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  ABSTRACT 

  The objective of this study was to assess the suit-
ability of 3 different modeling techniques for the 
prediction of total daily herd milk yield from a herd 
of 140 lactating pasture-based dairy cows over vary-
ing forecast horizons. A nonlinear auto-regressive 
model with exogenous input, a static artificial neural 
network, and a multiple linear regression model were 
developed using 3 yr of historical milk-production data. 
The models predicted the total daily herd milk yield 
over a full season using a 305-d forecast horizon and 
50-, 30-, and 10-d moving piecewise horizons to test 
the accuracy of the models over long- and short-term 
periods. All 3 models predicted the daily production 
levels for a full lactation of 305 d with a percentage root 
mean square error (RMSE) of ≤12.03%. However, the 
nonlinear auto-regressive model with exogenous input 
was capable of increasing its prediction accuracy as the 
horizon was shortened from 305 to 50, 30, and 10 d 
[RMSE (%) = 8.59, 8.1, 6.77, 5.84], whereas the static 
artificial neural network [RMSE (%) = 12.03, 12.15, 
11.74, 10.7] and the multiple linear regression model 
[RMSE (%) = 10.62, 10.68, 10.62, 10.54] were not able 
to reduce their forecast error over the same horizons 
to the same extent. For this particular application the 
nonlinear auto-regressive model with exogenous input 
can be presented as a more accurate alternative to con-
ventional regression modeling techniques, especially for 
short-term milk-yield predictions. 
  Key words:    dairy production ,  milk-production fore-
casting ,  modeling 

  INTRODUCTION 

  Milk production from pasture-based dairy cows is 
susceptible to variation due to seasonality of pasture 
production (Adediran et al., 2012), grazing conditions 
(Baudracco et al., 2012), disease (Collard et al., 2000), 
nutritional interventions (Kolver and Muller, 1998), 
and other disturbances (Olori et al., 1999; Tekerli et 

al., 2000). The ability to forecast herd milk yield days, 
weeks, and months in advance provides benefits for 
management at processor and farm level as total daily 
milk production strongly influences energy consump-
tion, plant utilization, and farm income. The usefulness 
of a milk-yield prediction system depends upon how 
accurately it can predict daily milking patterns and its 
ability to adjust to factors affecting supply. Milk yield 
prediction models have proven useful for genetic analy-
sis (Ptak and Schaeffer, 1993) and for bio-economic 
modeling (Shalloo et al., 2004). 

  Studies have been undertaken by Wood (1967), Ali 
and Schaeffer (1987), Wilmink (1987), and Guo (1995), 
who all developed algebraic equations for the purpose 
of fitting a lactation curve to empirical data. Jones 
(1997) stressed the need for increased flexibility and 
adaptation among curve-fitting techniques and intro-
duced an empirical Bayes method for fitting Wood’s 
lactation curve (incomplete gamma function; Wood, 
1967). Macciotta et al. (2002) and Vasconcelos et al. 
(2004) employed auto-regressive models to predict 
individual lactations using limited numbers of test 
days throughout the lactation cycle. Other attempts 
to forecast milk yields have involved large regression 
models such as artificial neural networks (ANN) and 
multiple linear regression (MLR) models (Lacroix 
et al., 1995; Salehi et al., 1998; Sharma et al., 2006; 
Sharma et al., 2007). These models proved to be very 
successful; however, they require large amounts of 
detailed information for each specific cow. The ANN 
model developed by Sharma et al. (2007) requires 12 
individual traits of each cow (genetic group, season of 
birth, period of birth, birth weight, age at maturity, 
weight at maturity, season of calving, period of calving, 
age at calving, weight at calving, peak yield, and days 
to attain peak yield); likewise the model tested by Lac-
roix et al. (1995) required 16 network inputs including 
information such as logarithm of somatic cell count, 
energy fed on test day, protein fed on test day, DM 
fed on test day, and so on. Brun-Lafleur et al. (2010) 
modeled variation in milk yield with respect to energy 
and protein supply, but acquiring even this informa-
tion for an entire pasture-based herd is not practical. A 
balance is required between the availability of detailed 
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information at farm level and the prediction accuracy 
of the milk-supply model. The high levels of detailed 
data required to construct these milk-yield predictors 
inhibit their practical implementation on commercial 
dairy farms.

The aim of this study was to assess the suitability 
of a static neural network (SANN), a MLR model, 
and a nonlinear auto regressive model with exogenous 
input (NARX) for the prediction of total daily herd 
milk yield (DHMY) over varying forecast horizons. 
The most successful model was selected according to 
its abilities to generate the most accurate forecast us-
ing very limited training data in low volumes over a 
long- (305 d), medium- (30 to 50 d), and short-term 
(10 d) horizon.

