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ABSTRACT

Resource-Constrained Project Scheduling with Autonomous Learning Effects

Jordan Ticktin

It’s commonly assumed that experience leads to efficiency, yet this is largely unac-

counted for in resource-constrained project scheduling. This thesis considers the idea

that learning effects could allow selected activities to be completed within reduced

time, if they’re scheduled after activities where workers learn relevant skills. This

paper computationally explores the effect of this autonomous, intra-project learning

on optimal makespan and problem difficulty. A learning extension is proposed to the

standard RCPSP scheduling problem. Multiple parameters are considered, including

project size, learning frequency, and learning intensity. A test instance generator

is developed to adapt the popular PSPLIB library of scheduling problems to this

model. Four different Constraint Programming model formulations are developed to

efficiently solve the model. Bounding techniques are proposed for tightening optimal-

ity gaps, including four lower bounding model relaxations, an upper bounding model

relaxation, and a Destructive Lower Bounding method. Hundreds of thousands of

scenarios are tested to empirically determine the most efficient solution approaches

and the impact of learning on project schedules. Potential makespan reduction as

high as 50% is discovered, with the learning effects resembling a learning curve with

a point of diminishing returns. A combination of bounding techniques is proven to

produce significantly tighter optimality gaps.

Keywords: Operations research, Constraint programming, IBM ILOG CP Optimizer,

Resource-constrained project scheduling problem, RCPSP, Lower and upper bound-

ing

iv



ACKNOWLEDGMENTS

This thesis took a little over a year to complete, and lots of people helped me along

the way. I’d especially like to thank the following:

Dr. Alessandro Hill, for being an outstanding advisor and always being generous

with his time. I couldn’t have done this without his knowledge, passion, advice,

encouragement, and delightfully dry sense of humor.

My family, for their love, support, and encouragement.

The Graduate Education Office for awarding me the Graduate Presentation Award,

and the Industrial and Manufacturing Engineering department’s Student Fee Com-

mittee for providing supplemental travel funds. These awards enabled me to give a

talk presenting this research in Seattle, WA at the 2019 INFORMS Annual Meeting.

Dr. Tali Freed, Dr. Mohamed Awwad, and Dr. Eric Olsen for participating on my

thesis committee.

Dr. Qian Hu and Ying Liu from Nanjing University in China, for sparking the research

idea and helping find bugs in my code.

Dr. Thomas Vossen from University of Colorado Boulder, for his advice on how to

flesh out the research and prepare it for publication.

Michael Williams, for his help improving the presentation of this material.

Kate Parkinson and the rest of the Cal Poly CubeSat Lab ATLO team, for being

understanding every time I had to temporarily step back from my responsibilities

because I unearthed yet another problem to solve in some part of my thesis.

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Research Questions . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Paper Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Project Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Learning Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Learning Effects in Scheduling . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Constraint Programming . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Model Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 The Resource-Constrained Project Scheduling Problem (RCPSP) . . 9

3.2 RCPSP with Autonomous Learning (RCPSP+L) . . . . . . . . . . . 11

4 Reduction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Directed Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Precedence-Induced Learning Effects . . . . . . . . . . . . . . . . . . 15

4.3 Minimum Durations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Constraint Programming Formulations . . . . . . . . . . . . . . . . . . . . 17

5.1 Introduction to Constraint Programming . . . . . . . . . . . . . . . . 17

vi



5.2 Base RCPSP (F0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 RCPSP+L Formulations . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3.1 Logical Duration (F1) . . . . . . . . . . . . . . . . . . . . . . 19

5.3.2 Dynamic Duration (F2) . . . . . . . . . . . . . . . . . . . . . 20

5.3.3 Multi-Mode (F3) . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3.4 Bi-Objective (F4) . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Bounding Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 Introduction to Bounding . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 Formulation Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 Model Relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.3.1 RCPSP− (LB1) . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3.2 RCSP+L (LB2) . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3.3 PSP+L (LB3) . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3.4 PSP− (LB4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3.5 RCPSP+ (UB1) . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4 Destructive Lower Bounding (DLB) . . . . . . . . . . . . . . . . . . . 28

7 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.1 Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.2 Test Instance Generator . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2.1 Test Instance Parameters . . . . . . . . . . . . . . . . . . . . 32

7.2.2 Student Selection . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2.3 Teacher Selection . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2.4 Alternate Duration Calculation . . . . . . . . . . . . . . . . . 35

7.3 System and Software Configuration . . . . . . . . . . . . . . . . . . . 35

8 Computational Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



8.1 Formulation Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 38

8.2 RCPSP+L Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . 41

8.3 Bounding Efficacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.4 Difficulty Impact of Parameters . . . . . . . . . . . . . . . . . . . . . 49

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.1.1 RCPSP Learning Extension . . . . . . . . . . . . . . . . . . . 52

9.1.2 Learning Effects Characterization . . . . . . . . . . . . . . . . 53

9.1.3 Efficient Solution Approaches . . . . . . . . . . . . . . . . . . 53

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.2.1 Advanced Learning Model Extensions . . . . . . . . . . . . . 54

9.2.2 Additional Solution Approaches . . . . . . . . . . . . . . . . . 55

9.2.3 Industry Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

APPENDICES

A Instance Generator Code . . . . . . . . . . . . . . . . . . . . . . . . . 65

B Instance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B.1 Example Instance Data File . . . . . . . . . . . . . . . . . . . . . . . 73

B.2 Example List of Filenames . . . . . . . . . . . . . . . . . . . . . . . . 74

C Example OPL Model Code . . . . . . . . . . . . . . . . . . . . . . . . 75

D Batch Script Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

E Example Solution File . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



LIST OF TABLES

Table Page

6.1 Lower Bounding Model Relaxations . . . . . . . . . . . . . . . . . . 25

6.2 Upper Bounding Model Relaxations . . . . . . . . . . . . . . . . . 25

8.1 Formulation Comparison Experiment Parameters . . . . . . . . . . 38

8.2 RCPSP+L Model Analysis Experiment Parameters . . . . . . . . . 41

8.3 Bounding Efficacy Experiment Parameters . . . . . . . . . . . . . . 44

ix



LIST OF FIGURES

Figure Page

1.1 Repeated Tasks Within a Project . . . . . . . . . . . . . . . . . . . 2

3.1 Example Precedence Network . . . . . . . . . . . . . . . . . . . . . 10

3.2 Example Learning Network . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Comparison of Example RCPSP and RCPSP+L Solutions . . . . . 12

8.1 Percentage of Instances Solved to Optimality, by Formulation . . . 39

8.2 Average Solve Time for Optimal Instances, by Formulation . . . . . 39

8.3 Optimality Gaps for Unsolved Instances, by Formulation . . . . . . 40

8.4 RCPSP+L Makespan Reduction Potential . . . . . . . . . . . . . . 42

8.5 RCPSP+L Learning Utilization . . . . . . . . . . . . . . . . . . . . 43

8.6 Percentage of Instances Solved to Optimality, by Bounding
Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.7 Lower Bounding Optimality Gaps, by Bounding Technique . . . . . 46

8.8 Upper Bounding Optimality Gaps, by Bounding Technique . . . . . 47

8.9 Improvement from Original to Best Bounding Technique . . . . . . 48

8.10 Percentage of Instances Solved to Optimality, by Parameter . . . . 49

8.11 Optimality Gaps for Unsolved Instances, by Parameter . . . . . . . 50

x



LIST OF ALGORITHMS

Algorithm Page

6.1 Destructive Lower Bounding . . . . . . . . . . . . . . . . . . . . . . . 28

7.1 Student Selection Process . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Teacher Selection Process . . . . . . . . . . . . . . . . . . . . . . . . . 34

xi



Chapter 1

INTRODUCTION

This chapter introduces the thesis and the research conducted within. It first de-

scribes the motivation for conducting the research, along with problem and research

questions posed. Next, it details contributions made to the literature. It ends with

an explanation of this paper’s organizational structure.

1.1 Motivation and Research Questions

Large projects in all industries face the problem of how best to schedule many com-

plex components. This is commonly formulated as the Resource-Constrained Project

Scheduling Problem (RCPSP) (see Section 3.1): given resource and precedence con-

straints, what schedule can complete the project the fastest? Historically, these prob-

lems were solved by hand, but today we can use advanced software packages to solve

them more quickly. Much literature exists about efficiently solving these types of

scheduling problems and their many variations (see Chapter 2). Many of these ex-

tensions of the base RCPSP give the solver more alternatives; this can match the

problem more closely to the real world, and the additional options often enable the

solver to find shorter optimal schedules (albeit with more difficulty in solving).

One facet of the real world that is often not accounted for in scheduling problems is

learning. Suppose a construction company is building an apartment building. Because

many of the apartments will have designs that are similar, or even identical, a task

like laying hardwood floor may be performed multiple time throughout the project

(Figure 1.1). While building the first floor of apartments, the team will run into

1



Figure 1.1: Repeated Tasks Within a Project

problems while laying the hardwood floor: parts won’t fit right, workers will discover

issues with the design, etc. By the time the first floor is complete, and it’s time to

build the second floor, the workers will have worked out many of the kinks. They will

be able to do it better, faster, and possibly even cheaper.

This concept of learning effects motivates the central problem of this thesis: How

does learning affect the way projects are scheduled? The corollary research questions

to this are as follows:

• How would learning be incorporated into scheduling problems?

• What would the effects of learning be?

• How hard would these problems be to solve?

• How could they be solved more efficiently?

1.2 Contributions

In seeking to answer the central problem and corollary research questions, this paper

contributes the following to the literature:
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• Definition of RCPSP+L, an RCPSP-based learning model (Section 3.2). For-

mulation of this model using Constraint Programming (Chapter 5).

• Development of an RCPSP+L instance generator (Section 7.2) and reduction

techniques for the instance set (Chapter 4). Extensive computational analysis

through hundreds of thousands of experiments, identifying significant makespan

reduction potential (Section 8.2).

• Examination of the impact of various parameters on problem difficulty (Sec-

tion 8.4).

• Exploration of more efficient ways to solve these problems, including multi-

ple Constraint Programming formulations (Section 8.1) and several bounding

techniques (Section 8.3), which solve instances to optimality more quickly and

tighten optimality gaps.

1.3 Paper Structure

These contributions are dispersed throughout the paper. After this introduction,

literature relevant to this research is reviewed in Chapter 2. Chapter 3 explains

the standard RCPSP model and introduces the new learning extension. Reduction

techniques are described in Chapter 4. Chapter 5 proposes multiple Constraint Pro-

gramming formulations for solving the instances, and Chapter 6 specifies some model

relaxations and a destructive lower bounding technique that can all be used to reduce

optimality gaps. Chapter 7 describes the data source, custom test instance generator,

and system/software configuration used to set up the experiments. These experiments

are performed and results are analyzed in Chapter 8. Finally, Chapter 9 summarizes

the research and offers some ways to continue it in the future.
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Chapter 2

LITERATURE REVIEW

Extensive research on related topics exists that this paper can build upon. This

chapter reviews literature relevant to this research, including literature related to

scheduling, learning, Constraint Programming, and intersection points between the

three. Note that more works from the literature are referenced in other parts of the

paper, in addition to or instead of being included in this chapter, wherever the subject

is most relevant.

2.1 Project Scheduling

Project scheduling is a problem with a long history in the literature for operations

research and management science. In 1959, Kelley and Walker introduced the critical

path method to help planners manually craft efficient schedules [26]. Today, we can

solve difficult scheduling problems with advanced computer algorithms instead. For

example, NASA uses custom software packages to do activity planning for the Mars

rovers [6], and Roscosmos (the Russian space agency) uses mathematical models to

schedule training for cosmonauts heading to the International Space Station [36].

Scheduling problems come in all shapes and sizes. They vary in constraints, options,

complexity, and more. By far one of the most common scheduling problems in the

literature is the Resource-Constrained Project Scheduling Problem (RCPSP). (As of

November 2019, a Google Scholar search for “resource constrained project scheduling”

returns 438,000 results.) This standard scheduling problem covers a wide variety of

abstract and real world scheduling problems, all while being straightforward to work
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with. RCPSP has been applied to problems in civil engineering and construction

management [27], waterway traffic management [21], mining [20], research labs [43],

and much more. It has even been used for project management in the Colombian

video game and animation industry [40].

One of RCPSP’s main benefits is its adaptability. Many extensions to the base

RCPSP have been explored in the literature, attempting to improve its applicability

to “real world” problems and reduce the optimal makespan for a given instance. Hart-

mann and Briskorn conduct an extensive survey of RCPSP variants in [18], covering

generalizations of the problem with respect to activity concepts, temporal constraints,

and resource constraints, and describing alternative objectives and problems involv-

ing multiple projects. One well-known generalization of the RCPSP in the literature

is the Multi-Mode RCPSP (often shortened to MM-RCPSP), which is shown to be

computationally efficient [35].

2.2 Learning Curves

Human learning has been discussed scientifically as far back as 1885 [12]. In 1936,

Wright documented the benefits of learning for production [53]. He described an

“eighty percent curve”, wherein doubling the number of planes produced only in-

creased labor costs by 80%, which he attributed to a more skilled workforce and

economies of scale. In the 1950s, semiconductor manufacturers were able to dramat-

ically reduce costs by taking the effect into account [11], and in more recent years

the price of photovoltaics (i.e. solar cells) have plunged for similar reasons [41]. The

effect has also been applied outside of industrial settings: Hanakawa et al. demon-

strated that not only does a software developer’s productivity increase the longer the

developer stays on a task, the efficiency gain can be practically modeled using a learn-
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ing curve [17]; Wu and Sun utilized the learning curve effect when exploring how to

minimize outsourcing costs during research and development [54]. The learning curve

has been a popular research subject since its introduction, with Yelle documenting

its popularity back in 1979 [55], Glock et al. reaffirming its continued popularity in

2019 [15], and multiple concurring surveys made in the years between [23, 24].

2.3 Learning Effects in Scheduling

Given how popular studying the learning effect is in project management, it should

be no surprise that this popularity extends into the scheduling literature. One of the

earliest cases of this is by Keachie and Fontana in 1966 [25], with an early scheduling

formulation that includes learning considerations in 1999 [3].

Biskup conducts an extensive survey of learning in scheduling in [4]. He identifies

two main learning methods in the scheduling literature: autonomous learning (“learn

by doing”) and induced learning (“learn by review”). Autonomous refers to learning

that occurs automatically when workers gain experience from performing an activity

themselves and “learn the hard way”. Induced refers to learning that is intentionally

mined from others’ experiences, such as when listening to a lecture in a classroom or

reviewing a video, and takes additional time.

Surprisingly, though both learning effects and the RCPSP are extensively researched

in the literature, not much literature exists that integrates the two. One of the clos-

est examples is a 2015 paper by Van Peteghem and Vanhoucke titled “Influence of

learning in resource-constrained project scheduling” [50]. They incorporate learning

effects into the discrete time/resource trade-off problem (DTRTP), a subproblem of

the MM-RCPSP, where jobs are defined by work content instead of fixed duration/re-

source requirements. They only examine one resource in their experiments: workers.
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Different modes are then defined with varying combinations of duration/resources to

satisfy the work required. They find that learning has a significant impact on project

schedule, so much so that baseline schedules which ignore this effect aren’t accurate

predictors of real project progress; 88% of the instances they examine which ignore

learning deviate by > 10% from the actual observed makespan.

This thesis builds upon Van Peteghem and Vanhoucke’s work through the following:

Where they modeled the problem as an extension of the DTRTP, this thesis uses a

model that generalizes the RCPSP so that the work is easily integrated with other

RCPSP research and variants. Four resources are considered in the instances in

this thesis, to better understand the effects resource constraints would have on a

realistic scenario, instead of assuming workers are the only resource that constrains the

instance. This thesis also utilizes Constraint Programming, including multiple model

formulations for more efficient solving (see Chapter 5), instead of the Mathematical

Programming formulation they use. Additionally, this thesis explores techniques for

tightening instance optimality gaps (see Chapter 6).

2.4 Constraint Programming

There are many different solution approaches for scheduling problems, such as Math-

ematical Programming (MP) [45], Constraint Programming (CP) [46], and heuris-

tics [1]. MP is frequently used for scheduling problems; indeed, the paper by Van

Peteghem and Vanhoucke mentioned in the previous section uses MP. Possible uses

for MP and heuristics with the research in this thesis are discussed in Section 9.2.2.

CP was selected for this thesis due to its exceptional track record with this kind of

problem: scheduling has been one of the most successful uses for CP for over 20

years [34]. Furthermore, CP has specifically been shown to excel at solving RCPSP
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instances [38]. Beyond just project scheduling problems, CP is now used exten-

sively (and highly successfully) for a broad array of problems [52]: sports tournament

scheduling [8]; just-in-time cross-docking planning in supply chains [13]; inventory

management for natural gas, where CP is shown to be 4–10 times faster than Mixed

Integer Programming (a type of MP) [16]; the stable marriage [14], stable room-

mate [44], and hospitals/residents matching [39] problems; and more.

