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ABSTRACT

A Novel Fiber Jamming Theory and Experimental Verification

Jared Richard Chafetz

This thesis developed a novel theory of fiber jamming and experimentally verified

it. The theory relates the performance, which is the ratio between the stiff and soft

states of a fiber jamming chamber, to three relative design parameters: the ratio of

the wall thickness to the membrane inner diameter, the ratio of the fiber diameter to

membrane inner diameter, and the number of fibers. These three parameters, when

held constant across different chamber sizes, hold the performance constant. To test

the theory, three different types of fiber jamming chambers were built in three different

sizes. Each chamber was set up as a cantilever beam and deflected 10mm in both the

un-jammed (soft) and jammed (stiff) states. When the three design parameters were

held constant, the performance of the chamber was consistent within 10%. In contrast,

when the parameters were altered, there was a statistically significant p < .0001 and

noticeable effect on chamber performance. These two results can be used in tandem

to design miniaturized fiber jamming chambers. These results also have a direct

application in soft robots designed for minimally invasive surgery.

Keywords: Soft Robotics, Fiber Jamming, Controllable Stiffness, Material Jam-

ming, STIFF-FLOP, On-Demand Stiffening
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Chapter 1

INTRODUCTION

The field of soft robotics is new and rapidly growing, characterized by robots that

are built using highly compliant materials and structures [13]. The use of soft materi-

als in robots has both advantages and disadvantages. Soft robots can easily navigate

complex and rough environments, but they lack the strength to transmit large forces.

In order for soft robots to become practical, they must be both powerful and precise,

as well as safe and flexible. New technology called controllable stiffness promises to

achieve those goals. However, the most common controllable stiffness methods can-

not be miniaturized. This thesis investigates a new method of controllable stiffness

called fiber jamming, and tests whether it can be miniaturized. Before the theory of

controllable stiffness and fiber jamming is discussed, it is important to understand

why soft robots require a controllable stiffness feature.

Soft robots are made from materials such as silicone and rubber [14]: the robots

look, feel, and move differently than traditional metal robots. Soft robots have designs

inspired by living creatures such as snakes and octopuses [15]. They are squishy to

the touch, and move around in a loose, life-like manner. Metal robot arms move

rigidly from point to point. Soft robots flow. These differences give soft robots some

key advantages over metal robot arms.

The advantages that soft robots have can be placed into two categories. First,

they have better capability to move around in dynamic, obstacle-filled environments

[15]. A soft robot can snake through an obstacle-filled maze. Second, soft robots

are capable of safer interaction with their environment [16]. They can be deformed

without being damaged [17], and can interact with fragile objects without breaking

them.
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Figure 1.1: Comparison of Soft and Metal Robot Arms [2, 3]

Soft robots are capable of moving in complex environments due to having infinite

degrees of freedom [18]. Their structures can bend, twist, and rotate at any point, just

like an octopus arm. Compare this to a standard metal linkage, which is a bar with a

joint on each end. Just like a human arm, the link can only rotate at the joints, and

bending (or breaking!) in the middle of the link is considered a mechanical failure.

The extra degrees of freedom improve the mobility of the robot, which is shown by

analyzing the workspace of each robot.

2



Figure 1.2: Workspace of a 3-DOF Robot Arm [4]

The workspace of a robot refers to all of the points a robot’s end effector (hand)

can reach from a stationary base [19]. Any point that the end of the arm can reach

is included in the robot’s workspace. Calculating the workspace of a robot with no

obstructions can be mathematically laborious, but conceptually simple. The general

idea is to iteratively sweep each linkage through its range of motion and include all

of the points that the robot can touch [20]. This method of using the joint angles to

calculate position is called the Forward Kinematics problem [21]. Adding obstacles

and boundaries into the environment makes calculating the workspace much more

difficult. An entire field of study has been dedicated to this problem, called motion

planning [22].

Motion planning, or path planning, is the computational problem of determining

a collision free course from a start point to an end point [23]. Motion planning also

accounts for the positions of the robot as it moves from point to point. In general,
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increasing the workspace and the mobility of a robot is accomplished either by un-

restricting the joint angles, or adding more degrees of freedom. Un-restricting joint

angles is a strategy that works only in open, unconfined space, so for use in confined

spaces, more degrees of freedom are needed.

Figure 1.3: Comparison between 2-DOF and 3-DOF Workspaces

Notice in the figure above that although the total length of the robots are the

same, only the 3-DOF robot is able to reach the goal position. Adding another DOF

to the robot increases its mobility. With the robot now having 3 DOF in 2D space, it

is called a redundant manipulator, as it has more DOFs than needed to fully define

its point and orientation in space [24]. Redundant manipulators are better able to

navigate obstacle-filled spaces, as they can “use up” their extra degrees of freedom

to get around an obstacle and still have enough DOF’s “left over” to reach the goal

position. The same idea can be applied to the real world, where having over 6 DOF’s

will make the robot a redundant manipulator. (A more rigorous proof of why extra

DOFs leads to mobility can be found in La Velle’s Planning Algorithms [25]).
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However, it is not practical to build a metal robot with a large number of DOFs.

Each DOF ends up as another motor that must not only be powered, but must be

strong enough to support all of the downstream weight and dynamics of the rest of

the robot. That’s not even to mention the power requirements, motor drivers needed,

or control systems that must be implemented. Soft robots, however, have actuation

strategies that are “cheaper” to implement than traditional metal robots. Actuation

strategies such as Dielectric Elastomer Actuators are especially well suited to high

DOF design due to their ability to be controlled via a single wire. Other actuation

strategies such as Flexible Fluidic Actuators can be controlled remotely through tub-

ing, which mitigates the issue of bringing motors inside confined environments. Aside

from superior workspace abilities, soft robots are also preferred when interacting with

fragile objects.

Figure 1.4: Dielectric Elastomer Actuator (DEA) Soft Robot [5]

Robots that work either along with, or act upon people, should be able to do so

without causing harm. There are currently many safety standards and practices that

separate industrial robots from humans [26] —– the robots’ heavy metal structure

makes accidental human interaction dangerous. If soft robots are used instead, any
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accidental contact will most likely result in the deformation of the robotic structure

(squish the robot), instead of harming the person. The soft structure dissipates energy

in an impact. Essentially, compliant materials extend the time of a collision, while

reducing the force of that collision [27]. This allows people to work alongside robots,

instead of being separated from them. It also means that robots can be more readily

used in the home, or in an operating room. The compliant structure gives soft robots

many advantages, but it also has some drawbacks compared to metal robots.

There are two main disadvantages to soft robots: an inability to transmit large

forces, and a lack of precision [28]. In order to transmit large forces, any machine

must be made of some kind of material that is capable of withstanding those forces.

Imagine if a hydraulic press were made out of putty; the press would not be able

to compress any hard material, instead the putty would just deform. Soft robots

have this same problem, it is inherent in the basic nature of their design. Compliant

structures by definition deform easily under large forces. This is a big obstacle to the

proliferation of soft robots, but unfortunately it is not the only problem.

Soft robots also lack precision [29]. Large, industrial scale manufacturing machines

are capable of machining to extremely tight tolerances. This is possible because

the machine barely deforms, and when it does, it does so in a linear, predictable,

controllable fashion. A soft robot has compliant structures that deform in a non-

linear fashion, which makes it nearly impossible to control to such a precise degree.

This severely limits the usefulness of soft robots.

To overcome these limitations, research has been conducted on controllable stiff-

ness methods, where the robot can go from being soft to stiff on command. Many

different methods of controllable stiffness exist, each with its own advantages and

disadvantages. The literature review will examine the different controllable stiffness

methods available, and how they function.
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Chapter 2

LITERATURE REVIEW AND SCOPE

Controllable stiffness is a feature that can alter the stiffness of a soft robot [1].

This process must be reversible, consistent, and available on-demand [1]. Not all

ways of altering stiffness count as controllable stiffness. For instance, most structures

change their stiffness when highly deformed (think of cold working). However, this

process is irreversible and requires the structure to change its shape, so it is not

counted as controllable stiffness. A variety of different controllable stiffness methods

have been found, and are divided into two general categories: Active and Semi-active.

Active methods introduce or dissipate energy from a system, and are most com-

monly set up in an antagonistic structure. They essentially stiffen the structure via

a tug-of-war approach. Try moving your arm while it is relaxed, and again while

you are isometrically contracting the muscles. The muscles pull the arm in opposite

directions, and it becomes more difficult to move the arm. Most of the active methods

rely on actuators already present in soft robots [1].

For instance, Flexible Fluidic Actuators (FFA’s) are very common in soft robots

[30]. These are actuators that have a flexible structure, ie “elastically deformable and

inflatable” [30], and are driven by either pneumatic or hydraulic actuation. Imagine a

cylindrical balloon that expands or contracts axially. Linear motion can be created by

inflating the balloon. If these FFA’s are set up antagonistically, controllable stiffness

is achieved by increasing the pressure of all FFA’s equally. This causes the pressure

inside each chamber to rise, without the robot changing its shape, thereby increasing

its stiffness. The same can be done with tendon-driven actuators, or electroactive

polymers. All rely on antagonistically opposing actuators to increase stiffness without

deforming. Semi-active stiffening works in a different manner.
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Semi-active methods dissipate energy to achieve a change in stiffness. There are

three primary methods studied: electromagentic methods, thermal Methods, and ma-

terial jamming. The electromagnetic methods use either magnetic or electric particles.

When an electromagnetic field is applied, the particles orient and build chains that

resist deformation [31]. Thermal methods use materials with a low melting point.

By heating it up, the material liquefies and the soft robot becomes flexible [32]. By

cooling the structure down, the material solidifies and the structure hardens [32]. Ma-

terial jamming applies a vacuum to loose filler material, which collapses and stiffens

the structure [33].