MATERIALS AND METHODS

Data Collection

Data were collected from a research farm in the south 
of Ireland for a period of 4 yr (2006–2010). Daily herd 
milk yield (liters) and number of cows milked (NCM) 
on that corresponding herd DIM was collected because 
this is the most accessible data for commercial farmers 
to obtain. Milk yields were recorded from a convention-
al herringbone swingover milking parlor using ICAR 
(International Committee for Animal Recording)-
approved milk meters. The model was set at herd level 
and evaluated by comparing daily milk yields across a 
herd of 140 pasture-based Holstein-Friesian (HF) cattle 
(North American HF and New Zealand HF genetic 
strains). The milking season of 2010 was selected as the 
target prediction horizon and the previous 3 yr of data 
were used to train the model.

Model Inputs

In previous studies certain variables were found to 
have an influence on milk production: season of calv-
ing (Wood, 1967), climatic conditions (Smith, 1968), 
number of DIM (Grzesiak et al., 2006), and stocking 
rate (McCarthy et al., 2011). In this study the farm 
grazing area remained static, whereas the number of 
cows grazing varied throughout the year. Similarly, the 
season of calving (spring) was kept constant in the herd 
over several years. Hence the total herd milk produc-
tion behaves in a cyclical pattern (assuming no cata-
strophic external factors). This pattern is influenced by 
the herd size at any one time, the DIM of the herd, and 
other factors such as atmospheric conditions (ambient 
temperature, irradiance, and precipitation). This infor-
mation is readily available on commercial dairy farms; 
hence, DIM and NCM were selected as model inputs. 

The localized prediction of atmospheric conditions was 
deemed outside the scope of this study.

The models were trained with basic information 
(DIM and NCM) and used to predict DHMY over 
specified time horizons. The total DHMY can be 
viewed as a time series that is being primarily driven 
by a handful of factors. The number of cows coming 
in and out of lactation can be factored in by recording 
the NCM on each milking day. The DIM is factored 
in by chronologically applying a day number relative 
to the beginning of lactation for the entire herd. All 3 
model predictions were trialed over several prediction 
horizons: 305, 50, 30, and 10 d. For the horizons less 
than 305 d, the models repeatedly projected over the 
specific horizon in a moving piecewise manner until the 
end of the series. After every horizon step the previ-
ous DHMY data were added to the models training set 
before the next prediction, updating the model state. 
(All 3 models were developed using the software pack-
age MATLAB R2012a; Mathworks, Natick, MA.) The 
statistics toolbox was used to create the MLR model, 
and the neural networks toolbox box was used to create 
the neural network models. For detailed information 
regarding the data processing, structure, and training 
of these models, please refer to Demuth et al. (2010).

Neural Networks

An ANN is a mathematical model whose operating 
principle is based on biological neural networks (Haykin, 
1999). The ANN architecture comprises a series of in-
terconnected layered neurons through which inputs are 
processed. These inputs values are multiplied by the 
synaptic weights, which represent the strength of the 
neural connections. Figure 1 shows a typical feedforward 
ANN structure containing an input, hidden, and output 
layer. This configuration is very popular for function 
approximation in systems where no time-dependent re-
lationship exists among the network inputs. Increasing 
the size of the hidden layer allows for more intricate 
function fitting of nonlinear processes; however, over-
fitting of training data is undesirable when good gen-
eralization abilities are needed (Demuth et al., 2010). 
Many methods exist for improving generalization such 
as data filtering, feedback elements, regularization, and 
network reduction. Reducing the number or neurons in 
the hidden layer is an effective method of improving 
generalization because small networks do not have the 
capability of overfitting the training data. The synaptic 
weights are configured during back propagation train-
ing (Hecht-Nielsen, 1989). Once trained, a SANN has 
no feedback elements and contains no delays.

Dynamic artificial neural networks are also known 
as recurrent neural networks because of their dynamic 
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feedback elements, which conventional static feedfor-
ward networks do not possess. Whereas static feedfor-
ward networks generate an output based on the cur-
rent model inputs, dynamic artificial neural networks 
produce an output based on the current inputs plus the 
previous inputs and outputs over a retrospective time 
range. The purpose of using input and output data from 
recent time steps is to enable short-term memory and 
pattern recognition within the network. Tapped delay 
lines (TDL) are placed before the input u(t) and the 
feedback loop from the output y(t) entry to the hidden 
layer (Figure 2). Tapped delay lines are used to store 
previous values of the input series u(t) and target series 
y(t) [y(t − 1) y(t − 2) … y(t − d)], where d is the num-
ber of delays, giving the model embedded memory. It 
has been shown that static feedforward networks with 
input delays possess temporary pattern-recognition 
abilities for chaotic time series (Lapedes and Farber, 
1987; Weigend et al., 1990).

Dynamic networks with an exogenous feedback ele-
ment (from outside the network layers) and TDL are 
referred to as NARX models. The NARX models have 
proven to be a very successful modeling tool for non-
linear systems and especially time series (Diaconescu, 
2008). The NARX networks converge faster, are less 
likely to develop long-term dependencies, and typically 
have better generalization abilities than other networks 
(Tsungnan et al., 1996).

