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Abstract – This paper presents an analytical study on the dynamic instability of castellated columns 

subjected to axial excitation loading. By assuming the instability modes, the kinetic energy and strain 

energy of the columns and the loss of the potential of the axially applied load are evaluated, from 

which the mass matrix, stiffness matrix, and geometric stiffness matrix of the system are derived. 

These matrices are then used for deriving dynamic equations and carrying out the analysis of dynamic 

instability of castellated columns by using Bolotin’s method. The analytical expression for 

determining the critical excitation frequency of the columns is derived, which takes account for not 

only the shear influence of web openings but also the rotary inertia effect on the transverse vibration 

of the columns. Numerical examples are also provided for illustrating the dynamic instability 

behaviour of castellated columns when subjected to axial excitation loading.  The results show that 

the consideration of the shear effect in castellated columns results in a shaft of the dynamic instability 

zone to low frequency side and a reduction of the width of the dynamic instability zone. The shear 

effect on the dynamic instability zone becomes more significant in the short column than in the long 

column, and in the wide flange column than in the narrow flange column. 

 

Keywords: Dynamic instability; vibration; buckling; castellated column; shear effect; inertia 

effect.  

 

 

1. Introduction 

 

Castellated beams and columns have been widely used in structures and steel buildings. 

Compared to traditional I-section structural members, castellated structural members can have 

large section depth and thus have great flexural capacity while they are bent about their major 

axis and large flexural buckling resistance when they are subjected to axial loading. The second 

advantage of using castellated members in buildings is the light in weight, which not only can 

save material cost but also reduce the load on the columns and foundation. The main dimness 

of the castellated members, however, is the weak shear rigidity due to the openings in the web, 

which can affect the performance of the members in vibration and bending, as well as their 

resistance against buckling.  

 

The economical and structural advantages of castellated members have prompted many 

researchers to investigate the behaviour and performance of such structures. Numerous studies 

have been conducted on castellated columns and beams. The work includes the investigation 

of the flexural buckling of castellated columns under the action of axially compressive loads 
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(El-Sawy et al. 2009; Gu and Cheng 2016; Sonck and Belis 2016; Yuan et al. 2014), the lateral-

torsional buckling (Kim et al. 2016; Mohebkhah 2004; Nethercot and Kerdal 1982; Showkati 

et al. 2012; Sonck et al. 2014) and lateral buckling (Pattanayak and Chesson 1974; Sweedan 

2011) of castellated beams when subjected to transverse loads, the shear buckling (Wang et al. 

2014; Wang et al. 2016) and distortional buckling (Zirakian and Showkati 2006) of web-posts 

of castellated beams when there exist moment gradients, and the interaction of different 

buckling modes (Ellobody 2011; Kerdal and Nethercot 1984). In addition, geometrical and 

material nonlinear analyses using finite element methods (Mohebkhah and Showkati 2005; 

Soltani et al. 2012; Van Oostrom and Sherbourne 1972) and structural optimization (Gandomi 

et al. 2011; Gholizadeh et al. 2011; Najafi and Wang 2017; Sorkhabi et al. 2014; Tsavdaridis 

and D'Mello 2012) using numerical methods, neural networks and genetic programming have 

been also carried out in order to more accurately predict the structural behaviour of castellated 

members and improve their performance. 

 

The aforementioned literature review shows that there have been extensive studies on the 

castellated columns and beams; the work includes both the analysis and design. However, 

limited work exists on the dynamics, particularly the dynamic instability of the castellated 

columns and/or beams when subjected to axial excitation loading. Note that the early work on 

the dynamic instability of elastic bodies was reported by Hsu (Hsu 1966), who investigated the 

dynamic instability of elastic body and presented corresponding necessary and sufficient 

stability criteria. Huang and Hung (Huang and Hung 1984) studied the dynamic instability of 

simply supported beams subjected to an axially periodic load using Routh-Hurwitz stability 

criteria and averaging method. The instability regions and vibration amplitudes were examined 

by considering the coupling of the first two modes. Park (Park 1987) presented a finite element 

dynamic instability model of Timoshenko beams, in which the transverse motion of the beam 

was expressed by using an extended Hamilton principle and the dynamic stability of the beams 

was investigated by examining the divergence and flutter instabilities. The results showed that 

the rotary inertia and shear deformation in certain ranges have significant effects on the stable 

transverse motion of the beams. Moreover, the dynamic instability of orthotropic beams 

(Huang 1980), thick bimodulus beams (Chen et al. 1991), and sandwich beams (Yeh et al. 2004) 

subjected to periodic axial loads has been also investigated by using the Bolotin method 

(Bolotin 1964). The effect of various different supporting boundary conditions on the dynamic 

instability behaviour of beams has been also examined and discussed, see (Kar and Sujata 1991; 

Uang and Fan 2001; Yoon and Kim 2002), for example.  

