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Abstract The impact of anthropogenic forcings on tropical North Atlantic hurricane potential
intensity (PI) is evaluated in Climate Model Intercomparison Project 5 models for the period 1958–2005.
Eleven models are examined, but only seven models have a forced response that is distinguishable from
internal variability. The use of discriminant analysis to optimize detectability does not yield a clear,
common climate change signal. Of the seven models with a significant response, one has a negative
linear trend while two have a positive linear trend. The trend in PI is not even consistent among reanalyses,
although this difference is not statistically significant because of large uncertainties. Furthermore,
estimates of PI internal variability have significantly different variances among different reanalysis
products. These disagreements between models, reanalysis products, and between models and reanalyses,
in conjunction with relatively large uncertainties, highlight the difficulty of detecting and attributing
observed changes in North Atlantic hurricane potential intensity.

Plain Language Summary Observed temperature has been steadily increasing over the last
century and much of this warming can be attributed to greenhouse gas emissions. Theoretically, the
maximum intensity (or potential intensity) a hurricane can achieve depends strongly upon sea surface
temperature, with warmer temperatures producing stronger storms. From this perspective, we might
expect that the warming surface temperatures are driving observable changes in hurricane intensity. To
this end, we analyze climate model experiments to determine if the observed changes in North Atlantic
hurricane intensity can be attributed to human-related emissions over the period 1958–2005. Of the 11
models analyzed, we find that only seven predict that hurricane potential intensity has changed in response
to greenhouse gas and aerosol emissions. The change in potential intensity differs across models, with
one model predicting a decreasing trend in North Atlantic hurricane potential intensity, while two models
predict an increasing trend in potential intensity. Different reanalysis data sets are likewise inconsistent.
These results indicate that currently we cannot attribute changes in North Atlantic hurricane intensity
to human-related forcings. It is possible that as greenhouse gas concentrations continue to increase, an
unequivocal forced response in North Atlantic potential intensity may emerge in the future.

1. Introduction
Hurricanes making landfall in the United States are responsible for catastrophic losses in life and property,
with nearly 3,500 fatalities since 1980 and an accumulated cost of $850.5 billion dollars in damages (Smith,
2018). With nearly half of the U.S. population living along the coasts, and the number of residents projected
to increase, the potential risk of U.S. coastal communities to tropical cyclones is expected to grow. Given
these increased vulnerabilities, it is important to understand how climate change may amplify risk in these
densely populated regions.

Greenhouse gas (GHG) forced changes in sea surface temperatures (SSTs) may lead to a significant increase
in hurricane intensity. Emanuel (1987) estimated that a doubling of carbon dioxide would lead to a 40–50%
increase in hurricane potential intensity. High-resolution projections likewise find an increase in hurricane
intensity with increasing GHG concentrations (Bengtsson et al., 2007; Knutson & Tuleya, 2004; Knutson
et al., 2010; Maloney et al., 2013; Walsh et al., 2015). More than half of the observed increase in global
mean surface temperature between 1951 and 2010 is very likely due to increases in GHG concentrations
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(Bindoff et al., 2013). We might expect that these changes in surface temperature are reflected in observable
changes in hurricane intensity.

Storm-specific observations document a strengthening of North Atlantic hurricanes in recent decades.
Satellite records capture a significant shift in the distribution of North Atlantic hurricane intensity toward
stronger storms since the 1980s (Elsner et al., 2008; Kossin et al., 2013). Likewise, best track observations
of the power dissipation index of North Atlantic hurricanes, an aggregate measure of hurricane frequency,
intensity, and duration, has steadily increased since the 1970s (Emanuel, 2005). While large uncertainties
in best track records have resulted in considerable debate about the validity of observed trends in hurricane
intensity (Klotzbach & Landsea, 2015; Webster et al., 2005), the advent of temporally homogenous satellite
data sets has allowed for more reliable estimates of hurricane intensity over recent decades (e.g., Kossin
et al., 2013).