Each method has some advantages and disadvantages. Electromagnetic methods

have fast switching speeds and high stiffening values [34]. However, their use in soft

robots is limited by sealing issues, environmental contamination, and manufacturing

issues [34]. Thermal methods also have high stiffening values, and materials are

more readily available [35]. However, this method is comparatively slow in switching

speeds [35]. Material jamming is the middle-of-the-road method. Its materials are

cheap and readily available, it has decent stiffening capability, and decent switching

speed. It excels in no area, but also has no fatal flaws [1]. Its low cost and ease

of implementation have also made it one of the most studied controllable stiffness

methods.

Table 2.1: Comparison of Controllable Stiffness Methods [1]

Controllable Stiffness Method Switching Speed Stiffness Variation

FFA (Active Antagonistic) Middle 10x

Magnetorheological Fluid (EM) Very Fast 10x - 40x

Low melting point (Thermal) Very Slow 103x

Granular Jamming Fast 40x

Layer Jamming Fast 10x
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Figure 2.1: Jamming Caused By Reducing Container Volume

Material jamming is a way of changing a fluid-like material into a solid-like ma-

terial [33]. Jamming relies on the use of small particles called filler, which are encap-

sulated in a flexible membrane. Altering the packing density — that is, the ratio of

the filler volume to container volume — creates the change between the fluid-like and

solid-like state [36]. The packing density can be increased by either adding more filler

into the container, or by reducing the container volume [36]. There are three different

types of jamming, each described by their filler. Granular jamming uses small grains,

layer jamming uses large sheets, and fiber jamming uses long cylinders.

Packing Density = φ =
filler volume

container volume
(2.1)

2.1 Granular Jamming

Granular jamming is the most studied of the material jamming methods. The

phenomena was first noticed in the agriculture industry. Large silos dispensing grains

would occasionally jam up, requiring the farmer to hit, vibrate, or shovel the grain

silo in order for the grains to begin moving again. This demonstrated an important

feature of granular jamming: it does not always require reducing packing density to

create the jamming transition.
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Figure 2.2: With friction-less particles, jamming can still occur

There are two drivers of the jamming transition: reducing freedom of movement

and increasing friction. A system can be jammed even when the particles have very

low or no friction, as long as the filler’s movement is restricted [37]. In the fluid-like

state, the individual filler acts just like liquid particles, in general staying together, but

having free movement within the membrane. If an individual particle gets blocked

by other particles, it gets effectively jammed. This is what often happens in silos

dispensing grain, the packing density does not change, but an unlucky configuration

of grains is lined up in just the right way to restrict motion. However, this method

relies on luck, and controllable stiffness requires an on-demand method.

Figure 2.3: Commercially Developed Universal Gripper [6]

The use of a vacuum and flexible membrane to drive the jamming transition first

came about in 2009 [38]. Soon after, a universal gripper was developed utilizing the
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vacuum approach [39]. This gripper was a rubber hemisphere filled with small glass

spheres. The gripper would surround an object in its fluid-like state, and then the

vacuum would cause the gripper to jam up, holding that shape. When the gripper

was lifted off the ground, the object would stay locked in. The study found that the

gripper could pick up most objects, provided the objects were hard enough not to

deform, and less than half the size of the gripper [39].

Another paper attempted to optimize the universal gripper design for commercial

use [40]. The study explored how several parameters affected the performance of the

gripper. Most importantly, the study found a critical relationship between the size

of the grains and the performance of the gripper. Testing three grain sizes, 12-20

mesh, 25-60 mesh, and 60-100 mesh, the study found that the middle size had the

best combination of softness in its un-jammed state and stiffness in its jammed state

[40]. The largest grain size was the stiffest in the jammed state, but was also stiffer

than the middle and small sizes in the un-jammed state. However, the study did

not test whether the grain size relative to the membrane size was relevant, and this

could be an important parameter if granular jamming is to be scalable. Several other

studies have attempted to find relationships between design parameters and jamming

performance.

A thourough study by Cheng et al [41] found that coffee grains worked best among

a set of many different materials. This, along with inexpensive membranes made out

of silicone and latex, made granular jamming inexpensive and caused its proliferation

among soft robotic research. A study by Jiang et al. [42] found that the material

of the membrane is also relevant to the jamming transition, and found that latex

performed the best out of five tested materials. However, this study did not test

silicone, which is used as the membrane in many soft robotic applications.
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While there has been progress on the theory and physics of jamming on the

microscopic scale [43], there has not been a developed theory for the macroscopic

scale. Researchers using granular jamming in soft robot designs are still forced to

optimize the design via a trial-and-error approach. This can cause problems when

the geometry of the robot changes.

Figure 2.4: Improved STIFF-FLOP Design [7]

For instance, the STIFF-FLOP robot is a soft robot that had its controllable

stiffness feature fail after miniaturization. The STIFF-FLOP robot is a modular soft

robot designed for minimally invasive surgery. It was bioinspired by an octopus arm,

which has a continuum-like kinematics and stiffening capabilities [44]. It used FFA’s

as its actuation method and granular jamming as its controllable stiffness method

[45].

A single module of the robot is a cylindrical shape, made of silicone (Smooth-On

Ecoflex 0050 [46]), with three reinforced hollow chambers for pneumatic actuation

[7]. The top and bottom of the cylinder is capped with a harder silicone (Smooth-On
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Smooth-Sil 950 [47]). The idea is to inflate the hollow internal chambers selectively

to control stiffening and bending. Each chamber is reinforced so the chambers only

inflate axially.

Once the STIFF-FLOP has been maneuvered into a desirable position, a vacuum

can be turned on and the robot can be stiffened to perform work [7]. The STIFF-

FLOP has 3 jamming chambers filled with coffee grains, with the silicone walls acting

as the membrane. While the granular jamming feature was effective in early iterations

of the STIFF-FLOP, the robot was too large to use in MIS.

Figure 2.5: Miniaturized STIFF-FLOP [8]

As the STIFF-FLOP project advanced, the researchers aimed to miniaturize the

robot. The most recent iteration of the STIFF-FLOP robot was miniaturized so

that it could fit into a standard trocar [8]. Unfortunately, the researchers remarked

that the granular jamming did not work well when miniaturized, and due to space

constraints, removed it [48]. Without a controllable stiffness feature, the robot could

only be used as an endoscopic camera.
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2.2 Layer Jamming

Figure 2.6: Adding pressure reduces the amount of sliding between layers

Layer jamming alters stiffness by compressing sheet-like filler inside of a flexible

membrane [49]. The jamming transition is driven by increasing the friction between

the layers of filler, usually by using a vacuum to drive a differential pressure. The

amount of friction is dependent on both the number of layers and the geometry of the

filler. A study found that the stiffness of the jammed structure is independent of the

pressure, as the layers are effectively bonded together [50]. However, the structure

only stays in that linear stiffness region as long as the deflecting force is less than the

static friction force [50].

Another soft robot for Minimally Invasive Surgery (MIS) was created using layer

jamming as its controllable stiffness method [50]. This design implements the layer

jamming in the outer diameter of the robot, which leaves the center free for medical

tools. It was able to carry a payload of 2 N with an outer diameter of 22mm [50].

While the robot created is larger than the miniaturized STIFF-FLOP, this design

may have more capability to be miniaturized, as the amount of layers can remain

14



fairly high while keeping the center channel free. However, layer jamming has not

shown as much stiffness variation as granular jamming, although new designs could

improve the effectiveness layer jamming.

2.3 Fiber Jamming

Fiber jamming is the newest method of material jamming. An initial study found

that fiber jamming could achieve a stiffness variation of up to 380% [51]. This study

outlined a few important design parameters of fiber jamming chambers: mainly, that

there is a significant relationship between the fiber material used and the jamming

performance. Out of the six different materials tested, waxed cotton cord had the

highest change in stiffness from the un-jammed state to the jammed state [51].

The study created a simple fiber jamming chamber by placing fibers inside of a

membrane that was 65mm long, and 25mm in diameter. The chambers were created

in two “configurations”, which are ways that the fibers can be oriented inside of the

membrane. A Bundle Type (BT) simply places all of the fibers in the membrane

with no particular arrangement. A Comb Type (CT) uses two laser cut alignment

plates to evenly spread the fibers in an interlocking design. The fiber diameter was

in a range of 1.5mm - 1.8mm. The BT configuration used 87 fibers while the CT

configuration used 74. The authors stated that having fibers that were 8% to 10% of

the diameter of the membrane allows for a high number of contact points, but gave

no reasoning as to how they got that number [51].

Each material and configuration was subjected to a simple beam deflection test,

where the chamber was placed in a vice and deflected 15mm [51]. This was done

at both atmospheric and vacuum pressures. The resulting force from that deflection

was measured at a rate of 10 kHz. The maximum force, measured at full deflection

of 15mm, was used to compare the stiffness of each chamber. The stiffness variation
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was calculated as a percent difference between the jammed state and the un-jammed

state. All materials tested had stiffness variations of at least 40%, with the average

being closer to 100%. The best, waxed cotton, had a stiffness variation of 380% in

the CT configuration [51].

Stiffness Variation =
Kjammed −Kun−jammed

Kun−jammed
∗ 100% (2.2)

The study found that the CT configuration usually had greater stiffness variation

than the BT configuration. However, the study used a different number of fibers for

each configuration, which introduces a confounding element and could have biased the

results. The study also mentioned the lack of theory in designing jamming systems,

and especially noted the lack of theory in fiber jamming chambers, stating “there is

no theoretical relation [established] between a jamming based system performance

and its sizes, shapes, and material properties” [51].

Figure 2.7: A Type (Left) and B Type (Right) STIFF-FLOP Fiber Jam-
ming Modules [9]

The only other paper on fiber jamming modified the miniaturized STIFF-FLOP to

use fiber jamming chambers instead of granular jamming [9]. The paper created two

modified STIFF-FLOP modules. The A module filled the center lumen (4.5mm) with
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8 fibers of diameter of .9mm in a BT configuration. While this study was performed

with the same authors as the other fiber jamming study, they did not adhere to the

8-10% rule established. The B type module got rid of two sets of FFA’s and replaced

them with two fiber jamming chambers, each with 14 fibers of .9mm diameter.