As mentioned in the previous section, one of the topics explored in this thesis is how

to tighten optimality gaps for instances the solver can’t easily solve to optimality.

Bounding techniques are commonly applied to improve the upper and lower bounds

automatically produced by the solver. One frequent approach to producing improved

bounds is to use model relaxations [42], and another method is destructive lower

bounding [7, 28]. Both are used in this thesis (see Chapter 6).

8



Chapter 3

MODEL DEFINITIONS

This chapter defines the standard RCPSP frequently used in the literature for schedul-

ing problems, followed by an introduction to the RCPSP+L learning model extension

central to this thesis. A common example instance is used throughout the chapter to

demonstrate some concepts and compare the two models.

3.1 The Resource-Constrained Project Scheduling Problem (RCPSP)

The Resource-Constrained Project Scheduling Problem (RCPSP) is a standard sched-

uling problem in the literature. It is a strongly NP-hard optimization problem [5]. A

Constraint Programming formulation of the RCPSP is described in Section 5.2. The

RCPSP is defined as follows [30]:

JOBS A project of size n has a set of jobs (tasks) J = j0, j1, . . . , jn, jn+1. Jobs j0 and

jn+1 are empty start/end tasks to mark the beginning/end of the project. As

such, J has a total number of tasks |J | = n+2. For clarity, projects will usually

be referred to by their size n in this paper, unless explicitly stated otherwise.

DURATIONS All jobs have duration d ∈ Z+, except for the empty start/end tasks

(which have d = 0). The time periods start at 0 and increase by increments of

1.

RESOURCE CONSTRAINTS The project has a set of resource capacities R =

{r1, . . . , rk}, where r ∈ Z+ is a resource’s per-period capacity, and k is the

number of different types of resources in the instance. Resources are renewable:

9



the resource capacity is fully available every time period and is not permanently

depleted over the course of the project. Each job has a fixed per-period resource

consumption ur ∈ Z+
0 ∀ r ∈ R during each time period in which it’s scheduled,

except for the empty start/end tasks (which have ur = 0 ∀ r ∈ R). To respect

the resource capacities, the following must be true during each time period of

the solution:
n∑

i=1

ur,i ≤ r ∀ r ∈ R (3.1)

PRECEDENCE CONSTRAINTS The set of precedence relationships A can be vi-

sualized as an acyclic precedence network (example shown in Figure 3.1). In a

direct precedence relationship (i, j), a task i must always be scheduled before a

task j. In an indirect precedence relationship, if (i, j) ∈ A and (j, k) ∈ A are

true, (i, k) ∈ A must be true as well. The empty start/end jobs are such that

(j0, jx) ∀ jx ∈ {j1, . . . , jn+1} and (jx, jn+1) ∀ jx ∈ {j0, . . . , jn}. All jobs, except

j0, must have at least one predecessor.

OBJECTIVE The objective in RCPSP is to minimize the project makespan (total

time from start to finish) MS = t(jn+1).

Figure 3.1: Example Precedence Network

A solution is said to be feasible if it’s valid given all of the above constraints. Fur-

thermore, a solution is optimal if it’s proven that there are no feasible solutions with

10



a shorter makespan. Solutions are frequently represented as a Gantt chart (as in

Figure 3.3).

3.2 RCPSP with Autonomous Learning (RCPSP+L)

This thesis explores a generalization of RCPSP called RCPSP+L which incorporates

the effects of autonomous intra-project learning. Autonomous refers to learning that

takes place automatically as workers move from job to job (see Chapter 2), and intra-

project means learning that occurs from job to job within the same project.

Figure 3.2: Example Learning Network

RCPSP+L reduces to RCPSP if no learning relations exist. (Thus, RCPSP+L is also

NP-hard.) Everything from the previous section’s description of RCPSP still holds

true for RCPSP+L, with the following changes regarding learning relationships:

• The set of potential learning relationships L can be visualized as a learning

network. An example is shown in Figure 3.2. (Note: The instance in this

chapter’s example would be reduced after the techniques in Chapter 4).

• In a learning relationship (i, j), i is referred to as the teacher task and j as

the student. If i ≺ j in the schedule (i ends before or at the same time as

11



j starts), then the workers performing j can benefit from the experience they

gained during i, and j can be completed more quickly.

• The normal non-learning duration d is now called a task’s original duration. The

shorter post-learning duration d′ is referred to as a task’s alternate duration,

where d′ ∈ Z+. It is always the case that d > d′.

• A student’s per-period resource consumption ur doesn’t change post-learning,

thus, the overall resource consumption for a task that learns is reduced.

• Each student task can only have one potential teacher designated in the in-

stance, but a task can be a teacher for multiple students.

An example of the learning effect’s benefits is presented in Figure 3.3, in which learn-

ing reduces the optimal makespan of the example project from 12 to 9.

Figure 3.3: Comparison of Example RCPSP and RCPSP+L Solutions

Learning network generation for the test instances in this thesis relies on two param-

eters (see Section 7.2):

LEARNING FREQUENCY (ϕ) Target percentage of tasks with the potential to be

students (i.e. present in the learning network).

LEARNING INTENSITY (λ) Percentage a student’s original duration d is reduced

by to calculate its alternate duration d′.

12



This concept for integrating learning effects is chosen because of its simplicity. While

other learning models have the potential to be more accurate due to increased com-

plexity, such as allowing multiple teachers or utilizing intricate similarity matrices,

that complexity is also a major drawback. Identifying potential learning relationships

alone is difficult and time-consuming enough when implementing this problem in the

real world. While the amount of additional effort to work with this model is well

worth the returns (see Chapter 8), that may not be as true for a model that’s too

much more complex.
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Chapter 4

REDUCTION TECHNIQUES

Reduction techniques are well known to be important when solving hard optimization

problems [48]. They aim to reduce the instance data for a problem while preserving

optimal solutions, with the goal of increasing solver efficiency. This is commonly

achieved by applying logic-based modifications.

Reduction techniques were applied before attempting to solve RCPSP+L instances.

Any instance that is invalid (see explanation of RCPSP+L model in Section 3.2) or

doesn’t add any value to examine is removed. Out of convenience, these reduction

steps were performed during instance data file generation. This chapter describes

the applied reduction techniques, which affect directed cycles, precedence-induced

learning effects, and minimum durations.

4.1 Directed Cycles

All instances with precedence networks that include directed cycles have been re-

moved. If the precedence relationship (i, j) ∈ A is true, then (j, i) ∈ A would be

impossible to satisfy. This is true for both direct and indirect precedence relation-

ships. Removal of these invalid instances is achieved by using a data source with

known-good RCPSP data sets (see Section 7.1).
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4.2 Precedence-Induced Learning Effects

All instances with learning relationships between two tasks that also had a precedence

relationship were removed. If a direct or indirect precedence relationship (i, j) ∈ A

is true, then the solver never has the opportunity to examine a potential schedule

where j ≺ i. Adding a learning relationship between the two tasks would always have

a completely predictable outcome and thus be unhelpful in answering the research

questions posed in this paper.

If both (i, j) ∈ A and a learning relationship (i, j) ∈ L are true, learning would always

occur. This case would still provide some information about how much learning effects

can impact the calculation of project makespans. However, this paper centers on how

projects might be scheduled differently if learning effects are taken into account in the

first place, not just how much they’d be shortened by during after-the-fact makespan

calculations.

If both (i, j) ∈ A and (j, i) ∈ L are true, learning would never occur. This case is

thus irrelevant to this paper’s examination of learning effects.

Both cases also eliminate start/end tasks ever being teachers or students; they are a

precedence or successor for all other tasks (see Section 7.1).

Removal of these invalid instances is achieved by only selecting valid students while

constructing test instances (see Section 7.2.2).
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4.3 Minimum Durations

All instances where students have a duration too small to improve were removed. If

no improvement is possible, then no learning effect could ever be observed, so it has

no effect on how the solver makes the schedule.

If d ≤ 1 for a task, its duration can’t be shortened. The data source used for this

paper only uses whole numbers for durations (see Section 7.1). Thus, the minimum

duration any real task can have is 1. This also eliminates the start/end tasks ever

being students because dj0 = djn+1 = 0 (see Section 7.1).

Additionally, if d = d′ for a task, then by definition the task’s duration can’t be

shortened. Depending on an instance’s learning intensity, this frequently affects short

tasks (e.g. d = 2 at λ = 10%), and even affects longer tasks at high learning intensities

(e.g. d = 10 at λ = 90%).

Removal of these invalid instances is achieved by only selecting valid students while

constructing test instances (see Section 7.2.2).
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Chapter 5

CONSTRAINT PROGRAMMING FORMULATIONS

To characterize the RCPSP+L model, this thesis utilizes Constraint Programming

(CP), a solution approach proven to be highly successful for scheduling problems.

Multiple CP formulations are proposed with the goal of improving solver efficiency.

Each formulation in this chapter is assigned a label of the form F(#), in addition to

its descriptive name, for easier referencing.

This chapter begins with an explanation of what CP is. It then defines the CP

formulation for the traditional RCPSP model (F0). The final section proposes CP

formulations for the RCPSP+L model: Logical Duration (F1), Dynamic Duration

(F2), Multi-Mode (F3), and Bi-Objective (F4).

5.1 Introduction to Constraint Programming

CP is an exact solution approach for operations research problems. A scheduling

problem formulated using CP largely consists of four main parts:

DATA Information from the instance to be solved (e.g. a list of jobs).

DECISION VARIABLE(S) The answer(s) the solver is being asked to produce (e.g.

when each job is scheduled).

OBJECTIVE The solver’s goal, which defines what an optimal solution would be

(e.g. minimize the makespan).

CONSTRAINTS Restrictions that solutions must meet to be valid (e.g. precedence).
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The decision variables used in the formulations in this chapter are time-interval vari-

ables that specify a start and an end time. The schedules in in these formulations are

represented by an array of all the interval decision variables, one interval per task.

CP solvers work by defining the domain of all possible values for the decision vari-

ables and dividing it into branches at every decision point. It then uses propagators

to narrow down the branches on the tree until it finds the optimal one [38]. The prop-

agators search in different ways depending on the solver: it may focus on investigating

branches with feasible solutions, it may seek to first eliminate infeasible branches, etc.

By default, this version of the CP Optimizer solver used in this thesis (see Section 7.3)

uses a combination of the Large Neighborhood Search and Failure-Directed Search

algorithms when solving scheduling problems [51]. A feasible solution is proven to be

optimal once all other branches have been eliminated.

5.2 Base RCPSP (F0)

A known-efficient RCPSP formulation F0 included with this version of CP Optimizer

is used as the basis for all the RCPSP+L formulations in this paper [35]. In addition

to the notation from Chapter 3, let yj be an interval variable for each job j ∈ J :

Min max
j∈J

(
end(yj)

)
(5.1a)

Subject to cumulative_function(ur,y1 , . . . , ur,yn) ≤ r ∀ r ∈ R, (5.1b)

end_before_start(yi, yj) ∀ (i, j) ∈ A, (5.1c)

yj interval variable in [0, z] of length dj ∀ j ∈ J. (5.1d)

The interval for a given job j is represented by yj. The objective in eq. (5.1a) is to

minimize the time period during which the final task ends. The per-period resource
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capacity constraints are handled in eq. (5.1b) by a cumulative function expression.

Precedence constraints are implemented by eq. (5.1c). Equation (5.1d) fixes the length

of each job’s interval to that job’s pre-defined duration.

5.3 RCPSP+L Formulations

Four RCPSP+L CP formulations are proposed in this section. They vary in objec-

tives, decision variables, and constraints. They all reduce to F0 when L = ∅.

5.3.1 Logical Duration (F1)

The Logical Duration (F1) RCPSP+L formulation incorporates learning effects through

individual duration constraints for every possibility. Building upon F0:

Min max
j∈J

(
end(yj)

)
(5.2a)

Subject to eqs. (5.1b) and (5.1c), (5.2b)(
end(yi) ≤ start(yj)

)
=⇒

(
length(yj) = d′j

)
∀ (i, j) ∈ L, (5.2c)(

end(yi) > start(yj)
)

=⇒
(
length(yj) = dj

)
∀ (i, j) ∈ L, (5.2d)

length(yj) = dj ∀ (i, j) /∈ L, (5.2e)

yj interval variable in [0, z] of length [d′j, dj] ∀ j ∈ J. (5.2f)

Equations (5.2a) and (5.2b) show that F1 uses the same objective, resource con-

straints, and precedence constraints as F0. F1 differs from F0 in how the duration

of a task is set; this incorporates any learning that occurs. Instead of being fixed,

eq. (5.2f) allows the length of each job interval to be between its alternate and original

durations, and the value is set depending on a task’s circumstances:
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• If i ≺ j, eq. (5.2c) ensures j uses its alternate duration.

• If i ⪰ j, eq. (5.2d) ensures j uses its original duration.

• If j has no possible teacher provided in the instance data file, eq. (5.2e) ensures

j uses its original duration.

5.3.2 Dynamic Duration (F2)

The Dynamic Duration (F2) RCPSP+L formulation incorporates learning effects by

calculating duration dynamically.

Min max
j∈J

(
end(yj)

)
(5.3a)

Subject to eqs. (5.1b), (5.1c), (5.2e), and (5.2f), (5.3b)

length(yj) = dj − (dj − d′j)×
(
end(yi) ≤ start(yj)

)
∀ (i, j) ∈ L. (5.3c)

Equation (5.3c) calculates the duration of learning-capable jobs all in one, without

needing separate constraints to handle i ≺ j vs. i ⪰ j. The math works because this

version of CP Optimizer evaluates the Boolean
(
end(yi) ≤ start(yj)

)
to 1 if true and

0 if not when performing the calculation.

5.3.3 Multi-Mode (F3)

Multi-Mode RCPSP (often shortened to MM-RCPSP or MRCPSP) is a well-known

generalization of the RCPSP in the literature that has been shown to be computa-

tionally efficient. Instead of fixed duration and resource consumption, MM-RCPSP

allows tasks to be performed in one of multiple alternative modes that may have

different requirements.
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The Multi-Mode (F3) RCPSP+L formulation incorporates the effect of learning by

choosing between a learning and non-learning mode for each task. Let optional in-

terval variables zj and z′j represent the two modes for each job j ∈ J :

Min max
j∈J

(
end(yj)

)
(5.4a)

Subject to eqs. (5.1b) and (5.1c), (5.4b)

alternative(yj, [zj, z′j]) ∀ (i, j) ∈ L, (5.4c)

presence_of(z′j) =
(
end(yi) ≤ start(yj)

)
∀ (i, j) ∈ L, (5.4d)

zj, z
′
j optional interval variables

in [0, z] of length [d′j, dj]

∀ j ∈ J. (5.4e)

Note that unlike in eq. (5.2f), the duration intervals in eq. (5.4e) are optional — this

is necessary because the solver can only use one of them and thus must leave the other

blank. The alternative constraint in eq. (5.4c) requires the solver to use exactly one of

the task mode options. Like in F2’s duration calculation, eq. (5.4d) takes advantage

of the fact that this version of the CP Optimizer solver evaluates Booleans to 1 or 0

when determining which mode to use: the learning mode z′j (which has duration d′) is

used if i ≺ j. Otherwise, the learning mode is suppressed, which inherently requires

the presence of zj due to eq. (5.4c).

5.3.4 Bi-Objective (F4)

The Bi-Objective (F4) RCPSP+L formulation is identical to F2, but with the addition

of a secondary objective that encourages the use of learning [10]. Let l represent the

number of tasks which actually learn from their teachers in the solution (i.e. where

length(yj) = d′j):
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Min max
j∈J

(
end(yj)

)
− l

|J |+ 1
(5.5a)

Subject to eqs. (5.1b), (5.1c), (5.2e), (5.2f), and (5.3c). (5.5b)

The only difference between this formulation and F2 is the additional factor l
|J |+1

in the objective in eq. (5.5a). This factor incentivizes the solver to prefer solutions

that utilize more learning relationships, but its value is small enough l
|J |+1

< 1 that

the solver should only use it as a tie breaker between two solutions with the same

makespan, acting as a secondary objective.

Note that the actual makespan thus no longer corresponds to the obtained objective

function value. However, it’s still easily obtained as MS = max
(
end(yj)

)
.
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Chapter 6

BOUNDING TECHNIQUES

At a certain instance difficulty level or size, it’s inevitable that even the best CP

formulation may not be able to solve the instance to optimality within a reasonable

amount of time. In these cases, bounding techniques are utilized to intelligently

tighten the ensuing optimality gaps.