 

This paper discusses the dynamic instability of castellated columns subjected to axial excitation 

loading. By assuming the instability modes, the kinetic energy and strain energy of the column 

and the loss of the potential of the axially compressive load are evaluated, from which the mass 

matrix, stiffness matrix, and geometric stiffness matrix of the system are derived. These 

matrices are then used for carrying out the analysis of dynamic instability by using Bolotin 

method. The analytical expressions for determining the critical excitation frequency of the 

columns are derived, which takes account for not only the shear influence of web openings but 

also the rotary inertia effect on the transverse vibration of the columns. Numerical examples 

are provided for illustrating the dynamic instability behaviour of castellated columns when 

subjected to axial excitation loading.   

 

 

2. Brief description of dynamic instability analysis 
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The governing equation for the dynamic instability analysis of a structure when the damping 

is ignored can be expressed as follows (Kratzig et al. 1991; Li 1991; Patel et al. 2006), 

}{}]{[}]{[}]{[ 0qkqkqm g  P        (1) 

where [m], [k], and [kg] are the mass matrix, stiffness matrix, and geometric stiffness matrix 

of the structural system, respectively, }{q  is the column vector representing the acceleration 

vector, {q} is the column vector representing the displacement vector, and P is the externally 

applied load. If P = 0 then Eq.(1) represents the free vibration equation; whereas if the 

acceleration term is ignored then Eq.(1) represents the eigenvalue equation for linear buckling 

analysis. Assume that the externally applied load is a periodic one, in which case it can be 

expressed as follows, 

tPP cr  cos          (2) 

where Pcr represents the amplitude of the dynamic load, Pcr is the critical buckling load for 

the case where the load is statically applied,  is the loading factor, is the excitation 

frequency of the dynamic load, and t is the time. For a given amplitude of the load the dynamic 

instability regions of the structure described by Eqs.(1) and (2) can be determined by examining 

the periodic solutions with the periods of T=2 and 2T=4. The solution with the period 

of 2T is of particular importance, representing the primary instability region of the structure, 

which can be expressed using the form of trigonometric series given by Eq.(3), 
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where {ak} and {bk} are the column-vectors of coefficients of the solution. Substituting Eqs.(2) 

and (3) into (1) and letting the coefficients of the series associated with sin(t/2) and cos(t/2) 

be zero, it yields, 
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Eqs.(4) and (5) are the generalized dynamic instability equations, which describe the resonance 

of a structure under the action of an excitation load. For a given value of , one can calculate 

two smallest positive frequencies of  one is from Eq.(4) and the other is from Eq.(5), which 

represent the boundary of dynamic instability region of the structure. 

  

 

3. Mass, stiffness, and geometric stiffness matrices of castellated columns 

 

As reported in previous studies (El-Sawy et al. 2009; Gu and Cheng 2016; Yuan et al. 2014), 

web shear deformation has significant influence on the transverse displacement of castellated 

beam/columns. This means that the conventional Bernoulli's hypothesis can no longer be 

applied to the castellated beams/columns. Following the approach proposed by Yuan et al. 

(Yuan et al. 2014) and others (Chen et al. 2014; Gu 2014), the cross-sectional deformation of 

a castellated member is characterised in terms of three parts. One is the upper tee-section, one 

is the lower tee-section, and one is the mid part representing the discontinuous web posts, as 

illustrated in Fig.1. The axial displacements at the centroids of the two tee-sections are assumed 

to be independent. The axial displacement of the mid part is obtained by using linear 

interpolation between the two axial displacements defined at the tee-sections. The transverse 

displacements in all three parts are assumed to be identical. Moreover, it is assumed that the 
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two tee-sections deform according to Bernoulli's hypothesis, whereas the mid-part of the web 

posts behaves as a shear wall to take shear force only.  

 

The stiffness matrix [k] of the castellated beam/column under an axial excitation load can be 

derived by using the energy method. Let u1 and u2 be the axial displacements of the dynamic 

buckling modal at the centroid points of the two tee-sections and v be the corresponding 

transverse displacement. The strain energy of the two tee-sections due to the dynamic buckling 

displacements can be expressed as follows, 
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where E is the Young’s modulus, A is the cross-sectional area of the tee-section, I is the second 

moment of area of the tee-section (about the centroid axis of the tee-section itself), and l is the 

length of the beam/column.  