While the study found that both types had an increase in stiffness, the A type

module only had a stiffness variation of 22%, while the B type had a stiffness variation

of 120% [9]. Both modified modules also failed to include all of the important features

of the STIFF-FLOP. The A type removed the ability to feed standard medical tools

through the center lumen, and the B type removed two degrees of actuation. So

while both types may be useful as a proof-of-concept, neither succeeds in solving the

problem of the miniaturized STIFF-FLOP, which is, to have all of the features of the

STIFF-FLOP available in a robot that is less than 15mm in diameter.

2.4 Scope

The inability to miniaturize the STIFF-FLOP’s granular jamming feature, along

with the inability to predict that the feature would fail, demonstrates the need for a

theory that relates the design parameters of a jamming feature to it’s performance.

Fiber jamming was chosen as it had intuitive appeal to work in the miniaturized

STIFF-FLOP — the diameter of the STIFF-FLOP is reduced, eventually approxi-

mating a long cylinder. This thesis will develop a theory to explain the mechanism

of how fiber jamming increases stiffness, and attempt to relate the geometrical design

parameters to the performance of a fiber jamming system.
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Chapter 3

FIBER JAMMING THEORY

This section presents a novel theory of fiber jamming. Up until now, there has

been no theoretical work explaining the exact mechanism that drives fiber jamming,

nor has there been any explanation as to how different design parameters affect the

performance of the chamber. Most importantly, there has been no theory developed

that relates the geometry of a chamber (its diameter, length, fiber diameter, and

number of fibers) to its performance.

The theory created here borrows ideas from structural mechanics, mathematical

packing theory, and beam theory to establish a relationship between the geometry of

a fiber jamming chamber and its performance. It shows that holding three specific

parameters constant holds the performance constant. These three parameters are:

the ratio between the membrane radius and its thickness (RH), the ratio between the

fiber radius and the membrane radius (Rf ), and the number of fibers (n).

These parameters can be held constant across a variety of sizes, implying that

fiber jamming keeps its effectiveness when miniaturized. The ability for fiber jamming

chambers to be miniaturized makes them a suitable controllable stiffness method in

the miniaturized STIFF-FLOP design.

3.1 Introduction to Fiber Jamming Chambers

The purpose of using material jamming in a soft robotic design is to alter the

stiffness of the structure at a desired orientation or point in time. Any material

jamming feature has two states: the un-jammed state, and the jammed state. In
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each state, the soft robotic structure will have some level of stiffness. Stiffness is a

resistance to deformation, and is defined mathematically as:

K =
F

δ
where: F = force, δ = deflection (3.1)

The effectiveness of jamming is defined as the ratio between the stiffnesses of the

jammed state and the un-jammed state. This is the performance of the chamber.

The effectiveness can also be defined as the percent difference between the jammed

and un-jammed states, called the Stiffness Variation [51].

Performance =
Kjammed

Kun−jammed
(3.2)

Stiffness Variation =
Kjammed −Kun−jammed

Kun−jammed
∗ 100% (3.3)

Figure 3.1: Exploded View of a Fiber Jamming Chamber
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A fiber jamming chamber is composed of two components, the fiber fillers and

the encapsulating membrane [51]. The fibers have a geometry of long cylinders, and

may be solid or hollow. They can be placed inside the membrane in different ways,

called configurations. The encapsulating membrane is a long hollow cylinder, and

depending on the design, may wrap around the ends of the fibers, or may be sealed

off with a different material. The entire chamber acts just like a beam when subjected

to external forces.

The stiffness of a beam is dependent on the material, the geometry, and the

boundary conditions of the beam (cantilever, simply-supported, etc.) [10]. All pre-

vious research of fiber jamming chambers has tested chambers as cantilevered beams

[51, 9], so those are the boundary conditions chosen for this thesis as well. A can-

tilevered beam has the following stiffness equation: [10].

K =
3EI

L3
where: E = Elastic Modulus, I = Second Moment of Area (3.4)

3.2 Mechanism of Fiber Jamming

This section will prove that friction drives the change in stiffness between un-

jammed and jammed states through a simple proof-by-contradiction. When friction

is neglected, the calculated stiffness of the jammed state is less than the un-jammed

state. This conflicts with experimental evidence showing that the jammed state is

always stiffer than the un-jammed state. As friction was the only force neglected, it

must be driving the change in stiffness.
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Figure 3.2: Cross Section of Un-jammed Chamber

Figure 3.3: Cross Section of Jammed Chamber

A simplified model of a fiber jamming chamber is presented above, in both un-

jammed and jammed states. In the un-jammed cross section, there are fibers spaced

out equally in a uniform configuration. In the jammed cross-section, the fibers are

packed as close together as possible. When the fibers are in contact, there is fric-
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tion between them. However, in the following stiffness calculations, friction will be

neglected.

The overall stiffness of both the un-jammed and jammed states can be calculated

with equations 3.5 through 3.8. The total stiffness is found by adding the stiffness of

the membrane to the stiffness of the fibers (equation 3.5). The membrane stiffness

is calculated with equation 3.6, with the membrane modeled as a hollow cantilever

beam. The fiber stiffness is calculated with equations 3.7 and 3.8, modeling the fibers

as a bunch of cantilever beams bending around a single neutral axis. Equation 3.8

uses the parallel axis theorem [10], which accounts for the distance between the fibers.

Ktotal = Km +Kf (3.5)

Km =
3EmIm
L3

where: Im =
π

64
∗ (OD4

m − ID4
m) (3.6)

Kf =
3EfIfibers

L3
(3.7)

Ifibers =
n∑
n=1

(If + Ad2n) = n ∗ If + A(d21 + d22 + ...+ d2n) (3.8)
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Figure 3.4: Fiber Jamming Chamber going from un-jammed state (left)
to jammed state (right)

Notice that the membrane reduces in diameter from the un-jammed state to the

jammed state. So by equation 3.6, the jammed membrane will less stiff than the

un-jammed membrane. Likewise, the distance between the fibers reduces from the

un-jammed state to the jammed state, and so the jammed fibers will also be less stiff

than the un-jammed fibers. The total stiffness in the jammed state is then less than

the stiffness in the un-jammed state.

However, experimental evidence has shown that the stiffness in the jammed state

is greater than the stiffness in the un-jammed state [51, 9]. Since the only force this

model neglected is friction, it must be driving the change in stiffness.
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Figure 3.5: Comparison of Layered Beams with no adhesion vs adhesion
[10]

Friction increases stiffness in a fiber jamming chamber by creating a resistive

bending moment in the fibers. Consider a sheet of beams stacked on top of one

another. If these beams are separated and have low friction, a transverse force will

cause the beams to slide relative to one another (Left). If the beams were welded

together, they would all rotate as one (Right). Friction, just like a weld or epoxy,

acts against this sliding.

Figure 3.6: Free Body Diagram of the Left Most Beam
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Drawing a free body diagram of the left most beam, there is a distributed normal

force acting on the beam as well as a friction force. The force of friction acts as a

moment on the beam, deflecting the beam in the opposite direction of the deflection

force. The normal force also deflects the beam in an opposite direction as the deflec-

tion force. These two forces acting against the deflection force increase the stiffness

of the beam. Without friction, the stiffness would be equivalent to the combined

stiffness of all 4 beams. With friction included, the stiffness increases even further.

Fiber Jamming takes advantage of this friction to increase the stiffness on demand.

3.3 Chamber Design Parameters

Relating the geometry of the chamber to its performance requires that each ge-

ometrical parameter be examined in relation to how it affects the friction that the

fibers experience. A fiber jamming chamber can be designed and constructed with

the following design parameters. The relevant material parameters are the Elastic

Modulus (E) and the coefficient of friction (µ). The membrane is described by its

outer and inner diameters (ODm, IDm), and its length (Lm). The fibers – assumed to

be solid – are described by their diameter (ODf ), their length (Lf ), and the number

of fibers inside the chamber (n). The fiber configuration describes how the fibers are

arranged within the chamber.

Membrane:

1. Membrane OD (ODm)

2. Membrane ID (IDm)

3. Membrane Length (Lm)

4. Membrane Material (Em, µm)

Fiber:

1. Fiber OD (ODf )

2. Fiber Length (Lf )

3. Fiber Material (Ef , µf )

4. Number of Fibers (n)

5. Fiber configuration
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The effect that the fiber geometry has on performance can be considered separately

from the effect that the membrane geometry has on performance. When a chamber is

in the jammed state, the fibers are experiencing a pressure that pushes them inwards.

As long as the pressure that the fibers experience is held constant, the membrane

geometry can be altered. However, different membrane geometries may not deliver

the same pressure to the fibers, and so in considering the effects of the membrane, the

objective will be to find a way to hold the pressure constant with different membrane

geometries.

3.4 Effect of Membrane Geometry on Performance

Comparing membranes of different geometries requires that the internal fibers

experience the same pressure. A membrane does not always transfer all of the atmo-

spheric pressure to the fibers. Depending on the membrane geometry and material,

some pressure may be used to deform the membrane. The membrane’s resistance to

deforming effectively “drops” the pressure that the fibers experience. A sufficiently

soft membrane transfers nearly all of the pressure, while a really stiff one transfers

no pressure. How much the membrane deforms is dependent on both the material of

the membrane (such as steel or silicone) and the geometry of the membrane.

Membranes that have an identical ratio between their radius (r) and their thick-

ness (t), will drop the same amount of pressure, and therefore will be comparable to

one another. This ratio is called the Hoop Ratio (RH). This finding is true regardless

of whether the membrane is considered a thin-walled or thick-walled membrane.
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3.4.1 Thin Walled Membrane

Figure 3.7: Diagram of Thin Walled Membrane

A membrane can be classified as thin walled if the ratio between its thickness (t)

and its radius (r) is less than or equal to .1 [10].

t

r
<= .1 (3.9)

The formula for the radial deformation (δr) of a thin walled cylindrical pressure

vessel is given as [10]:

δr =
Pr2

(r + t)E
(1− ν

2
) where ν = Possion’s Ratio (3.10)

The radial deformation (δr) is a function of pressure (P ), the material (E, ν), and

the geometry (r, t). The pressure exerted on the fibers is found by subtracting the

pressure required to deform the membrane from the pressure supplied.
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Figure 3.8: Pressure Superposition.