To create an ANN with function approximation or 
pattern-recognition abilities, the model parameters 
(synaptic weight and biases) must be manipulated to 
produce the desired network state. The actual output 
signal ypm (for pattern p at output m) from a neuron in 
the output layer is driven by the signal vector xpm pro-
duced from the neurons in the hidden layer. The error 

signal epm is the difference between the actual output 
ypm and the desired output dpm:

 epm = dpm − ypm.  [1]

The error signal epm activates a training algorithm, 
which modifies the ANN parameters sequentially to 
minimize the error function derived from the error sig-
nal epm (typically the sum of the square error):

 E eD
p

P

m

M

p m=
= =
∑∑ ,,
1 1

2  [2]

where ED is the sum of the square network errors, P is 
the number of network patterns and p is the pattern 
index, and M is the number of outputs and m is the 
output index. A training algorithm calculates how the 
network parameters need to be modified to minimize 
the error function; once the network parameters have 
been initially modified, the sequence is repeated until 
the cost function minimizes. In the case of multiple pat-
terns, the cost function is calculated as the combined 
sum of all pattern errors. The value of ED relative to 
the model parameters variation for all patterns can be 
visualized as an error surface. The change in ED relative 
to the change in network parameters is the slope of 
the error surface during that learning step. The train-
ing algorithm follows in the direction of the negative 
gradient at each step until the lowest point on the error 
surface is reached.

Figure 1. Neural network structure.

Figure 2. Network with tapped delay lines. u(t) = input series; y(t) 
= output series, where d is the number of delays.
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SANN Configuration

In this study the most suitable SANN architecture was 
found heuristically by testing combinations of number 
of neurons, transfer functions, and training algorithms. 
The selection criterion for the best network configura-
tion was the average root mean square error (RMSE) 
of the 4 prediction horizons over the test year. The 
optimum network consisted of 4 neurons in the hidden 
layer. It was observed that with the fewer number of 
neuron used the model was less liable to overfit. This is 
desirable because good generalization properties are re-
quired. A log-sigmoid and linear transfer function was 
used in the hidden and output layers. Training data 
were normalized by setting the minimum value to −1 
and the maximum value to 1; the data in between these 
limits were rescaled accordingly. The model training 
data set (4 yr of milk production) was divided into 3 
subsets (network training, validation, and testing), and 
the data allocation for each data set was 90, 5, and 5%, 
respectively. The network training set was used for gra-
dient calculation and weight updating, the validation 
set was used to monitor the error during training, and 
the test set was used for initial testing. All 3 subsets 
were divided up randomly from the model training data 
set (Demuth et al., 2010). The Levenberg-Marquardt 
(Hagan and Menhaj, 1994) back-propagation algorithm 
was found to be the most effective training algorithm. 
The synaptic weight update rule for the Levenberg-
Marquardt training algorithm can be written as

 wk+1 = wk − (JTJ + ςI)−1Jkek,  [3]

where w is the synaptic weight, k is the training iteration 
number, J is the Jacobian matrix, e is the error vector, 
ς is the Levenberg damping factor, I is the identity 
matrix, and JTJ is the approximation of the Hessian 
matrix. Newton’s method relies on calculating the Hes-
sian matrix to iteratively update the synaptic weights 
in the network. However, this involves calculating the 
second-order derivatives of the error function ED. The 
Gauss-Newton training algorithm bypasses calculating 
the second-order derivatives of ED by approximating 
the Hessian matrix with JTJ. However, the Gauss-
Newton training algorithm may face convergence prob-
lems for complex error surfaces. In certain cases the 
Jacobian approximator JTJ may not be invertible. The 
Levenberg-Marquardt algorithm ensures invert-ability 
of the Jacobian approximator JTJ by introducing an 
identity matrix I and the Levenberg damping factor 
ς. The size of Levenberg damping factor ς is adjusted 
at each iteration, which guides the training process. If 
the reduction in ED between each iteration is rapid, the 

value of Levenberg damping factor ς is reduced and the 
update rule approaches the Gauss-Newton method; if 
the change in the cost function is insufficient, ς is in-
creased giving an update closer to the gradient descent 
direction.