This chapter opens with an introduction to what suboptimal solutions are and bound-

ing techniques are used to address them. It then delves into the bounding techniques

used in this paper for RCPSP+L instances, including bounds automatically gener-

ated by the CP formulations, lower and upper bounding model relaxations, and a

destructive lower bounding process.

Propositions regarding the bounding techniques in this chapter use the following

notation: For a given instance solved with a model x, let opt(x) be the optimal

makespan, with lb(x) and ub(x) respectively be the valid lower and upper bounds.

6.1 Introduction to Bounding

A feasible makespan is one for which a valid solution is known. A feasible makespan

is said to be optimal if it’s proven that no shorter makespan is possible for the

given instance, and an instance with a known optimal solution is said to be solved.

Makespans that are feasible but proven not to be optimal are called suboptimal.

A lower bound lb is an integer such that makespan of an optimal solution is ≥ lb.
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Similarly, An upper bound ub is an integer such that makespan of an optimal solution

is ≤ lb.

Though optimality is the goal, it can years to solve some of the most difficult instances

(such as ones with many jobs). In the PSPLIB library of RCPSP instances (discussed

further in Section 7.1), some instances with just 60 jobs still have yet to be solved to

optimality over 20 years later [29]. For each of these unsolved instances, its optimality

gap is considered, which is the gap between its lb and ub. (This measurement is

sometimes called the optimality guarantee because it lends insight into how good a

given makespan is for the instance.) Because the objective in RCPSP is to minimize

the makespan, ub in this case is the smallest valid makespan known. Optimality gaps

in this paper are calculated as follows, with makespan MS:

Optimality Gap % =
MS − lb

MS
× 100 (6.1)

A gap of < 5% is generally considered acceptable in practical applications.

6.2 Formulation Bounds

The CP Optimizer solver version used in this thesis (see Section 7.3) automatically

outputs a lower and upper bound for every solution it produces. (For RCPSP+L,

ub = MS, so in practice this means the solver outputs lb and MS.) By solving

each instance using all of the formulations in Chapter 5, the different formulations’

strengths can easily be taken advantage of by choosing the best lb’s and ub’s produced.
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6.3 Model Relaxations

Model relaxations involve taking the main model to be solved and relax its constraints,

with the goal of producing a problem that’s easier to solve. These easier problems can

then be used to more quickly produce lower or upper bounds for the main model. In

this paper, the relaxations involved RCPSP+L formulations with the resource and/or

precedence constraints completely removed and/or the durations fixed at the original

or alternate values.

The model relaxations used to improve lower bounds in this paper are listed in Ta-

ble 6.1. Like with the F(#) notation for the various CP Formulations in Chapter 5,

the lower bounding model relaxations are labelled with LB(#) for easier referencing.

The makespans for these models are valid lower bounds for RCPSP+L.

Table 6.1: Lower Bounding Model Relaxations
Resources Precedences Durations

RCPSP− (LB1) ✓ ✓ Alternate (d′)
RCSP+L (LB2) ✓ — Variable (d or d′)
PSP+L (LB3) — ✓ Variable (d or d′)
PSP− (LB4) — ✓ Alternate (d′)

Fewer upper bounding relaxations were used than lower bounding ones because re-

laxing resource and precedence constraints inherently shortens the makespan. Thus,

relaxing the only other constraint in RCPSP+L, duration, produced the sole upper

bounding relaxation described in this section (listed in Table 6.2), labelled as UB1 for

easier referencing. The makespan for this model is a valid upper bound for RCPSP+L.

Table 6.2: Upper Bounding Model Relaxations
Resources Precedences Durations

RCPSP+ (UB1) ✓ ✓ Original (d)
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These lower and upper bounding model relaxations are covered in the subsections

that follow.

6.3.1 RCPSP− (LB1)

The RCPSP− (LB1) relaxation fixes all potential student tasks to their alternate du-

rations d′ (tasks with no learning ability are left at d). This represents the maximum

learning possible for an instance. Potentially, this is even shorter than is possible for

a optimal RCPSP+L solution of the instance, if it’s impossible for that instance to

schedule every potential student after their teacher.

The learning effect can only ever shorten the makespan, and LB1 has the maximum

possible amount of learning, so LB1 will always produce makespans at least as good

as RCPSP+L.

Proposition 1. For an RCPSP+L instance, it holds that lb(LB1) ≤ opt(RCPSP+L).

6.3.2 RCSP+L (LB2)

The RCSP+L (LB2) model relaxes the precedence constraints (i.e. A = ∅), allowing

tasks to be scheduled in any order whatsoever. This effectively becomes a resource

packing problem, but with the added benefit of potentially reduced durations and

resource consumption due to the learning effect. LB2 will always produce makespans

at least as good as RCPSP+L.

Proposition 2. For an RCPSP+L instance, it holds that lb(LB2) ≤ opt(RCPSP+L).
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6.3.3 PSP+L (LB3)

Though RCPSP is a standard scheduling problem in the literature, RCPSP itself

is an extension of the classic Project Scheduling Problem (PSP); PSP is RCPSP

without resource considerations. In a similar vein, the PSP+L (LB3) model relaxes

RCPSP+L’s resource constraints. Thus, LB3 is also a learning extension of the

classic PSP. Without the restriction of resource capacities, LB3 will always produce

makespans at least as good as RCPSP+L.

Proposition 3. For an RCPSP+L instance, it holds that lb(LB3) ≤ opt(RCPSP+L).

6.3.4 PSP− (LB4)

The PSP− (LB4) model relaxes the resource constraint and fixes all potential students

to their alternate durations d′. That makes it similar to LB1 without the resource

constraint, and LB3 with enforced minimum durations for potential students, which

means LB4 will always produce makespans at least as good as either one. As a result,

LB4 will also always produce makespans at least as good as RCPSP+L.

Proposition 4. For an RCPSP+L instance, it holds that lb(LB4) ≤ opt(RCPSP+L).

6.3.5 RCPSP+ (UB1)

The RCPSP+ (UB1) relaxation fixes all tasks to their original durations d. This

effectively removes the learning effect from RCPSP+L (i.e. L = ∅), reducing the

problem to RCPSP. Thus, UB1 can be simply implemented as F0 (Section 5.2).

Like in LB1, the learning effect in RCPSP+L can only ever shorten the makespan,

so RCPSP+L will always produce makespans at least as good as UB1.
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Proposition 5. For an RCPSP+L instance, it holds that ub(UB1) ≥ opt(RCPSP+L).

6.4 Destructive Lower Bounding (DLB)

Destructive Lower Bounding (DLB) is a method for producing strong lower bounds.

DLB is not a model or formulation in and of itself; it’s a technique applied using an

existing model formulation. The bounds produced by DLB can potentially be even

better than the ones provided automatically by CP for that formulation. In essence,

DLB starts at a specified lb and attempts to prove its infeasibility. If the makespan is

infeasible, the lb is “destroyed”, the next lb is similarly tested, and the process repeats

until a destruction attempt hits a specified time limit or the lb is proven feasible [47].

Any lb proven feasible by DLB is inherently the optimal one because every makespan

less than it has just been proven infeasible. The DLB implementation used in this

thesis is detailed in Algorithm 6.1.

Algorithm 6.1: Destructive Lower Bounding
Input: P (RCPSP+L instance)

tmax (time limit per iteration)
Output: lb (valid lower bound for P )

1 lb← 0
2 while isInfeasible(P,MS ≤ lb, tmax) do
3 lb← lb+ 1

4 return lb

On line 1 of Algorithm 6.1, lb could instead be initialized with a known-good lower

bound to reduce the solve time, such as one calculated by a model relaxation (e.g.

PSP+L). In practice, the lowest lb values are destructed so quickly for RCPSP+L

instances that the time savings from starting at a higher relaxation-defined lb are al-

most nonexistent. Note that the time limit tmax applies to each tested lb individually,

not the time spent cumulatively.
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Proposition 6. For an RCPSP+L instance, it holds that lb(DLB) ≤ opt(RCPSP+L).
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Chapter 7

EXPERIMENT SETUP

To understand the RCPSP+L model and evaluate solution approaches, this thesis

examines many parameters, data sets, formulations, and bounding approaches. As a

result, hundreds of thousands of tests were run. This chapter describes the connection

of our instances to the literature, generation of the learning test instances, and the

computer setup used to perform the experiments.

7.1 Data Source

All data was drawn from the popular PSPLIB library of resource-constrained project

scheduling problems [32], generated using the ProGen data generator [33]. It covers

many types of RCPSP-focused problems, and each problem type has data sets for a

range of problem sizes. Published solutions are included from the literature: optimal

solutions are published when available, heuristic and other suboptimal solutions are

published for problems that have not yet been solved to optimality. Indeed, some of

the PSPLIB RCPSP instances with just 60 jobs are still unsolved today.

The data for the experiments in this paper were all pulled from the RCPSP single

mode data sets. Depending on the experiment, either the easiest or most difficult

instances from this set are used. The easiest data set in this category, the instances

with n = 30 jobs (“j30”), comprises 480 test instances which have all been solved to

optimality. The most difficult has n = 120 job instances (“j120”), and many of that

set’s 600 test instances are still unsolved today.
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The instance data files start by defining the number of jobs and the total resource

capacities. Each problem includes an empty start node and an empty end node that

is respectively an direct/indirect predecessor or successor for all of the other jobs in

the problem. Thus, the j30 problem actually has |J | = 32 jobs. All the problems used

in this paper have 4 different renewable resources (that is, they replenish every time

period). However, each problem has a different provided capacity for each resource.

Additionally, each of the jobs in a test instance has the following attributes:

• Task ID

• Duration

• Consumption of each resource type

• Successors (empty for final node)

7.2 Test Instance Generator

A Python script is used to generate RCPSP+L test instances. First, it inputs data

for an RCPSP test instance (the “base case”) from a PSPLIB .RCP data file. Next,

it selects which jobs will be students, assigns them teachers, and calculates their

alternate durations. Then, it outputs this RCPSP+L test instance to a folder as an

OPL .dat data file (see Section 7.3). Afterward, it repeats this process for every

base case, learning frequency, learning intensity, and random seed requested. Finally,

it outputs a .dat file containing a list of filenames for all the test instances it just

generated.

An example instance data file and an example filenames file are included in Appendix

B. The source code for the test instance generator script is included in Appendix A.
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This whole script is rerun every time a new experiment has different parameters. The

script must be altered and instances re-generated when used for destructive lower

bounding. In all, 124,800 test instances were generated for this thesis.

7.2.1 Test Instance Parameters

The script utilizes the following three parameters when creating each test instance:

LEARNING FREQUENCY (ϕ) Target percentage of tasks with the potential to be

students. Minimum of 0%, maximum of 100%.

LEARNING INTENSITY (λ) Percentage a student’s duration is reduced by to cal-

culate the alternate duration. Minimum of 0%, maximum of 100%.

RANDOM SEED (a) Value to seed the random number generator with reduce the

influence of outlier results and ensure consistency during testing.

Note that ϕ is a target value because the generator may not be able to provide

that many if there are insufficient legal student/teacher pairs. Also note that ϕ

denotes potential learning because it simply provides the option for the solver to

utilize learning for those tasks; it doesn’t guarantee that the solver will take advantage

of the learning effect for all of the potential students in the solutions it produces.

Using these parameters, the script selects which tasks will have the potential to be

students, and then assigns each student a teacher and an alternate duration d′.

7.2.2 Student Selection

Because the parameter for the target number of potential students is given as a

percentage, the first step is to determine how many tasks that represents. The script
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converts it to an integer value, rounding up and ensuring a minimum value of 0.

Specifically, given a data file with project size n (not including empty start/end

nodes) and a learning frequency ϕ (in this equation as a whole number), the script

calculates the target student count stc:

stc =

⌈
n× ϕ

100

⌉
, stc ≥ 0 (7.1)

For example, a project with n = 30 and ϕ = 25 (learning frequency of 25%) would

have stc = 8.

After calculating stc, the script attempts to select that many students. The student

selection process is shown in Algorithm 7.1.

Algorithm 7.1: Student Selection Process
Input: J (set of jobs)

stc (target student count)
a (random seed)

Output: S (set of selected students)
1 random.seed← a
2 S ← {}
3 Tested← {}
4 while |S| < stc and |Tested| < |J | − 2 do
5 candidate← randomChoice(J \ Tested)
6 if isValidStudent(candidate) then
7 S ← S ∪ {candidate}
8 Tested← Tested ∪ {candidate}
9 return S

Note in line 6 that the script will only select students that are valid (see Chapter 4

for definition of valid). Sometimes the number of tasks in the data file that qualify as

valid students is lower than stc. This often happens when a very high ϕ is requested.

In these cases, the script selects as many valid students as possible and then stops;

the number that was selected in the end is called the actual student count sac.
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Given actual student count sac and project size n (not including empty start/end

nodes), the actual student percentage sap for the data file is:

sap =
sac
n
× 100 (7.2)

In the instance data file, any task that’s not selected as a potential student is listed

with a teacher of 0 and d′ = 0.

7.2.3 Teacher Selection

After selecting students, the script assigns each student a teacher. The teacher selec-

tion process is shown in Algorithm 7.2.

Algorithm 7.2: Teacher Selection Process
Input: J (set of jobs)

M (set of selected students)
a (random seed)

Output: P (set of student-teacher pairs)
1 random.seed← a
2 for student in M do
3 teacher ← 0
4 while teacher is 0 do
5 teacher ← randomChoice(J)
6 if not isValidTeacher(teacher) then
7 teacher ← 0

8 P = P ∪ {student, teacher}

Note in line 6 that the script will only select teachers that are valid (see Chapter 4

for definition of valid). Note that multiple students may share the same teacher. Not

mentioned in this algorithm is that all non-student jobs that are assigned a teacher

of 0 to indicate that they can’t learn; the formulations in Chapter 5 take advantage

of this in their duration constraints. Hence, the solver will always be able to assign a
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teacher for any given student unless that student is a predecessor or successor for all

other tasks in the instance (which is only ever true for the empty start/end tasks in

a valid RCPSP or RCPSP+L instance).

7.2.4 Alternate Duration Calculation

The alternate duration for a student is calculated as follows:

d′ = d−
⌈
d× λ

100

⌉
, d′ ≥ 1 (7.3)

Additionally, the script ensures d′ ≥ 1 for all students, and manually sets , d′ = 0 for

all non-students. The formulations in Chapter 5 take advantage of the latter fact in

their duration constraints.

7.3 System and Software Configuration

All testing is performed on a Windows 10 PC with a 3 GHz/4 core Intel Core i5-2320

CPU and 8 GB of RAM.

The tests are solved using CP Optimizer version 12.9.0, which is part of the IBM

ILOG CPLEX Optimization Studio software package. While running the tests, the

only programs running on the computer are the oplrun command line tool (which

runs the tests) and TeamViewer (to control the computer remotely). oplrun is used

instead of the GUI interface to reduce memory consumption. CP Optimizer’s default

settings (specified in [22]) are used, except for the following changes:

• cp.param.TimeLimit — time limit for each test — varies by test regimen
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• cp.param.Workers — the number of computer cores used while solving — set

to 4 (this computer’s maximum)

• cp.param.TimeMode — the time reporting method — set to “ElapsedTime”

(to be more human readable)

• cp.param.LogVerbosity — how frequently to write to the engine log — set to

“Quiet” (to consume less computer resources)

The solver models are written in IBM’s OPL language. Each model defines what

data to import from a problem’s data file, the decision variables, the objective, the

constraints, and solution validation post-processing steps. Every formulation and

bounding technique described in Chapter 5 is represented by a different model file.

The source code for one of the OPL models is included in Chapter C as an example.

Batch runner systems are constructed using IBM’s ILOG Script to automate running

the experiments en masse. Different batch runners are used depending on how many

models are being executed, whether destructive lower bounding is being utilized, etc.