Pfibers = P − Pdeformed (3.11)

Pdeformed =
δr(r + t)E

r2
∗ 2

2− ν
(3.12)

In order to compare a range of membrane sizes, the pressure experienced by the

fibers needs to be equal. The question then becomes how to alter the chamber ge-

ometry to accomplish this. From equation 3.12, the only variables that would change

based on the size of the membrane would be the radius (r), the radial deformation

(δr), and the thickness (t). The goal is to find a way to alter these three variables so

that Pdeformed does not change. A simple way to do that is to multiply Pdeformed by

an equivalent fraction, such as 2/2, or in general, c/c.
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Figure 3.9: Comparison of two sizes of chambers

The effect of multiplying Pdeformed by c2/c2 is shown above. The membrane es-

sentially becomes scaled up. The c is distributed out to the radius (r), the radial

deformation (δr), and the thickness (t), enlarging them all in proportion.

Pdeformed =
c2δr(r + t)E

c2r2
∗ 2

2− ν
=
cδr(cr + ct)E

(cr)2
∗ 2

2− ν
(3.13)

Figure 3.10: Enlarged Membrane with Proportions Held Constant
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In order to equalize pressure drop across many sizes, all that is needed is a simple

linear transformation of the geometry. Think of this as magnifying an image. All of

the proportions stay the same, but the entire membrane is larger or smaller. This

holds in thick-walled membranes as well.

3.4.2 Thick Walled Membrane

Figure 3.11: Diagram of Thick Walled Membrane

A thick walled membrane has non-negligible variation of stresses in its wall. This

happens when the ratio of its radius (r) to its thickness (t) is greater than .1 [10].

This leads to a different equation, but ultimately the same result.

t

r
>= .1 (3.14)

Pdeformed =
δrE[(r + t)2 − r2]

2r(r + t)2
(3.15)
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Multiplying Pdeformed by c3/c3 this time results in the radius (r), the radial defor-

mation (δr), and the thickness (t) to scale up by a constant multiple (c).

Pdeformed =
c3δrE[(r + t)2 − r2]

c32r(r + t)2
=
cδrE[(cr + ct)2 − (cr)2]

2cr(cr + ct)2
(3.16)

Both the thin and thick-walled membranes show that a linear transformation

of the geometry holds the change in area, and therefore, keeps the pressure drop

constant across sizes. This leads to the idea that the membrane parameters relevant

to performance are not the absolute dimensions of the membrane, but the relative

dimensions. Since this result is derived from the hoop stress equations, it is called

the Hoop Ratio (RH) of the membrane. It is defined simply as:

RH =
t

r
(3.17)

As long as chambers have an equal RH , the internal fibers will experience the

same pressure. This allows us to examine the chambers without having to consider

the effects of the membrane. Notice that the Hoop Ratio (RH) does not account for

the radial deformation (δr). So when designing chambers in practice, care must be

taken to ensure that the radial deformation (δr) is scaled appropriately. The easiest

way to do this is to also scale the fibers up or down along with the membrane.

3.5 Model of the Internal Chamber

Now the effects of the fiber geometry on performance are explored, once again

with the goal of holding performance constant across various sizes. There are two

primary factors that can affect performance. First, the number of fiber contact points

directly affect the friction, and therefore the performance, of the chamber. The
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number of contact points is determined by the number of fibers (n). Second, the

radial deformation (δr) needs to be scaled appropriately, as mentioned in the previous

section. It is determined by three factors: the fiber diameter (ODf ), the membrane

diameter (IDm), and the number of fibers (n).

Figure 3.12: Comparison of two sizes of chambers

Comparing two chambers that are scaled proportionally gives the clue for how to

alter the fiber geometry to hold performance. Two chambers with the same number

of fibers (n) will have the same number of contact points. If the fiber diameter

(ODf ) is enlarged in proportion with the membrane diameter (IDm), then the radial

deformation (δr) will be scaled up appropriately. The ratio between the fiber diameter

(ODf ) and the membrane diameter (IDm) is called the Fiber Ratio (RF ).

32



3.5.1 Packing and Contact Points

Figure 3.13: Example solutions to the Packing Problem [11]

The packing configuration of a jammed chamber depends only on the number of

fibers (n). This configuration, when ideally packed (the fibers move to where they

need to be), determines the number of contact points in the chamber. The number

of contact points that a certain number of fibers (n) has can be found by referencing

solutions to the Packing Circles in Circles problem .

The Packing Circles in Circles problem describes a classic mathematics problem

[11]. It is simple to describe, and very hard to solve. In essence, the Packing Problem

is this: Given a containing circle of radius 1, what is radius of the packed circles

when there are n circles packed in? [11]. Solutions, once found, can be looked up by

either the number of circles packed in (n), or by referencing the radius of the packed

circle, as the containing circle always has a radius of 1. For referencing, it is helpful

to describe the packed circle’s radius as a percentage of the containing circle (%r).
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Figure 3.14: Contact Points vs Percent Radius [11]

The figure above shows the number of contact points for a given packed circle

radius (%r). As the packed circle radius (%r) gets smaller, the number of contact

points, and the number of packed circles (n) explodes exponentially. If the friction

force follows the Coulomb model of friction (Ffriction = µ ∗Fn), then packing in more

circles (fibers) raises the stiffness of the jammed state. However, using as many fibers

as possible has pragmatic issues. In an actual fiber jamming chamber, the fibers

are placed inside the membrane with no guides or way of preventing the fibers from

moving. This often means that the fibers are clumped together, and there is friction

present in the un-jammed state [51].

The less densely packed a chamber is, the more it can compress, and the less likely

it will have a high degree of friction in the un-jammed state. However, packing it too

sparsely will cause a large collapse in the jammed state, reducing the Second Moment

of Area (and therefore the stiffness) by a large amount. This is a design trade-off that
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may require simulation or experimentation to optimize. So far, the recommended

fiber diameter (ODf ) is 8% to 10% of the membrane diameter (IDm) [51].

3.5.2 Packing and Performance Equivalency

Figure 3.15: Circles of the same packing configuration have proportional
outer diameters

Packed chambers of a certain n have identical ratios between their fiber diameter

(ODf ) and their packed diameter (ODPacked). The radial deformation (δr) is the

distance between the membrane diameter (IDm) and the packed diameter (ODPacked).

Altering the fiber diameter (ODf ) in proportion with the membrane ID (IDm) will

then scale the radial deformation (δr) appropriately. This ratio between the fiber

diameter (ODf ) and membrane diameter (IDm) is called the Fiber Ratio (RF ), and

is defined as:

RF =
Fiber Diameter

Membrane Diameter
=
ODf

IDm

(3.18)
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Figure 3.16: The radial deformation is a function of ODm, RF , and n

Holding a certain Hoop Ratio (RH), a certain Fiber Ratio (RF ), and a certain

number of fibers (n) across various chamber sizes will ensure that each set of fibers

experience the same pressure. The last thing to do in order to establish performance

equivalency across various chamber sizes is to show that changing the fiber diameter

(ODf ) does not change the performance when different size fibers are subjected to

equal pressures.
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3.6 Multi-Beam Stiffness Model

Figure 3.17: A single fiber jamming chamber at two levels of pressure

Examining the deflection equation of a multi-beam stiffness model shows that the

deflection (δ), and therefore the stiffness (K), of a chamber is linearly dependent on

the pressure (P ). An actual fiber jamming chamber has friction present in both the

un-jammed and jammed states. Comparing the difference in stiffness (K) between

the two states essentially becomes comparing the pressures, as the other relevant

variables — the number of fibers (n), the fiber diameter (ODf ), fiber length (Lf ),

and material properties — remain unchanged. The Hoop Ratio (RH), the Fiber Ratio

(RF ), and the number of fibers (n) all ensure that different chambers experience the

same two pressures, and therefore have identical performance.

δ = P ∗ f(n,ODf , Lf , E, µ, ...) (3.19)

Performance =
Pjammed ∗ f(n,ODf , Lf , E, µ, ...)

Pun−jammed ∗ f(n,ODf , Lf , E, µ, ...)
=

Pjammed
Pun−jammed

(3.20)
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Figure 3.18: Elemental Two-Beam Free Body Diagram

The deflection equation is created from a multi-beam model of the chambers. A

two-fiber model is shown above, but the model can be expanded to any number of

fibers. The free body diagram consists of an differential element of length dx. Each

fiber is subjected to an axial force (N), a shearing force (V ), and a moment (M),

each can vary with x, and therefore has a differential change (dN, dV, dM) over the

length of dx.The fibers are also subjected to the external disributed pressure (wP ),

and an internal normal force (wN), and friction (µ ∗ wN).

From this model, the deflection equation can be derived using a modified method

of the derivation by Nguyen et al. [12]. First, the equilibrium equations, the com-

patibility equations, and the constitutive relations are established from the model

and Timoshenko’s beam theory. Then, these equations are combined with the kine-

matic model to derive the differential equation of the normal force (wN). A series of

integrations then leads to the deflection (δ).
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The equilibrium equations are created with respect to the axes shown, and the

moments are taken from the centroid of each differential element. The distance be-

tween the edge and the centroid of the differential element is rA or rB, which is half

the fiber diameter (ODf ).

Equilibrium Equations [12]

1.
∑
FAx = N ′A + µwn = 0

2.
∑
FAy = V ′A − wn + wP = 0

3.
∑
MA = M ′

A − VA + µwnrA = 0

1.
∑
FBx = N ′B − µwn = 0

2.
∑
FBy = V ′B + wn − wP = 0

3.
∑
MB = M ′

B − VB + µwnrB = 0

The compatibility equations are based off of Timoshenko’s beam theory [12]. ε is

the axial strain, u is the axial displacement. γ is the vertical shear strain with v being

the vertical displacement. Finally, θ is the rotation angle and κ is the curvature of

the beam [12].