Dynamic ANN Configuration

The NARX model was trained in a series parallel 
architecture. It has been observed that forecasting of 
a time series with NARX models will be enhanced 
by simultaneously analyzing related time series (Dia-
conescu, 2008). The NARX in this study was trained 
using DHMY as the predicted time series with DIM 
and NCM fed in as corresponding time series. The fi-
nal NARX configuration consisted of 2 neurons in the 
hidden layer, 2 delays in the TDL, a tan-sigmoid and 
linear transfer functions in the hidden layer and output 
layer, respectively. The best training style was found to 
be Bayesian regularization. Regularization aims to keep 
the network weights as small as possible to improve 
generalization. To generalize well, a network has to be 
able to fit the training data while responding accurately 
to new data. The objective of the above training algo-
rithms is to minimize the error function ED. However, 
in the case of regularization training an extra term is 
added based on the square of the synaptic weights:

 E ww
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The new training cost function F for regularization 
can be expressed as

 F = αED + βEw,  [5]

where ED is the sum of the square network errors (Equa-
tion 2), Ew is the sum of the square network weights, 
and α and β are objective function parameters. For the 
network to properly fit the data, ED must be minimized; 
however, for the network to generalize well, the weights 
must be small. The balance between error minimiza-
tion and weight reduction is controlled by the objec-
tive function parameters α and β. The relative size of 
the objective function parameters governs the training 
emphasis. If α >> β, then the training will focus on er-
ror reduction and the network will be more inclined to 
overfit the training data. If α << β, then the network 
weights will be reduced at the cost of network fitting, 
thus a smoother network output is achieved for novel 
data (Dan Foresee and Hagan, 1997). Selection of the 
correct values for α and β is achieved by using Bayes’ 
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theorem (MacKay, 1992). The regularization training 
in this study used the Levenberg-Marquardt update 
method.

The NARX network produced an output one step 
ahead of the input data; if another step was required, 
then the previous output was fed back in a closed loop 
to predict the next step again. This process was re-
peated as many times as was necessary. In short the 
model made a prediction that was influenced by its own 
previous prediction and not real data. This was not 
the case, however, with the SANN and MLR models 
because they could not store previous predictions.

MLR Model

Linear regression models characterize the association 
between a dependent and independent variable. The 
relationship between these variables can be expressed 
in a 2-dimensional space. However, few outputs can 
be accurately profiled using just one input. Most real-
world systems are controlled by multiple inputs. Such 
systems can be expressed in the form of a MLR model:

 Y = ε + α1X1 + α2X2 + … + αnXn,  [6]

where Y is the dependent variable, ε is a residual error, 
X1, X2, …, Xn are the independent variables, and α1, 
α2, …, αn are the regression coefficients. In this study, 
DHMY was the dependent variable, with DIM and 
NCM as the independent variables. The relationship 
among DHMY, DIM, and NCM exists in a 3-dimen-
sional mathematical space with each variable plotted 
on independent axes. The regression coefficients and 
error residual of the MLR model (Equation 8) are up-
dated as the historical data set changes because of the 
shortening of the prediction horizon:

 DHMY = ε + α1NCM + α2DIM.  [7]

Model Evaluation Tools

The following statistical methods have been em-
ployed in cognate studies to evaluate milk-yield predic-
tion models (Jones, 1997; Olori et al., 1999; Grzesiak 
et al., 2003, 2006; Quinn et al., 2005; Sharma et al., 
2006). Analyzing the model predictions using multiple 
techniques allows for an easier comparison of results 
across studies.

Coefficient of Determination. The R2 value 
(Equation 3) indicates the goodness of fit between the 
predicted production levels and the actual values. For 
the ith record, ε is the residual error term, y is the 
predicted value, and y  is the mean of the actual pro-
duction values:

 R
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Variance. The variance (σ2; Equation 4) is a mea-
sure of the distribution of the errors around the mean. 
Variance indicates spread of the prediction errors. 
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where μ is the mean residual error and N is the total 
number of records.

RMSE. Unlike the mean absolute error (MAE), 
which weights the error residuals linearly, the RMSE 
(Equation 10) squares the residual errors before averag-
ing, thus a quadratic weighting is applied to the error 
value. This makes RMSE a useful indicator of large 
residual outliers.

 RMSE = =∑ i

N
i

N
1
( )²

.
ε

 [10]

RESULTS

305-d Prediction Horizon

Figure 3 shows the NARX, SANN, and MLR mod-
els DHMY prediction over a full cycle (305 d). The 
NARX model had the highest coefficient of determina-
tion (R2 = 0.936); the MLR (R2 = 0.917) and SANN 
(R2 = 0.889) models were less accurate. The RMSE 
of the NARX prediction (8.59%) was lower than that 
of the SANN (12.03%) and MLR (10.62%), indicat-
ing the presence of larger residual errors in the SANN 
and MLR forecasts. The difference between RMSE and 
MAE was due to variations in the residual error profile 
as accuracy of the models fluctuated over the forecast 
horizon. The 3 models followed a similar trajectory 
until the peak production period began; the SANN un-
derestimated the maximum production level by 4.8%. 
The NARX and MLR underpredicted the peak milk 
production by 12.2 and 14.7%, respectively.