To execute a test regimen, a batch runner is provided with which model(s) to use and

the set of problem data files to solve. For every model and problem file, the runner

spawns a new instance of the model solver and attempts to solve it. The results

for each test is added as a new row in a common .csv data file, including a wide

variety of statistics like lower bound, upper bound, solve time, whether the solution

is optimal, etc. After every test, a file containing the best solution the solver could

find within the time limit is stored in a central repository

An example solution file is included in Appendix E. The source code for one of the

batch runners is included in Appendix D.
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Since CP Optimizer is usually used to run one problem at a time, and not over a

hundred thousand, this system required a surprising amount of work to create. It

pushes the boundaries of what CP Optimizer and OPL are designed to do. While

running large test regimens, a memory leak was discovered due to the continuous

spawning of new OPL models. By working with one of the developers of CP Optimizer

at IBM, we discovered that the leak was due to a bug in OPL itself [49]. Though he

was fortunately able to provide a workaround for part of the problem, the memory

leak still continues with a reduced intensity. There was not enough time to continue

investigating the problem before the experiments needed to begin, and the batch

runner code couldn’t be changed after starting the first experiments — any code

change could affect the solver’s results, rendering fair comparisons between all of the

tests impossible. As a result, the batch runner’s test regimens still must be restarted

periodically, whenever the computer’s memory becomes too clogged, to ensure that

the amount of free memory available on the machine doesn’t affect what solutions

the solver finds. Depending how frequently the batch runner spawns new models for

a given experiment, this must be done somewhere between every few hours and every

few days for the duration of the test regimen.
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Chapter 8

COMPUTATIONAL ANALYSIS

In all, 284,849 experiments are performed to characterize the RCPSP+L model and

various solution approaches, requiring the testing system to run continuously for

five months. This chapter analyzes the results of that experimentation, including a

comparison of the CP formulations, analysis of the RCPSP+L model, study of the

efficacy of the bounding techniques, and review of the impact the parameters have

on instance difficulty.

8.1 Formulation Comparison

To compare the efficacy of the different CP formulations in Chapter 5, an RCPSP+L

instance set is generated with the parameters specified in Table 8.1.

Table 8.1: Formulation Comparison Experiment Parameters
Parameter Values
Number of PSPLIB Base Cases 600 (n = 120)
Learning Frequencies (ϕ) {25, 50, 75, 100}
Learning Intensities (λ) {10, 50, 90}
Random Seeds (a) {0, 1, 2}

Formulations {F1, F2, F3, F4}
Time Limit (tmax) 60 seconds

With 600 PSPLIB base cases, 4 ϕ’s, 3 λ’s, and 3 a’s, this requires the generation

of 21,600 instances. At 21,600 instances× 4 formulations = 86,400 total solver runs,

and a time limit of 60 seconds per run, this means the experiments in this section

have a potential maximum total run time of 60 days.

38



40.7%
47.6% 47.0% 44.5%

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

F1 F2 F3 F4
O

pt
im

al
 In

st
an

ce
s (

%
)

Figure 8.1: Percentage of Instances Solved to Optimality, by Formulation

Figure 8.1 shows what percentage of the instances were solved to optimality. The

formulations in order from best to worst performing are F2, F3, F4, F1. However, the

difference between F2 and F3 on this graph is negligible, and F4 is not far behind.

That being said, it does appear that F1 performs worse than the other formulations.

Interestingly, all of the formulations were unable to solve most of the instances; this

makes sense, considering how difficult 120-job instances are known to be.

Most Effective: Too close to call. Either F2 or F3. Least Effective: F1.
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Figure 8.2: Average Solve Time for Optimal Instances, by Formulation

39



To gain more clarity, the formulations are next compared in Figure 8.2 by how long

those optimal instances took to solve. This graph gives even stronger evidence that

F1 is dominated by the other formulations. F4 also performs worse than F1 and F2 by

a smaller margin, but it’s still a significant difference with F4 at twice the solve time

for F2. It makes sense that the formulations that solve more slowly in this chart also

solved fewer to optimality in the previous one; after all, all formulations were given

the same time limit. There is now evidence that F2 is the best performing, solving

instances roughly 20% faster on average than F3

Most Effective: F2. Least Effective: F1 and F4.
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Figure 8.3: Optimality Gaps for Unsolved Instances, by Formulation

Since the previous analyses only considered the formulations’ successes for optimal

instances, Figure 8.3 shows the optimality gaps for suboptimal instances to give the

whole picture. F1 is again dominated by the other formulations and is clearly the

poorest performing formulation. F2 outperforms F3 in the worst cases and ties in

the best cases. F4 does surprisingly well, easily outperforming all other formulations

on average (with an average that’s roughly 5%, a common benchmark for a good

optimality gap) and tying F2 at its worst.

Most Effective: F4. Least Effective: F1.
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In the end, the only finding that can be made definitively is that F1 is consistently

dominated by the other formulations, and F3 usually (albeit sometimes only slightly)

is outperformed. It appears that F2 is the best at solving to optimality, and F4 is

the best at tightening (but not closing) gaps. This makes some intuitive sense: F4 is

simply F2 with a modified objective. The bi-objective modification in F4 incentivizes

the solver to take advantage of learning opportunities, which likely makes it easy

to quickly find short solutions (learning inherently shortens durations), but makes it

harder to arrive at the optimal one (learning options require more decisions and make

it harder to solve).

Overall Most Effective: F2 for solving to optimality, F4 for tightening gaps.

8.2 RCPSP+L Model Analysis

After determining the most efficient method for solving RCPSP+L instances, that

method can be used to characterize the RCPSP+L problem itself. An RCPSP+L

instance set is generated for this task using the parameters specified in Table 8.2.

Table 8.2: RCPSP+L Model Analysis Experiment Parameters
Parameter Values
Number of PSPLIB Base Cases 480 (n = j30)
Learning Frequencies (ϕ) {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
Learning Intensities (λ) {10, 30, 50, 70, 90}
Random Seeds (a) {0, 1, 2}

Formulations {F2}
Time Limit (tmax) ∞

All 79,200 instances are run until solved to optimality. Bounding techniques aren’t

necessary in this case because they’re only used when optimal solutions are not

reached. F2 is used because it’s shown in Section 8.1 to be the fastest formula-
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tion for solving RCPSP+L instances to optimality — while this has no effect on the

solutions produced, it significantly reduces the time required to produce the results.

89.76% of the n = 30 instances solve in under a second, often virtually instanta-

neously. The maximum solve time of any instance in the set is 604 seconds. The

entire experiment regimen is solved in ~18.5 hours. When compared to the n = 120

instances used in the other sections, this demonstrates the strong correlation between

instance difficulty and number of jobs in the project.
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Figure 8.4: RCPSP+L Makespan Reduction Potential

Figure 8.4 shows some of the central results of this thesis. (It should be noted that

while all points on the graph are produced by averaging to mitigate the influence of

outliers, data points at ϕ ≥ 80% are composed of a smaller sample size when the

target student count can’t be reached, as discussed in Section 7.2.2.) The learning

curves related to efficiency increases can be observed as learning frequency (ϕ) and

intensity (λ) vary — upholding a common theme in the literature (Section 2.2). At
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the greatest ϕ and λ, the project makespan is theoretically shown to be more than

halved. Increases in ϕ or λ alone enables significant makespan reductions, but the

combination of both being strong has outstanding benefits.
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Figure 8.5: RCPSP+L Learning Utilization

Note that the makespan reduction plateaus around 50% even though the values of

both ϕ and λ are significantly greater. This is because it’s frequently impossible to

utilize of all the potential learning relationships in L due how tasks must be ordered

in the schedule. In fact, a schedule with the optimal makespan may skip a significant

number of potential learning relationships. This phenomenon is displayed in Fig-

ure 8.5, which shows the average percentage of tasks in the project that actually uti-

lize a learning duration reduction in the optimal solution at varying ϕ and λ. Even in

the most extreme case of learning (ϕ = 100%, λ = 90%), this value plateaus at 52.2%,

much like the maximum average makespan reduction in Figure 8.4. However, while re-

duced λ is associated with reduced makespan reduction (ϕ = 100%, λ = 10% =⇒

7% makespan reduction), learning utilization remains relatively high whenever ϕ
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does (e.g. ϕ = 100%, λ = 10% =⇒ 35.5% learning utilization). Additionally,

the maximum learning utilization by an individual instance solution in this experi-

ment regimen in 83.3%, and the lowest individual utilization at ϕ = 100%, λ = 90%

is 23.3%.

8.3 Bounding Efficacy

Since many of the instances still aren’t solved to optimality in Section 8.1, regardless

of formulation, bounding techniques from Chapter 6 can be applied to tighten the re-

maining optimality gaps. To compare the effectiveness of these bounding techniques,

an RCPSP+L instance set is used with the parameters specified in Table 8.3. This set

of experiments can utilize the instances generated and results produced in Section 8.1.

These instances are then additionally solved with the bounding techniques.

Table 8.3: Bounding Efficacy Experiment Parameters
Parameter Values
Number of PSPLIB Base Cases 600 (n = 120)
Learning Frequencies (ϕ) {25, 50, 75, 100}
Learning Intensities (λ) {10, 50, 90}
Random Seeds (a) {0, 1, 2}

Formulations/Bounding Techniques

{F1, F2, F3, F4,

LB1, LB2, LB3, LB4,

DLB (F2, unsolved instances only),
UB1}

Time Limit (tmax) 60 seconds

Note that in this section, Destructive Lower Bounding (DLB) is performed using F2

since that is shown in Section 8.1 to be the best formulation for solving RCPSP+L

instances to optimality. (DLB is a bounding technique applied using an existing

model formulation, rather than a separate model or formulation in and of itself.) Also

note that DLB is only run on the instances that F2 isn’t able to solve to optimality
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within tmax; since DLB is solely a lower bounding technique and not a formulation, a

technique for tightening the gap is irrelevant when the optimality gap is already 0%.

In addition to the 86,400 solver runs reused from the formulation comparisons (Sec-

tion 8.1), 108,000 more are conducted for the bounding model relaxations, and DLB

is applied to the 11,249 unsolved cases. This means that the analyses in this section

draw from 205,649 total solver runs. A time limit of 60 seconds is still used to enable

direct comparison between the bounding techniques and the CP formulations.
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Figure 8.6: Percentage of Instances Solved to Optimality, by Bounding
Technique

Figure 8.6 compares what percentage of the time all of the bounding model relaxations

can solve instances to optimality, which is helpful for characterizing the relaxations.

Formulations are included as a reference point. This comparison is unlike the one

in Figure 8.1 because the relaxations are different models entirely, not just different

formulations for solving the same problem. LB3 and LB4, for example, are able to

solve instances to optimality 100% of the time. It’s doubtful that this is because

their formulations are so unbelievably superior to all the others — most likely, those

problems are just significantly easier to solve. It could be inferred from this effect that

resource constraints make the problems much more difficult. Strangely, precedence

constraints seemingly make the problems easier to solve (see LB2). It’s possible that
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the combination of resource and learning constraints (or even the learning constraint

alone) overwhelms the solver with too many options, and the precedence constraint

limits the options just enough to give the solver guidance.

How successful the bounding techniques are at finding optimal solutions is interest-

ing, but ultimately that’s only one way to achieve their main job: producing better

bounds. Yes, optimal solutions are inherently the best bounds, but the propositions

in Chapter 6 define that any lower (or upper) bound produced by these lower (or

upper) bounding methods is inherently useful as an RCPSP+L bound — of which,

optimal ones are just a subset.
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Figure 8.7: Lower Bounding Optimality Gaps, by Bounding Technique

Figure 8.7 shows how powerful the techniques are at producing any lower bound.

The figure includes lower bounds produced by the lower bounding model relaxations,

DLB, and the CP RCPSP+L formulations. Of note is that the model relaxations

produce very poor lower bounds. The hardest model to solve (LB2) is amusingly

also one of the least useful for lower bounding. F1 predictably performs poorly. F2

and F4 perform almost identically. (CP solvers have improved dramatically over the

years, so it’s possible the solver automatically takes many of the benefits from both

F2 and F4 into account, thus making manually implemented differences between the
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two formulations less impactful. It’s likely that this wouldn’t have been the case if

these tests were performed with solvers from a decade ago.)

Though a couple models have lower Q1 values on the chart, DLB actually dominates

in performance — DLB beats or ties the best lower bound for 98.5% of the instances.

F2, F3, and F4 are able to beat or tie the best lower bound only 27.4%, 23.4%, and

24.8% of the time, respectively. F1 was only able to beat or match the best lower

bound a paltry 5.5% of the time. Nonetheless, F1 did produce a better bound than

DLB in exactly two of the tens of thousands of instances tested; though even in those

cases it was still tied with F4, and DLB was only one off from the best value.

Most Effective LB: DLB. Least Effective: The model relaxations and F1.
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Figure 8.8: Upper Bounding Optimality Gaps, by Bounding Technique

The upper bounding methods are compared in Figure 8.8. As expected, F1 performs

poorly, again only producing the best bounds 4.9% of the time — however, it does

outperform UB1, which is the traditional RCPSP. UB1 produces poor bounds for

RCPSP+L, much like all the other model relaxations. The best upper bounds are

produced (i.e. beat or tied) by F2 58.5%, F3 58.3%, and F4 51.0% of the time. This

means that F2 and F3 are tied for producing the best bounds the most often. However,

F3 and F4 are tied in terms of spread on the box plot. This means that while F2 has

a better best case scenario than F4, F4 has the less bad worst case scenario, and F3

is tied for the best by both metrics.
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Most Effective UB: F3 Least Effective: UB1 and F1.

Overall Most Effective: DLB for lower bounds, F3 for upper bounds.
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Figure 8.9: Improvement from Original to Best Bounding Technique

Figure 8.9 shows how much of an improvement was achieved by using more advanced

formulations and bounding techniques. The box plot on the left of the graph is

F1, the first formulation made during the research for this thesis. While it’s not

surprising that later, more advanced formulations and bounding techniques have been

able to outperform its bounds, the amount the most effective bounding techniques

improve upon the original formulation is dramatic. The plot in the middle of the

graph represents the superior bounding technique proven in this section: combining

DLB’s lower bounds with F3’s upper bounds. For reference, included on the right

is what would happen if all the techniques were applied to every instance and the

best possible bounds were taken (e.g. for the two instances where F1 produced the

best lower bounds, use F1 instead of DLB). It would be highly impractical in reality

to always solve every instance 10 times over in search of a better bound (and it’d
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probably be more successful in that case to just run the solver 10 times longer), so

it’s convenient that the simpler DLB + F3 combination is almost as successful.

8.4 Difficulty Impact of Parameters

One of the topics mentioned throughout this chapter is the difficulty of solving n =

120 RCPSP+L instances. What has yet to be mentioned is that the difficulty is

not uniform across all large project instances. The results from the experiments in

Section 8.1 are used again in this section to analyze how the various parameters

impact instance difficulty.

44% 43% 43% 42%
45% 45% 46% 45%

49%
53%

61%
64%

0%

10%

20%

30%

40%

50%

60%

70%

25% 50% 75% 100%

O
pt

im
al

 In
st

an
ce

s (
%

)

Learning Frequency φ

10%
50%
90%

Learning
Intensity (λ)

Figure 8.10: Percentage of Instances Solved to Optimality, by Parameter

Figure 8.10 shows that instances are of fairly consistent difficulty and low and medium

values of λ. However, at high λ’s the problem difficulty appears to have an inverse

relationship with ϕ. This is likely because the solver is able to take advantage of learn-
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ing benefits more easily, potentially even by accident, as more learning relationships

exist and as the learning effect leads to a greater duration reduction.

However, the majority of those problems on average remain unsolved. In Figure 8.11,

the optimality gaps tell a slightly different story than the percentage of optimal

solutions did in Figure 8.10.
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Figure 8.11: Optimality Gaps for Unsolved Instances, by Parameter

Low ϕ is associated with good optimality gaps, but increased ϕ or λ is correlated

with larger gaps. The fact that λ = 50% and λ = 90% are often the hardest for

suboptimal instances demonstrates that number of decisions correlates with instance

difficulty. Low λ means the solver doesn’t have too many options to choose between,

but medium and high λ’s have just enough decisions to make it hard. At high ϕ

and high λ the difficulty drops relative to medium λ, possibly because the solver has

more learning options that it can take advantage of, so learning may no longer be
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as much of a deciding factor when generating schedules. However, it’s unclear why

these effects are not apparent in Figure 8.10.
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Chapter 9

CONCLUSION

This chapter summarizes the research conducted in this thesis and the contributions

made to the literature. It ends with some ideas for next steps in continuing this

research.

9.1 Summary

This thesis set out to explore how learning affects the way projects are scheduled. The

research conducted while addressing this problem contributes much to the literature,

namely: introducing RCPSP+L extension, developing efficient solution approaches,

and characterizing the effects of learning on the RCPSP.

9.1.1 RCPSP Learning Extension

While learning has been explored in project scheduling before, a literature review

shows that it’s never been integrated into the standard RCPSP scheduling prob-

lem (Section 2.3). This thesis proposes an RCPSP-based learning model called

“RCPSP+L” that takes into account the effects of autonomous, intra-project learn-

ing, accounting for both learning frequency and learning intensity (Section 3.2). It

introduces definitions for this model and explains how it relates to the base RCPSP.