Compatibility Equations [12]

1. εA = u′A

2. γA = v′A + θA

3. κA = θ′A

1. εB = u′B

2. γB = v′B + θB

3. κB = θ′B

The constitutive relations are the generalized stress-strain relationships for the

beam. Several of the variables here are inherent to the material and geometry of the

beam. E is the elastic modulus, A is the area, G is the shear modulus, and I is the

second moment of area.

Constitutive Relations [12]

1. NA = EAAAεA

2. VA = GAAAγA

3. MA = EAIAκA

1. NB = EBABεB

2. VB = GBABγB

3. MB = EBIBκB
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Figure 3.19: Kinematic Relationship of Two-Beam Elements [12]

The kinematics of the two-layer beam are shown in figure 3.17 above. Each layers

share transverse displacement v. However, the beams can have different angles θ and

different axial displacements u. These relationships and equations can be combined in

order to create the differential equations for the two-layer beam. This was done using

a modified method of the derivation presented in Nguyen et al. [12]. This system of

equations is solved for the distributed normal force between the beams, wn.

wN(x) = C1e
−λx + C2e

λx + wP where λ =

√
GA

EI
(3.21)

Using the boundary conditions for a cantilevered beam [wn = 0 at x = 0], and

[w′n = 0 at x = 0], finds the values of C1 and C2.

wN(x) =
−wP e−λx

2
+
wP e

λx

2
+ wP where λ =

√
GA

EI
(3.22)
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From here, the finding the deflection (δ) is just a series of integrations. First wN

is integrated to find the shear force (VA), and then integrated again in the following

equation.

v =

∫∫∫
(
V ′′A
GA
− M ′

A

EI
) dx (3.23)

This leads to the deflection equation.

v = XvC + v0 (3.24)

The distributed pressure force (wP ) is only present in v0 and all of the variables

that are unchanged between the un-jammed and jammed states are in the rest of the

equation. Note that the equation is broken up into two parts: The first is a large

matrix with several constants of integration Xv, and the second is a constant of the

equation v0. Note that Xv is mostly a function of the length along the beam (x), and

remains unchanged between the un-jammed and jammed states.

Xv = [ζ1e
−λx ζ2e

−λx x
GA
− x3

6EI
x2 x 1 0 0]

ζ =
1

GAλ2
+
µrλ− 1

GA2
(3.25)

The only relevant part of the equation to performance is the constant v0.

v0 = wP ∗ L
[GAL3 − 12EIL− 4µrGA]

48GAEI
(3.26)

Provided that the chamber has some inter-fiber friction in the un-jammed state,

this equation will apply and the performance will be simplified to the ratio of pressures
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between the un-jammed and jammed states. Using chambers that are scaled up will

provide equivalent performance by ensuring that the chambers, regardless of size,

experience the same pressures.

The theory developed suggests that the performance of a chamber is only depen-

dent on the Hoop Ratio (RH), the Fiber Ratio (RF ), and the number of fibers (n).

All that is needed to fully define a chamber is to have one absolute variable, in this

case, the membrane diameter (IDm). Now that the theory has been established, an

experiment will be devised to verify it.
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Chapter 4

EXPERIMENTAL METHODS

4.1 Experimental Design

Fiber Jamming Theory has shown that the performance of a fiber jamming cham-

ber is dependent on three relative parameters: the Hoop Ratio (RH), the Fiber Ratio

(RF ), and the number of fibers (n). Creating an experiment to test Fiber Jamming

Theory requires controlling for all of the other variables that do not pertain to the

three relative design parameters. The design parameters are again listed below.

4.1.1 Experiment Design Parameters

Chamber Design Parameters:

1. Fiber Material (Ef , µf )

2. Membrane Material (Em, µm)

3. Fiber Length (Lf )

4. Membrane Length (Lm)

5. Fiber configuration

6. Chamber Pressure (P )

7. Membrane ID (IDm)

8. Hoop Ratio (RH)

9. Fiber Ratio (RF )

10. Number of Fibers (n)

All of these parameters will determine the stiffness of a Fiber Jamming chamber.

The first five parameters (Membrane Length - Fiber Configuration) need to be chosen
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and set as constant across all chambers tested, and the pressure (P ) for the un-jammed

and jammed states needs to be determined.

4.1.2 Experiment Choices

1. Fiber Material: Waxed cotton.

2. Membrane Material: Smooth-On Ecoflex 0050. [46]

3. Fiber and Membrane Length: 40mm.

4. Configuration: A bundle type configuration will be used.

5. Pressures: Vacuum with on/off control.

This leaves the following variables as the test parameters:

Test Parameters:

1. Membrane ID (IDm)

2. Hoop Ratio (RH)

3. Fiber Ratio (RF )

4. Number of Fibers (n)

The effect that each parameter has on performance can be summarized in the

hypotheses below.

1. With constant RF , RH , and n, altering IDm will not affect performance.

2. With constant IDm, RH , and RF , altering n will affect performance.

3. With constant IDm, RF , and n, altering RH will affect performance.

The hypothesises must be restated in the negative sense.

Holding all other parameters constant:

H0) Altering IDm will affect performance more than 10%.

H1) Altering n will not meaningfully affect performance.

H2) Altering RH will not meaningfully affect performance.
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These hypotheses are tested by creating 3 different chamber designs, each with

their own Hoop Ratio (RH), Fiber Ratio (RF ), and number of fibers (n), and com-

paring the performances of multiple chamber sizes of each Variant.

Variant A: Three membrane diameters (IDm) are created. 5mm, 10mm and

15mm. The Hoop Ratio (RH) is held constant at a ratio of .4. This gives

wall thicknesses of 1mm, 2mm, and 3mm for the 5mm, 10mm, and 15mm

chambers. The Fiber Ratio (RF ) is held constant at 10%, giving fiber di-

ameter (ODf ) values of .5mm, 1mm and 1.5mm. Each chamber is packed

with 65 fibers.

Variant B: Three membrane diameters (IDm) are created. 5mm, 10mm and

15mm. The Hoop Ratio (RH) is held constant at a ratio of .4. This gives

wall thicknesses of 1mm, 2mm, and 3mm for the 5mm, 10mm, and 15mm

chambers. The Fiber Ratio (RF ) is held constant at 10%, giving fiber di-

ameter (ODf ) values of .5mm, 1mm and 1.5mm. Each chamber is packed

with 55 fibers.

Variant C: Two membrane diameters (IDm) are created: 10mm and 15mm. The

Hoop Ratio (RH) is held constant at .2, giving wall thicknesses of 1mm for

the 10mm chamber, and 1.5mm for the 15mm chamber. The Fiber Ratio

(RF ) is held constant at 10%, giving fiber diameter (ODf ) values of .5mm,

1mm and 1.5mm. Each chamber is packed with 65 fibers.

Table 4.1: Chamber Variant Types And Their Design Parameters

Variant Hoop Ratio (RH) Fiber Ratio (RF ) Number of Fibers (n)

A .4 .1 65

B .4 .1 55

C .2 .1 65
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4.2 Fiber Jamming Chamber Manufacturing

Figure 4.1: Exploded View of a Fiber Jamming Chamber

Each chamber was created to have the same materials as the STIFF-FLOP robot.

The center of each chamber housed the waxed cotton fibers, surrounded by a flexible

membrane that was made of Smooth-On Ecoflex 0050 [46]. This membrane was held

in place by two silicone end caps that were made of a much stiffer silicone, Smooth-On

Smooth-Sil 950 [47]. The membrane was attached to the end caps using Sil-Poxy, a

specialized epoxy made for silicones [52]. The silicone membrane and end caps were

created by pouring silicone into a mold and curing it at room temperature.
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Figure 4.2: Left: Membrane Mold Tool Right: Pneumatic Mold Tool

The molds were designed in SOLIDWORKS 2015 [53], and 3D printed using a

Formlabs Form 2 SLA 3D printer [54]. Each section of the membrane (center, end

caps) had to be molded separately and then combined using SilPoxy. One end cap had

space for pneumatic tubing, while the other was a solid cap. The designs attempted

to share as many components as possible to reduce the number of prints needed.
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4.2.1 Membrane Mold Tool

Figure 4.3: Membrane Mold Tool and the completed Membrane

The Membrane mold tool is made of four components: A base, center cylinder,

top, and center rod. The center cylinder is connected to the base, and silicone is

poured in. Then the top is attached. When the center rod is pushed in, silicone is

displaced and flows out the exit holes in the top. Originally the center cylinder was

made as a single solid part, but the 5mm membranes could not easily de-mold. A

split cylinder was found to make de-molding easier.
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4.2.2 Pneumatic End Cap Mold Tool

Figure 4.4: Pneumatic End Cap Mold Tool and the completed End Cap

The bottom end cap is made with the same type of components as the Membrane

Mold tool. The difference is that in this tool, the Base and Top have holes that

accommodate the 6mm pneumatic tubing. The tubing is pushed through to create

the mold, and once the mold has cured, the part is cut into 10mm segments.
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4.2.3 Solid End Cap Mold Tool

Figure 4.5: Solid End Cap Mold Tool and the completed End Cap

The Solid End Cap is made with all of the same parts as the Membrane Mold

Tool except for the center dowel rod. In this case, the bottom is sealed with tape and

mold is poured into the cavity. The mold cures to a solid cylinder, which is then cut

into 10mm segments.
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Figure 4.6: Completed Fiber Jamming Chambers

4.2.4 Module Assembly

Once all of the silicone components were manufactured, a chamber could be cre-

ated. After the fibers were inserted into the membrane, the ends were trimmed off.

This made the fibers equal in length to the membrane. The solid end cap was then

coated in Sil-Poxy, and attached to the membrane.