50-d Prediction Horizon

The forecast prediction errors of all 3 models over a 
50-d moving piecewise horizon can be seen in Table 1 
and Figure 4. Each model predicted 50 d ahead, after 
each prediction the actual DHMY data over the previ-
ous horizon was added to the model training data and a 
new 50-d prediction was generated. The maximum and 
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minimum RMSE values were 265.3 and 107.1 for the 
NARX, 389.3 and 188.6 for the SANN, and 377.2 and 
194.1 for the MLR. The NARX model was the most 
accurate over the majority of horizons except the first 
(0–50 d) and the final (250–305 d) time horizon (60% 
of the cycle). The SANN and MLR produced similar 
levels of accuracy until the end of the cycle, where the 
MLR generated the most accurate forecast. The MLR 
was more accurate than the SANN in the ranges 1 to 
50 d and 200 to 305 d (50% of the cycle). The smaller 
σ2 values of the NARX predictions point to a more 
steady-state error in comparison with the other models. 
The NARX, SANN, and MLR underestimated the peak 

milk production by 7.4, 5.9, and 14.6% of peak value, 
respectively.

30-d Prediction Horizon

Figure 5 shows predictions from the 3 models over 
a 30-d piecewise horizon. Over the 30-d piecewise in-
tervals the NARX changed its trajectory, resulting in 
smaller MAE, RMSE, and σ2 values than the other 
models over the cycle except ranges 0 to 30 d, 210 to 240 
d, and >270 d (70% of the cycle; Table 2). The MLR 
was more accurate than the SANN over the ranges 30 
to 60 d, 120 to 240 d, and >270 d (60% of the cycle). 

Figure 3. Forecast for 305-d milk production. Black solid line = actual milk production, gray solid line = nonlinear auto-regressive model 
with exogenous input forecast, dashed line = static artificial neural network forecast, dotted line = multiple linear regression forecast.

Table 1. The 50-d moving piecewise horizon forecast errors for 3 milk-prediction models 

Range

NARX1 SANN2 MLR3

MAE4 σ2 5 RMSE6 MAE σ2 RMSE MAE σ2 RMSE

1–50 243.8 10,941.4 265.3 188.5 12,149.7 218.4 184.2 23,509.5 212.3
50–100 211.6 12,161.2 238.6 271.6 25,884.6 315.7 269.9 36,631.0 329.8
100–150 136.7 8,150.1 163.8 285.9 22,554.3 323.0 349.6 20,515.9 377.2
150–200 89.1 3,542.5 107.1 161.6 9,475.0 188.6 170.5 11,670.5 201.3
200–250 124.7 5,964.4 146.7 365.0 18,339.1 389.3 171.3 20,552.3 222.4
250–305 189.4 13,597.7 222.4 306.1 10,259.9 322.4 153.2 14,505.5 194.1
1NARX = nonlinear auto-regressive model with exogenous input.
2SANN = static artificial neural network model.
3MLR = multiple linear regression model.
4MAE = mean absolute error.
5σ2 = variance.
6RMSE = root mean square error.
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The maximum and minimum RMSE values were 275.2 
and 77.6 for the NARX, 403.5 and 177 for the SANN, 
and 423.2 and 107.5 for the MLR. The NARX, SANN, 
and MLR peak production prediction errors were 7.5, 
7, and 14.5, respectively.

10-d Prediction Horizon

Table 3 and Figure 6 show the forecast errors of the 
3 models over a 10-d horizon. The NARX was the most 
accurate model with lower MAE, RMSE, and σ2 values 
than the SANN and MLR for 83 and 73% of the fore-
casts, respectively. The MLR was more accurate than 
the SANN over 50% of the 10-d horizon forecasts. The 
maximum and minimum RMSE values were 213.6 and 
53.9 for the NARX, 429.9 and 46.7 for the SANN, and 
495.5 and 64.3 for the MLR. The NARX, SANN, and 
MLR peak production prediction errors were 3.9, 7.4, 
and 14.5% of peak value, respectively.

Model Comparisons

Table 4 shows the totalized forecast errors of the 
3 models over the full 305-d cycle with 4 different 
piecewise horizons ranging from 305 to 10 d. The R2 
of the NARX forecast increased from 0.936 to 0.968 
and the RMSE dropped from 8.59 to 5.84%, and the 
R2 of the SANN forecast increased from 0.889 to 0.911 
and the RMSE decreased from 12.03 to 10.7%, yet the 

error of the SANN did not necessarily decrease in cor-
respondence with a shorter prediction horizon. From 
the 305- to 10-d horizon, the accuracy of the MLR did 
not substantially increase; the R2 and RMSE changed 
from 0.917 to 0.916 and 10.62% to 10.54%, respectively. 
The NARX achieved lower MAE, RMSE, and residual 
variance values for 30 of the 47 (63.8%) individual pre-
diction ranges, the SANN was the most accurate model 
over 5 ranges (12.8%), and the MLR was the most accu-
rate model over 11 ranges (23.4%). The NARX was the 
most accurate at predicting the entire cycle for every 
moving horizon; however, the MLR forecasts were more 
accurate for the beginning and end of the cycle. Initially, 
the SANN was the most successful at predicting the 
peak milk production with a 4.8% error in the 305-d 
forecast; however, the SANN peak prediction error in-
creased to 7.4%, whereas in contrast the NARX peak 
prediction error reduced from 12.2 to 3.9%. The MLR 
peak production error varied from 14.7 to 14.5%. The 
NARX totalized prediction error (Table 4) dropped in-
crementally from 8.59 to 5.84% as the moving piecewise 
horizon was shortened, but the SANN and MLR error 
did not substantially reduce in accordance.