Constraint Programming formulations of the model are developed to verify it and

enable others to utilize it (Chapter 5). An instance generator is developed to adapt

the popular PSPLIB RCPSP data set library for this model, enabling easier research

52



of the problem. The generator includes algorithms for valid student selection, teacher

selection, and alternate post-learning durations (Section 7.2). Reduction techniques

are devised to reduce the instance set (Chapter 4)

9.1.2 Learning Effects Characterization

Many experiments are conducted to characterize the problem (Chapter 8). The effects

of learning on the RCPSP are shown to be extensive. Analysis of the model shows

significant makespan reduction potential as high as 50% in extreme cases. Makespan

reduction potentials are found to follow the learning curve concept. It’s discovered

that potential learning opportunities are not inherently worthwhile for every job when

scheduling — there’s a point of diminishing returns, and it’s impossible to ever have

every task utilize learning effects (Section 8.2).

9.1.3 Efficient Solution Approaches

Much like the RCPSP it generalizes, RCPSP+L is found to be a very difficult prob-

lem to solve. A survey is conducted on the effects of the various model parameters

on the difficulty of the problem, which finds that while learning benefits can make an

instance easier to solve, it can also make it harder by overwhelming the solver with

too many options and decisions to make (Section 8.4). Four Constraint Programming

formulations of the problem are developed in an attempt to solve the problem effi-

ciently, including ones that utilize logical duration determination, dynamic duration

calculation, multi-mode alternatives, and bi-objective incentives (Chapter 5). Many

bounding techniques are created to tighten optimality gaps more intelligently than the

automatic bounds provided by the solver. This includes four lower bounding model

relaxations, one upper bounding model relaxation, and a destructive lower bounding
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method (Chapter 6). Hundreds of thousands of tests are conducted to determine the

most efficient solution approaches (Chapter 8), including the best-performing model

formulation (Section 8.1) and bounding techniques (Section 8.3). The best formu-

lation and bounding technique are shown to be a significant improvement over the

initial formulations. This testing regimen was extensive enough that it required the

development of a custom batch runner for the CP Optimizer solver, and it stress tested

the software enough that it unearthed bugs in the solver itself that the development

team is using to improve the software for future users (Section 7.3).

9.2 Future Work

There are many exciting ways this research could be applied and further advanced,

including further extending the RCPSP+L model, examining additional solution ap-

proaches, and using data from industry.

9.2.1 Advanced Learning Model Extensions

The learning extension explored in this thesis is simple: if a student task is scheduled

after its teacher, an alternate duration is used; otherwise, there’s no change. While

powerful already, more advanced learning models could enable further opportunities

for the solver, potentially increasing learning benefits and bringing the problem closer

to the real world.

Currently, there’s only one alternate duration d′ for each student, with learning in-

tensity λ set for each instance as a whole. A similarity-based learning extension could

enable varying learning intensity depending on how similar two tasks are. Each learn-

ing relationship would have a unique λ, greatly rewarding the solver when extremely
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similar tasks experience learning and minimally rewarding when more dissimilar tasks

take advantage of learning. This could encourage the solver to prioritize more effec-

tive learning opportunities when selecting optimal schedules. This extension would

only require changes to the test instance generator, with no changes to the data file

format or solver models.

Currently, each student can only have one teacher. A joint learning extension could

imply that a job can only experience learning if multiple teachers occur in the past (i.e.

job j can only learn if i1, …, ik have finished). This extension would require minimal

changes to the test instance generator and data file format. The solver models could

be kept as-is if dummy jobs are used: for each student i, insert an artificial job i′ with

precedences (i1, i′), …, (ik, i′) for each of i’s teachers.

An even more advanced learning extension could be developed that includes both

of the above extensions simultaneously. For example, a student could experience

differing levels of learning benefit from each of its teachers. Potentially, these learning

effects could even compound if the student was scheduled after both teachers.

9.2.2 Additional Solution Approaches

Much of this thesis was spent examining ways to solve the RCPSP+L problem more

efficiently. Chapter 5 describes various Constraint Programming (CP) formulations,

and Chapter 6 describes techniques for further reducing the bounds produced by CP.

Undoubtedly, even more formulations and bounding techniques could be developed,

but there are also other categories of solution approaches that could be tried.

Mathematical Programming (MP), such as Integer Linear Programming and Mixed

Integer Programming, is used extensively in the literature for RCPSP problems [34].

Dr. Qian Hu and Ying Liu from Nanjing University in China, mentioned in the Ac-
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knowledgements page, are researching MP approaches to a similar learning extension

of RCPSP. Indeed, we were able to collaborate some for several months. Unfortu-

nately, their learning extension was different enough that a direct comparison between

our solvers was outside the scope of this paper. It would be interesting to perform

this direct comparison in the future.

CP and MP seek to produce exact, optimal solutions, which can take a very long time.

Indeed, much of Chapters 5, 6, and 8 centered on this issue. But in some cases, such

as industrial settings, time to solve can be a higher priority that solution optimality

— this is the strength of heuristic methods [1]. Heuristics can produce approximate

solutions very quickly. They are widely used in RCPSP literature [19,31], and include

methods like schedule generation schemes, X-pass, and metaheuristics (e.g. simulated

annealing, tabu search, genetic algorithms [37]). Depending on the context, they could

be a valuable complement to the CP approaches laid out in this paper.

Hybrid approaches have been shown to sometimes be more effective than a lone

method [2, 9]. A combination of multiple methods may be worth pursuing.

9.2.3 Industry Data

Though PSPLIB is well-renowned library of RCPSP data sets, research using theo-

retical data is fundamentally different from research using real world data. Applying

the research in this thesis to a real project would give concrete evidence of the time

and cost savings possible. Beyond interesting theoretical findings, it could provide a

material benefit to a real company.
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APPENDICES

APPENDIX A

INSTANCE GENERATOR CODE

This appendix contains the Python 3.7.3 code for RCPSP+L_Instance_Generator.py,

which is used to generate all the RCPSP+L instance data files for this thesis. It

includes options at the top where the user specifies the set of instances to be produced.

1 #!/usr/bin/env python 3.7.3
2 # coding: utf-8
3
4 # ***WARNING!*** This script will overwrite files in the export

folder (i.e. filenames data file, test cases).↪→
5
6 import os # For getting list of files in directory
7 import re # For sorting list of filenames
8 import random # For random selection
9 import math # For rounding

10
11
12 # # Parameters
13
14 # Percentage parameters
15 # - For 50% write 50, not 0.5
16 # - Calculations multiplied by these parameters are rounded up
17 # - Remember: `range()`'s `stop` parameter is exclusive
18 target_student_percent_options = [25, 50, 75, 100] #range(0, 101, 10)

# Target percent of tasks to be students↪→

19 duration_reduction_percent_options = [10, 50, 90] # Percent a
student's duration is reduced by↪→

20
21 # Random seeds to regenerate all test cases with
22 random_seed_options = range(3) # Remember: `range()`'s `stop`

parameter is exclusive↪→
23
24 # Test set
25 test_set = "j120" # Which PSPLIB set we're using (i.e. "j30", "j120")
26
27 # Import path
28 import_data_file_dir = "/[path redacted]/" + test_set + "/" + test_set

+ "rcp"↪→
29
30 # Choose base cases
31 ## Default: All of them
32 selected_base_cases = os.listdir(import_data_file_dir)
33 ## Alternative: Use a prepopulated list
34 # selected_instance_bases = ["j12051", "j12031", "j12011", "j12016",

"j12012", "j12047", "j1207", "j12038", "j12059", "j12039",
"j12014", "j12060", "j12029", "j12035", "j12049", "j12041",
"j1202", "j1203", "j12044", "j12025"]

↪→
↪→
↪→
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35 # selected_base_cases = []
36 # for base in selected_instance_bases:
37 # for instance_seed in range(1, 11): # Use all instance seeds

for the base case↪→

38 # selected_base_cases.append(base + "_" + str(instance_seed)
+ ".RCP")↪→

39
40 # Export path
41 export_dir_name = test_set + "-stu" +

str(len(target_student_percent_options)).zfill(2) + "x-dur" +
str(len(duration_reduction_percent_options)).zfill(2) + "x-ran" +
str(len(random_seed_options)).zfill(2) + "x"

↪→
↪→
↪→

42 export_test_case_dir = "/[path redacted]/" + export_dir_name
43
44
45 # # Class Definitions
46
47 class Task(object):
48 """Contain the attributes of a given task."""
49 def __init__(self, task_ID=None, duration=None,

resource_demands=None, successors=None, learning=[None,
None]):↪→

↪→
50 """Create a Task object using the provided values."""
51 self.task_ID = task_ID # int
52 self.duration = duration # int
53 self.resource_demands = resource_demands # list
54 self.successors = successors # set
55 self.teacher_ID = learning[0] # int
56 self.alternate_duration = learning[1] # int
57
58 def __repr__(self):
59 """Present object's values as formatted in data file."""
60 print_string = "< %r, %r, %r, {%r}, [%r, %r] >" %

(self.task_ID, self.duration, self.resource_demands,
self.successors, self.teacher_ID, self.alternate_duration)↪→

↪→
61
62 # Ensure set of successors prints as such, instead of as

list↪→
63 # Can't just be passed a set initially because we want to

maintain sort order↪→

64 print_string = print_string.replace("{[", "{")
65 print_string = print_string.replace("]}", "}")
66
67 return print_string
68
69 class Project(object):
70 """Contain the attributes and tasks of a project."""
71 def __init__(self, original_filename=None, nbTasks=None,

nbRsrcs=None, capacities=None, task_list=None):↪→
72 """Create a Project object using the provided values."""
73 self.original_filename = original_filename # string
74 self.nbTasks = nbTasks # int
75 self.nbRsrcs = nbRsrcs # int
76 self.capacities = capacities # list of ints
77 self.task_list = task_list # list of Task objects
78
79 def __repr__(self):
80 """Present object's values as formatted in test case file.

Strictly for readability purposes, not for import."""↪→

81 return build_data_file(project)
82
83
84 # # Function Definitions
85
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86 # ### OS Functions
87
88 def natural_sort_key(s, _nsre=re.compile('([0-9]+)')):
89 """Key for sorting algorithms to sort names the way a human

reads it, instead of in ASCII order.↪→

90 Example: ['J301_1.RCP', 'J3010_1.RCP', 'J3010_10.RCP', ...]
91 Source: https://stackoverflow.com/a/16090640"""
92 return [int(text) if text.isdigit() else text.lower() for text in

_nsre.split(s)]↪→
93
94
95 # ### Student Functions
96
97 def precedence_exists(predecessor, successor, task_list):
98 """Check for a direct or indirect precedence relationship and

return True/False whether one exists."""↪→

99 if (successor.task_ID in predecessor.successors):
100 return True
101 else:
102 number_of_branches = len(predecessor.successors)
103 branch_checks = [False] * number_of_branches
104 for branch, successor_task_ID in

zip(range(number_of_branches), predecessor.successors):↪→

105 branch_checks[branch] =
precedence_exists(task_list[successor_task_ID-1],
successor, task_list)↪→

↪→

106 return any(branch_checks)
107
108 def calculate_alternate_duration(student_task,

duration_reduction_percent):↪→
109 """Calculate the alternate duration of a task."""
110 # Set alternate duration (round up)
111 # Use `ceil`; `floor` results in no learning occuring for

single digit numbers at low duration_reduction_percent
values↪→

↪→
112 # Otherwise, this can mark far too many tasks as invalid

students to achieve good results↪→
113 alternate_duration = student_task.duration -

math.ceil(student_task.duration *
(duration_reduction_percent/100))↪→

↪→
114
115 # Ensure tasks take at least one period (subtracting `ceil` from

duration can result in things being rounded to zero)↪→
116 alternate_duration = alternate_duration if alternate_duration >= 1

else 1↪→
117
118 return alternate_duration
119
120 def student_is_valid(student_task, duration_reduction_percent):
121 """Return whether a task is valid as a student."""
122 # Check for original duration of 1 (because it's impossible to

learn and become faster)↪→
123 # Exclude empty tasks with duration of 0
124 if (student_task.duration <= 1):
125 return False
126
127 # Check for alternate duration equal to its original duration

(because it showed no learning occurred)↪→

128 if (student_task.duration ==
calculate_alternate_duration(student_task,
duration_reduction_percent)):↪→

↪→
129 return False
130
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131 # If it didn't fail any validity tests, return that it's valid
132 return True
133
134
135 # ### Data File Functions
136
137 def build_data_file(project, random_seed=-1,

target_student_percent=-1, target_student_count=-1,↪→
138 actual_student_count=-1,

duration_reduction_percent=-1, instance="",
test_case_filename=""):↪→

↪→
139 """Build and return string of test case data file.
140 Defaults to -1 for unset parameters."""
141 # Calculate actual percentage of tasks that are students
142 actual_student_percent =

(actual_student_count/(len(project.task_list)-2)) * 100 # -2
to ignore empty start and end tasks↪→

↪→
143
144 # Beginning of data file
145 intro_string = """// Converted by Jordan Ticktin
146 // %s from PSPLIB converted to learning-modified .dat OPL format
147
148 // Test Case Parameters:
149 // - Percentage of tasks that are students = Target: %d%% (%d

students), Actual: %.2f%% (%d students)↪→

150 // - Percentage of duration reduction = %d%%
151 // - Random generator seed = %d
152 TargetStudentPercent = %d;
153 TargetStudentCount = %d;
154 ActualStudentPercent = %.2f;
155 ActualStudentCount = %d;
156 DurationReductionPercent = %d;
157 Seed = %d;
158 Instance = "%s";
159 TestCaseFilename = "%s";
160
161 NbTasks = %d;
162 NbRsrcs = %d;
163
164 Capacity = %s;
165
166 Tasks = {
167 // < Task ID, Duration, [Resource Demands], {Successor(s) (optional)},

[Teacher, Alternate Duration] >↪→

168 """ % (project.original_filename,
169 target_student_percent, target_student_count,

actual_student_percent, actual_student_count,
duration_reduction_percent, random_seed,↪→

↪→
170 target_student_percent, target_student_count,

actual_student_percent, actual_student_count,
duration_reduction_percent, random_seed, instance,
test_case_filename,

↪→
↪→
↪→

171 project.nbTasks, project.nbRsrcs, project.capacities)
172
173 # List of tasks
174 TASK_SEPARATOR = """,
175 """
176 tasks_string = TASK_SEPARATOR.join([str(task) for task in

project.task_list])↪→
177
178 # End of data file
179 outro_string = """
180 };
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181 """
182
183 # Combine parts and return
184 return "".join([intro_string, tasks_string, outro_string])
185
186
187 # # Generate Test Cases
188
189 # ### Build Test Cases and Write to Folder
190
191 # List of test cases to write to filenames data file
192 test_case_filenames_list = []
193
194 # For every base case selected by the user
195 for original_filename in sorted(selected_base_cases,

key=natural_sort_key): # Filenames are missing padded zeroes, use
a natural sort↪→

↪→
196 # Store data in Project object
197 project = Project()
198 project.original_filename = original_filename
199
200 # Read in data from import file
201 with open(import_data_file_dir + "/" + original_filename, "r") as

import_file:↪→

202 import_data_file_lines = import_file.readlines()
203
204 # Import number of tasks and resources
205 first_line_elements = import_data_file_lines[0].split()
206 project.nbTasks = int(first_line_elements[0])
207 project.nbRsrcs = int(first_line_elements[1])
208
209 # Import resource capacities
210 capacities = import_data_file_lines[1].split() # Separate numbers

on line into individual list elements↪→

211 capacities = list(map(int, capacities)) # Convert all elements
from string to int↪→

212 project.capacities = capacities
213
214 # Import tasks
215 project.task_list = []
216 task_lines = import_data_file_lines[2:]
217 for line, task_number in zip(task_lines, range(1,

len(task_lines)+1)):↪→

218 components = line.split() # Separate numbers on line into
individual list elements↪→

219 components = list(map(int, components)) # Convert all
elements from string to int↪→

220 # task_ID, duration, resource_demands, successors,
[teacher_ID, alternate_duration]↪→

221 project.task_list.append(Task(task_number, components[0],
components[1:5], components[6:], [0, 0]))↪→

222
223 # For every random seed
224 for seed in random_seed_options:
225 # For every target % of students
226 for target_student_percent in target_student_percent_options:
227 # Prevent impossible values (ensures file names match

values used in calculations)↪→
228 target_student_percent = target_student_percent if

target_student_percent <= 100 else 100 # Prevent
impossibly many students↪→

↪→
229 target_student_percent = target_student_percent if

target_student_percent >= 0 else 0 # Prevent negative
numbers↪→

↪→
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230
231 # For every target % of duration reduction
232 for duration_reduction_percent in

duration_reduction_percent_options:↪→

233 # Prevent impossible values (ensures file names match
values used in calculations)↪→

234 duration_reduction_percent =
duration_reduction_percent if
duration_reduction_percent <= 100 else 100 #
Prevent impossibly many students