Once the module assembly was completed, the pneumatic tubing was added. The

tubing was stuck into the hole in the bottom end cap, and coated with a bit of Sil-

Poxy to create a seal. Once the Sil-Poxy cured, a blow test was conducted, where

each module was inflated slightly and inspected for leaks. Any leakage areas were

then filled with Sil-Poxy and left to cure. The leak test was then re-conducted until

the module was free of any detectable leaks. The module was then marked with a

permanent marker on the blue harder silicone with its part number.
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The part numbers for the modules follow a simple structure. The first two digits

are the membrane diameter (IDm). Following the two digits is a letter which repre-

sents the module Variant. Then there is a dash and the last number is a sequential

number for that specific module, starting with 000. For example, 15A-000 is a module

with a Hoop Ratio (RH) of .4, a Fiber Ratio (RF ) of .1, and n = 65 fibers. 15A-001

is identical to the design of 15A-000. The table below lists out the variants tested.

Table 4.2: Chamber Variant Types And Their Design Parameters

Variant Hoop Ratio (RH) Fiber Ratio (RF ) Number of Fibers (n)

A .4 .1 65

B .4 .1 55

C .2 .1 65
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4.3 Testing Apparatus Design

Figure 4.7: Tester Assembly with Fiber Jamming Chamber

The testing apparatus created was a simple beam deflection tester. It had a vice

to hold the jamming chambers in place, and a load cell attached to two rods that

could be slid horizontally. The overall apparatus was constructed out of three pieces

of wood. Two pieces of wood stood vertically and had two holes drilled in each of

them for the movement rods. Each rod was marked with millimeter ticks in order to

measure distance. The vertical walls were then attached to the bottom piece of wood,

which had the vice attached to it and holes for the pneumatic tubing to go through.

The load cell was attached to two small pieces of wood in a “Z” configuration.
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4.4 Testing Procedure

Before any chambers were tested, the load cell was calibrated using a known 74g

weight. For each test, a chamber was selected and mounted to the vice. Then the

vice clamped down on to the chamber, with the bottom end cap of the chamber

completely in the vice’s grip, with the chamber aligned vertically. The load cell was

tared, and then placed to be just touching the chamber.

Figure 4.8: Fiber Jamming Chamber clamped to vice

4.4.1 Linearity Test

For each chamber variant and size, a single linearity test was performed. This

ensured that the data being collected was all within the chamber’s elastic region.

The linearity test was performed by deforming the chamber in 1mm increments and
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Figure 4.9: Un-jammed Fiber Jamming Chamber with 10mm Deflection

recording the force measured in grams, up to 10mm. A linear regression was run to

see if all of the points up to 10mm were in the chambers elastic region.

4.4.2 Deflection Test

Each chamber was subjected to a deflection test. The load cell was tared and

placed to be just in contact with the chamber. A deflection of 10mm was applied

to the chamber, and the resulting force was recorded in grams. The load cell would

back off, the chamber would be realigned (as some hysteresis was observed) and the

deflection test would be conducted again. This was repeated until there were 10

measurements at atmospheric pressure. The chamber was reset, the vacuum turned

on, and the test was conducted again until 10 more measurements were completed at

vacuum pressure.
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Chapter 5

RESULTS AND DISCUSSION

The results of the experiment show that: each chamber was tested within its lin-

ear elastic region, holding the three relative design parameters constant holds perfor-

mance constant, and altering these parameters alters the performance. These results

have implications for both the design of fiber jamming chambers and for the use of

fiber jamming chambers in minimally invasive surgical robots.

5.1 Linearity Test

All of the chambers were tested well within their elastic region. Each chamber

variant (A,B,C) and size (5mm, 10mm, 15mm) was subjected to a linearity test in

order to ensure that the chamber’s linear region was being tested in the deflection

test. The figure below shows the XY scatter plot and regression line of the 15A-000

chamber.

Figure 5.1: Linearity Test Results of 15A-000
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The following table shows the fit and errors of each chamber variant and size,

along with its R square and Standard Error. An R Square value of .95 is generally

considered as a good linear fit. Each chamber type tested well above that, clearly

indicating that each chamber was tested within its linear elastic region.

Table 5.1: Chamber Linearity Test Results

Chamber Variant and Size R Square Standard Error

15A .992 .1883

10A .997 .0464

5A .981 .0444

15B .997 .1229

10B .987 .0581

5B .985 .0382

15C .986 .1827

10C .999 .0142

5.2 Deflection Test

The deflection test gathered the data that would be used to analyze the effect that

the three design parameters had on performance. Each chamber was deflected 10mm

and the reaction force from the chamber was measured. Table 5.2 summarizes the

data from all of the deflection tests, with the minimum, maximum, average, and %

coefficient of variation listed for each chamber tested. All further analyses conducted

in this study were taken from the data in table 5.2. The complete raw data for each

test can be found in Appendix A.
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Figure 5.2: Stiffness Variations for Chamber Sizes and Variants

The figure above gives a quick visual summary of the performance data. Each

chamber has been grouped by variant, with a color to differentiate between sizes.

Dark green for 15mm chambers, dark grey for 10mm chambers, and light grey for

5mm chambers. All sizes of chambers are grouped by variants, so that the three sizes

of Variant A are together, the three sizes of Variant B are together, and the two sizes

of Variant C are together. A quick inspection of the chart shows that each Variant

has different performance levels, with the sizes of each variant grouped together.
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The table below is comprised of the means of the performance data for each

chamber, and is the tabular representation of the data shown in the figure 5.2. There

is no data on a 5mm Variant C chamber due to manufacturing problems at that wall

thickness.

Table 5.2: Chamber Performances for Variants A, B, and C

Membrane ID IDm Variant A Variant B Variant C

15mm 2.369 2.316 2.897 2.767 4.141 4.046

10mm 2.502 2.595 2.939 3.101 3.936 4.102

5mm 2.428 2.443 2.822 2.968

5.3 The Effect of Holding RH, RF , and n Constant

Holding the Hoop Ratio (RH), the Fiber Ratio (RF ), and the number of fibers (n)

constant held the performance constant across a variety of chamber sizes, within 10%

of the Variant’s average performance. Determining this result required using modified

statistical methods, since standard statistical methods do not test for equivalence.

With this result, all chambers within a Variant can be considered equivalent, and

Variants can be compared with other Variants.
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Figure 5.3: Performances for all sizes of Variants A and B

The figure above shows the performance values of every chamber tested. This set

excludes the Variant C chambers since the 5mm chambers for Variant C could not

be successfully manufactured. All A Variants had performances in between 2.3 - 2.6,

B Variants had performances between 2.7 - 3.1, and C Variants had performances

between 3.9 - 4.1. Testing whether all sizes of a Variant had equivalent performance

required running specialized tests designed for testing for equivalence.

Unlike most statistical tests, where the null hypothesis assumes that there is

no difference between the control and the tested populations, the Miniaturization

Hypothesis assumes there is a difference between these populations. This causes

problems in two forms: A definition of equivalency is needed, and modifications to

standard statistical tools are required [55].
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In order to prove that there is no difference between populations, a definition

of equivalency is required [55]. However, defining equivalency is not a statistical

problem, but a clinical one [56]. For instance, in measuring height of humans, a

difference of .1 inch (δ = .1”) could be considered equivalent, while a difference of 1

foot (δ = 1′) is a significant difference. In comparing the effects of jamming chambers,

there is not enough data yet to understand how much variation is normal for what

should be equivalent chambers. Is 10% variation considered identical? How about

20%? The previous papers on Fiber Jamming have shown up to 20% variance in

Stiffness Variation, but with only two papers, those values could be large due to early

iterations of the technology [51].

Furthermore, standard statistical tests are not set up to deal with a equivalence

testing [56]. Most statistical tests are set up to disprove no difference, not to prove

it. Modifying a standard t-test to disprove a difference is not too difficult, but the

difficulty increases as the statistical tests become more sophisticated, such as using

ANOVA tests. Using a modified t-test also requires that there are only two samples

being compared. This means that the Miniaturization Hypothesis could only be

tested in a single chamber Variant under two different membrane diameters (IDm).

The benefit of using ANOVA tests is that the effect that Miniaturization has on

each Variant can be accounted for all at once. Looking at the data, it appears (in

the loose, non-scientific sense) that Miniaturization works across all 3 Variants, and

it would be beneficial to have a statistical test that could account for this directly,

instead of only being able to look within one Variant. However, using a two-way

ANOVA test would only be able to fail to find a difference between the groups, which

is not the same as proving the groups are the same [57].

To run equivalency tests in this experiment, multiple t-tests were ran between

chamber sizes of the same variant in a combinatorial fashion. So 15A would be
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compared to 10A, then 5A, and there would also be a t-test between 10A and 5A.

Each t-test would produce a 90% confidence interval. A δ of .25 was used for this

experiment, which is about 10% of the Variant A performance.

If the confidence interval was within plus/minus δ, then the two groups could

be considered equivalent [58]. This method found all tested chambers to have a

90% confidence interval that was less than a performance difference of .25, indicating

equivalence. This means that a single Variant with different membrane diameters

(IDm) can be considered equivalent.

Table 5.3: Chamber t-test Confidence Intervals

Chambers Tested 90% CI Lower Bound 90% CI Upper Bound

15A vs 10A .1958 .2162

15A vs 5A .07996 .1032

10A vs 5A .0989 .1287

15B vs 10B .1694 .2071

15B vs 5B .0357 .0905

10B vs 5B .0951 .1958

15C vs 10C .0455 .1037

5.4 The Effect of Altering the Number of Fibers

Since all sizes of a chamber Variant can now be considered equivalent, a simple

t-test between two Variants will show whether or not there is a statistically significant

difference between the two Variants. Running a t-test between Variant A and Variant

B showed a significant difference (p < .0001), proving that altering the number of

fibers (n) alters performance.
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Figure 5.4: Number of Fibers vs Performance

The figure above shows the mean performance of Variant A (65 fibers) and Variant

B (55 fibers). The A and B Variants both had 6 total chambers to make comparisons

between, and it was clear from either the bar graph or the performance table that

there was a difference in performance between the variants. The A variant had a

performance around 2.3 − 2.5, while the B Variants had a performance of 2.7 − 3.1.