DISCUSSION

Model Evaluation

The NARX forecast adapted dynamically to varia-
tions in milk production as it was influenced by the 

Figure 4. Milk-production forecast for a 50-d moving piecewise horizon. Black solid line = actual milk production, gray solid line = non-
linear auto-regressive model with exogenous input forecast, dashed line = static artificial neural network forecast, dotted line = multiple linear 
regression forecast.
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DHMY data in the previous prediction horizon. The 
embedded memory created by the TDL enabled the 
NARX model to correct its projected trajectory over 
the next horizon based on information from the previ-
ous horizon. The constant reduction in the NARX pre-
diction errors was due to higher model refresh frequen-
cies allowing the NARX model to realign its trajectory 
more regularly. The shorter the prediction horizon, the 

fewer closed loop prediction steps the model must make, 
therefore limiting the effect of stochastic disturbances. 
The SANN and MLR models did not possess the abil-
ity to dynamically learn from their errors. The SANN 
prediction error did fluctuate and reduce slightly, but 
this was due to changes in the state of the model as 
it retrained before each new prediction. A very small 
variation existed in the MLR prediction over different 

Figure 5. Milk-production forecast for a 30-d moving piecewise horizon. Black solid line = actual milk production, gray solid line = non-
linear auto-regressive model with exogenous input forecast, dashed line = static artificial neural network forecast, dotted line = multiple linear 
regression forecast.

Table 2. The 30-d moving piecewise horizon forecast error 

Range

NARX1 SANN2 MLR3

MAE4,5 σ2 6 RMSE5,7 MAE σ2 RMSE MAE σ2 RMSE

0–30 247.0 14,689.0 275.2 149.7 17,334.2 199.4 190.7 8,916.6 212.8
30–60 62.4 2,126.2 77.6 335.8 13,267.0 355.0 138.1 12,547.9 177.8
60–90 186.0 12,394.9 216.8 221.5 29,249.5 279.8 297.8 38,576.2 356.7
90–120 172.2 13,222.3 207.1 237.9 7,187.5 252.5 415.1 6,745.9 423.2
120–150 84.1 3,489.0 102.8 304.8 8,592.9 318.6 270.7 23,278.5 310.7
150–180 103.8 6,499.2 131.5 156.4 6,862.1 177.0 114.4 7,618.3 143.9
180–210 72.1 2,466.9 87.6 204.1 15,227.5 238.5 220.1 7,622.7 236.8
210–240 129.8 6,471.6 152.7 392.2 8,991.1 403.5 99.8 5,552.8 124.5
240–270 124.1 8,220.4 153.7 192.4 11,985.8 221.3 311.5 14,558.7 334.1
>270 110.8 2,677.9 132.9 322.9 10,132.1 368.5 91.5 2,531.8 107.5
1NARX = nonlinear auto-regressive model with exogenous input.
2SANN = static artificial neural network model.
3MLR = multiple linear regression model.
4MAE = mean absolute error.
5Error values are represented in liters.
6σ2 = variance.
7RMSE = root mean square error.
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horizons due to the updated regression coefficients, but 
it did not result in any substantial increase in accuracy.

The NARX and SANN were far more successful than 
the MLR at predicting peak milk production. This 
attribute is particularly useful for milk processors, be-
cause accurate peak milk-supply forecasts are needed 
to calculate required processing capacity.

The NARX model’s ability to dynamically adapt and 
alter its projected forecast gave it a distinct advan-
tage over other model types for short- to medium-term 
predictions. Other easily definable herd inputs such 
as cow parity and culling rate could be added to the 
NARX with little complication. The model’s accurate 
short-term predictions would make it a useful decision 
support tool for farm managers over short periods.

NARX Limitations

One limiting factor of the NARX ability to retain 
information in its short-term embedded memory is 

that it is vulnerable to stochastic disturbances (mainly 
changes in weather) in the time series. These distur-
bances create noise in the DHMY time series, and in 
turn this creates outliers. If the end of the preceding 
horizon contains outliers, this information will be re-
tained in the model’s memory and can amplify the di-
vergence between the models trajectory and the actual 
DHMY series. The specific point of refresh along the 
times series has a significant influence on the model’s 
prediction accuracy; this phenomena can lead to dis-
parities between predictions in overlapping ranges. This 
characteristic could possibly retard the model’s ability 
to adapt to real trends. This problem could be reduced 
with a shorter forecast horizon.