↪→
↪→
↪→

235 duration_reduction_percent =
duration_reduction_percent if
duration_reduction_percent >= 0 else 0 # Prevent
negative numbers

↪→
↪→
↪→

236
237 # Calculate number of students
238 assert(len(project.task_list) >= 4) # Must have at

least 2 tasks (excluding empty start/end tasks)
to have students↪→

↪→
239 target_student_count =

math.ceil((len(project.task_list)-2) *
(target_student_percent/100)) # Set target number
of students (round up) (-2 to ignore empty
start/end tasks)

↪→
↪→
↪→
↪→

240 target_student_count = target_student_count if
target_student_count >= 0 else 0 # Prevent
negative numbers after subtracting↪→

↪→
241
242 # Select students
243 random.seed(a=seed) # Seed random generator to ensure

consistent results↪→

244 accepted_student_IDs = [] # Tasks accepted as
students↪→

245 tested_student_IDs = [] # Tasks already tested (both
accepted and rejected)↪→

246 while ((len(accepted_student_IDs) <
target_student_count) # Stop searching once
desired number of students are found↪→

↪→

247 and (len(tested_student_IDs) <
len(project.task_list)-2)): # Stop
searching once every task has been tested↪→

↪→
248 # Build list of student IDs which have not been

tested yet↪→

249 untested_student_IDs = [student_ID for student_ID
in range(2, len(project.task_list)) if
student_ID not in tested_student_IDs]↪→

↪→
250
251 # Select a new candidate from the list of

untested student IDs↪→

252 candidate_ID = random.choice(untested_student_IDs)
253 candidate_task = project.task_list[candidate_ID-1]
254
255 # If candidate is valid, add it to list of

students↪→

256 if (student_is_valid(candidate_task,
duration_reduction_percent)):↪→

257 accepted_student_IDs.append(candidate_ID)
258
259 # Don't waste time investigating this task again
260 tested_student_IDs.append(candidate_ID)
261
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262 # Select teachers and set teacher/alternate duration
values↪→

263 random.seed(a=seed) # Seed random generator again to
ensure it starts by picking the same teachers as
other student % test cases↪→

↪→
264 for student_ID in accepted_student_IDs:
265 # Identify student task
266 student_task = project.task_list[student_ID-1]
267
268 # Select teacher
269 teacher_ID = None
270 while (teacher_ID is None): # Keep searching for

a teacher until one is found↪→

271 # Select random teacher (exclude empty
start/end tasks)↪→

272 teacher_ID = random.choice(range(2,
len(project.task_list)))↪→

273
274 # If teacher is an illegal choice, reset

teacher and pick again↪→

275 if ((student_ID == teacher_ID) # Verify
teacher and student are different tasks↪→

276 or precedence_exists(
project.task_list[teacher_ID-1],
student_task, project.task_list) #
Verify teacher isn't a precedence for
the student

↪→
↪→
↪→
↪→

277 or precedence_exists(student_task,
project.task_list[teacher_ID-1],
project.task_list)): # Verify student
isn't a precedence for the teacher

↪→
↪→
↪→

278 teacher_ID = None
279
280 # Calculate alternate duration
281 alternate_duration =

calculate_alternate_duration(student_task,
duration_reduction_percent)↪→

↪→
282
283 # Set values in `project` for this student
284 student_task.teacher_ID = teacher_ID # Set

teacher↪→
285 student_task.alternate_duration =

alternate_duration # Set alternate duration↪→
286
287 # Create filename
288 base_filename =

original_filename.lower().split(".")[0] # Extract
the data file name without the old extension↪→

↪→
289 test_case_filename =

"TestCase-%s-stu%03d-dur%03d-ran%02d.dat" %
(base_filename, target_student_percent,
duration_reduction_percent, seed)

↪→
↪→
↪→

290
291 # Build converted data file
292 export_data_file_string = build_data_file(project,

seed, target_student_percent,
target_student_count, len(accepted_student_IDs),
duration_reduction_percent, base_filename,
test_case_filename)

↪→
↪→
↪→
↪→

293
294 # Write data file to the appropriate folder
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295 test_case_file_path = export_test_case_dir + "/" +
test_set + "-Test_Cases/" + test_case_filename↪→

296 with open(test_case_file_path, "w") as export_file: #
WARNING: This will overwrite any existing file
with this name↪→

↪→

297 export_file.write(export_data_file_string)
298
299 # Add this test case's filename to list of filenames

in this folder↪→

300 test_case_filenames_list.append(test_case_filename)
301
302 # Reset teachers/alternate durations in project
303 for task in project.task_list:
304 task.teacher_ID = 0
305 task.alternate_duration = 0
306
307
308 # ### Write List of Test Case Filenames to Folder
309
310 # Write list of filenames in this folder to a data file that can be

imported by OPL↪→

311 filenames_data_file = export_test_case_dir + "/Filenames-" +
export_dir_name + ".dat"↪→

312 test_case_filenames_list_string = '["' + '",
"'.join(test_case_filenames_list) + '"]'↪→

313 with open(filenames_data_file, "w") as export_file: # WARNING: This
will overwrite any existing file with this name↪→

314 # Write test case generation parameters
315 export_file.write("// Test Case Generation Parameters")
316 export_file.write("\n// - Test Set: " + test_set)
317 export_file.write("\n// - Number of Base Cases: " +

str(len(selected_base_cases)))↪→

318 export_file.write("\n// - Learning Frequencies: " +
str(len(target_student_percent_options)) + " - " +
str(list(target_student_percent_options)))↪→

↪→

319 export_file.write("\n// - Learning Intensities: " +
str(len(duration_reduction_percent_options)) + " - " +
str(list(duration_reduction_percent_options)))↪→

↪→

320 export_file.write("\n// - Random Seeds: " +
str(len(random_seed_options)) + " - " +
str(list(random_seed_options)))↪→

↪→

321 export_file.write("\n\n")
322
323 # Write count and list of test case filenames
324 export_file.write("NumberOfFiles = " +

str(len(test_case_filenames_list)) + ";")↪→

325 export_file.write("\nTestCaseFilenames = " +
test_case_filenames_list_string + ";")↪→
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APPENDIX B

INSTANCE DATA

B.1 Example Instance Data File

Included below are the contents of TestCase-j3029_7-stu060-dur030-ran01.dat,

one of the many instance data files used in this thesis. This example is a version of

PSPLIB’s J3029_7.RCP RCPSP instance that’s adapted to incorporate the learning

extension. This RCPSP+L instance is generated using the parameter values ϕ = 60,

λ = 30, and a = 1. It’s written in the OPL .dat data format.

1 // Converted by Jordan Ticktin
2 // J3029_7.RCP from PSPLIB converted to learning-modified .dat OPL

format↪→
3
4 // Test Case Parameters:
5 // - Percentage of tasks that are students = Target: 60% (18

students), Actual: 60.00% (18 students)↪→

6 // - Percentage of duration reduction = 30%
7 // - Random generator seed = 1
8 TargetStudentPercent = 60;
9 TargetStudentCount = 18;

10 ActualStudentPercent = 60.00;
11 ActualStudentCount = 18;
12 DurationReductionPercent = 30;
13 Seed = 1;
14 Instance = "j3029_7";
15 TestCaseFilename = "TestCase-j3029_7-stu060-dur030-ran01.dat";
16
17 NbTasks = 32;
18 NbRsrcs = 4;
19
20 Capacity = [15, 15, 18, 17];
21
22 Tasks = {
23 // < Task ID, Duration, [Resource Demands], {Successor(s)

(optional)}, [Teacher, Alternate Duration] >↪→

24 < 1, 0, [0, 0, 0, 0], {2, 3, 4}, [0, 0] >,
25 < 2, 7, [2, 1, 5, 5], {6, 11, 18}, [16, 4] >,
26 < 3, 4, [5, 1, 4, 10], {5}, [0, 0] >,
27 < 4, 4, [7, 6, 1, 4], {8, 9, 16}, [5, 2] >,
28 < 5, 2, [4, 6, 5, 5], {7, 13, 19}, [0, 0] >,
29 < 6, 3, [2, 3, 2, 5], {12}, [20, 2] >,
30 < 7, 10, [8, 4, 2, 7], {15, 20}, [2, 7] >,
31 < 8, 3, [9, 9, 3, 1], {19, 20, 23}, [26, 2] >,
32 < 9, 3, [3, 7, 5, 5], {10, 15}, [0, 0] >,
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33 < 10, 3, [7, 2, 7, 2], {11, 14}, [0, 0] >,
34 < 11, 10, [3, 3, 10, 9], {12, 21}, [26, 7] >,
35 < 12, 3, [3, 4, 10, 5], {13, 24, 30}, [17, 2] >,
36 < 13, 8, [7, 4, 3, 8], {22}, [0, 0] >,
37 < 14, 5, [10, 6, 3, 8], {17, 26}, [0, 0] >,
38 < 15, 7, [5, 5, 4, 2], {25, 28}, [2, 4] >,
39 < 16, 5, [8, 2, 4, 7], {20}, [2, 3] >,
40 < 17, 4, [1, 3, 9, 6], {27, 28, 29}, [0, 0] >,
41 < 18, 1, [5, 7, 8, 10], {22, 23}, [0, 0] >,
42 < 19, 5, [4, 4, 6, 10], {21, 25}, [0, 0] >,
43 < 20, 9, [8, 8, 9, 10], {21, 24, 27}, [14, 6] >,
44 < 21, 6, [3, 9, 7, 1], {31}, [29, 4] >,
45 < 22, 5, [1, 1, 7, 6], {31}, [30, 3] >,
46 < 23, 10, [2, 2, 8, 9], {24, 25, 29}, [0, 0] >,
47 < 24, 2, [7, 3, 5, 5], {28}, [15, 1] >,
48 < 25, 9, [7, 10, 7, 8], {27}, [0, 0] >,
49 < 26, 4, [5, 7, 8, 3], {29, 30}, [0, 0] >,
50 < 27, 2, [10, 9, 5, 3], {30}, [12, 1] >,
51 < 28, 10, [9, 4, 1, 1], {31}, [26, 7] >,
52 < 29, 8, [2, 10, 10, 1], {32}, [5, 5] >,
53 < 30, 2, [2, 9, 4, 3], {32}, [24, 1] >,
54 < 31, 4, [2, 1, 2, 2], {32}, [27, 2] >,
55 < 32, 0, [0, 0, 0, 0], {}, [0, 0] >
56 };

B.2 Example List of Filenames

The contents of Filenames.dat is included below. Every time the instance generator

script is run, it outputs a file like the one below that lists all of the instances produced

in this set. The batch script operates from this list when running a test regimen. The

file is written in the OPL .dat data format.

1 NumberOfFiles = 3;
2
3 TestCaseFilenames = ["TestCase-j12012_5-stu100-dur010-ran02.dat",

"TestCase-j1204_9-stu100-dur090-ran01.dat",
"TestCase-j1201_3-stu100-dur090-ran00.dat"];↪→

↪→
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APPENDIX C

EXAMPLE OPL MODEL CODE

Below is the code for F2_RCPSP+L_Dynamic.mod, one of the many models used in

this thesis. It provides the Constraint Programming formulation of the F2 model

from Chapter 5, including the instance data to use, decision variables, objective,

constraints, and post-processing steps used to validate the produced solution. The

model itself is written in OPL, and the post-processing code is written in ILOG Script

(similar to JavaScript).

1 using CP;
2
3 // ----------------------------------------
4 // DATA
5 // ----------------------------------------
6
7 int TargetStudentPercent = ...;
8 int TargetStudentCount = ...;
9 float ActualStudentPercent = ...;

10 int ActualStudentCount = ...;
11 int DurationReductionPercent = ...;
12 int Seed = ...;
13 string Instance = ...;
14 string TestCaseFilename = ...;
15
16 int NbTasks = ...;
17 int NbRsrcs = ...;
18 range RsrcIds = 0..NbRsrcs-1;
19 int Capacity[r in RsrcIds] = ...;
20
21 tuple Task {
22 key int id;
23 int pt;
24 int dmds[RsrcIds];
25 {int} succs;
26 int learning[0..1];
27 }
28
29 {Task} Tasks = ...;
30
31 // Map tasks to an ID
32 // Initialization code provided by Daniel Junglas (IBM)
33 Task id2Task[id in 1..NbTasks] = first({ t | t in Tasks : t.id == id

});↪→
34
35 // Makespan UB constraint for DLB
36 range HorizonIds = 0..0;
37 int Horizon[h in HorizonIds] = ...;
38
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39 // ----------------------------------------
40 // DECISION VARIABLES
41 // ----------------------------------------
42
43 // Tasks' schedules
44 dvar interval TaskItvs[t in Tasks];
45
46 // Resource consumption
47 cumulFunction rsrcUsage[r in RsrcIds] = sum(t in Tasks: t.dmds[r]>0)

pulse(TaskItvs[t], t.dmds[r]);↪→
48
49 // ----------------------------------------
50 // OBJECTIVE
51 // ----------------------------------------
52
53 minimize max(t in Tasks) endOf(TaskItvs[t]);
54
55 // ----------------------------------------
56 // CONSTRAINTS
57 // ----------------------------------------
58
59 subject to {
60 // Precedences
61 forall (Pred in Tasks, idSucc in Pred.succs)
62 endBeforeStart(TaskItvs[Pred], TaskItvs[id2Task[idSucc]]);
63 // Resource capacities
64 forall (r in RsrcIds)
65 rsrcUsage[r] <= Capacity[r];
66 // Learning (new single-mode formulation)
67 forall (t in Tasks) {
68 // Learning allowed
69 if (t.learning[0] != 0) {
70 lengthOf(TaskItvs[t]) == t.pt - (t.pt-t.learning[1]) *

(endOf(TaskItvs[id2Task[t.learning[0]]]) <=
startOf(TaskItvs[t]));↪→

↪→

71 }
72 // No learning allowed
73 else {
74 // Teacher doesn't exist -> use original duration
75 lengthOf(TaskItvs[t]) == t.pt;
76 }
77 }
78 }
79
80 // ----------------------------------------
81 // POST-PROCESSING
82 // ----------------------------------------
83
84 execute {
85 // ---------- Validate solution ----------
86 // Check precedences, learning, and durations
87 for (var t in Tasks) {
88 // Check precedences
89 // Verify all the task's successors start after the task ends
90 for (var idSucc in t.succs) {
91 if (TaskItvs[t].end > TaskItvs[id2Task[idSucc]].start) {
92 writeln("FAIL Predecessor | Predecessor ID: " + t.id + ",

Successor ID: " + idSucc);↪→

93 writeln(); // Flush buffer
94 fail(); // Stop execution (will also stop the batch runner)
95 }
96 }
97
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98 // Check learning ability
99 // Tasks without teacher don't have an alternate duration, and

vice-versa↪→

100 if ((t.learning[0] == 0 && t.learning[1] != 0)
101 || (t.learning[0] != 0 && t.learning[1] == 0)) {
102 writeln("FAIL Learning Incorrectly Allowed | Teacher ID: " +

t.learning[0]↪→

103 + ", Alternate Duration: " + t.learning[1]);
104 writeln(); // Flush buffer
105 fail(); // Stop execution (will also stop the batch runner)
106 }
107
108 // Check learning duration
109 // If no teacher
110 if (t.learning[0] == 0) {
111 // Verify that non-learning tasks use the original duration
112 if (TaskItvs[t].size != t.pt) {
113 writeln("FAIL Duration | Task ID: " + t.id + ", Duration Used:

" + TaskItvs[t].size↪→
114 + ", Original Duration: " + t.pt + ", Alternate

Duration: " + t.learning[1]↪→

115 + ", Teacher ID: " + t.learning[0]);
116 writeln(); // Flush buffer
117 fail(); // Stop execution (will also stop the batch runner)
118 }
119 }
120 // If teacher available
121 else if (t.learning[0] > 0) {
122 // Verify that non-learning tasks use the original duration
123 if (TaskItvs[id2Task[t.learning[0]]].end > TaskItvs[t].start &&

TaskItvs[t].size != t.pt) {↪→

124 writeln("FAIL Duration | Task ID: " + t.id + ", Duration Used:
" + TaskItvs[t].size↪→

125 + ", Original Duration: " + t.pt + ", Alternate
Duration: " + t.learning[1]↪→

126 + ", Teacher ID: " + t.learning[0]);
127 writeln(); // Flush buffer
128 fail(); // Stop execution (will also stop the batch runner)
129 }
130 // Verify that learning tasks use the alternate duration
131 else if (TaskItvs[id2Task[t.learning[0]]].end <=

TaskItvs[t].start && TaskItvs[t].size != t.learning[1]) {↪→

132 writeln("FAIL Duration | Task ID: " + t.id + ", Duration Used:
" + TaskItvs[t].size↪→

133 + ", Original Duration: " + t.pt + ", Alternate
Duration: " + t.learning[1]↪→

134 + ", Teacher ID: " + t.learning[0]);
135 writeln(); // Flush buffer
136 fail(); // Stop execution (will also stop the batch runner)
137 }
138 }
139 // If teacher is a negative number (invalid)
140 else {
141 writeln("FAIL Teacher | Task ID: " + t.id + ", Teacher ID: " +

t.learning[0]);↪→

142 writeln(); // Flush buffer
143 fail(); // Stop execution (will also stop the batch runner)
144 }
145 }
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146
147 // Check resources
148 // For every time period
149 for (var p = 1; p <= cp.getObjValue(); p++) {
150 // For every resource
151 for (var r in RsrcIds) {
152 // Track resources consumed this period
153 var rescUtilized = 0;
154
155 // Add in each task's resource consumption
156 for (var t in Tasks) {
157 // If doesn't happen during this period, skip it
158 if (TaskItvs[t].start >= p || TaskItvs[t].end < p) {
159 continue;
160 }
161 // If it is during this time period, add the resources it

uses to the total↪→

162 rescUtilized += t.dmds[r];
163 }
164
165 // Verify resource consumption didn't exceed the capacity
166 if (rescUtilized > Capacity[r]) {
167 writeln("FAIL Resources | Period: " + p + ", Resource: " + r
168 + ", Resource Excess: " + (rescUtilized -

Capacity[r]));↪→

169 writeln(); // Flush buffer
170 fail(); // Stop execution (will also stop the batch runner))
171 }
172 }
173 }
174 }
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APPENDIX D

BATCH SCRIPT CODE

Code is included below for BatchScript_Bounding.mod. This batch script runs all

of the provided instances using the models specified in a list at the top and the DLB

method; it’s intended for all of the bounding techniques from Chapter 6. A separate

(but similar) batch script is used when running just one model at a time to make

things easier to manage. The code is written in ILOG Script (related to JavaScript)

and stored in a .mod file.