The t-test performed between the A and B Variants of all Membrane ID sizes found

that the Variant had an extremely significant effect on performance (p < .0001). The

difference in performance seemed to be due to Variant A being un-optimally packed.
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Figure 5.5: Deflection Force for Un-Jammed and Jammed Chambers (Vari-
ants A and B)

In practical terms, reducing the number of fibers (n) seemed to help by reducing

the friction in the un-jammed state. Looking at table 5.2 or figure 5.5, the B Variants

all had lower un-jammed force values, and similar jammed force values. This was only

untrue for the 5mm chambers, which were affected by having larger-than-specified

fibers. While this may not hold as the number of fibers (n) decreases further, it

seems that in this case that n = 65 was too high to be optimal, resulting in a high

amount of inter-fiber friction in the un-jammed state.
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Table 5.4: Chamber Forces [g] for A and B Variants

Chamber Designator Atmospheric Mean Vacuum Mean

15A-000 72.19 171.02

15A-001 76.24 176.59

15B-000 62.71 181.62

15B-001 60.81 168.19

10A-000 26.77 66.96

10A-001 25.12 65.15

10B-000 20.37 59.75

10B-001 19.53 60.55

5A-000 10.32 25.03

5A-001 7.95 19.41

5B-000 9.75 27.48

5B-001 8.62 24.65

5.5 The Effect of Altering the Hoop Ratio

Running a t-test between Variant A and Variant C showed a significant difference

(p < .0001) in performance, proving that altering the Hoop Ratio (RH) alters perfor-

mance. Making the wall thickness thinner both reduced the un-jammed stiffness and

improved the jammed stiffness.
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Figure 5.6: Performance vs Hoop Ratio

This test checked whether altering the Hoop Ratio (RH) while holding the Fiber

Ratio (RF ) and membrane diameter (IDm) constant would affect performance. An-

other t-test was ran between Variants A and C, with the 15mm and 10mm sizes. The

Variant once again had an extremely significant effect, at p =< .0001.
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Figure 5.7: Deflection Force for Un-Jammed and Jammed Chambers (Vari-
ants A and C)

Reducing the Hoop Ratio (RH) was very beneficial to performance; it both reduced

the stiffness at atmospheric pressure and increased it at vacuum pressure. The only

chamber that broke the trend was chamber 10C at Vacuum pressure, where its stiffness

was less than 10A. However, its un-jammed stiffness was even less stiff than 10A, so

it still had a much higher performance value.

5.6 Implications of Fiber Jamming Theory

Fiber Jamming Theory has shown that the performance of a fiber jamming cham-

ber is dependent on three relative parameters: the Hoop Ratio (RH), the Fiber Ratio

(RF ), and the number of fibers (n). This has two implications: holding these pa-

rameters constant will hold performance across various sizes, and manipulating these

parameters purposefully can change the performance of a certain chamber size.
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These two implications can be categorized as as miniaturization and manipulation.

Miniaturization is the ability to maintain chamber performance as the membrane

diameter (IDm) decreases. Manipulation is the ability to alter the performance of a

chamber that has a specific membrane diameter (IDm). With these two implications,

chamber performances can be predicted from testing more “convineint” chambers.

In most cases the limiting factor in chamber design is the lack of different fiber

diameters (ODf ). The Manipulation and Miniaturization hypotheses can be used as

a reason to develop specific fiber diameters (ODf ) for engineering use. For instance,

a larger fiber jamming chamber could be designed, where there is a lot of availability

of different size fibers, and therefore the Fiber Ratio (RF ) is easy to manipulate.

The desired performance can be found in this larger chamber, and then the same

parameters are designed for a miniaturized chamber. If the required fiber diameter

(ODf ) isn’t normally available, there is now a reason to develop it.

5.7 Designing a Fiber Jamming Chamber for the STIFF-FLOP

Using the Miniaturization and Manipulation implications from Fiber Jamming

Theory allow for certain chamber designs to be tested without needing the very small

fiber diameters (ODf ) that would be required for use in the STIFF-FLOP.
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Figure 5.8: Modified STIFF-FLOP Design with Fiber Jamming Chambers

The figure above shows a modified miniaturized STIFF-FLOP design. The overall

module has a diameter of 14.5mm, which is able to fit inside a standard 15mm trocar.

There are 6 FFA’s in each module, each with a diameter of 2.75mm. With this design,

three fiber jamming chambers were inserted into the design, as slots with a 1.25mm

diameter and a 2.25 distance between centers, giving the chamber 3.5mm total length.

Notice that the slot has a minimum wall thickness of .75mm at each end, and the

wall thickness is variable throughout the rest of the chamber.

Since the chamber is not a perfect circle, the 8% to 10% rule for fiber diameter

(ODf ) must be modified. Instead of going directly from a ratio of the diameter, a

ratio of the area may be convenient. Finding the area of the slot and then using 1%
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of that can solve for the diameter of the fiber (ODf ), which comes out to about .2mm

(.008”), which is much smaller than any fiber diameter used so far.

This chamber could be built at a larger size to use the 1mm fiber diameter,

and then tested for figuring out the correct Hoop Ratio (RH) and number of fibers

(n). The fiber material could also be experimented with at this point, depending on

what fibers are easiest to manufacture at the required diameter of .2mm. Lastly, the

fiber jamming theory allows for the performance of the miniaturized chamber to be

predicted from the larger test chamber.

If a minimum amount of force transfer is needed in the STIFF-FLOP, the fiber

jamming chamber can be designed to meet that. Fiber jamming theory predicts that

chambers that have the same RH , RF , and n have identical performance. Because

performance is a ratio between the stiffness of the un-jammed and jammed state, the

stiffness of a miniaturized chamber can be derived from its expected performance. In

the equation below, both the larger size (K1) and the miniaturized size (K2) have

the same performance.

Performance =
K1
jammed

K1
un−jammed

=
K2
jammed

K2
un−jammed

(5.1)

This means that the ratios between the larger jammed stiffness and the miniatur-

ized jammed stiffness are also equal to the performance.

Performance =
K1
jammed

K2
jammed

=
K1
un−jammed

K2
un−jammed

(5.2)

The larger test chamber will have a measured performance and a measured stiff-

ness at both the un-jammed and jammed states. From this the un-jammed and

jammed stiffness of the miniaturized chamber can be predicted. If there is a re-
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quirement for the miniaturized stiffness, the stiffness and performance of the larger

chamber can be modified until these requirements are met.

5.8 Implications for Minimally Invasive Surgery

The STIFF-FLOP robot was introduced in the literature review as a prime ex-

ample of how critical controllable stiffness is to a soft robot. Researchers believe that

soft robots could be the next step in robotic surgery, due to their enhanced flexibility

and safety in human environments. A review of the current surgical tools will demon-

strate the advantages soft robots have, and why developing a feasable soft robotic

surgical robot is important.

Surgery is defined as, “The process of structurally altering the human body by

incision or destruction of tissues” [59]. Any surgical procedure has two objectives:

Perform the desired change or operation, and avoid disrupting or changing anything

else. The most obvious way to reduce disruption is to make smaller incisions, which

does indeed improve surgical outcomes [60]. Minimally Invasive Surgery (MIS) applies

this idea by using specialized tools and techniques [61], and the primary tool used in

MIS is the laparoscope.
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Figure 5.9: Common Example of Laparoscopic Surgery

The laparoscope is a fiber optic cable system that provides surgeons with a look

inside the body [62, 63]. It is a long tube that acts as a sort of “telescope” to

view inside the body when an external light source is present. Laparoscopic surgery

has many benefits over open surgery, such as smaller wounds, faster recovery time,

reduced pain, and reduced complications [64, 65, 66, 67, 68, 69, 70, 71].

While there are many benefits, using a laparoscope is not free of problems. The use

of small incisions and long tubes sometimes causes disruption in unintended ways.

This disruption comes in two categories: a lack of speed, and a lack of precision.

Laparoscopy’s lack of speed can lead to more internal bleeding during suturing oper-

ations, and longer operation times requires more anesthesia [72]. Surgeons also find

the laparoscope harder to use than the tools used in open surgery, which results in

increased strain on the surgeon and less precise movements [73, 74, 75, 76, 77, 78].
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Robotic Minimally Invasive Surgery (RMIS) attempts to fix the speed and preci-

sion problems associated with laparoscopic surgery. A few of these problems are fixed

as a part of the design. Surgeons can comfortably sit at a console instead of working

in awkward positions, improving ergonomics and comfort [79, 80, 81]. This reduces

strain on the surgeons, who are then able to perform more procedures with less error,

less stress, and less mental fatigue [82, 83]. As technology has improved, the speed

and precision of robotic systems has also improved [84, 85, 86, 87, 88, 89, 90, 91].

Figure 5.10: DaVinci Robotic Surgical System Console

A large volume of studies comparing robotic surgery to laparoscopic surgery have

found mixed results. In general, robotic surgery tends to be more ergonomic and

less stressful to the surgeon [92], but has higher average costs [93, 94]. Whether

this has led to superior patient outcomes is uncertain, with no clear consensus in

the literature [95, 96, 97, 98, 99]. Robotic and laparoscopic surgery are still closely

related, as both use long stiff tubes to perform operations. Soft robots may be able

to improve surgical outcomes by taking advantage of their superior mobility, safety,

and use of haptic feedback.

Haptic feedback is a human-computer interface where digital signals are converted

into a human sense of touch [100, 101]. Think of a phone vibrating when a call is

received. Surgeons are trained to use their sense of touch, so the desire for haptic
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feedback in robotic surgery is immense [102, 103, 104]. No current surgical robot

system has good haptic feedback, as the technology required to either accurately sense

or estimate the force at the end of the laparoscope is limited [105, 106, 107]. However,

with FFA actuated robots like the STIFF-FLOP, pressure is uniform throughout the

chamber. The force sensed at one end is the same as the force on the other end,

enabling haptic feedback to be used effectively.