Trends have also been identified in the large-scale proxy for hurricane strength known as the potential
intensity (PI). The PI provides an estimate of the theoretical maximum intensity a hurricane can achieve
given the surface temperature and vertical profiles of temperature and moisture. Although there are well
known caveats in the PI theory (Smith et al., 2008), an alternative measure has not been proposed. Both
observational and modeling studies document a relation between PI and average hurricane intensity, where
increases in PI correspond with stronger cyclones (Emanuel, 2000; Kossin & Camargo, 2009; Wing et al.,
2007). Consistent with the storm-based measurements, positive trends in the basin mean tropical North
Atlantic PI have been identified in a variety of reanalysis products and in radiosonde data over recent decades
(Emanuel et al., 2013; Vecchi et al., 2013; Wing et al., 2015). In contrast, Kossin (2015) found that the sign of
the trend in storm-local North Atlantic PI is dependent on the reanalysis product being analyzed. Multiple
lines of evidence suggest that the intensity of North Atlantic hurricanes has changed over recent decades,
but the cause of this change remains a subject of debate.

The frequency of major hurricanes in the North Atlantic is strongly linked to the local SST changes, where
strong storms are more likely when SSTs are warm (Yan et al., 2017). Fluctuations in observed North Atlantic
SST are the result of external forcing and internal variability, though it is unclear which contributes most
to changes in local SST. Analyzing a suite of Climate Model Intercomparison Project (CMIP5) experiments,
Ting et al. (2015) argue that the impact of GHG and aerosol forcings on North Atlantic hurricane potential
intensity cancel and attribute trends in PI over the recent decades to the Atlantic multidecadal variability.
The cancelation of the aerosols and GHG forcing on PI globally is discussed in Sobel et al. (2016, 2018).

The impacts of GHG and aerosol forcing on hurricane intensity cannot be determined from observations
alone. To this end, we analyze climate model experiments to determine if the observed changes in North
Atlantic PI can be attributed to human-related forcings by comparing estimates of the forced response from
models with reanalyses. Our analysis will focus on the PI, because it serves as a useful proxy for the dis-
tribution of hurricane intensity in global climate models (e.g., Camargo et al., 2013; Polvani et al., 2016;
Sobel et al., 2016; Ting et al., 2015), which lack sufficient spatial resolution to explicitly simulate the most
intense hurricanes (Camargo & Wing, 2016). Formal attribution and detection analysis of the single forced
runs reveal a collinearity in PI to GHG and aerosol forcings. Therefore, rather than attempting to attribute
changes in PI to GHG and aerosol forcings separately, we evaluate the impacts of the combined forcings.
Previously, Ting et al. (2015) examined the impacts of external forcing and internal variability on SST-related
changes on North Atlantic PI in a suite of CMIP5 models. Unlike Ting et al. (2015), which was a multimodel
study, we quantify the combined impacts of GHG and aerosol forcings on PI variability in individual CMIP5
models. Lastly, the consistency of the forced response is assessed by a cross-model comparison and verified
against different reanalyses.

2. Data and Methods
We analyze the historical simulations, wherein external forcings change according to observed estimates,
and the preindustrial controls in which forcings are fixed, for the 11 climate models listed in Table S1 in
the supporting information. The anthropogenically forced response for each model is estimated by aver-
aging across all available ensemble members for the historical simulations (see Table S1). One ensemble
member from the preindustrial control is used to estimate the internal variability. We consider only the
period 1958–2005, to allow for comparison with reanalysis products. The analysis was repeated for the period
1979–2005 and the results are consistent; however, the number of models with a detectable trend is smaller
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than that for the 1958–2005 period. Accordingly, we limit our analysis to the longer period to allow for
the inclusion of more models. A 240-year segment is used from each model preindustrial control, of which
192 years are used to estimate internal variability, the remaining 48 years are used in hypothesis testing to
match the observational data. The model with the least number of years limits the length of the preindus-
trial control run used. For both the historical and preindustrial control experiments, monthly fields of SST
and vertical profiles of temperature and moisture are first interpolated to a 2◦ × 2◦ grid and then used to esti-
mate PI according to Bister and Emanuel (1998). We also analyzed the single forced (GHG only and aerosol
only) simulations of these same models, but those results are not reported here. The remainder of our anal-
ysis focuses on the anomalies of the average June–November tropical North Atlantic PI, where anomalies
are estimated with respect to overall mean for the period of interest. A subset of the models selected for this
study were also analyzed in Ting et al. (2015) and Sobel et al. (2016). For a more complete description of the
models, please refer to Taylor et al. (2012).