1 using CP;
2
3 // Import test case filename data
4 int NumberOfFiles = ...;
5 range FileIDs = 0..NumberOfFiles-1;
6 string TestCaseFilenames[FileIDs] = ...;
7
8 // Run all test instances using this model
9 main {

10
11 // ------------------------------
12 // PARAMETERS
13 // ------------------------------
14
15 // Parameters
16 var workers = 4; // Number of computer cores used
17 var timeMode = "ElapsedTime"; // How time is measured. Allowed

values: ["ElapsedTime", "CPUTime"]↪→

18 var logVerbosity = "Quiet"; // Control engine log output to reduce
CPU/memory usage ["Quiet", "Terse", "Normal", "Verbose"]↪→

19 // var logPeriod = 100000; // Manually control engine log output
frequency (only applies if logVerbosity isn't "Quiet")↪→

20
21 // Test types (excluding DLB)
22 var testModelNameOptions = new Array("LB1_RCPSP-", "LB2_RCSP+L",

"LB3_PSP+L", "LB4_PSP-", "UB1_RCPSP+"); // Model
filenames/solution folder names↪→

↪→

23 var timeLimit = 60; // In seconds
24 // var lbIndexToUse = 0; // Which test type's LB to

use as horizon in DLB (not currently used)↪→

25 var TimeLimitDLB = 60; // In seconds
26
27 // Test case directory (include trailing slash)
28 var testCaseDirectory = "C:\\[path redacted]\\"; // Thesis PC
29 // var testCaseDirectory = "/[path redacted]/"; // Jordan's

computer↪→
30
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31 // Results directory (include trailing slash)
32 var resultsDirectory = "C:\\[path redacted]\\" // Thesis PC
33 // var resultsDirectory = "/Users/[path redacted]/"; // Jordan's

computer↪→
34
35 // Platform directory separator
36 var dirSep = "\\"; // PC
37 // var dirSep = "/"; // Mac
38
39 // ------------------------------
40 // SET UP OUTPUT FILE
41 // ------------------------------
42
43 // Function to pad strings (e.g. pad a number with 0s)
44 function pad(original, width, pad) {
45 // Adapted from https://stackoverflow.com/a/10073788/6402733
46 pad = pad || "0"; // "0" is default pad
47 original = original + "";
48 return original.length >= width ? original : new Array(width -

original.length + 1).join(pad) + original;↪→

49 }
50
51 // Set output file for results
52 var systemDateTime = new Date();
53 var formattedDateTime = "d" + pad(systemDateTime.getMonth()+1, 2) +

"-" + pad(systemDateTime.getDate(), 2)↪→

54 + "_t" + pad(systemDateTime.getHours(), 2) +
"-" + pad(systemDateTime.getMinutes(),
2);↪→

↪→

55 var resultsFilename = "Results(" + formattedDateTime + ")(" +
thisOplModel.NumberOfFiles + "-Tests).csv";↪→

56 var resultsPath = resultsDirectory + resultsFilename;
57 writeln("Results written to: " + resultsPath);
58
59 // Start output file with headers
60 var resultsFile = new IloOplOutputFile(resultsPath);
61 resultsFile.writeln( // Write headers for CSV file
62 "Test Case"
63 + ",Test Type"
64 + ",Instance"
65 + ",# of Tasks"
66 + ",# of Resources"
67 + ",Resource Capacities"
68 + ",Test Case Generator - Target % of Students Allowed"
69 + ",Test Case Generator - Target # of Students Allowed"
70 + ",Test Case Generator - Actual % of Students Allowed"
71 + ",Test Case Generator - Actual # of Students Allowed"
72 + ",% of Task Duration Reduction"
73 + ",Random Seed"
74 // + ",CP Optimizer Version"
75 + ",Makespan"
76 + ",Gap - Absolute Value"
77 + ",Gap - % of Current Makespan"
78 + ",Solver - % of Tasks Utilizing Learning"
79 + ",Solver - # of Tasks Utilizing Learning"
80 + ",Lower Bound"
81 + ",Number of Solutions"
82 + ",Status"
83 + ",Presolve Time (sec)"
84 + ",Extraction Time (sec)"
85 + ",Cumulative Solve Time (sec)"
86 + ",Final Run's Solve Time (sec)"
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87 + ",Time Limit (sec)");
88
89 // Determine CP Optimizer version number
90 // Not exposed in the IloCP scripting class, so pull it from the

IloCP Java class↪→

91 // Commented out for now because calling Java doesn't work from
the oplrun CLI↪→

92 // var cpo = IloOplCallJava("ilog.cp.IloCP", "<init>",
"()Lilog/cp/IloCP");↪→

93 // var cpVersion = cpo.getVersion();
94 // cpo.end();
95
96 // ------------------------------
97 // SOLVE EACH TEST CASE
98 // ------------------------------
99

100 // Solve each test case in the list
101 for (var testNumber = 0; testNumber < thisOplModel.NumberOfFiles;

testNumber++) {↪→
102
103 // ------------------------------
104 // SET UP TESTING FOR INSTANCE
105 // ------------------------------
106
107 // Create new CP setup
108 var cp = new IloCP();
109
110 // Set CP parameters
111 cp.param.Workers = workers; // Number of computer cores used
112 cp.param.TimeMode = timeMode; // How to report time
113 cp.param.LogVerbosity = logVerbosity; // How much to write to the

engine log↪→

114 // cp.param.LogPeriod = logPeriod; // Manual control of engine
log output frequency↪→

115
116 // Set next test case as data source
117 var testCaseFilename = thisOplModel.TestCaseFilenames[testNumber];
118 var testCasePath = testCaseDirectory + testCaseFilename;
119 var data = new IloOplDataSource(testCasePath);
120
121 // Report test case name to script log for progress visibility
122 writeln(testNumber+1 + ") Solving " + testCaseFilename + "...");
123
124 // ------------------------------
125 // SOLVE EACH TEST TYPE
126 // ------------------------------
127
128 // Create storage for optimal solution bounds
129 var boundResults = new Array(testModelNameOptions.length); // LB

or UB result of each test↪→

130 for (var i=0; i < boundResults.length; i++) { // Initialize all
values to -1↪→

131 boundResults[i] = -1;
132 }
133
134 // Solve each test type
135 for (var testModelNameIndex=0; testModelNameIndex <

testModelNameOptions.length; testModelNameIndex++) {↪→

136 // Get name of test type being run
137 var testModelName = testModelNameOptions[testModelNameIndex];
138 writeln(testModelName + "...");
139
140 // Set time limit
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141 cp.param.TimeLimit = timeLimit;
142
143 // Generate model
144 var source = new IloOplModelSource(testModelName + ".mod");
145 var def = new IloOplModelDefinition(source);
146 var opl = new IloOplModel(def,cp);
147 opl.addDataSource(data);
148 opl.generate();
149
150 // Set file to write solution to
151 var solutionsDirectory = resultsDirectory + "Solutions" + dirSep

+ "Solutions-" + testModelName + dirSep;↪→
152 var solutionPath = solutionsDirectory + "Solution-" +

testModelName + "-" + testCaseFilename;↪→

153 var solutionFile = new IloOplOutputFile(solutionPath);
154
155 // Write initial parameters to results file
156 resultsFile.write(opl.TestCaseFilename); // Test case filename
157 resultsFile.write("," + testModelName); // Test type
158 resultsFile.write("," + opl.Instance); // Test instance derived

from↪→

159 resultsFile.write("," + (opl.NbTasks-2)); // Number of tasks
(excluding empty start/end tasks)↪→

160 resultsFile.write("," + opl.NbRsrcs); // Number of resources
161 resultsFile.write("," + opl.Capacity); // Number of resources
162 resultsFile.write("," + opl.TargetStudentPercent); // Target

percent of students↪→

163 resultsFile.write("," + opl.TargetStudentCount); // Target
number of students↪→

164 resultsFile.write("," + opl.ActualStudentPercent); // Actual
percent of students↪→

165 resultsFile.write("," + opl.ActualStudentCount); // Actual
number of students↪→

166 resultsFile.write("," + opl.DurationReductionPercent); //
Percent of duration reduction↪→

167 resultsFile.write("," + opl.Seed); // Random seed
168 // resultsFile.write("," + cpVersion); // CP Optimizer solver

version↪→
169
170 // Solve model
171 if (cp.solve()) {
172 // Run solution validation code in model file's

post-processing execute statement↪→

173 // If a solution is invalid, the entire batch runner will
fail with an error at that test and line↪→

174 opl.postProcess();
175
176 // Calculate solve-dependent learning utilization
177 var utilizedLearningCount = 0;
178 for (var t in opl.Tasks) {
179 if (t.learning[0] > 0 && opl.TaskItvs[t].size ==

t.learning[1]) {↪→
180 utilizedLearningCount++;
181 }
182 }
183 // Calculate % of all tasks that learned (-2 to ignore

empty start and end tasks)↪→
184 var utilizedLearningPercent =

(utilizedLearningCount/(opl.Tasks.size-2))*100;↪→
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185 // Round to max of 2 decimal places (borrowed from
https://stackoverflow.com/a/18358056/6402733)↪→

186 utilizedLearningPercent = +(Math.round(utilizedLearningPercent
+ "e+2") + "e-2");↪→

187
188 // Calculate gap
189 var gapAbsolute = (cp.getObjValue()-cp.getObjBound());
190 var gapPercent = (gapAbsolute/cp.getObjValue())*100;
191 // Round to max of 2 decimal places (borrowed from

https://stackoverflow.com/a/18358056/6402733)↪→

192 gapPercent = +(Math.round(gapPercent + "e+2") + "e-2");
193
194 // Report some solve-dependent results to script log for

visibility↪→

195 writeln(" - Makespan = " + cp.getObjValue() + " (LB - " +
cp.getObjBound() + ", Gap - " + gapPercent + "%)"); //
Makespan↪→

↪→

196 writeln(" - % of Tasks Utilizing Learning = " +
utilizedLearningPercent + "%"); // % of utilized students↪→

197
198 // Write solve-dependent results to results file
199 resultsFile.write("," + cp.getObjValue()); // Makespan
200 resultsFile.write("," + gapAbsolute); // Gap #
201 resultsFile.write("," + gapPercent); // Gap %
202 resultsFile.write("," + utilizedLearningPercent); // % of

utilized students↪→

203 resultsFile.write("," + utilizedLearningCount); // Number of
utilized students↪→

204
205 // Write results to solution file
206 solutionFile.writeln("// Results");
207 solutionFile.writeln("Makespan = " + cp.getObjValue()); //

Makespan↪→

208 solutionFile.writeln("Lower Bound = " + cp.getObjBound()); //
Lower bound↪→

209 solutionFile.writeln("Gap % = " + gapPercent + "%"); // Gap %
210 solutionFile.writeln("Number of Solutions = " +

cp.info.NumberOfSolutions); // Number of solutions found↪→

211 solutionFile.writeln("Status = " + cp.status); // Solver
status↪→

212 solutionFile.writeln("Utilized Learning Percent = " +
utilizedLearningPercent + "%"); // % of utilized students↪→

213 solutionFile.writeln("Utilized Learning Count = " +
utilizedLearningCount); // Number of utilized students↪→

214 solutionFile.writeln("Solve Time (sec) = " +
cp.info.SolveTime); // Solve Time↪→

215 solutionFile.writeln("Time Limit (sec) = " +
cp.param.TimeLimit); // Time limit↪→

216 // solutionFile.writeln("CP Optimizer Solver Version = " +
cpVersion); // CP Optimizer solver version↪→

217 solutionFile.writeln();
218 // Write solution to solution file
219 solutionFile.writeln("// Solution");
220 solutionFile.writeln("Task Name | Start Period | Duration");

// Solution headers↪→

221 for (var t in opl.Tasks) {
222 solutionFile.writeln("Task " + t.id + ";" +

opl.TaskItvs[t].start + ";" + opl.TaskItvs[t].size);↪→

223 }
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224 solutionFile.writeln();
225 // Write precedences to solution file for import into yEd
226 solutionFile.writeln("// Precedences");
227 solutionFile.writeln("Edge ID | Node 1 | Node 2"); // Print

headers↪→
228 var edgeID = 0;
229 for (var t in opl.Tasks) {
230 for (var s in t.succs) {
231 edgeID++;
232 solutionFile.writeln(edgeID + ";" + t.id + ";" + s);
233 }
234 }
235 solutionFile.writeln();
236 }
237 else {
238 // Report some results to script log for visibility
239 writeln(" - Makespan = UNDEFINED"); // Makespan
240
241 // Leave empty columns in results file, one comma per column
242 // (getObjValue() and others fail if called when no

solution has been found)↪→

243 resultsFile.write(",,,,,");
244
245 // Report failure to find solution in solution file
246 solutionFile.writeln("No solution found.");
247 solutionFile.writeln();
248 // Write results to solution file
249 solutionFile.writeln("// Results");
250 solutionFile.writeln("Lower Bound = " + cp.getObjBound()); //

Lower bound↪→

251 solutionFile.writeln("Number of Solutions = " +
cp.info.NumberOfSolutions); // Number of solutions found↪→

252 solutionFile.writeln("Status = " + cp.status); // Solver
status↪→

253 solutionFile.writeln("Solve Time (sec) = " +
cp.info.SolveTime); // Solve Time↪→

254 solutionFile.writeln("Time Limit (sec) = " +
cp.param.TimeLimit); // Time limit↪→

255 // solutionFile.writeln("CP Optimizer Solver Version = " +
cpVersion); // CP Optimizer solver version↪→

256 solutionFile.writeln();
257 }
258
259 // Report some results to script log for visibility
260 writeln(" - Status = " + cp.status); // Solver status
261 writeln(" - Solve Time = " + cp.info.SolveTime + " sec"); //

Solve time↪→
262
263 // Write values to results file
264 resultsFile.write("," + cp.getObjBound()); // Lower bound
265 resultsFile.write("," + cp.info.NumberOfSolutions); // Number

of solutions found↪→

266 resultsFile.write("," + cp.status); // Solver status
267 resultsFile.write("," + cp.info.PresolveTime); // Time spent on

presolve (preprocessing phase that aims to reduce both
number of variables and constraints using logical rules)↪→

↪→

268 resultsFile.write("," + cp.info.ExtractionTime); // Time spent
on extraction↪→
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269 resultsFile.write("," + cp.info.SolveTime); // Time spent
solving all DLB bounds (moot for this model because it's
not DLB)↪→

↪→

270 resultsFile.write("," + cp.info.SolveTime); // Time spent
testing the final (only) bound↪→