The combination of higher mobility, improved safety, and improved haptic feed-

back creates a strong demand for soft surgical robots. However, for any soft surgical

robots to become useful, a suitable controllable stiffness method is required. The

work done in this thesis, while unable to directly confirm if fiber jamming will be

the best controllable stiffness method, gives researchers the tools to experiment with

fiber jamming at cheaper and larger sizes without having to develop the miniatur-

ized chambers directly, and gives engineers theoretical support to develop increasingly

smaller fibers.
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Chapter 6

LIMITATIONS AND FUTURE WORK

There were a few limitations and problems in the manufacturing and testing of

the fiber jamming chambers that affected the accuracy and precision of the results.

Furthermore, more experimentation is required to fully test the Fiber Jamming The-

ory that was developed, and the theory still needs to be expanded to cases beyond

the two-beam model.

6.1 Manufacturing Inconsistencies

6.1.1 Air Bubbles in Silicone

Each silicone membrane and end cap poured had air bubbles trapped inside the

completed molds. While there are some cheap methods to reduce the amount and

size of these air bubbles, the most effective method is to purchase a specific vacuum

de-gasser that is able to pull the air bubbles out of the silicone. However, due to the

cost of such a device ($800-$1000), this was not feasible.
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Figure 6.1: Bubbles present in all membranes manufactured

These air bubbles affected both the accuracy and precision of the test. Air bubbles

effectively reduce the Hoop Ratio (RH), and the amount of air bubbles per membrane

is not controllable. The bubbles create a ”thinner” wall thickness than specified, and

quantity of bubbles varied between membranes, which caused a variation between

what should be identical parts. The air bubbles may also cause the membranes to

rupture.

The air bubbles are capable of causing holes in the membrane, especially as the

wall thickness is reduced. Several 5mm chambers produced for the A and B Variants

had to be discarded due to having too many holes in the membrane. Selecting a

membrane that did not appear to have holes was tougher than expected, and some-

times ruptures would only be detected after turning on the vacuum. Producing a C

Variant chamber at 5mm proved to be nearly impossible due to the presence of air

bubbles, as all of the produced membranes had several holes and voids.
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6.1.2 Cutting Silicone to Required Dimensions

Each mold for the membrane included slots so that extra silicone could flow out

of the mold when it was overfilled. This had the advantage of making manufacturing

easier and faster, without requiring a precise measurement of how much silicone to

use. Each mold could be poured to approximately 1/3 to 1/2 way up, and then

the center dowel pin was pressed in. Extra mold material would simply flow out of

the mold through the slots back into the bucket of silicone. However, this process

also introduced flashes of mold that needed to be trimmed once the mold was cured.

Cutting the silicone with ordinary scissors was not as precise as expected, and the

trimmed surface was not always flat and even. Getting the membrane to bond and

seal with the end caps often required several layers of epoxy, which could affect the

stiffness of the chamber.

Figure 6.2: Slots left over after curing of membranes

The End Caps were molded such that several could be cut from one cured mold.

Once again, while convenient for manufacturing, this introduced variations and prob-

lems in chamber assembly. The end caps were cut by placing them back into the solid

77



membrane mold, measuring the depth to 10mm, and cutting the molded end cap with

an X-Acto knife. The dimensional imperfections from cutting resulted in imperfect

surfaces that required extra epoxy to cure. Along with the membranes having flashes

at the ends, these two problems resulted in requiring extra epoxy to fill holes, or in

having to discard some of the end caps or membranes.

6.1.3 Fiber Dimensional Inconsistencies

Variations in the fiber diameter caused issues that affected the results of the

test. Waxed cotton cord was purchased at 3 diameters: 0.5mm, 1mm, and 1.5mm.

However, upon inspection of the cord, only the 1mm and 1.5mm cord actually had the

diameter as advertised! The 0.5mm cord had an average diameter of 0.7mm, which

filled the chambers with noticeably less fibers. A workaround was found by equating

for surface area between the ideal and actual diameters. The number of fibers (n)

used in the 5mm chamber was changed such that the total cross-sectional area in

the chamber was the same regardless of whether the cord was 0.5mm in diameter

or 0.7mm in diameter. This equation meant that the adjusted 5mm chambers used

n = 32 fibers for the A Variants, and n = 28 fibers for the B Variants.

n.7 =
.252 ∗ n
.352

= .5102 ∗ n.5 (6.1)

The results concluded from the 5mm chambers, mainly conclusions about minia-

turization, are affected by this issue. Using larger fibers may alter performance, and

by having to alter n, fundamentally contaminates the experiment, by introducing a

confounding variable.
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6.1.4 Configuration Inconsistencies

Every chamber used in this test was manufactured in a bundle configuration.

The fibers are placed in the membrane without any specific alignment or spacing.

The fibers were attempted to be aligned during chamber assembly, but there was no

guarantee that some of the fibers did not end up twisted or out of alignment. Identical

chambers then essentially had different amounts of inter-fiber friction, which in the

ideal case would be perfectly identical.

6.2 Testing Inconsistencies

6.2.1 Chamber Initial Position

The largest variation in testing of a single chamber was it’s starting position and

orientation. The force measured after 10mm of deflection appears to be dependent on

the initial position of the chamber. Each measurement would start with the chamber

being aligned straight up, and with the force plate just barely touching the membrane.

However, each chamber has some hysteresis. The chambers, once deflected, will not

return to their initial starting position on their own. An accidental deflection will

cause the chamber to “restart” in a different position than the one originally planned.

Purposefully resetting each chamber to vertical helps mitigate this.

6.2.2 Vacuum Pressure

The vacuum pump used in this experiment did not have a gauge to measure the

pressure, and no pressure gauge was used in the experimental setup. This affects

the ability to compare the direct force results from this test to future experiments.

Wile different vacuum pressures should alter the absolute performance, it should not

affect relative performance between chambers of different sizes or variants. While
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the vacuum pump did not have a known experimental pressure, it was checked for

consistency throughout testing.

The consistency of the vacuum was demonstrated with repeated testing of a single

chamber. Over the course of testing the 16 chambers, 15A-000 was re-tested peri-

odically. There was no significant change in force at the vacuum pressure found for

any of the times 15A-000 was tested, indicating that the pressure value, although

unknown, was consistent throughout testing.

6.3 Future Work

6.3.1 Addressing problems found in this study

There were several problems in this study that can be addressed and mitigated in

future work. Going in order as originally listed:

1. The purchase or design of a suitable vacuum de-gassing chamber is absolutely

essential going forward. Having consistent, bubble-free membranes will allow

for a wider range of wall thicknesses, and will reduce inconsistencies between

identical membranes.

2. The use of more advanced molding techniques may be beneficial in increas-

ingly smaller chambers. Voids can be avoided by either using injection mold-

ing techniques, or by degassing the mold after the silicone has been poured

in.

3. Using injection techniques with a precise, predefined amount of silicone will

also negate the need for slots in the mold, and should then remove any large

flashes that would need to be trimmed off later.

4. The end cap molds should be redesigned so that no cutting is required. This

will ensure that the parts come out consistently.
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5. Using fibers that have tighter tolerances and are the correct size will ensure

that all other variables are controlled except for the one being tested. This

issue may not be that easy to correct, as the tolerance on waxed cotton cord

is driven mostly by the craft market, not the engineering market.

6. A new tester design is needed where the deflection can be precisely con-

trolled. Using electronic motors is preferable to manual actuation, but both

would be improved over the current tester, which relies on measurement

ticks and manual dexterity to deflect the chamber 10mm.

7. Any future tests should have not only a more precise pump capable of deliv-

ering vacuum pressure, but also a gauge in the design so that the pressure

can be accounted and controlled for. While this study did not have any prob-

lems with pump consistency throughout the testing, knowing the pressure

values only aids in understanding fiber jamming and its use in soft robotic

applications.

8. Lastly, testing miniaturization requires more replicate modules of each size

and Variant, and more sizes to test. The smaller these chambers get, the

better, as the results of Miniaturization can then be more directly applied.

In the most skeptical sense, the results of any Miniaturization test only

extend as far as the tested sizes.

6.3.2 Improving on Fiber Jamming Theory

The theory presented in Chapter 3 only gives a 2-beam example of the full dif-

ferential equations. Since optimal packings are known for any practical number of

fibers, differential equations can be developed for any packing number. Developing

the differential equations and using a Finite Element Analysis code will allow fiber

jamming chambers to be simulated. Simulating and then testing actual chambers

would test the developed theory much more than the simple experiment devised here.
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6.3.3 Improving on Fiber Jamming Testing

Fiber jamming tested can be improved by testing a much larger amount of cham-

bers at a variety of different Hoop Ratios (RH), Fiber Ratios (RF ), and number of

fibers (n). Combining the large-scale testing with precision measurements, and a

modified two-way ANOVA that could test for equivalence, would give the strongest

support for the Miniaturization hypothesis. The two-way ANOVA is able to account

for the change in membrane diameter (IDm) across all Variant types, which is some-

thing that the simple t-tests used in this thesis were not capable of.
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Chapter 7

CONCLUSION

In this work, a novel theory of fiber jamming chambers was developed and tested

experimentally. The experiment validates the theory and shows that the performance

of fiber jamming chambers is related to its material and geometrical properties. Fur-

thermore, the theory suggested, and the experiment verified, that the performance of

a chamber can be held constant if the Hoop Ratio (RH), the Fiber Ratio (RF ), and

the number of fibers (n) are held constant. Data from the experiments also showed

that the performance of a chamber of a certain size IDm could be improved. The

work done in this thesis gives researchers the tools to experiment with fiber jamming

at cheaper and larger sizes without having to develop the miniaturized chambers di-

rectly, and gives engineers theoretical support to develop increasingly smaller fibers.

Further work is needed to verify the theory under tighter manufacturing conditions,

as well as to show that miniaturization works beyond just the three sizes tested in

this work.
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[189] U. Walliczek, A. Förtsch, P. Dworschak, A. Teymoortash, M. Mandapathil,

J. Werner, and C. Güldner, “Effect of training frequency on the learning

curve on the da vinci skills simulator,” vol. 38, pp. E1762–E1769.
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