Historical changes in the modeled PI are compared with estimates obtained from four reanalyses
products—the European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth century
(ERA-20C; Poli et al., 2016), the ECMWF-Interim (ERA-Int; Dee et al., 2011), the 55-year reanalysis pro-
duced by the Japanese Meteorological Agency (JRA-55; Kobayashi et al., 2015), and the National Centers
for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis (Kalnay
et al., 1996). We find that the low-frequency PI variability in ERA-Int is consistent with ERA-20C and
ERA-20C has a longer record; consequently, most of our discussion is limited to results based on ERA-20C.
The PI for reanalyses is computed using the same scripts as in the models.

Impacts of anthropogenic climate change are likely to be seen at the largest spatial scales. While most studies
evaluating long-term changes in PI focus on the basin mean, it is possible that more complex spatial struc-
tures are needed to capture the impacts of external forcing on PI. For this reason, we isolate the large-scale
variations by projecting PI anomalies from the historical and preindustrial control runs onto the leading
eigenvectors of the Laplacian operator over the tropical North Atlantic (0–20◦N, see Figures S1a–S1d). This
region was selected because it encompasses the portions of tropical Atlantic where most tropical cyclones
form. The eigenvectors are ordered by decreasing spatial scale, where the first vector gives the basin mean,
followed by dipoles, tripoles, quadrupoles, and so forth (DelSole & Tippett, 2015). The projection produces
a set of time series that represent the temporal evolution of each pattern. The spatial patterns are data inde-
pendent and therefore serve as a useful basis set when comparing data sets since the time series for each
Laplacian always represents a common spatial structure. In section 3, we will show that forced changes in
tropical North Atlantic PI are primarily captured by the basin mean (i.e., the first Laplacian).

Discriminant analysis is used to isolate the externally forced changes in the PI. The method is a standard opti-
mization technique that determines the pattern that maximizes the ratio of variance in the forced run to the
variance in the preindustrial control (DelSole & Tippett, 2007; Schneider & Held, 2001). The maximization
leads to an eigenvalue problem

Σf q = 𝜆Σcq, (1)

where 𝚺f is the covariance matrix estimated from the Laplacian time series of the historical run ensemble
mean, and 𝚺c is covariance matrix estimated from the Laplacian time series of a single ensemble from the
preindustrial control. The term q is the projection vector, and 𝜆 is the eigenvalue giving the variance ratio.
The eigenvectors are ordered by decreasing eigenvalues, such that the first maximizes the variance ratio,
and the second maximizes the ratio subject to being uncorrelated to the first and so on. Prior to applying
discriminant analysis, the time series obtained from the historical run ensemble average is smoothed by
regressing onto the first three Legendre polynomials (i.e., a trend, a parabola, and cubic). The smoothing
helps isolate the forced response by filtering any remaining internal variability. Moreover, the coefficients
recovered from the regression provide a means for quantifying differences in the forced response across data
sets in a statistically rigorous way.

The significance of the optimized variance ratio (𝜆) is determined by repeating the optimization using sub-
samples of the preindustrial control run. Specifically, a continuous 48-year segment from the preindustrial
control is selected and the Laplacian time series are smoothed and a covariance matrix constructed, con-
sistent with our treatment of the historical run data described above. The remaining 192 years are used to
estimate the covariance matrix of the unsmoothed Laplacian time series (i.e., 𝚺c). The optimization is then
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Figure 1. Maximized signal-to-noise ratio of mean June–November anomalous PI for a subset of CMIP5 models as a
function of the number of Laplacian eigenfunctions (the more eigenfunctions, the smaller the resolved spatial scale).
The climate model names in the legend that are followed by an asterisk identify models that capture a statistically
significant change in basin mean North Atlantic PI. The number listed parenthetically next to the model name gives
the ensemble size. Significance is estimated by repeating the optimization using subsamples of the preindustrial
control run to build up an empirical distribution of the maximum 𝜆. The 99th percentile of the empirical distribution
serves as the threshold for detectability.