271 resultsFile.write("," + cp.param.TimeLimit); // Time limit
272 resultsFile.writeln(); // Flush buffer to file & start new line

for next entry↪→
273
274 // Finish solution file
275 solutionFile.writeln(opl.printExternalData()); // Write

variable values↪→

276 solutionFile.close();
277
278 // Save bound, if optimal
279 if (cp.status == 2) { // Only if optimal
280 boundResults[testModelNameIndex] = cp.getObjValue(); // Save

at corresponding index↪→

281 }
282
283 // End processes to prevent memory leaks
284 opl.end();
285 def.end();
286 source.end();
287 }
288
289 // Output bound results to log
290 // Print first value outside of loop to print comma separators

correctly↪→

291 write("Bound Results: " + boundResults[0]);
292 for (var i=1; i < boundResults.length; i++) { // Skip first value

because it's already printed↪→

293 write(", " + boundResults[i]);
294 }
295 writeln();
296
297 // ------------------------------
298 // SOLVE RCPSP+L-DLB
299 // ------------------------------
300
301 writeln("RCPSP+L-DLB...");
302
303 // Set DLB time limit
304 cp.param.TimeLimit = TimeLimitDLB; // Number is in seconds
305
306 // Set file to write solution to
307 var solutionsDirectoryDLB = resultsDirectory + "Solutions" + dirSep

+ "Solutions-RCPSP+L-DLB" + dirSep;↪→
308 var solutionPathDLB = solutionsDirectoryDLB +

"Solution-RCPSP+L-DLB-" + testCaseFilename;↪→

309 var solutionFileDLB = new IloOplOutputFile(solutionPathDLB);
310
311 // Find destructive LB
312 var lb = 0; // Start from 0 to see how well DLB really performs
313 var cumulativeSolveTimeDLB = 0; // Cumulative amount of time taken

on all DLB bounds tested for this test case↪→

314 var firstRun = true; // So we can write initial parameters to
results file only on first run of loop↪→

315 var keepSearching = true;
316 while (keepSearching) {
317 // Generate model
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318 // Must be inside this loop so it's re-generated for every LB
we destruct↪→

319 var sourceDLB = new IloOplModelSource("RCPSP+L-DLB.mod");
320 var defDLB = new IloOplModelDefinition(sourceDLB);
321 var oplDLB = new IloOplModel(defDLB,cp);
322 oplDLB.addDataSource(data);
323 oplDLB.generate();
324
325 // Write initial parameters to results file (if on first run of

loop)↪→

326 // Must be inside loop because it uses the generated model
327 if (firstRun) {
328 resultsFile.write(oplDLB.TestCaseFilename); // Test case

filename↪→

329 resultsFile.write(",RCPSP+L-DLB"); // Test type
330 resultsFile.write("," + oplDLB.Instance); // Test instance

derived from↪→

331 resultsFile.write("," + (oplDLB.NbTasks-2)); // Number of
tasks (excluding empty start/end tasks)↪→

332 resultsFile.write("," + oplDLB.NbRsrcs); // Number of
resources↪→

333 resultsFile.write("," + oplDLB.Capacity); // Number of
resources↪→

334 resultsFile.write("," + oplDLB.TargetStudentPercent); //
Target percent of students↪→

335 resultsFile.write("," + oplDLB.TargetStudentCount); // Target
number of students↪→

336 resultsFile.write("," + oplDLB.ActualStudentPercent); //
Actual percent of students↪→

337 resultsFile.write("," + oplDLB.ActualStudentCount); // Actual
number of students↪→

338 resultsFile.write("," + oplDLB.DurationReductionPercent); //
Percent of duration reduction↪→

339 resultsFile.write("," + oplDLB.Seed); // Random seed
340 // resultsFile.write("," + cpVersion); // CP Optimizer solver

version↪→
341
342 firstRun = false; // Prevent it from writing the initial

parameters multiple times↪→

343 }
344
345 // Use new yet-to-be-destructed LB on each successive run
346 oplDLB.Horizon[0] = lb;
347
348 // Attempt to solve
349 cp.solve();
350
351 // Test whether this potential LB is valid
352 if (cp.status == 2 || cp.status == 1) { // "Optimal" or

"Feasible" -- A solution is found↪→

353 // Since we're testing LBs, this solution inherently must be
optimal↪→

354
355 // Add this run's SolveTime to the cumulative
356 cumulativeSolveTimeDLB += cp.info.SolveTime;
357
358 // Run solution validation code in model file's

post-processing execute statement↪→

359 // If a solution is invalid, the entire batch runner will
fail with an error at that test and line↪→

360 oplDLB.postProcess();
361
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362 // Calculate solve-dependent learning utilization
363 var utilizedLearningCount = 0;
364 for (var t in oplDLB.Tasks) {
365 if (t.learning[0] > 0 && oplDLB.TaskItvs[t].size ==

t.learning[1]) {↪→
366 utilizedLearningCount++;
367 }
368 }
369 // Calculate % of all tasks that learned (-2 to ignore empty

start and end tasks)↪→
370 var utilizedLearningPercent =

(utilizedLearningCount/(oplDLB.Tasks.size-2))*100;↪→

371 // Round to max of 2 decimal places (borrowed from
https://stackoverflow.com/a/18358056/6402733)↪→

372 utilizedLearningPercent = +(Math.round(utilizedLearningPercent
+ "e+2") + "e-2");↪→

373
374 // Calculate gap
375 var gapAbsolute = (cp.getObjValue()-oplDLB.Horizon[0]);
376 var gapPercent = (gapAbsolute/cp.getObjValue())*100;
377 // Round to max of 2 decimal places (borrowed from

https://stackoverflow.com/a/18358056/6402733)↪→

378 gapPercent = +(Math.round(gapPercent + "e+2") + "e-2");
379
380 // Status for this final bound
381 if (cp.status == 1) {
382 writeln(" - Feasible LB = " + oplDLB.Horizon[0]); // Horizon
383 }
384 else {
385 writeln(" - Optimal LB = " + oplDLB.Horizon[0]); // Horizon
386 }
387
388 writeln(" - Makespan = " + cp.getObjValue() + " (LB - " +

oplDLB.Horizon[0] + ", Gap - " + gapPercent + "%)"); //
Makespan↪→

↪→

389 writeln(" - % of Tasks Utilizing Learning = " +
utilizedLearningPercent + "%"); // % of utilized students↪→

390
391 // Write solve-dependent results to results file
392 resultsFile.write("," + cp.getObjValue()); // Makespan
393 resultsFile.write("," + gapAbsolute); // Gap #
394 resultsFile.write("," + gapPercent); // Gap %
395 resultsFile.write("," + utilizedLearningPercent); // % of

utilized students↪→

396 resultsFile.write("," + utilizedLearningCount); // Number of
utilized students↪→

397
398 // Write results to solution file
399 solutionFileDLB.writeln("// Results");
400 solutionFileDLB.writeln("Makespan = " + cp.getObjValue()); //

Makespan↪→

401 solutionFileDLB.writeln("Lower Bound = " + oplDLB.Horizon[0]);
// Lower bound↪→

402 solutionFileDLB.writeln("Gap % = " + gapPercent + "%"); // Gap
%↪→

403 solutionFileDLB.writeln("Number of Solutions = " +
cp.info.NumberOfSolutions); // Number of solutions found↪→

404 solutionFileDLB.writeln("Status = " + cp.status); // Solver
status↪→
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405 solutionFileDLB.writeln("Utilized Learning Percent = " +
utilizedLearningPercent + "%"); // % of utilized students↪→

406 solutionFileDLB.writeln("Utilized Learning Count = " +
utilizedLearningCount); // Number of utilized students↪→

407 solutionFileDLB.writeln("Cumulative Solve Time (sec) = " +
cumulativeSolveTimeDLB); // Time spent solving all DLB
bounds↪→

↪→

408 solutionFileDLB.writeln("Final Run's Solve Time (sec) = " +
cp.info.SolveTime); // Time spent testing the final bound↪→

409 solutionFileDLB.writeln("Time Limit (sec) = " +
cp.param.TimeLimit); // Time limit↪→

410 // solutionFileDLB.writeln("CP Optimizer Solver Version = " +
cpVersion); // CP Optimizer solver version↪→

411 solutionFileDLB.writeln();
412 // Write solution to solution file
413 solutionFileDLB.writeln("// Solution");
414 solutionFileDLB.writeln("Task Name | Start Period | Duration");

// Solution headers↪→

415 for (var t in oplDLB.Tasks) {
416 solutionFileDLB.writeln("Task " + t.id + ";" +

oplDLB.TaskItvs[t].start + ";" +
oplDLB.TaskItvs[t].size);↪→

↪→

417 }
418 solutionFileDLB.writeln();
419 // Write precedences to solution file for import into yEd
420 solutionFileDLB.writeln("// Precedences");
421 solutionFileDLB.writeln("Edge ID | Node 1 | Node 2"); // Print

headers↪→
422 var edgeID = 0;
423 for (var t in oplDLB.Tasks) {
424 for (var s in t.succs) {
425 edgeID++;
426 solutionFileDLB.writeln(edgeID + ";" + t.id + ";" + s);
427 }
428 }
429 solutionFileDLB.writeln();
430 solutionFileDLB.writeln(oplDLB.printExternalData()); // Write

variable values↪→
431
432 // Already found optimal solution, don't waste time looking

for worse ones↪→
433 keepSearching = false;
434 }
435 else if (cp.status == 3) { // "Infeasible" -- Proven impossible
436 // This one is impossible, let's test the next one
437 writeln(testNumber+1 + ") - Infeasible LB = " +

oplDLB.Horizon[0]); // Makespan↪→

438 lb += 1; // Set up loop to validate the next lowest makespan
on next iteration↪→

439 cumulativeSolveTimeDLB += cp.info.SolveTime; // Add this run's
SolveTime to the cumulative↪→

440 }
441 else { // "Unkown" or other (will be executed if solver is

stopped by time limit)↪→

442 // Add this run's SolveTime to the cumulative
443 cumulativeSolveTimeDLB += cp.info.SolveTime;
444
445 writeln(" - Makespan = UNDEFINED"); // Makespan
446 writeln(" -");
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447 writeln(" - Stopped at LB = " + oplDLB.Horizon[0]); //
Makespan↪→

448
449 // Leave empty columns in results file, one comma per column
450 // getObjValue() and others fail if called when no solution

has been found↪→

451 resultsFile.write(",,,,,");
452
453 // Report failure to find solution in solution file
454 solutionFileDLB.writeln("No solution found.");
455 solutionFileDLB.writeln();
456 // Write results to solution file
457 solutionFileDLB.writeln("// Results");
458 solutionFileDLB.writeln("Lower Bound = " + oplDLB.Horizon[0]);

// Lower bound↪→

459 solutionFileDLB.writeln("Number of Solutions = " +
cp.info.NumberOfSolutions); // Number of solutions found↪→

460 solutionFileDLB.writeln("Status = " + cp.status); // Solver
status↪→

461 solutionFileDLB.writeln("Cumulative Solve Time (sec) = " +
cumulativeSolveTimeDLB); // Time spent solving all DLB
bounds↪→

↪→

462 solutionFileDLB.writeln("Final Run's Solve Time (sec) = " +
cp.info.SolveTime); // Time spent testing the final bound↪→

463 solutionFileDLB.writeln("Time Limit (sec) = " +
cp.param.TimeLimit); // Time limit↪→

464 // solutionFileDLB.writeln("CP Optimizer Solver Version = " +
cpVersion); // CP Optimizer solver version↪→

465 solutionFileDLB.writeln();
466 solutionFileDLB.writeln(oplDLB.printExternalData()); // Write

variable values↪→
467
468 // Hand off to solver to continue solving normally
469 keepSearching = false;
470 }
471
472 // End processes to prevent memory leaks
473 oplDLB.end();
474 defDLB.end();
475 sourceDLB.end();
476 }
477
478 // Report some results to script log for visibility
479 writeln(" - Status = " + cp.status); // Solver status
480 writeln(" - Cumulative Solve Time = " + cumulativeSolveTimeDLB + "

sec"); // Time spent solving all DLB bounds↪→

481 writeln(" - Final Run's Solve Time = " + cp.info.SolveTime + "
sec"); // Time spent testing the final bound↪→

482
483 // Write values to results file
484 resultsFile.write("," + lb); // Lower bound
485 resultsFile.write("," + cp.info.NumberOfSolutions); // Number of

solutions found↪→

486 resultsFile.write("," + cp.status); // Solver status
487 resultsFile.write("," + cp.info.PresolveTime); // Time spent on

presolve (preprocessing phase that aims to reduce both number
of variables and constraints using logical rules)↪→

↪→

488 resultsFile.write("," + cp.info.ExtractionTime); // Time spent on
extraction↪→

489 resultsFile.write("," + cumulativeSolveTimeDLB); // Time spent
solving all DLB bounds↪→
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490 resultsFile.write("," + cp.info.SolveTime); // Time spent testing
the final bound↪→

491 resultsFile.write("," + cp.param.TimeLimit); // Time limit
492 resultsFile.writeln(); // Flush buffer to file & start new line

for next entry↪→
493
494 // Finish solution file
495 solutionFileDLB.close();
496
497 // ------------------------------
498 // CLOSE OUT LOOP INSTANCE
499 // ------------------------------
500
501 // End memory usage
502 data.end();
503 cp.end();
504
505 // Separate tests visually
506 writeln();
507 }
508
509 // Close out results file
510 resultsFile.close(); // Close file
511
512 // Confirm to user that tests are complete
513 writeln("All done!");
514 }
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APPENDIX E

EXAMPLE SOLUTION FILE

This appendix includes Solution-TestCase-j3029_7-stu060-dur030-ran01.dat,

which is the optimal solution found by the model in Appendix C for the instance in

Appendix B.1.

1 // Results
2 Makespan = 61
3 Lower Bound = 61
4 Gap % = 0%
5 Number of Solutions = 7
6 Status = 2
7 Utilized Learning Percent = 43.33%
8 Utilized Learning Count = 13
9 Solve Time (sec) = 2.844

10 Time Limit (sec) = 5
11
12 // Solution
13 Task Name | Start Period | End Period | Duration | Learned?
14 Task 1;0;0;0;No
15 Task 2;4;11;7;No
16 Task 3;0;4;4;No
17 Task 4;0;4;4;No
18 Task 5;4;6;2;No
19 Task 6;11;14;3;No
20 Task 7;26;33;7;Yes
21 Task 8;7;10;3;No
22 Task 9;4;7;3;No
23 Task 10;10;13;3;No
24 Task 11;26;33;7;Yes
25 Task 12;41;43;2;Yes
26 Task 13;43;51;8;No
27 Task 14;17;22;5;No
28 Task 15;33;37;4;Yes
29 Task 16;14;17;3;Yes
30 Task 17;37;41;4;No
31 Task 18;15;16;1;No
32 Task 19;10;15;5;No
33 Task 20;33;39;6;Yes
34 Task 21;54;58;4;Yes
35 Task 22;51;56;5;No
36 Task 23;16;26;10;No
37 Task 24;48;49;1;Yes
38 Task 25;39;48;9;No
39 Task 26;22;26;4;No
40 Task 27;58;59;1;Yes
41 Task 28;51;58;7;Yes
42 Task 29;49;54;5;Yes
43 Task 30;59;60;1;Yes
44 Task 31;59;61;2;Yes
45 Task 32;61;61;0;No
46
47 // Precedences
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48 Edge ID | Node 1 | Node 2
49 1;1;2
50 2;1;3
51 3;1;4
52 4;2;6
53 5;2;11
54 6;2;18
55 7;3;5
56 8;4;8
57 9;4;9
58 10;4;16
59 11;5;7
60 12;5;13
61 13;5;19
62 14;6;12
63 15;7;15
64 16;7;20
65 17;8;19
66 18;8;20
67 19;8;23
68 20;9;10
69 21;9;15
70 22;10;11
71 23;10;14
72 24;11;12
73 25;11;21
74 26;12;13
75 27;12;24
76 28;12;30
77 29;13;22
78 30;14;17
79 31;14;26
80 32;15;25
81 33;15;28
82 34;16;20
83 35;17;27
84 36;17;28
85 37;17;29
86 38;18;22
87 39;18;23
88 40;19;21
89 41;19;25
90 42;20;21
91 43;20;24
92 44;20;27
93 45;21;31
94 46;22;31
95 47;23;24
96 48;23;25
97 49;23;29
98 50;24;28
99 51;25;27

100 52;26;29
101 53;26;30
102 54;27;30
103 55;28;31
104 56;29;32
105 57;30;32
106 58;31;32
107
108 TargetStudentPercent = 60;
109 TargetStudentCount = 18;
110 ActualStudentPercent = 60;
111 ActualStudentCount = 18;
112 DurationReductionPercent = 30;
113 Seed = 1;
114 Instance = "j3029_7";
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115 TestCaseFilename = "TestCase-j3029_7-stu060-dur030-ran01.dat";
116 NbTasks = 32;
117 NbRsrcs = 4;
118 Capacity = [15 15 18 17];
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