Comparisons with Previous Studies

The farm conditions (stocking rate, calving season) 
did not differ from the training data, and no dramatic 
disturbances occurred (disease outbreak, freak weather 

Table 3. The 10-d moving piecewise horizon forecast error 

Range

NARX1 SANN2 MLR3

MAE4 σ2 5 RMSE6 MAE σ2 RMSE MAE σ2 RMSE

0–10 98.1 1,945.2 107.6 44.6 192.2 46.7 73.6 1,932.9 85.7
10–20 119.8 5,584.8 141.2 99.5 1,427.3 106.5 225.7 2,259.5 230.6
20–30 78.3 990.4 84.4 141.8 1,410.4 146.7 272.2 845.8 273.7
30–40 142.5 10,864.1 176.6 282.0 12,172.8 302.9 284.9 1,178.2 287.0
40–50 51.4 1,917.4 67.5 247.5 2,052.0 251.7 60.2 1,590.2 72.2
50–60 45.4 842.4 53.9 331.0 2,136.3 334.3 70.6 2,562.6 86.9
60–70 178.5 12,486.0 210.6 373.2 17,092.0 395.4 100.9 1,975.6 110.2
70–80 172.7 6,721.0 191.1 257.3 31,186.7 312.1 300.8 28,105.3 344.4
80–90 69.3 4,380.0 95.8 68.2 2,829.7 86.5 486.1 9,286.2 495.5
90–100 107.3 9,606.7 145.3 156.6 6,703.6 176.7 370.1 5,725.6 377.7
100–110 108.9 8,266.5 141.8 312.6 12,132.2 331.4 449.5 5,401.0 455.5
110–120 76.5 2,525.6 91.5 283.0 24,882.1 324.0 407.4 5,387.6 413.9
120–130 109.3 5,458.7 132.0 306.9 5,468.0 315.7 422.7 6,719.1 430.6
130–140 81.6 3,148.2 99.1 166.5 11,372.6 197.7 256.0 11,967.3 278.4
140–150 108.7 2,238.6 118.5 184.5 4,399.6 196.0 120.7 7,666.2 149.1
150–160 99.6 2,615.4 111.9 216.6 4,378.2 226.5 122.2 3,086.7 134.2
160–170 61.2 1,668.0 73.6 109.4 4,390.4 127.9 55.6 2,155.4 72.4
170–180 183.8 9,348.1 207.6 123.5 6,722.9 148.2 166.2 11,528.5 197.9
180–190 67.3 2,186.9 82.0 76.5 1,383.1 85.1 276.4 3,708.7 283.0
190–200 65.6 2,509.9 82.6 140.0 4,420.5 155.0 229.3 5,972.6 242.0
200–210 73.7 1,294.9 82.0 282.2 6,362.2 293.3 147.3 5,246.2 164.2
210–220 57.6 1,370.4 68.5 337.7 3,727.2 343.2 124.8 3,860.4 139.4
220–230 199.3 5,913.2 213.6 424.5 4,593.7 429.9 63.6 3,723.8 88.1
230–240 114.7 3,391.7 128.6 400.7 8,242.9 410.9 109.9 6,835.5 137.5
240–250 159.2 2,607.8 167.2 102.1 4,112.3 120.6 403.3 7,158.3 412.0
250–260 135.0 7,185.2 159.4 285.4 12,943.8 307.3 308.3 9,756.1 323.8
260–270 107.6 6,200.3 133.4 233.2 8,764.8 251.3 209.8 9,681.1 231.7
270–280 160.7 5,378.8 176.7 275.3 4,585.4 283.5 58.2 748.2 64.3
280–290 194.3 4,864.1 206.4 323.7 9,467.8 338.0 97.1 1,085.4 102.6
>290 170.1 6,415.9 188.0 254.9 10,837.9 275.3 94.1 4,897.4 117.3
1NARX = nonlinear auto-regressive model with exogenous input.
2SANN = static artificial neural network model.
3MLR = multiple linear regression model.
4MAE = mean absolute error.
5σ2 = variance.
6RMSE = root mean square error.
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event) during the target season; this ensured a level of 
accuracy of R2 ≥ 0.89 for each model over the 305-d 
horizon. Olori et al. (1999) stated that a model’s pre-
diction of total herd milk production was good if R2 ≥ 
0.7, fair if 0.7 > R2 ≥ 0.4, and poor if R2 < 0.4. Quinn 
et al. (2005) applied several existing formulas (Wood, 
1967; Ali and Schaeffer, 1987; Wilmink, 1987; Guo, 
1995) to data originating from an Irish dairy herd. The 
models performed reasonably well, obtaining R2 values 
of 0.63, 0.68, 0.60, and 0.64, respectively. Killen and 
Keane (1978) applied Wood’s lactation curve to Irish 
milk-production data and obtained R2 values in the 
order of 0.7. Olori et al. (1999) achieved an R2 of 0.94 
using the standard lactation curve method to predict 

mean weekly herd yield for a group of HF cattle in the 
United Kingdom. For predicting individual cow yield, 
the average R2 was 0.67. The reduction in accuracy 
was in part due to nontypical lactations. Grzesiak et 
al. (2006) obtained R2 values ranging from 0.45 to 0.62 
and RMSE of 17.58 to 18.45% with Wood’s lactation 
curve, whereas their ANN model achieved an R2 of 0.77 
and a RMSE of 14.74% for the same data set.