 

The shear strain energy of the discontinuous web posts (see Fig.1) is expressed as follows 

(Yuan et al. 2014), 

 22

2
2

3
xywaGtU            (7) 

where G is the shear modulus, tw is the web thickness, a is the half depth of hexagons, and xy 

is the average shear strain of the mid-part of the web, which can be approximately expressed 

as follows, 
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where e is the half distance between the centroids of the two tee-sections. Note that Eq.(7) is 

applied only to the castellated beam/column, in which the solid volume and void volume in the 

mid part are equal. Otherwise the pre-factor (1/2) in Eq.(7) has to be modified. Substituting 

Eq.(8) into (7) and using the assumption of smear model for the web posts, it yields,  
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The geometric stiffness matrix [kg] of the castellated beam/column under an axial excitation of 

compressive load can be derived by using the potential change of the axially compressive load 

when the buckling occurs, which can be expressed as follows, 
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where Pcr is the critical buckling load.  

 

The mass matrix [m] of the castellated beam/column can be derived using the kinetic energy 

of the beam/column. The kinetic energy of the two tee-sections due to axial and transverse 

vibrations are expressed as (Chen et al. 2014; Gu 2014), 
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where  is the density. The symbol with a dot above a variable represents the derivative of the 

variable with respect to time. The kinetic energy of the mid-part for the discontinuous web 

posts can be expressed as follows (Chen et al. 2014; Gu 2014), 
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Note that Eqs.(11) and (12) include also the kinetic energy due to the rotary inertia.  

 

The axial and transverse displacements of the two tee-sections when the beam/column buckles 

dynamically can be assumed as follows, 
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where C1, C2 and C3 are the functions that depend only on time. Physically, C1 and C2 represent 

the average and difference of the axial displacements in the two tee-sections, respectively. It is 

obvious that the displacement functions assumed above have already satisfied the simply 

support boundary conditions, that is v = dv2/dx2 = 0, and du1/dx = du2/dx = 0 at both x = 0 and 

x = l. Substituting Eqs.(13)-(15) into (6) and (9), we obtain the stiffness matrix as follows: 
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Substituting Eqs.(13)-(15) into (10), we obtain the geometric stiffness matrix as follows: 
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Substituting Eqs.(13)-(15) into (11) and (12), we obtain the mass matrix as follows: 
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Note that, although the formulas used for the strain energy, potential change and kinetic energy 

are the same as those used in previous studies (Yuan et al., 2014; Gu, 2014) the expressions of 

the stiffness matrix, geometric stiffness matrix and mass matrix derived herein are different 

from those provided in the previous studies because of the use of different displacement 

functions. For a given  value, two  values can be calculated from the zero determinant as 

follows, 
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It can be found from the mass, stiffness, and geometric stiffness matrices shown in Eqs.(16)-

(18) that the first row is not coupled with the second and third rows in the 3x3 matrix, indicating 

that C1 is independent of C2 and C3. This implies that the transverse bending vibration of the 

beam is actually independent of its axial membrane vibration. Thus, the critical excitation 

frequencies can be calculated directly from the sub-matrix only related to C2 and C3, from 

which the following formula can be obtained,  
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4. Dynamic instability of castellated columns 

 

Herein three numerical examples are discussed, which represent the castellated columns with 

narrow, medium, and wide flanges, respectively. The half distance between the centroids of the 

two tee-sections, the area and the second moment of area of the tee-section of the castellated 

columns are calculated as follows,     
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where bf and tf are the width and thickness of the flange, and hw is the web depth. The 

dimensions and corresponding cross-sectional properties of the three castellated columns 

discussed herein are provided in Table 1. The static critical buckling loads of the three 

castellated columns are calculated using the formula below (Yuan et al. 2014), which can be 

also derived from the present stiffness and geometric stiffness matrices: 
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Fig.2 shows the dynamic instability zones of the three castellated columns at two different 

lengths (4.85 m and 7.27 m), which are calculated by using Eq.(20). It can be seen from the 

figure that the width of the dynamic instability zone increases with increased loading factor. 

Also, it can be seen that, with the increase of the flange width, both of the two arms defining 

the dynamic instability zone move towards to high frequency side, but the right arm moves 

slightly faster than the left arm, indicating that the width of the dynamic instability zone also 

increases when the flange width becomes wide. Comparing Fig.2b with Fig.2a, one can observe 

that, with the increase of the column length, the resonance frequency decreases and the effect 

of the flange width on the dynamic instability zone increases.  

