the same length or scoring process. The
information and structure of response patterns are captured more completely. Exact–False
item is a particular case where every MAMC item contains only one alternative. To analyze
the SAMC items, we need to break the local independence assumption at the alternative
level. Since the distracters’ effect plays an important role and the decision-making behav-
iors are consequently not independent anymore. The limitation of current HMM-SDT is
complete local independence at the alternative level. In reality, there is usually at least
one essential alternative that should be selected in the MAMC item. However, our model
allows the extreme situation that none of the alternatives are chosen. It leads to a slight
underestimation of ability and overestimation of difficult.

Based on the simulation study, HMM-SDT has several advantages over the traditional
IRT approach. The future study will test and compare the model in more dimensions and
under more different simulation conditions with real data. MAMC items are widely used
in model testing and have distinct benefits and flexibility in application. We hope that the
present article will encourage researchers to use and do more research on the HMM-SDT
model and MAMC item. The result will be a more in-depth and more informative analysis.
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Appendix

Stan Code for HMM-SDT.

data {
int<lower=0> K; // # alternative
int<lower=0> I; // # examinee
int<lower=0> J; // # item
int y[I,J,K]; // observations
int z[J,K]; // true answer

}

parameters {
real c[J,N];
real<lower=0> d[J];
real<lower=0,upper=1> lambda[I,J];

}

model {
d ~ lognormal(0,1);
for (j in 1:J){

for (n in 1:N){
c[j,n] ~ normal((1/2)*d[j]*z[j,n],1);

for (i in 1:I){
y[i,j,n] ~ bernoulli( lambda[i,j] *
(1 - normal_cdf(c[j,n] - d[j] * z[j,n],0,1)) +
(1 - lambda[i,j]) * (1 - normal_cdf(c[j,n],0,1)));

}
}

}
}