An ANN model for milk-yield prediction using more 
easily accessible training data was addressed by Grze-
siak et al. (2006). In that study the model inputs used 
were percentage of HF genes, age at calving in months, 
the month of calving, the DIM after calving, and the 
lactation number. This model proved to be more ac-

Figure 6. Milk-production forecast for a 10-d moving piecewise horizon. Black solid line = actual milk production, gray solid line = non-
linear auto-regressive model with exogenous input forecast, dashed line = static artificial neural network forecast, dotted line = multiple linear 
regression forecast.

Table 4. Totalized prediction error over various forecast horizons

Horizon

NARX1 SANN2 MLR3

RMSE4 (%) R2 RMSE (%)5 R2 RMSE (%)5 R2

305 d 8.59 0.936 12.03 0.889 10.62 0.917
50 d 8.10 0.941 12.15 0.887 10.68 0.914
30 d 6.77 0.964 11.74 0.894 10.62 0.915
10 d 5.84 0.968 10.70 0.911 10.54 0.916
1NARX = nonlinear auto-regressive model with exogenous input.
2SANN = static artificial neural network model.
3MLR = multiple linear regression model.
4RMSE = root mean square error; RMSE is expressed as a percentage of the average actual milk production.
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curate than Wood’s lactation curve and much easier 
to implement in comparison with a large regression 
model; nevertheless, this model still required specific 
information on each individual cow and would not be 
possible to apply to a dairy farm without the use of a 
sophisticated computerized milk recording apparatus.

The SANN and MLR tested in this study produced 
similar levels of forecast error with the MLR being 
more accurate for 53.2% of the predicted ranges and 
having a lower totalized prediction error (Table 4) for 
each moving horizon. The MLR and SANN used by 
Grzesiak et al. (2003) achieved R2 of 0.87 and 0.93 and 
RMSE of 9.84 and 9.05%, respectively. Sharma et al. 
(2007) found a prediction accuracy of 92.03% for their 
SANN and 91.38% for their MLR. Dongre et al. (2012) 
SANN and MLR models attained prediction accuracies 
of 86.08 and 85.16%, respectively. The models used in 
the above studies, however, did use more input vari-
ables than the models used in this work.

The predictions of Jones’s (1997) empirical Bayes 
method for fitting Wood’s curve produced correlation 
values with the actual production figures of up to 0.81. 
Baudracco et al. (2012) applied a mechanistic milk yield 
model to predict milk production of a pasture-based 
dairy cow. The model forecast achieved a concordance 
correlation coefficient of 0.76. The auto-regressive mod-
els developed by Macciotta et al. (2002) and Vasconce-
los et al. (2004) obtained correlation values with their 
corresponding data of up to 0.85 and 0.84, respectively, 
but it is difficult to compare these models to the NARX 
in this study, because they predicted individual lacta-
tion cycles using various test-day figures from incom-
plete lactations.

It is difficult to compare the effectiveness of different 
models over individual studies. Each study mentioned 
above used case-specific data to predict milk supply for 
a particular horizon for an exact cow or herd in unique 
conditions. The idiosyncratic nature of milk supply 
modeling only allows us to make broad comparisons 
between our results and other studies. Definite conclu-
sions on model accuracy for milk-production forecast-
ing can only be made between the 3 models tested in 
this body of work.

CONCLUSIONS

The 3 models tested in this study produced daily 
herd milk-production predictions for 4 different piece-
wise moving horizons using limited amounts of data 
(R2 values from 0.936 to 0.968 for the NARX model, 
0.889 to 0.911 for the SANN model, and 0.917 to 0.916 
for the MLR model). The NARX was shown to be the 
most effective milk-production model. It was more 
accurate than the SANN and MLR for each moving 

horizon and over the majority of individual predic-
tion ranges (63.8% of ranges). From this research, the 
NARX model appears to be a viable alternative to 
conventional regression models; however, more work 
must be undertaken to assess the NARX aptitude for 
milk-production prediction on a large number of com-
mercial dairy farms using different input data. Future 
work will focus on testing more models at cow and herd 
level for multiple dairy farms. Factors such as climatic 
conditions, seasonal calving, and cow parity are also 
matters of interest in the future.
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