 

The previous studies showed that the web shear deformation can affect the flexural buckling 

(El-Sawy et al. 2009; Yuan et al. 2014) and transverse vibration (Chen et al. 2014; Gu 2014) 

of short castellated columns/beams. In order to demonstrate that the web shear deformation has 

a similar effect on the dynamic instability zone, Fig.3 shows the comparison of the dynamic 

instability zones of the narrow flange castellated columns of two different lengths (4.85 m and 

7.27 m) with and without considering the shear effect, in which the dynamic instability zone 

of the column without shear effect is calculated simply by using Eq.(20) but taking shear 

module G as an infinite large number. It is observed from Fig.3 that, when the shear effect is 

ignored, the dynamic instability zone moves towards to high frequency side and the width of 

the dynamic instability zone also increases. The change of the dynamic instability zone caused 

by the shear effect becomes more significant for the short column (4.85 m long) than for the 

long column (7.27 m long). 

 

Figs.4 and 5 show the similar comparisons of the dynamic instability zones for the medium 

and wide flange castellated columns of two lengths, respectively. The main features 

demonstrated by these two figures are very much similar to those illustrated in Fig.3. However, 

by comparing Figs. 3, 4 and 5, one can clearly find that the shear effect on the dynamic 

instability zone becomes more significant when the flanges of the castellated column become 

wider, particularly for the short column. Figs. 3-5 also show that the dynamic instability zone 

is much wide in a short column than in a long column of the same section size.  

 

The dynamic instability zones shown in Fig.2a and 2b or Figs.3-5 illustrate the interactive 

behaviour between the vibration and buckling of the column when it is subjected to a dynamic 

load. The former is related to the frequency of the dynamic load; whereas the latter is dependent 

on the amplitude of the dynamic load. The dynamic instability is more dangerous than ordinary 

resonance as it is characterised by exponential growth of the response amplitudes even in the 
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presence of damping. The two boundaries of each dynamic instability zone define the two 

resonance frequencies, in which the larger one reflects the effect of tension action and the 

smaller one reveals the effect of compression action. The difference between these two 

resonance frequencies increases very fast with the increased amplitude of the dynamic load. 

Therefore, it is very important to know the dynamic instability zone and how the dynamic load 

affects the dynamic instability zone for the design of columns subjected to harmonic loading. 

 

 

5. Conclusions 

 

An analytical solution has been developed in this paper for determining the dynamic instability 

zone of castellated columns when subjected to axial excitation loading. By assuming the 

instability modes, the kinetic energy and strain energy of the column and the loss of the 

potential energy of the axially compressive load are evaluated, from which the mass matrix, 

stiffness matrix, and geometric stiffness matrix of the system are derived. These matrices are 

then used for carrying out the analysis of dynamic instability of castellated columns. From the 

results obtained the following conclusions can be drawn: 

 

(1) The dynamic instability zone of the castellated column will move towards to high 

frequency side and the corresponding width of the dynamic instability zone increases 

when its flanges become wide. 

 

(2) The consideration of the shear effect in castellated columns results in a shaft of the 

dynamic instability zone to low frequency side and a reduction of the width of the 

dynamic instability zone. 

 

(3) The effect of web shear deformation on the dynamic instability zone becomes more 

significant in the short column than in the long column, and in the wide flange column 

than in the narrow flange column. 
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Table 1 Dimensions and properties of two castellated columns 

 

Parameter Narrow section Medium section Wide section 

Web depth, hw (mm) 400  400 400 

Web thickness, tw (mm) 15  15 15 

Flange width, bf (mm) 100  200 400 

Flange thickness, tf (mm) 10 10  10  

Half depth of hexagons, a (mm) 140  140  140  

Half distance between centroids 

of tee sections, e (mm) 

188  194 199 

Length of unit, 6a/√3 (mm) 485  485 485 

Area of tee section, A (cm2) 19  29 49 

Second moment of area of tee 

section, I (cm4) 

85.86 104.70 120.33 
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Figure 1. (a) Notations used for castellated column. (b) Section components. (c) Axial 

displacement distribution on cross-section. 

 

 

 

 

 
(a) 
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(b) 

 

Figure 2. The dynamic instability zones of castellated columns with length (a) 4.85 m and (b) 

7.27 m. 

 

 
 

Figure 3. Shear effect on dynamic instability zone of castellated columns (bw=100 mm). 
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Figure 4. Shear effect on dynamic instability zone of castellated columns (bw=200 mm). 

 

 

 
 

Figure 5. Shear effect on dynamic instability zone of castellated columns (bw=400 mm). 
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