repeated for each paired 48 and 192-year segments in the preindustrial control simulation, yielding ∼192
estimates of the eigenvalues (𝜆). These results are used to construct an empirical distribution of the leading 𝜆
consistent with the hypothesis of pure internal variability, from which the 99th percentile defines the signif-
icance threshold or threshold for detectability. The significance is confirmed using three different models of
internal variability: white noise process and first- (AR1) and second- (AR2) order autoregressive processes.
For each of these alternative hypotheses, synthetic data with properties consistent with the underlying null
hypothesis are generated and the optimization is repeated 5,000 times to build up a distribution of the lead-
ing eigenvalues (𝜆) and the significance threshold for detectability is estimated as the 99th percentile of the
distribution. All four significance tests take into account the reduction in variance that results from ensem-
ble averaging by dividing the recovered eigenvalues by the appropriate ensemble size. Consequently, the
significance threshold for each model is different, since each model has a different number of ensemble
members.

3. Results
The forced response of PI to individual forcings was initially estimated by applying discriminant analysis to
the single forced runs. A formal attribution and detection analysis, however, revealed that the two responses
were highly collinear and difficult to separate (not shown). This is consistent with the findings of Ting et al.
(2015) and Sobel et al. (2016), where collinearity was inferred from the difference in GHG and aerosol forc-
ings estimated from multimodel/multiensemble averages. Therefore, we estimate the total forced response
by applying discriminant analysis to the historical simulations that contain both GHG and aerosol forcings.
To further improve estimates of the forced response in PI, the ensemble mean from the historical runs is
used in the discriminant analysis. We begin our analysis by examining which spatial structures are needed
to fully characterize the forced response in North Atlantic PI. To do so the discriminant analysis is repeated
for each model using an increasing number of Laplacians time series. The resulting signal-to-noise ratios
are shown in Figure 1, each curve gives the values of the leading discriminant (𝜆; vertical axis) as a function
of the number of included patterns (shown on the horizontal axis). We limit our analysis to 10 Laplacian
because the inclusion of more spatial structures does not impact our conclusions. Of the 11 models ana-
lyzed, seven models (indicated by the asterisk in the legend of Figure 1) detect a forced response in PI when
only one Laplacian eigenvector is used. The significance is evaluated with respect to the subsampled prein-
dustrial control data; however, the statistical significance is insensitive to the underlying null hypothesis
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Figure 2. Time series of the anomalous mean June–November tropical North Atlantic PI estimated for various climate
models and reanalysis products. The forced response is shown as the thick curves and is estimated by regressing the
time series of the basin mean PI onto the first three Legendre polynomials. The thick blue curves give the forced
response estimated from the ensemble mean. The thick gray curves give the forced response for individual ensemble
members. The thin gray lines represent the unsmoothed basin mean PI for a single ensemble. The gray bounding boxes
represent the 1 standard deviation range estimated with respect to 192-year unsmoothed data from the model's control
run. Estimates of the PI obtained from JRA-55 (red), ERA-20C (blue), ERA-Int (green), and NCEP (black), where the
thick curves give an estimate of the forced response and the thin curves represent the unsmoothed basin mean PI.

(not shown). The inclusion of higher-order Laplacians does increase the signal-to-noise ratio (𝜆); however,
the time series describing the signal (the leading discriminant time series) generally changes very little
beyond the first Laplacian (see Figure S2), indicating that the detectable changes in PI are primarily asso-
ciated with changes in the basin mean. Aside from CanESM2 and to a lesser extent IPSL-CM5A-LR, the
inclusion of more complex spatial structures does not change the time series of the leading discriminant.
As for CanEMS2 and IPSL, differences are only evident when a large number of Laplacian structures are
included. Four models (CCSM4, CESM, GFDL-ESM2M, and NorESM1) show no significant change in the
basin mean PI. The inclusion of more patterns does lead to significant signal-to-noise ratios in CCSM4 and
GFDL-ESM2M, but not CESM and NorESM1 (not shown). Since this is a model-dependent result and there
is no established criterion for preferring one model over another, we limit our analysis to the basin mean
(first Laplacian), and therefore exclude CCSM4, CESM, GFDL-ESM2M, and NorESM1 from our analysis,
because none of these models yields a detectable signal when only one Laplacian eigenvector is used.

Note that the spatial pattern is exactly the same for all models because we are examining time series from
the first Laplacian eigenvector. Thus, the forced responses among the models can only differ in their time
series. For each model, the variations of the basin mean tropical North Atlantic PI anomalies, shown in
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Figure 3. Coefficients estimated from the regression of the time series of the anomalous mean June–November
tropical North Atlantic PI onto the (a) trend, (b) parabolic, and (c) cubic Legendre polynomials. Regression coefficients
for the model's ensemble mean are represented by colored circles. The colored intervals give the confidence intervals
for estimates obtained from individual ensemble members for the specified model. Coefficients for reanalysis products
are given by the black symbols. The bars show the 95% confidence intervals. The corresponding root-mean-square
difference (RMSD) of the regression residual is shown in (d). The colored triangle represents the standard deviation of
the first Laplacian time series estimated from 192 years of preindustrial control data. RMSD for the ensemble mean
estimates are multiplied by the square root of the ensemble size to account for the reduction in variance associated
with ensemble averaging.

Figure 2, are largely confined to be less than 1 standard deviation of the preindustrial control (gray-shaded
region), indicating that the detected changes correspond to a low signal-to-noise ratio. Comparing the tem-
poral evolution of the low-frequency ensemble mean PI (thick blue curve in Figure 2), it appears that the
response differs across the models. Comparing the models and reanalyses (curves, bottom of Figure 2), it
is clear that the variations of low-frequency PI differ across models, between models and reanalyses, and
among the reanalysis products. Because the low-frequency estimate of PI variability in ERA-Int is consis-
tent with ERA-20C, the remainder of our analysis will focus on ERA-20C since it provides a longer record
of PI variability.
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To quantify differences in the evolution of the time series, we compare the regression coefficients for the
three Legendre polynomials (i.e., trend, quadratic, cubic) for the ensemble mean and individual ensemble
members. From Figure 3, we see that the coefficient estimates for individual ensemble members are largely
indistinguishable from zero and are generally consistent with each other and the ensemble mean. The few
exceptions are no greater than what might be expected by chance. Ensemble averaging reduces uncertainty
in coefficients estimates. Moreover, we find that when the ensemble mean is used, at least one coefficient
among the three Legendre polynomials is distinguishable from zero. In contrast, none of the four models
that were excluded had a significant Legendre coefficient (not shown), further supporting our conclusion
that these models have no detectable change in PI. For the seven models that do detect a change in PI, the
nonzero coefficients differ across the models. Differences across models and reanalyses are most evident in
the sign of the linear trend term: three models (FGOALS, GISS-E2R, and IPSL-CM5A-LR) capture a statisti-
cally significant positive trend, indicating an increase in PI, and one model (CSIRO) captures a statistically
significant negative trend or decrease in PI. The trends for the other four models are statistically indistin-
guishable from zero. Reanalyses similarly differ with respect the trend sign: JRA-55 and NCEP both capture
a statistically significant positive trend or increase in PI, while the trend in ERA-20C is negative and indis-
tinguishable from zero. The positive trends in tropical North Atlantic PI in various reanalysis products were
also reported in Vecchi et al. (2013), Emanuel et al. (2013), and Wing et al. (2015). The greatest consistency
between models and reanalysis is related to the sign of the quadratic term, while not always significant,
the coefficients are positive. Differences are also evident in the sign of the cubic term, with two models
(CanESM2 and IPSL-CM5A-LR) capturing a statistically significant positive coefficient. The coefficients for
the other models varies in sign and are statistically insignificant. Notably, the quadratic trend for NCEP is
much larger than model estimates.

The above results clearly show that models differ in their forced responses and that reanalysis products dif-
fer in the low-frequency variability. We now evaluate model reanalysis consistency of internal variability.
If the forced response is sufficiently captured by the Legendre polynomials, then the residuals should pro-
vide independent estimates of the unforced PI variability. More precisely, the root-mean-square difference
(RMSD) from the regression residual for the ensemble mean (circles in Figure 3d) and individual ensemble
(confidence intervals, Figure 3d) should be consistent with the standard deviation of the PI from the prein-
dustrial control runs (colored triangle in Figure 3d). With respect to individual models, generally, there is a
consistency between the different estimates of internal variability (i.e., overlap in the confidence intervals).
There are a few exceptions, the ensemble mean estimates of the RMSD for GISS-E2R and GISS-E2H, are
inconsistent with individual ensemble estimates and the model's internal variability. The residuals from both
these models are dominated by a common signal that appears to be related to volcanic eruptions that are not
captured by the polynomial fit (not shown). Generally, model estimates of internal variability are consistent
across models. For reanalysis, we find that the magnitude of the RMSD is substantially larger for estimates
obtained from ERA-20C compared to JRA-55 and NCEP. This suggests that there are high-frequency varia-
tions in ERA-20C PI that are not present in the other reanalyses or the models. A formal F test confirmed
that the variance of the first Laplacian time series obtained from ERA-20C is statistically different from the
estimates recovered from climate models and other reanalyses (not shown).

4. Conclusions
Using a subset of CMIP5 models, we evaluate the detectability of externally forced changes in tropical North
Atlantic PI for the period 1958–2005 using all-forcing runs as a proxy for observations. This “perfect model
scenario” was chosen to eliminate complications from model errors and from observational errors/gaps.
Consistent with the findings of Ting et al. (2015) and Sobel et al. (2016), the forced response to greenhouse
gas warming and anthropogenic aerosol cooling were found to be nearly collinear and therefore difficult to
separate, so we analyzed only the forced runs in which all forcings are combined. An optimization proce-
dure was applied to find the linear combination of large-scale patterns (i.e., Laplacian eigenvectors) in the
tropical Atlantic that maximized detectability. Most models (7 of 11) were found to have a detectable signal
with only one Laplacian eigenvector. Moreover, including additional Laplacian eigenvectors did not signif-
icantly change the projected time series, so we focused the remainder of our analysis on the first Laplacian
eigenvector and on the models that had a detectable forced response in this component. Detectability is sen-
sitive to length of the PI record, when the analysis was repeated for the period 1979–2005, the results were
consistent, but the number of models detecting a forced response drops to 4 of 11. To allow for comparison,
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the time series of the forced response is decomposed into contributions from a linear trend, a quadratic term,
and a cubic term. For models with a detectable change in PI, at least one of the features (i.e., trend, quadratic,
cubic) characterizing the evolution of the forced response is statistically significant. The trends in these time
series do not agree across models: four models have no significant trend, two models have a significant posi-
tive trend, and one model has a significant negative trend. The sign of the trend is not even consistent across
reanalyses, although the associated confidence intervals are large. A similar level of disagreement is found
for the cubic term in the estimated forced response time series. Generally, there is consistency in estimates of
PI internal variability among the models and estimates obtained from JRA-55 and NCEP. The magnitude of
internal variability found in ERA-20C is dominated by high-frequency variations not found in other reanal-
ysis products or in models. Discrepancies in the trend of PI found in the reanalyses has been attributed to
differences in outflow temperature (or tropopause temperature) and surface air-sea disequilibrium (a pro-
cess largely controlled by SST). For example, Wing et al. (2015) found that 30–36% of the trend in North
Atlantic PI in different reanalyses is attributable to differences in tropopause cooling trends. These differ-
ences among reanalysis data sets may indicate that hurricane potential intensity is sensitive to the type of
variables assimilated or the assimilation scheme itself. The origins of the cross-model differences are cur-
rently indeterminate, and a detailed analysis is needed to understand what processes are responsible for the
different model responses. The externally forced response in PI captured by the models is weak and in most
cases the response cannot be detected even when a single ensemble member is used as a proxy for observa-
tions. These results strongly suggest that formal attribution of the forced response of PI in the tropical North
Atlantic is not currently feasible, because there is too much model disagreement about the total response
and reanalysis products disagree too much in their estimates of low-frequency PI variability. It is possible
that as GHG concentrations continue to increase, an unequivocal forced response in North Atlantic PI may
emerge in the future.
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